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Abstract

This paper presents a novel bimodal speech emotion recognition system based on analysis of acous-
tic and linguistic information. We propose a novel decision-level fusion strategy that leverages both
emotions and sentiments extracted from audio and text transcriptions of extemporaneous speech ut-
terances. We perform experimental study to prove the effectiveness of the proposed methods using
emotional speech database RAMAS, revealing classification results of 7 emotional states (happy, sur-
prised, angry, sad, scared, disgusted, neutral) and 3 sentiment categories (positive, negative, neutral).
We compare relative performance of unimodal vs. bimodal systems, analyze their effectiveness on
different levels of annotation agreement, and discuss the effect of reduction of training data size on
the overall performance of the systems. We also provide important insights about contribution of each
modality for the best optimal performance for emotions classification, which reaches UAR=72.01%
on the highest 5-th level of annotation agreement.

Keywords: Computational paralinguistics, Speech emotion recognition, Sentiment analysis, Bi-
modal fusion, Annotation agreement

1 Introduction

Emotions are psycho-physiological reactions that arise as a response to important events. They are
widely recognized as key factors in decision-making processes, especially for impromptu decisions [18].
Because emotions are highly subjective in nature they are very difficult to analyze. Emotion recognition
is an active research field that aims at identifying ways to quantify and measure emotional expressions in
a wide variety of applications. Speech emotion recognition is a field of studying emotional expressions
by analyzing acoustical properties of speech signals. Sometimes linguistic (lexical) characteristics are
also considered, however emotions and other affective states are usually considered as paralinguistic
phenomena, meaning the elements of communication that do not involve words. Nevertheless, linguistic
cues may be important indicators of certain emotional states, and many bimodal systems (i.e. combining
both acoustic and linguistic characteristics of speech) were proposed to take advantage of both channels
of communication [29].

Sentiments are different from emotions in that they convey people’s opinions rather than feelings.
They can be of 2 types: rational and emotional [17]. Rational sentiment is based on rational reasoning
and does not convey emotions, e.g. “This car is worth the price.” Emotional sentiment in turn is based
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on emotional attitudes and is usually used to directly convey the emotions, e.g. “I am scared,” or “This
makes me angry.” When conducting sentiment analysis, usually three categories are considered: positive,
negative and neutral.

In this paper we propose an effective bimodal speech emotion recognition system based on analysis
of emotions and sentiment via acoustic and linguistic characteristics of speech. The following sections
present proposed approach in detail. Section 2 provides an overview of the related methods for acoustic
and linguistic modelling of emotions and sentiment, as well as multimodal fusion approaches. Section
3 reveals the proposed approach for audio-based, text-based and bimodal speech emotion recognition.
Section 4 describes the data, experimental setup used in this study, as well as reveal the obtained results.
Section 5 provides the discussions about the important experimental findings, and Section 6 draws the
final conclusions.

2 Related work

Although a lot of acoustical features were recently proposed in the field of speech emotion recogni-
tion, for example Bag-of-Audio-Words [30], AuDeep [9] and DeepSpectrum [44], the functionals-based
openSMILE features, which are hand-engineered statistical features, are still considered as de-facto stan-
dard and provide better reliability in terms of generalization and performance on new data since other
more powerful methods show significant dependency on the data, especially when working on small
datasets [31, 39]. These features are based on Low-Level Descriptors (LLDs) extracted at a frame level,
which are further processed by aggregating statistics at an utterance level.

As contemporary research shows [5], neural network methods such as Word2Vec [21], FastText [2],
BERT [4], and ELMO [24] are often used to extract linguistic features. The advantages of these methods
are that they allow to vectorize words, taking into account the context of the text and the semantic
proximity of words, in contrast to simple algorithms such as Bag-of-Words [40], One-hot Encoding [25],
which take into account the occurrence of the word and its frequency, ignoring the grammar and word
order in the sentence [16]. Also, the disadvantage of simple algorithms is the large size of the vector, as a
rule, it is equal to the number of unique words in the text, which increases the training time of classifiers
in contrast to the use of neural network methods. Another reason for using vectorization methods based
on neural networks is the possibility of using pretrained models, which is relevant for solving Natural
Language Processing (NLP) problems with a small amount of training data [10, 3]. If the pretrained
models are used for text vectorization, then the dimension of the vector output is immutable, because it
depends on the architecture of the neural network used. In this paper, we will use neural network methods
of text vectorization, for which there are open access pretrained models for the Russian language, and
one of the criteria for choosing methods is the small dimension of the vectors, this is necessary in order
not to spend a lot of time resources for training classifiers for recognizing sentiment and emotions. These
methods are Word2Vec, FastText with a vector dimension of 300, and BERT with a vector dimension of
768. The ELMO neural network also has pretrained models for the Russian language open access, but
the dimension of its vector reaches 1024, which significantly affects the learning speed of classifiers, so
ELMO will not be considered in experimental studies.

