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Abstract

Detection of driver aggressiveness is a significant method in terms of safe driving. Every year, a vast number of traffic
accidents occur due to aggressive driving behaviour. These traffic accidents cause fatalities, severe disorders and huge
economical cost. Therefore, detection of driver aggressiveness could help in reducing the number of traffic accidents
by warning related authorities to take necessary precautions. In this work, a novel method is introduced in order to
detect driver aggressiveness on vehicle. The proposed method is based on the fusion of visual and sensor features to
characterize related driving session and to decide whether the session involves aggressive driving behaviour. Visual
information is used to detect road lines and vehicle images, whereas sensor information provides data such as vehicle
speed and engine speed. Both information is used to obtain feature vectors which represent a driving session. These
feature vectors are obtained by modelling time series data by Gaussian distributions. An SVM classifier is utilized to
classify the feature vectors in order for aggressiveness decision. The proposed system is tested by real traffic data, and

it achieved an aggressive driving detection rate of 93.1 %.

detection
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1 Introduction

Traffic accidents has become an important problem in
the last few decades due to increasing number of vehi-
cles on the roads. Every year, 1.24 million fatalities occur
due to traffic accidents globally [1]. Some of these traf-
fic accidents are caused by physical reasons such as road
and vehicle conditions. However, mostly, human factor is
effective in the occurrence of traffic accidents. Among the
human factors, aggressive driving behaviour constitutes a
huge portion of traffic accident reasons. According to a
report of the American Automobile Association Founda-
tion for Traffic Safety, published in 2009, 56 % of traffic
accidents occur due to aggressive driving behaviour [2].
Moreover, traffic accidents brings about billions of dollars
of economical cost for people, governments and compa-
nies [1]. For these reasons, reduction of the number of
traffic accidents is an important issue. Considering human
factors, detection of aggressive driving behaviour could
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help in reducing the number of traffic accidents by giving
necessary warnings to drivers and related authorities.

Aggressive driving behaviour is defined as an action
“when individuals commit a combination of moving traf-
fic offences so as to endanger other persons or property”
by the National Highway Traffic Safety Administration
(NHTSA) [3]. Aggressive driving behaviour is a psycho-
logical concept that does not have a quantitative measure.
However, there exist some certain behaviours associated
with aggressive driving such as excess and dangerous
speed, following the vehicle in front too closely, in other
words tailgating, erratic or unsafe lane changes, improp-
erly signalling lane changes and failure to obey traffic
control devices (stop signs, yield signs, traffic signals, etc.)
[3]. Also, in [4], it is stated that lane changing and accel-
eration are the characteristics of driving behaviours that
define driving style. Therefore, detecting these behaviours
and constituting features from these information can yield
quantitative information about the driving style of the
driver.

Although these behaviours are indication of driver
aggressiveness, detection of these behaviours in real time
is a challenging task. Existing methods in the literature
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mostly based on driving simulator data which do not work
for real-time aggressive driving behaviour detection and
do not fully reflect the real-world conditions [5]. There
also exist sensor platform-based methods in literature;
however, these methods do not consider vehicle follow-
ing distance and lane following pattern which are very
significant for indicating driver aggressiveness. The pro-
posed system enables detection of driver aggressiveness in
real time by considering a wide range of aggressiveness-
associated driving behaviours.

In this paper, we proposed an automated aggressive
driving behaviour detection system that works in real
time. The system performs robust operation with simple
and low complexity algorithm in order to be able to work
efficiently in real time. Multisensory information is used
by this system in order to extract features that character-
ize the related driving session. The system collects data
about lane following, vehicle following, speed and engine
speed patterns which are important for aggressive driving
detection since aggressive driving behaviour is associated
with sudden lane changes, tailgating and abrupt accel-
eration/deceleration. Features that are extracted utilizing
these data are used to train an SVM classifier. The classi-
fier is trained with annotated data so that aggressiveness
decision can be modelled regarding the subjective point of
view, that is, aggressive driving behaviour, which is a sub-
jective and psychological phenomenon, can be modelled
quantitatively. The system uses different types of features
and feature extraction methods that works in real time;
therefore, the system can create a decision at the end of
each session. Session length is a design parameter which
will be discussed in test results.

The organization of this paper is as follows: The next
part describes the related work about aggressive driv-
ing behaviour detection. It is followed by the proposed
method description and its advantages and novelty. Then,
the test results are presented and concluding remarks are
given.