Acoustic and linguistic features are usually extracted and processed separately as their nature is
extremely different [32]. The final contribution of each feature type for emotion recognition also varies
greatly depending on the type of data used for training. Linguistic processing has almost no value for
the scripted speech, whereas it gains importance relative to acoustic information in naturally occurring
dialogues.

Most common approaches to combining multimodal data can be divided into 5 groups: 1) feature-
level (early fusion), 2) feature-representation-level, 3) model-level, 4) decision-level (late fusion), 5)

81



A Bimodal Approach for Speech Emotion Recognition Verkholyak, Dvoynikova, and Karpov

hybrid approaches [43]. Feature-level fusion implies independent extraction and further concatenation
of features from each modality. Then the resulting feature vector is passed on for classification step. This
approach leads to a significant increase of dimensionality of the resulting feature space, and the feature
vectors become very sparse, which may have a negative impact on classification performance on small
datasets. Feature-representation-level fusion assumes independent feature extraction and processing,
including feature selection and dimensionality reduction for each modality, which allows for partial
solution of aforementioned problem, also known as the curse of dimensionality, however in practice this
approach is often challenging as features from each modality have different nature and synchronization
issues further complicate the analysis. Model-level fusion is possible via several classification models,
such as Hidden Markov Models (HMM) and Neural Networks (NN), which have a capability to monitor
the state of classification systems from other modalities. Such systems output a single final prediction,
which takes into account the states of all classifiers from all modalities. Decision-level fusion allows to
build independent, specific models for each modality. The predictions from all modalities are aggregated
and transformed via a decision rule, which may vary according to the requirements.

Fusion on the decision level has several advantages compared to early fusion. First, it implies inde-
pendent processing pipeline for each modality, which makes it possible to take into account peculiarities
of each signal type, necessary for modelling corresponding phenomena, and better fit the models [1].
Second, it does not impose any restrictions on the methods used for modelling and classification, provid-
ing models with more flexibility [41]. And third, it allows to analyze how much contribution is necessary
from each modality to achieve best possible performance [11]. This in turn makes it possible to determine
the leading modality, or vice versa, provided a priory knowledge (for example, if some type of equipment
is more prone to failure, or some type of signal is more noisy than others), to give more weight to the
more reliable communication channel. In many applications, the performance of decision-level fusion of
acoustic and linguistic information for emotion classification was shown to overcome the one obtained
by early fusion techniques on the feature level [38]. Therefore, decision-level fusion remains a popular
approach for information fusion in emotion classification research, particularly due to relative ease of
implementation and numerous advantages outlined above.

One of the earliest decision-level approaches to combining acoustic and linguistic information in
speech signals performed fusion at the decision level assuming statistical independence of each modal-
ity. Despite being an over-simplistic approach, it was proven effective [15] for recognition of negative
vs. positive emotions, where the decision rule was formulated as a logical function “OR,” i.e. the final
emotion prediction was declared negative if either acoustic or linguistic model output a negative label,
otherwise the final emotion prediction was declared positive. This approach does not take into account
inter-dependency of the modalities, nor does it provide insights about their relative importance. Another
decision level strategy was later proposed to account for confidence scores of each modality. By ranking
modalities according to the confidence scores obtained from respective classifiers, authors selected the
output with higher normalized confidence score to be the final output. In addition, to compensate the in-
herent difference in the performance of each modality (for example, noisy channel or faulty equipment),
a constant weighting factor was applied to the confidence scores [26]. The performance of this approach
was shown superior to any single-modality-based system proposed by the authors in the framework of
the first Interspeech Computational Paralinguistics Challenge, however its performance relative to other
participants, who did not use the fusion of acoustic and linguistic information, remained lower [35].