2 Related work

Aggressive driving behaviour detection has been exam-
ined via different approaches in recent years [5]. The sim-
plest method for detecting aggressive driving behaviour is
to conduct surveys about the driving experience or psy-
chological mood. In literature, there exist some methods
that are based on observing the behaviours of subjects in
the simulator environment. In [4], subjects are requested
to drive via a simulator with different scenarios which
contain events such as traffic light existence, intersection
crossing and frustrating environment. Then, the findings
are illustrated by probabilistic models. Similarly Danaf
et al. [6] use a simulator environment to collect data about
driving behaviour and expresses anger (or aggressiveness)
as a dynamic variable. Hamdar et al. [7] define and develop
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a quantitative aggressiveness propensity index in order to
model driving behaviour by testing its proposal with a
driving simulator. The main drawback of these works is
that they are using a synthetic environment to measure the
driving behaviour. Therefore, they do not fully reflect the
real-world conditions and reactions of driver in real traffic
environment.

In order to acquire real world data, Gonzalez et al. [5]
propose a sensor platform-based system to detect driver
aggressiveness. Their method monitors external driving
signals such as lateral and longitudinal accelerations and
speed and models aggressiveness as a linear filter oper-
ating on these signals [5]. Johnson and Trivedi [8] use
sensor data which is obtained by a smart phone in order
to characterize the driving style. Kang [9] examines driver
drowsiness and distraction by collecting visual informa-
tion such as eye gaze and yawning and physiological data
such as ECG signals.

Satzoda and Trivedi [10] use multisensory informa-
tion in order to analyse the drive and certain driving
events such as lane changes, mean speed, etc. However, no
interpretation is given about the aggressiveness of driver.
Jian-Qiang and Yi-Ying [11] present a dangerous driv-
ing behaviour detection scheme using a CCD camera to
acquire visual information about driving behaviour and
identifies dangerous driving style. Nevertheless, the sys-
tem uses only visual information and tries to identify the
driving with a few features. The work presented in [12]
exploits a sensor and a camera platform to detect indepen-
dent driving events such as lane departure, acceleration,
zig-zag driving, etc. Then, it uses a fuzzy technique to
indicate whether the driving is dangerous. Although the
system shows good results for identifying different driv-
ing events, the presented work focuses on dangerous
driving rather than aggressiveness and does not propose
any technique to verify aggressiveness with subjective
observations.

Besides the systems that are specialized on detecting
driver aggressiveness, there also exist advanced driving
assistance systems (ADAS) in literature. ADAS are very
popular in recent years and used in order to provide assis-
tance to the driver about the current driving conditions
such as lane departure or forward collision possibility [13].
They are used for collecting data about the driving and for
warning the driver by giving feedback about the driving
behaviour. However, ADAS do not interpret the driving
data to reach an aggressiveness conclusion.

3 Proposed method

As indicated in [3] and [4], aggressive driving is associated
with certain behaviour such as sudden lane changes, tail-
gating behaviour, speed and acceleration basically. There-
fore, aggressive driving behaviour can be identified by
observing these events. In order to obtain quantitative
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measures of these events, lane following, vehicle follow-
ing, speed and engine speed patterns of a driving session
is collected and processed automatically. As a result of
the process, four different feature types are obtained to
represent the related driving session. Lane deviation and
forward car distance are extracted as visual information
and vehicle and engine speed as sensor information. Since
the operation of the system is in real time, robust and
algorithmically simple methods are used for extraction of
the related information. These information are collected
and feature vectors are retrieved. Obtained feature vectors
are given to a pre-trained classifier to detect aggressive
driving behaviour. The overall system flow can be seen in
Fig. 1.

3.1 Road line detection

In order to find the position of the host vehicle, which
is the equipped and examined vehicle, inside the road
lane, road line detection is required. Drivers who change
lanes suddenly and continuously and do not follow the
lane properly may involve in aggressive driving attitude.
Therefore, detecting the position of the host vehicle
inside the lane by detecting the road lines is an impor-
tant information. For road line detection problem, non-
uniformity of road lines is the major challenge [14].
In order to accomplish road line detection task with a
robust operation to non-uniformities in road lines, we
used a method based on temporal filtering and inverse
perspective mapping which is a robust, simple and low-
cost method and proper for the real-time operation of
the overall system. However, in order to decrease the
computation load and satisfy the real time operation
condition, we modelled road lines with straight lines

instead of curves which provides sufficient results for our
application.