The decision-level fusion strategies discussed above have several limitations. Although they allow
to improve classification accuracy over single-modality-based systems, they still do not consider relative
performance of each modality and do not allow to account for the predictions of different modalities
at once. To overcome these limitations, several soft decision fusion rules have been proposed. Soft
decision is based on computing probabilities for each emotional class instead of outputting a single most
probable label (hard decision). First and most simple approach uses couple-wise mean scores for each
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emotion based on the acoustic and linguistic information followed by an adjacent maximum likelihood
decision. This approach assigns an equal weight to each modality. Another more advanced decision-
level strategy is based on weighting the probabilities obtained from each modality and computing the
sum, which is further used to decide the most probable classification outcome. The fusion weights are
generally learnt on a separate held-out dataset. The weights can also be tuned for each emotion class [13].
Another option is to build a meta-classifier, which receives probabilities from each modality as an input
and outputs the final predictions [33]. This is most flexible approach, however it requires additional
computational complexity.

3 Proposed method

We propose a novel approach towards classification of emotions into 7 categories (happy, surprised,
angry, sad, scared, disgusted, neutral) using audio (acoustic) and text (linguistic) information fused at the
decision-level. First, we fine-tune the performance on each modality separately, using specific methods
to obtain best possible unimodal performance. Then, we define an effective rule for combining the
information from both audio and text to get the final result. When making the final prediction we analyze
both emotions and sentiment to complement their performance. The details of the proposed acoustic
modelling, linguistic modelling and bimodal decision-level fusion are outlined in the following sections.

3.1 Audio modelling

The audio modelling is performed on the utterance level using labeled speech segments from the emo-
tional speech corpus. First, acoustical features are extracted for each sample in the database. The result-
ing features undergo normalization and dimensionality reduction stages, after which they are input into
a machine learning classifier to obtain the final predictions.

In this study we propose to use 2 different configurations of openSMILE features: INTERSPEECH
2010 Paralinguistics Challenge Feature Set (IS10 paraling [34]), and INTERSPEECH 2013 Paralinguis-
tics Challenge Feature Set (IS13 ComParE [36]). The IS10 paraling feature set is based on 38 low-level
descriptors extracted at 100 frames per second and their first order regression coefficients. 21 statistical
functionals are applied to all frame-level features within a given utterance. Additionally F0 (Fundamen-
tal frequency) number of onsets and turn duration are added to the resulting utterance-level feature set.
The low-level descriptors and functionals that were used in this study are shown in Table 1. Total number
of utterance level features extracted for each training sample is 1582. The The IS13 ComParE feature set
extends the Is10 paraling feature set by adding more LLDs and functionals and improving the numerical
computation. Total number of utterance level features extracted for each training sample is 6373.

Support Vector Machine (SVM) and Logistic Regression (LR) are two most popularly used tradi-
tional machine learning classifiers in the field of speech emotion recognition [12]. Since SVM only
outputs hard labels (classes), we opt for using LR to output soft labels (probabilities).

3.2 Text modelling

Linguistic information of speech utterances is contained in a textual modality, the study of which allows
you to analyze speech audio data in full. To extract linguistic features from text data, it is necessary
to use vectorization methods [6]. In this paper, the following methods are used for text vectorization:
Word2Vec, FastText and BERT. The advantages of these methods are that there are pretrained models for
the Russian language in the open access, as well as a small dimension of the vectors obtained using these
methods, so that a large amount of time resources is not spent on training classifiers. Word2Vec [21]
and FastText [2] are neural networks developed by Google and Facebook, respectively, they allow you to
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Table 1: Low-Level Descriptors and Functionals of the openSMILE features [8]
Descriptors Functionals

PCM Loudness position max/min
MFCC [0-14] arith. mean, std. deviation

log Mel Freq. Band [0-7] skewness, kurtosis
LSP Frequency [0-7] lin. regression coeff. 1/2

F0 by Sub-Harmonic Sum. lin. regression error Q/A
F0 Envelop quartile 1/2/3

Voicing Probability quartile range 2-1/3-2/3-1
Jitter Local percentile 1/99
Jitter DDP percentile range 99-1

Shimmer Local up-level time 75/90

study vector representations of words in natural language, considering the semantic proximity of words.
The pretrained Word2Vec and FastText models for Russian language are available on the RusVectores
website1. Based on previous studies [7], to vectorize the speech transcriptions of the RAMAS database,
it is necessary to use pretrained models with the vector dimension 300 tayga upos skipgram 300 2 2019
and tayga none fasttextcbow 300 10 2019 for Word2Vec and FastText, respectively. Both models were
trained on the 5 billion word Taiga corpus [37]. BERT (Bidirectional Encoder Representations from
Transformers) [4] – a neural network developed by Google, allows you to extract vector representations
of words from text, considering the context. BERT is a state-of-the-art method for many Nature Lan-
guage Processing tasks. The pretrained BERT-Base Multilingual model2, developed for 102 languages,
including Russian, was also used to vectorize text transcriptions. The dimension of the vector obtained
using this model is 768.