In recent years, many different techniques and studies
are conducted on road line detection, mainly caused by
the current interest in advanced driving assistance sys-
tems and autonomous driving systems. Road line detec-
tion algorithms in the literature mostly consist of two
stages, preprocessing and detection stages. In preprocess-
ing stage, different image processing techniques are used
in order to provide enhanced data for detection task. Pre-
processing methods in the literature can be exemplified
as follows. Somasundaram et al. [15] use transformation
from RGB colour space to HSV colour space for reduc-
ing redundancy. Morphological filtering is used in [16]. In
[17], canny edge detector is used to indicate and empha-
sis road lines, and in [18], Gaussian smoothing is used to
eliminate noise. Transformation to binary image is used
in [19]. Inverse perspective mapping and road segmen-
tation methods are used as preprocessing in [20, 21]. A
study conducted by Jung et al. [22] proposed construct-
ing spatiotemporal images which exploits the temporal
dependency of the video frames.

The widely used method for line detection after pre-
processing stage is Hough transform. Hough transform
is a generic line detection algorithm and used to find
road lines [23, 24]. Borkar et al. [21] use a gaussian tem-
plate matching method after Hough transform in order
to increase the detection efficiency. Wang et al. [25] pro-
posed using B-snakes to detect and track road lines. Ridge
detection is performed in [20] with convolution with a
Gaussian kernel. Another study proposed in [26] com-
bines the self-clustering algorithm (SCA), fuzzy C-mean
and fuzzy rules to process the spatial information and

Frame Line Lane Histogram
— . » . .
Detection Deviation Modelling
Frame Vehicle Collision Histogram
— . > . )
Detection Time Modelling
* Output
Classifier p—»
Sensor Data | Vehicle Histogram
"| Speed Modelling
Sensor Data | Engine Histogram
| Speed Modelling
Fig. 1 Flowchart of the overall system
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Canny algorithms to get good edge detection. Wu et al.
[19] exploits angular relations between lane boundaries.
Mu and Ma [27] uses piecewise fitting and object seg-
mentation method to indicate road line positions. In [21],
template matching in inverse perspective mapping applied
images is used with a tracking scheme.

Although these presented methods perform promising
results, they are not fully useful for our application. In our
case, the main concern is to use a robust, simple and low
complexity algorithm to detect the position of the host
vehicle between two road lines correctly and fast enough
to work in real time. Although these methods performs
well regarding the detection rate, they are not provid-
ing low complexity, simplicity and robustness together,
that is, a well-performing method may require high com-
putation power and complex implementation which is a
big disadvantage for real-time applications. Therefore, the
main objective is to implement an algorithmically sim-
ple method which performs a robust operation. In order
to satisfy this condition, we use temporal filtering and
inverse perspective mapping which is a simple method
as well as having low complexity and high robustness as
explained in [14].

One of the most important problems regarding the
robustness of the system is non-uniformity of road con-
ditions [21]. In order to overcome the problems that are
caused by shadows, different light conditions and discon-
tinuities on the road line, a method based on temporal
filtering is used [14, 21] with inverse perspective mapping
which gives robust, fast and simple results.

First, the captured image is temporally filtered in order
to eliminate dashed lines and discontinuities according
to (1)

L(x9) = max{Ix(,y), - . ., i (x,7)) (1)

where [; represents the current frame, [ _g represents the
Kth previous frame and (x, y) are pixel coordinates. K is
chosen according to the frame rate and dashed line length
so that all road lines can be seen as a continuous line as in
Fig. 2.