To recognize emotions based on a text modality, you need to choose a classifier that meets the fol-
lowing requirements: it can be trained well on a small data set, and the ability to produce probabilistic
predictions for each class of the test set. These requirements are met by the following machine classifiers:
Logistic Regression (LR), Random Forest (RF) and Naive Bayes (NB).

3.3 Bimodal fusion

To fuse information from 2 modalities, audio and text, we propose to obtain 3 sets of predictions: prob-
abilities of emotions from modelling acoustic parameters, probabilities of emotions from modelling lin-
guistic parameters, and probabilities of sentiment from modelling linguistic characteristics.

As a rule, the text modality contains information about the polarity (valence) of the speaker’s ex-
pressed emotion during a conversation, whereas the acoustic modality conveys the intensity of emo-
tions [17]. Therefore, with the help of text transcriptions, we can perform not only the recognition of
emotions, but also the recognition of sentiment. Sentiment analysis classes are obtained from the original
annotation of emotions (6 emotional classes + neutral state) by grouping the following categories: Happy
and Surprised (Positive sentiment); Angry, Sad, Disgusted, Scared (Negative sentiment); Neutral state
(Neutral sentiment). This grouping corresponds to the circumplex model of emotions proposed by James
Russel [28]. Some of the relevant emotional categories placed on a 2-dimensional space are depicted
in Figure 1. Emotional categories Astonished and Excited, which roughly correspond to Surprise in the
current study, are shown in yellow. Such emotions as Annoyed, Distressed and Frustrated, which are

1https://rusvectores.org/ru/
2https://github.com/google-research/bert/blob/master/multilingual.md
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close to Disgust, are shown in orange. Positive emotional categories Happy, Pleased and Glad are shown
in red. Other relevant to the present study categories such as Angry, Scared (Afraid) and Sad have direct
correspondence with the diagram.

Figure 1: Circumplex model of emotions proposed by James Russel [28]. Some irrelevant to the study
emotional categories are omitted for convenience.

Since the prediction of emotions from audio are made on the utterance level, and the predictions
of sentiment and emotions from text are made on the whole dialogue level, we propose the following
approach to merge the probabilities. Emotion predictions from text are interpolated to all the emotional
intervals within the given dialogue, i.e. all the annotated intervals are given the same prediction as the
overall prediction of the dialogue. The same procedure is repeated for the sentiment, however, because
the sentiment predictions only have 3 classes, and the emotion predictions have 7 classes, the sentiment
predictions need to be further interpolated to the emotional categories. With the help of the Russell’s
circumplex model, we perform interpolation by repeating the sentiment prediction for all correspond-
ing emotions: positive sentiment prediction is interpolated to the happy and surprised classes, negative
sentiment prediction is interpolated to the Angry, Sad, Scared, and Disgusted classes, and the Neutral
sentiment prediction corresponds to the Neutral state class (see Figure 2).

4 Experiments

All experiments are conducted on the RAMAS [22] [23] dataset with a predefined train/test split. The
classification performance is measured in terms of Unweighted Average Recall (UAR), which is average
of recalls from each emotional category. This performance measure is preferred over the simple accuracy
when dealing with unbalanced data, since it provides better estimation of the performance across all
classes. Following is the description of data and experimental setup used in the current study.