Then, the gradient image of I,;(x, y) is calculated and
the high-gradient pixels are cleared from 1,; (%, ) to obtain
I,: (x,y). This operation gives the low gradient pixels which
represent the road plane. Then, the mean and variance
values of 1,: (x,9) is calculated so that the mean intensity
value of road part can be known. Once these values are
obtained, the pixels that are representing road plane are
cleared from the image I,;(x, y). This operation helps to
eliminate noise and indicate road lines better. A simple
derivative filter F =[—1 0 1] is used to indicate the lines.
After this operation, binary image is obtained using an
adaptive threshold according to Otsu’s method [28].
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Inverse perspective mapping is an efficient method for
road line detection. Camera placed at the front of a
vehicle gives the road lines as straight lines intersecting
at the horizon level. However, inverse perspective map-
ping enables the road lines to be seen as parallel lines.
Moreover, since monocular vision system is used, inverse
perspective mapping will be exploited to measure the
distance between vehicles. In order to achieve inverse per-
spective mapping, four points are chosen in the filtered
image and they are mapped to four other points in the
birds-eye perspective assuming the surfaces are planar as
in Fig. 3. This mapping procedure results in a 3 x 4 H
matrix that contains the transformation parameters. This
matrix is calculated before the operation and loaded to
the system. Then, during the operation, inverse perspec-
tive mapping is done by transforming each ith point using
H matrix as in (3).

pj, = HP, (2)

Since the aforementioned procedures work well enough
to indicate the line positions, a simple procedure is done
to locate road lines. Horizontal projection of the image is
taken in a limited region so that the line locations appear
as peaks in the horizontal projection vector. Nieto et al.
[14] solve the line localization problem with a parametric
curve fitting. However, since we exploit simple methods
for the sake of real time application, we modelled the road
lines with simple lines. This procedure is based on the
assumption that curved roads are seen as straight up to
a certain distance. And the region whose horizontal pro-
jection taken is chosen to minimize the noise in peak
detection as shown in Fig. 4.

One last step that is used to increase the stability and
accuracy of line detection is tracking the detected lines
with kalman filter [29]. This tracking scheme includes
denoising with Kalman filter as well as keeping the visibil-
ity counts of lines and recovering missing detections for
a specific frame. This scheme significantly improves the
efficiency of the overall process.

The two closest detected lines from the camera center,
which is defined beforehand as a pixel value according to
horizontal positioning of the camera, are chosen as own
lane boundaries. The horizontal position of the camera
center from the lane boundary is determined as parameter
between —50 and 50 for each frame I;.

The presented method is tested with real set-up data
which includes different road conditions such as shadows,
occlusion and road curve. As can be seen in the sample
figures (Fig. 5), line detection method show robustness to
these environment conditions.

In order to test the accuracy and reliability, the pre-
sented method is tested with Borkar’s dataset [21]. In
Borkar’s dataset, there exist video sequences containing
driving sessions at urban road, metropolitan highway and
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Fig. 2 Raw image and temporal filtered image

isolated highway whose ground truth road line positions
are provided. Since the main aim of road line detection
module is to extract the position information of the host
vehicle inside the lane, these ground truth values are used
to determine the ground truth values of lane position.
For this task, pixel value of camera center is estimated by
visual inspection and position information is calculated
accordingly. As can be seen in Fig. 6 for different video
sequences, lane position information is determined accu-
rately. In order to quantify the accuracy of the position
information over a video sequence, mean absolute error
mean absolute error (MAE) values are calculated. As indi-
cated in [30], MAE can be used for measuring estimation
accuracy of driving signals such as speed, orientation, etc.
Hence, for each presented sequence in Fig. 6, a MAE value
is calculated as in Eq. 3 and shown in Table 1. Regarding
the mean absolute error values of the sequences, it can be
said that for different conditions, the presented method
performs lane position detection with a limited error rate.
To illustrate MAE value for isolated highway, data is found
as 1.51 which means that average error of lane position
detection is 1.51 in —50:50 scale for a frame which is a very
small error rate.

N L. . Lo .
MAE — Z |LaneDeviationgr (i) — LaneDeviationmeasured (i)

N

i=1

3)

We compared our lane deviation detection results with
other methods in the literature which is tested for Borkar’s
dataset. As presented in [22], Jung et al. stated that lane
detection rate for their method and Borkar’s method are
as in Table 2. We tested our method with Borkar’s dataset
with video sequences containing different conditions and
presented the results in Table 2. Our method provides
similar results with existing methods, performing bet-
ter for urban dataset which is more critical in terms of
aggressiveness detection. Moreover, the line deviation val-
ues over frames will be represented as distributions which
is explained in the “Feature extraction and classification”
section. This process will further compensate the
deteriorating effect of errors regarding aggressiveness
detection.