4.1 RAMAS dataset

RAMAS [22] [23] is a multimodal corpus of dyadic interactions intended for modelling affective phe-
nomena such as emotions. It was collected in 2016-2017 by Neurodata Lab company and is free and
open-source for research purposes. 10 semi-professional actors (5 males and 5 females) in the age of
18-28 years old recorded 580 video clips 7 hours in total. Each video clip is approximately 30 seconds

85



A Bimodal Approach for Speech Emotion Recognition Verkholyak, Dvoynikova, and Karpov

Figure 2: Proposed strategy for fusion of acoustic and linguistic information

long and contains speech utterances from 2 actors, a male and a female. Each actor had a dedicated lav
microphone attached to the neckline and connected to a wireless recording system. Actors performed
according to predefined scenarios, however they were free to improvise and choose words and phrases
to make the conversation more natural. In total, there were 13 different scenarios including interactions
between friends and coworkers on different topics: travel, work, health etc. Each scenario implied pres-
ence of 2 different emotions (1 per each actor) from the pool of 6 basic emotions (happiness, surprise,
anger, sadness, fear, disgust) and neutral state. Furthermore, each actor was assigned a predefined social
role (dominating or submissive). All emotions and social roles were equally distributed between actors
and scenarios. The performance of actors was coordinated by a professional teacher from Russian State
University of Cinematography to make sure that the portrayed emotions correspond to the intended roles
and scenarios.

The database was labeled on the frame level using categorical labels by 21 annotators. Each video
clip was annotated by at least 5 different annotators. All the annotators passed an emotional intelligence
test and scored average and above. The annotation was performed with the ELAN tool [42] from Max
Planck Institute for Psycholinguistics (the Netherlands). Annotators were asked to mark the beginning
and the end of each emotional expression that seemed natural. Due to high subjectivity of the task, the
resulting labeled intervals vary significantly, and some intervals have multiple heterogeneous labels as-
signed by different annotators. The authors of the database reported an average agreement score between
annotators (Krippendorff’s alpha) as 0.44, which is considered as moderate agreement. The incongruities
in annotations provided by different annotators give raise to a substantial problem of finding the ground
truth of the provided annotations, and further complicate the analysis and classification of speech utter-
ances.

The annotation of RAMAS dataset is unconventional in that it uses frame-level categorical an-
notations, whereas all other emotional speech corpora annotated on the frame level, for example
RECOLA [27], SEMAINE [19], CreativeIT [20], SEWA [14] etc. use annotation of emotional pa-
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rameters, such as activation and valence, instead of the emotional categories. Moreover, due to the
extemporaneous nature of dyadic interactions, a significant amount of speech between the actors within
one dialogue overlaps, which brings certain challenges in terms of extracting acoustical features and
using speech recognition software to obtain the transcriptions.

4.2 Experimental setup

The experimental setup was divided into 3 stages. In the first and second stages, which were conducted
in parallel, we performed individual analysis of the acoustic and linguistic modalities. In the third stage,
we fused the audio and text analysis to obtain the final bimodal result.

To be able to fairly compare the performance of audio-based, text-based and bimodal systems we
chose only those samples from the database for which it was possible to obtain the transcriptions using
Automatic Speech Recognition (ASR) software. We used 2 online cloud-based platforms from Google3

and Yandex4. This resulted in 263 audio recordings with corresponding transcriptions. The train/test
split of the data for each experiment was kept constant at a ratio 70/30 for each emotion. The distribution
of number of samples for each emotion and for each sentiment category in train and test sets is shown in
Figure 3 a) and b), respectively.

Figure 3: Distribution of samples between annotated classes: (a) emotional categories, (b) sentiment
categories. Solid color indicates train partitioning, patterned color - test partitioning

In each stage we repeated all the experiments for 2 levels of annotation confidence: using the agree-
ment of 4 and 5 annotators. For each set of the experiments, we filtered the training data according to
the required level of agreement, which means that for each annotation confidence level we used a sep-
arate subset of data obtained from the original RAMAS corpus. This resulted in 223 and 207 training
samples (audio + transcription) for the 4-th and 5-th level of annotation agreement, respectively. The
details of the number of samples available for training and testing at each level of annotation confidence
are summarized in the Figure 4. The first level of agreement corresponds to the total number of samples
available in the dataset.

3https://pypi.org/project/SpeechRecognition
4https://cloud.yandex.ru/services/speechkit
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Figure 4: Distribution of samples in train and test set according to the level of annotator agreement

4.2.1 Audio-based experiments and results

For each level of annotation agreement, the audio samples were obtained by creating audio chunks that
correspond to the intersection of annotation intervals of required confidence level. For example, the
confidence level of 4 requires at least 4 out of 5 annotators to label the same speech utterance with the
same emotional category. The beginning and the end of the resulting annotation (and corresponding
audio chunk) were set to match the intersection of all 4 annotations from different annotators. The
original audio recordings were segmented according to the provided annotation. All the frames that were
not labeled by the annotators as emotional were discarded. The neutral class was trained only on speech
segments that were specifically marked as neutral.

We compared the performance of two acoustical feature sets, namely 1582 features from the INTER-
SPEECH 2010 Paralinguistics Challenge Feature Set (IS10 paraling [34]), and 6373 features from the
INTERSPEECH 2013 Paralinguistics Challenge Feature Set (IS13 ComParE [36]).

We also tested two different strategies for normalization of features: Min-Max normalization and
Z-score normalization. Min-Max normalization results in feature values that fall in the range [0, 1]. Z-
score normalization results in feature vectors where the distribution of each feature has zero mean and
unit standard deviation.

In order to reduce the size of high-dimensional feature representations and de-correlate the features
we applied Principle Component Analysis (PCA) that projects the data into lower-dimensional space,
preserving maximum variance. In each experiment, the optimal number of principle components was
determined empirically. Logistic Regression (LR) was used as classification method to output emotion
probabilities.

Classification results in terms of UAR (%) obtained on a test set for various levels of annotation
agreement are shown in Tables 2 and 3. Bold script indicates highest maximum performance in the given
experiment. Baseline system does not use any normalization and dimensionality reduction strategies and
performs classification directly on the extracted features.

4.2.2 Text-based experiments and results

In the RAMAS database, the dialogues between the two speakers were played out according to dyadic
scenarios, and the speakers could think through their speech in advance before expressing emotions, re-
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Table 2: Audio Modality Test Set Classification Result (UAR, %) for 7 Emotional Categories on the 4-th
Level of Annotation Agreement

System IS10 paraling IS13 ComParE
Baseline 23.02 14.23
Min-Max 39.27 40.90

Z-normalization 43.39 48.09
Z-normalization + PCA 44.17 49.48

Min-Max + PCA 41.45 44.29

Table 3: Audio Modality Test Set Classification Result (UAR, %) for 7 Emotional Categories on the 5-th
Level of Annotation Agreement

System IS10 paraling IS13 ComParE
Baseline 26.62 13.23
Min-Max 41.79 32.34

Z-normalization 44.13 36.95
Z-normalization + PCA 44.44 40.01

Min-Max + PCA 43.74 35.76

flecting the role from the scenarios in terms of semantic content. Based on this, for text transcriptions,
the markup corresponding to the emotions prescribed in the scenarios was used. Before you build clas-
sifiers for recognizing sentiment and emotions, you need to select relevant information from the text.
To do this, you need to remove punctuation marks, stop words (words without semantic content, such
as prepositions, conjunctions, etc.), lower the case of all words, and normalize words using lemmatiza-
tion. Then linguistic information was extracted from the preprocessed text transcriptions, and the text
was vectorized using Word2Vec, FastText, and BERT methods. The following methods were used as
classifiers: Logistic Regression (LR), Random Forest (RF), and naive Bayes (NB). The training was per-
formed using 3-fold validation with the selection of the best parameters for each classifier. The results
(UAR,%) of experimental studies of sentiment recognition by text modality for 4-th and 5-th levels of
annotation agreement are presented in Tables 4 and 5, respectively. To recognize 7 emotional categories,
similar experiments were performed with the methods of vectorization and classification, the results of
which are presented in Tables 6 and 7.

Table 4: Text Modality Test Set Classification Result (UAR, %) for 3 Sentiment Categories on the 4-th
Level of Annotation Agreement, UAR,%

RF LR NB
Word2Vec 74.91 90.11 76.13
FastText 83.05 82.54 74.89
BERT 68.98 80.61 49.21

4.2.3 Bimodal fusion experiments and results

The fusion of acoustic and linguistic information was performed via weighted sum of the probabilities of
each modality. The linguistic information was represented by 2 sets of probabilities: emotion predictions
and sentiment predictions. Therefore, in total 3 terms contributed to the final result: emotion probabil-
ities using audio, emotion probabilities using text, and sentiment probabilities using text. 2 weighing
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Table 5: Text Modality Test Set Classification Result (UAR, %) for 3 Sentiment Categories on the 5-th
Level of Annotation Agreement, UAR,%

RF LR NB
Word2Vec 76.09 87.58 69.56
FastText 85.78 82.22 83.93
BERT 60.78 85.78 62.90

Table 6: Text Modality Test Set Classification Result (UAR, %) for 7 Emotional Categories on the 4-th
Level of Annotation Agreement

RF LR NB
Word2Vec 42.83 69.13 40.87
FastText 54.97 66.47 51.28
BERT 47.98 55.96 26.36

coefficients were introduced for weighting the sum:α and β . α controls the contribution of audio modal-
ity, while β controls the contribution of text modality. The third coefficient is computed based on the
values of α and β to make sure that all three coefficients sum to 1.