3.2 Vehicle detection

Vehicle detection process is required in order to find the
distance between host car and other cars that can be seen
from the camera. This distance will be used to build up
a feature which characterize tailgating or unsafe follow-
ing distance behaviour. For vehicle detection task, we used
a simple and robust approach for the sake of real-time
operation and we employed histogram of oriented gra-
dients (HOG) features with a cascade classifier. We also
improved the algorithmic efficiency and accuracy of vehi-
cle detections by exploiting lane detection results since we

mapped to the corners of the trapezoidal region in the figure at the right

Fig. 3 Four corner point selection and perspective transformation. The corners of the red box represent the four chosen points, and these points are
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Fig. 4 Line position detection by horizontal projection. The figure at the top left represents the processed and transformed image. The red box
represents the limited interest region. The figure at the top right is the masked version according to interest region. The graph at the bottom right is

the horizontal projection of the image

Fig. 5 Correctly detected lines in different frames
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Fig. 6 Comparison of lane position detection with ground truth values in Borkar's dataset. The figure at the top belongs to video sequence of urban
area in low traffic condition, the figure in the middle belongs to video sequence of metro highway in dense traffic condition and the figure at the
bottom belongs to isolated highway in moderate traffic condition

are interested in only the vehicles which are in the same
lane with host vehicle. This condition enabled us to run
vehicle detection process in a specific region of interest.

There exist different approaches in previous studies
about on-road vehicle detection. In most of the previ-
ous studies, vehicle detection is associated with forward
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Table 1 Mean absolute error values for different road and traffic
conditions

Road condition Mean absolute error

Urban area, low traffic 247
Metro highway, dense traffic 1.96
Isolated highway, moderate traffic 1.51

collision warning systems (FCWS) which is a part of driv-
ing assistance systems (DAS). In these systems, vehicle
detection and distance estimation can be performed by
radars or simple sensors as explained in [31, 32]. Another
alternative of radar sensors are lidars. Lidars are also used
for this task collaboratively with radars [33]. However,
the state-of-the-art forward collision systems are based
on camera-based platforms and image processing tech-
niques. In literature, among on-road vehicle detection
methods, Kim et al. [34] do vehicle detection by scan-
ning the image so as to find a shadow region by the help
of some morphological operations. The work presented
in [35] depends on the active training of images repre-
sented by Haar-like features. In [10], HOG features are
extracted from the frames, then a support vector machine
(SVM) classification is utilized to find the vehicles. Con-
sidering forward vehicle distance estimation, both [34]
and [10] use inverse perspective mapping to find the dis-
tance of the target vehicles. Other than these monocular
camera-based methods, there exist studies that depend
on stereo vision. The method presented in [36] detects
objects in both images by motion segmentation and
determine the vehicle distance by creating a depth map.
Kowsari et al. [37] use Haar-like feature extraction, a
feature classification with the power of stereo vision. Sim-
ilarly, Seo et al. [38] use an omnidirectional camera and
stereo vision techniques for vehicle detection and dis-
tance estimation. As can be seen in these studies, stereo
vision methods give good results for estimating vehicle
distance while increasing the hardware and computation
complexity.

For our application, we employed HOG feature extrac-
tion since it is known to be a robust approach for object
detection. And a cascade classifier detection technique is
utilized in order to detect vehicle because cascade classi-
fier is a robust and fast method which is proper for real
time applications. In order to determine the distances of

Table 2 Correct detection rate of different methods of Borkar's

dataset

Category Borkar (%) Jung (%) Proposed (%)
Isolated highway 98.24 98.31 93.92

Metro highway 98.12 98.33 95.04

Urban 87.12 90.52 93.31
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detected vehicles, inverse perspective mapping is used.
Since it involves a training process its performance can
be improved by using required number and variety of
samples during the training phase.

In order to achieve object detection, first, vehicle images
from real traffic data are collected to train a classifier.
Image patches that contain a rear images of vehicles are
cropped from collected images and tagged as positive.
During this phase, different types of vehicles are chosen
as samples in order to increase the accuracy. On each of
these samples, HOG features are calculated and fed to the
classifier.

A cascade classifier is trained according to the process
that is described in [39]. During the implementation, each
new-coming frame is scanned with a sliding window in
different scales; HOG features are calculated over these
windows and fed to the classifier to be tested. According to
classifier result, detected objects are located by a bound-
ing box. This process may create some false positive that
are appearing for a few consecutive frames. Therefore,
a Kalman tracking scheme [29] as described in previous
section is used to track the detected objects. This process
improves the detection rate and eliminates false positives.
Some examples of vehicle detection can be seen in Fig. 7.
In these figures, it can be seen that different types of
vehicles are correctly detected.