Pb = α ∗PA +β ∗PT +(1−α−β )∗PS, β ≤ 1−α

where Pb is the final set of emotion probabilities from bimodal system, PA is a set of emotion prob-
abilities from the acoustic model (using audio), PT is a set of emotion probabilities from the linguistic
model (using text), and PS is a set of sentiment probabilities from the linguistic model (using text); α and
β are weighing coefficients that control the contribution (importance) of each set of probabilities. The
constraint of β being less than or equal to α is necessary to make sure that all 3 coefficients sum to 1.

The results of the proposed fusion approach are shown in Figures 5 (for the 4-th level of annotation
confidence) and 6 (for the 5-th level of annotation confidence). In bold are highlighted the numbers
indicating highest maximum performance for the given level of annotation agreement. The tables are
color-coded, with the green color indicating better performance and red color indicating poor perfor-
mance. The weights of α and β are incremented by 0.1, the third coefficient (1-α-β ) is implied and not
shown in the tables. As a result, the higher-left corner represents classification accuracy of the sentiment
analysis without considering emotion modelling (α = β = 0), the higher-right corner indicates classifica-
tion accuracy of the acoustic emotion modelling without considering linguistic modality (β = 0), and the
lower-left corner shows classification accuracy of the linguistic emotion modelling without considering
acoustic parameters and sentiments (α = 0). All other values in the tables indicate mixed performance of
fusing several sets of probability predictions.

5 Discussion

The experiments with acoustic modality show that the base system works better with IS10 paraling
features. The performance of the base system on the IS13 ComParE features remained on the chance
level (UAR=14.29%, 13.23%), which can be explained by high dimensionality of the feature space and
sparseness of feature vectors. Normalization greatly improves the performance on both feature sets for
both 4-th and 5-th level of annotation agreement, and Z-score normalization gives better results than Min-
Max. PCA further improves the performance reaching UAR=49.48% on the 4-th level and UAR=44.44%
on the 5-th level of annotation agreement. The influence of normalization procedure before applying
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Table 7: Text Modality Test Set Classification Result (UAR, %) for 7 Emotional Categories on the 5-th
Level of Annotation Agreement

RF LR NB
Word2Vec 47.96 62.74 39.64
FastText 52.02 62.66 48.98
BERT 43.19 57.21 29.72

Figure 5: Bimodal Fusion Test Set Classification Results (UAR, %) for 7 Emotional Categories on the
4-th Level of Annotation Agreement

Figure 6: Bimodal Fusion Test Set Classification Results (UAR, %) for 7 Emotional Categories on the
5-th Level of Annotation Agreement

PCA is important and in out experiments, PCA produced better results with the Z-score normalization.
It is worth to mention that on the 4-th level of annotation agreement, the best result was obtained using
PCA on the IS13 ComParE features, however on the 5-th level of annotation agreement the best result
was achieved by using PCA on the IS10 paraling feature set. This can be explained by the fact that on
the 5-th level the training data is not enough to effectively train the classifiers in high dimensional feature
space. However, on the 4-th level the training data size is enough to optimally train the model and show
best performance. The optimal number of PCA components varied from 50 to 300.

From the results of experimental studies of the recognition of sentiment and emotions by linguistic
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modality, presented in Tables 4, 5, 6, 7, the following conclusions can be drawn. The best UAR in
all experiments is achieved by combining the Word2Vec vectorization method and Logistic Regression.
When recognizing 3 categories of sentiment (negative, neutral, and positive) UAR reaches 90.11% and
87.58%, when recognizing 7 categories of emotions (anger, sadness, joy, neutral, disgust, fear, surprise)
UAR = 69.13% and 62.74%, for level 4 and 5 of annotator agreement, respectively. The results of text
data classification at level 5 of annotator agreement are lower than at level 4, this is because there was
less text data consistency at level 5, hence the classifier was trained on a smaller data set that was less
representative. We can also notice that when using the state-of-the-art BERT vectorization method, the
classification results are lower than with other vectorization methods. The best classification results when
using BERT are achieved in combination with logistic regression, but nevertheless the results lag behind
the final ones by 10% and 2% for the recognition of 3 categories of sentiment, and by 14% and 5% for
the recognition of 7 categories of emotions for the 4 and 5 levels of annotator agreement, respectively.