In order to find the following distance, a vehicle is cho-
sen as the target vehicle (if there exist a vehicle in the
scene). The target vehicle is determined as the nearest
vehicle in the own lane of host vehicle. The inverse per-
spective mapping information, that were found in the
previous section, is used to transform the position of the
target vehicle to the birds-eye view perspective which
enables us to determine the distance between host vehicle
target vehicle in pixel units. This difference in pixel units is
converted to metric unit with a constant C which is prede-
fined according to the perspective transformation values
before the overall process.

The presented vehicle detection method is a well-known
and simple scheme, and it gives satisfying results regard-
ing our problem definition. So as to assess the perfor-
mance of the method, we utilized LISA-Q Front FOV
Dataset [35] which contains three different annotated
video sequences. In [35], the presented method is tested
with LISA dataset and the results are given according to
several performance metrics. The details of these metrics
can be found in [35].

Since the ultimate aim of the method is to find the dis-
tance between host vehicle and target vehicle, we reduced
the region of interest in the front view image accord-
ing to the results of lane detection. In other words, we
aimed to detect the vehicles which are in the same lane
with the vehicle. To accomplish this, we eliminated the
other detections which are in different lanes but ours.
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Fig. 7 Examples of detected vehicles

This approach improved the results significantly for each
dataset. In Tables 3, 4 and 5, performance results of our
method with region of interest selection and comparison
with the given method in [35] can be seen for dense, urban
and sunny datasets, respectively.

As can be seen in these tables, proposed method per-
forms an average accuracy over 95% for different con-
ditions. Combining lane detection results with vehicle
detection results significantly improved the performance
by increasing true positive rate in dense dataset which
includes dense traffic images. Furthermore, it decreased
the false positive rate in all cases by outperforming the
benchmark results in two datasets.

3.3 CAN bus data acquisition

Most of the new cars are equipped with a controller
area network (CAN) bus which enables the communica-
tion between different microchips and sensors inside the

Table 3 Performance evaluation of different methods for dense

vehicles. It became mandatory in the USA for the cars that
are produced after year 1996. CAN bus has a standardized
physical connector and a protocol so that the vehicle data
can be obtained using the CAN bus port for analysis and
diagnosing purposes. In our application, vehicle speed and
engine speed are used as the sensor-based information
since certain patterns of these information are associ-
ated with aggressive driving behaviour. As indicated in [3],
abrupt acceleration and deceleration can be an indication
of aggressive driving. Therefore, vehicle and engine speed
values are exploited for characterizing driver aggressive-
ness. In order to collect these data, external sensors can
be used as performed in [5]. Instead of using external sen-
sors, CAN bus system of the host vehicle can provide this
information [10] with a proper adapter as shown in Fig. 8.

In order to read vehicle and engine speed data from
the CAN bus of the vehicle, a proper adapter is used and
related data is obtained with timestamps during driving in

Table 4 Performance evaluation of different methods for urban

dataset dataset

Method TPR (%) FDR (%) FP/frame (%) TP/frame (%) Method TPR (%) FDR (%) FP/frame (%) TP/frame (%)
Sivaraman’s 95.0 6.4 0.29 420 Sivaraman’s 91.7 255 0.39 1.14
method [35] method [35]

Our method without 784 430 244 3.23 Our method without ~ 99.0 36.5 0.57 0.99

lane selection lane selection

Our method with lane  89.9 9.8 0.09 0.85 Our method with 99.0 20.6 0.25 0.99
selection lane selection
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Table 5 Performance evaluation of different methods for sunny
dataset

Method TPR (%) FDR (%) FP/frame (%) TP/frame (%)
Sivaraman's 99.8 8.5 0.28 3.17

method [35]

Our method without ~ 98.7 259 1.04 297

lane selection

Our method with 98.7 4.8 0.05 0.99

lane selection

order to synchronize the CAN bus data with visual data.
Vehicle and engine speed data are collected with a period
of 1 s. Therefore, in order to use this data combined with
a higher frequency visual data (i.e. 10 fps frame rate), it is
up-sampled by a factor of 10.

3.4 Feature extraction and classification

The aforementioned stages are performed to collect infor-
mation about the behaviour of the driver in the traf-
fic. These collected information is utilized by a feature
extraction and classification stage in order to deter-
mine whether the related driving session is aggressive
or not. For the characterization of the driving session,
four different features are chosen considering the aggres-
sive driving indicating behaviours as explained in the
“Proposed method” section. These features are as follows:

Lane deviation
Collision time
Vehicle speed
Engine speed
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The line detection results and lane position determina-
tion are used to construct lane deviation feature which
characterizes the abrupt lane changing and not follow-
ing the lane properly. The information obtained from
the CAN bus, vehicle and engine speed is directly used
as the features since drivers who show aggressive driv-
ing behaviour tend to drive with high and varying speed,
therefore changing engine speed abruptly. The last feature
which characterizes the tailgating and unsafe following
distance behaviours is the collision time. Collision time
feature defines the duration to collision if the vehicle in
front would stop suddenly. Therefore, this feature utilizes
both speed and target vehicle distance information. Colli-
sion time is calculated with a unit of seconds according to
(5) where dy is the distance of the target vehicle in meters
and v} is the vehicle speed in meters per second at that
instant.

Collision time(k) =

. (4)

k

Considering all features that characterize the driving
session, their variation pattern in a certain amount of
time is more informative for us rather than the time
series signal itself in terms of driver aggressiveness. For
instance, the frequency that a driver changes lanes is a
more important information than the lane position value
at a specific time frame. Therefore, we represented time
series signals as density functions and modelled them
using Gaussian mixture model (GMM) which is a pow-
erful technique for density representation [40]. Since we
are handling the collected data by batch process, Gaussian
modelling provides an effective representation of driving

Fig. 8 CAN bus serial port adapter
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data. The works presented in [5] and [40] use Gaussian
modelling of driving signals for making inferences about
driving profiles and present effective results in terms of
accuracy.

For our application, each feature is transformed into
density functions (i.e. histograms). These histograms are
filtered with a median filter in order to eliminate noisy
data. Then, they are normalized so that all histograms
represent the frequency of the data in the same base. A
sample representation of an aggressive and smooth data
can be seen in Fig. 9.

During the experiments, we observed that the density
functions of driving signals have one dominant Gaussian
component. Hence, we modelled histograms using one
GMM component which is denoted by a mean p and
a standard deviation o value which are enough for rep-
resenting a Gaussian distribution. GMM components of
density function are estimated using maximum likelihood
estimation. Each driving feature provided one u and one
o value. Then, these four mean and four standard devia-
tion values are utilized to construct a feature vector con-
sisting eight dimensions. An SVM classifier is employed
[41] in order to classify the feature vectors to deter-
mine whether a driving session involves aggressive driving
behaviour.

Although the presented feature extraction methods are
proven to be reliable and comparable with the methods in
the literature, the performance of lane deviation detection
and collision time estimation modules will effect the result
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of the aggressiveness classification. Nevertheless, the his-
togram representation of the features provides robustness
to the process and reduces the deteriorating effect of
missing detections in line detection and vehicle detection
stages. In Fig. 10, histogram modelling of lane deviation
and collision time values of an aggressive and a smooth
driving session is presented. Mean and standard deviation
values of these histograms are presented in Tables 6 and
7 with mean absolute error values between ground truth
and measured time series signals. The data presented in
Table 6 belong to the sample aggressive session whose
histogram is given in Fig. 10, while the data presented
in Table 7 belong to the smooth session. As can be seen
in these tables, the effect of errors in the detection stage
can be eliminated significantly utilizing the histogram
modelling.

4 Experimental results

For test purposes, a mobile set up is constructed in
order to collect visual and CAN bus data by vehicle. For
visual data collection, a portable mini computer (Fig. 11)
and a CCD camera (Fig. 12) is used. By this platform,
video frames are captured at 10 fps with a resolution
of 800 x 600 pixels. For CAN bus data collection, the
adapter in (Fig. 8) is connected to CAN bus port of the
vehicle and data is acquired through the serial port of
the mini computer. The data collected from CAN bus
is obtained at each second. Therefore, data is interpo-
lated so that the sensor data exist for each frame. So as
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Fig. 9 Examples of histogram comparison of aggressive and smooth driving sessions for different features. Red solid lines represent an aggressive
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to synchronize the visual and CAN bus data, the data is
timestamped.