The experimental results of the proposed bimodal fusion of acoustic and linguistic parameters of
speech show similar trends for both 4-th level and 5-th level of annotation agreement. At the 4-th level,
the best performance UAR=65.7% was obtained by setting α=0.7 and β=0.3, which sum to 1. At the 5-th
level, the best performance UAR=72.01% was obtained by setting α=0.8 and β=0.2, which also sum to
1. This means that using the probabilities of sentiment categories (positive, negative, neutral) did not play
any role in final decision. However, it does not mean that the sentiment indicators are useless. As can
be seen from the color coding in Table 6, when acoustic modality is assigned a weight α=0.7, the best
performance is achieved by considering both emotions and sentiments from the text data. Therefore,
depending on the exploitation requirements (for example, when the weight of a certain modality is a
priory given according to exploitation conditions), sentiment analysis may play an important role when
making the final decision. Moreover, as seen from the tables, when acoustic modality weight is set to
0, the best performance of the linguistic modality is achieved when both emotions and sentiments are
considered.

At the 4-th level of annotation agreement, when α=1, which corresponds to emotion recognition us-
ing only acoustical parameters (upper right corner of Table 2), the best UAR=49.48%. When β=1, which
corresponds to emotion recognition using only linguistic features (lower left corner of the Table 2), the
best UAR=58.73%. This result has an absolute improvement of 9.25% (relative improvement of 15.75%)
as compared to the performance of the acoustical features. This indicates that emotion recognition using
linguistic information is more reliable, probably due to the fact that audio modality in RAMAS dataset
is quite noisy. However, to reach the optimal performance, the fusion weight of the acoustic modality is
higher (α=0.7) than the linguistic (β=0.3) more than twice. On the 5-th level of agreement the optimal
distribution of fusion weights is even more imbalanced: α=0.8 and β=0.2. An important conclusion
here is that emotional states are more likely to be expressed via acoustic rather linguistic cues. There-
fore, when expressing emotions, it is more important how a person pronounces the utterance, rather than
what he says. However we should not ignore the linguistic content completely, as shown from the exper-
iments, there is a huge improvement in performance when using bimodal emotion recognition relative
to acoustic modelling: 16.22% absolute (24.69% relative) increase in UAR. On the 5-th level of anno-
tation agreement, the increase in performance is even more drastic: 27.57% absolute (38.29% relative),
reaching a maximum value of UAR=72.01%.

The comparison of performance of the proposed system on different levels of annotation agreement
reveals interesting results. In unimodal experimental setups, both acoustic and linguistic, there is a
performance drop on the 5-th level of annotation agreement, which can be attributed to a decrease in
available training data. However, the bimodal experiments show that increasing the level of annotation
agreement actually leads to an increased performance. This may indicate that the proposed bimodal setup
is more robust against training data size.
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6 Conclusions

In this study we proposed an effective bimodal emotion recognition system based on acoustic and lin-
guistic information from speech signals. The experimental findings presented in this study reveal several
important conclusions. First, the performance of the bimodal system greatly overcomes the performance
of any single modality. Second, the contribution of acoustic modality is far greater than linguistic, gain-
ing 2-4 times more weight. However, linguistic modality is still important to consider since fusing the
linguistic information with acoustic provides 24.69%-38.29% relative improvement. When processing
linguistic modality, it is imperative to consider both emotions and sentiments since their mutual perfor-
mance provides the best outcome in a variety of application scenarios. Finally, the comparison of the
performance of the proposed system on different levels of annotation agreement shows that the proposed
system is more robust against the training data size reduction as compared to any single modality system.
It is also worth noting that the level of annotation agreement affects the result of bimodal recognition of
emotions, since level 5 of agreement exceeds level 4 in performance by 6.31%. The best performance
was achieved on the 5-th level of annotation agreement, reaching UAR=72.01%.
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