Utilizing this set up, real traffic data is collected at
different times of the day so that different traffic con-
ditions are included in the dataset. The dataset also
includes different road conditions with occlusions, shad-
ows and different illumination. Whole dataset contains
driving sessions of six different drivers. During driving,
three different observers annotated the last 40 s as aggres-
sive or smooth. The majority voting of the observers
are recorded as the ground truth of the related driving
session.

One important parameter that effects the performance
of the proposed method is the duration of the driv-
ing session. In other words, how long multisensory

Table 6 Comparison of ground truth and measured features of
the sample aggressive driving session

Hiane  Olane Mcollision  OTcolision  MAEiane  MAEcoliision
Measured 1488 757 201 0.81
3.23 0.58
Ground truth 1407 801 193 0.89

data is required in order to efficiently determine if that
driving session is aggressive? In order to answer this
question, the collected data is tested with driving ses-
sions with lengths 40, 80, and 120 s. From the whole
collected dataset, a total of 83 driving sessions including
41 aggressive and 42 smooth sessions having a duration
of 40 s, 51 driving sessions including 22 aggressive 29
smooth sessions having a duration of 80 s and 22 driving
sessions including 11 aggressive 11 smooth sessions hav-
ing a duration of 120 s are tested according to proposed
algorithm.

Due to the limited amount of data, k-fold cross val-
idation technique is used for performance assessment.
According to this technique, test samples are chosen ran-
domly among the samples; the remaining samples are

Table 7 Comparison of ground truth and measured features of
the sample smooth driving session

Miane  Olane  Mcollision  Ocollision  MAEiane  MAEcofiision
Measured 964 1073 147 0.52
6.78 046
Ground Truth 670 1438 141 048
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used for training the SVM classifier. This process is per-
formed 10 times, and at each run, the classifier results are
compared with the ground truth. For the 40-s-long sam-
ples, 20 of them; for the 80-s-long samples, 15 of them;
and for the 120-s-long samples, 9 of them are chosen ran-
domly as test samples. In Tables 8, 9 and 10, the related
confusion matrices of the test results are given for 40-, 80-
and 120-s-long samples, respectively.

According to the test results, it is observed that the
proposed method achieved 91, 94 and 82.2% detection
rate for 40-, 80- and 120-s-long samples, respectively.
As can be inferred from these results, 80-s-long driving
sessions are more efficiently representing the driving
characteristics while 40-s samples may not allocate
enough data or 120-s samples may contain confusing
data.

Fig. 12 Camera to capture visual information
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Table 8 Confusion matrix of aggressiveness classification for
40-s-long data
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Table 10 Confusion matrix of aggressiveness classification for
120-s-long data

Predicted class

Predicted class

Aggressive Smooth Aggressive Smooth
Real class Aggressive 90 3 Real class Aggressive 33 7
Smooth 15 92 Smooth 9 41

Proposed aggressiveness detection method also tested
with real-world data from 100-car dataset [42]. This
dataset is the output of a naturalistic driving study and
collected via instrumented vehicles in a large scale. In
the publicly available part of this dataset, some driving
sessions which are approximately 30-s long are given with
narratives. These narratives explain the events in the driv-
ing session. We investigated these narratives and selected
the ones which can be interpreted as an aggressiveness
involvement and which cannot. According to narratives,
the ones which include aggressive and sharp actions are
annotated as “aggressive” and the ones which includes sta-
ble actions as “smooth” We selected a total of 76 driving
sessions according to narratives and tagged 40 of them as
aggressive and 53 of them as smooth. In Table 11, some
sample narratives of 100-car data and their interpretation
is presented.

The vehicle speed, lane deviation and collision time data
are directly present at 100-car dataset. However, instead
of engine speed, gas pedal position data is used due to
the direct correlation between them. Using these infor-
mation, the aforementioned feature extraction procedure
is applied to the data. In order to validate the reliabil-
ity of the 100-car data, k-fold cross validation technique
is utilized. In each run, 29 of the 93 driving session
samples are chosen randomly to train an SVM classi-
fier, and this procedure is repeated 10 times. The clas-
sifier achieved a correct detection at an average rate of
93.1 %. Confusion matrix of this process can be seen in
Table 12.

5 Conclusions

In this paper, a driver aggressiveness detection method
is presented. The proposed method utilizes multisensory
information to conceive feature vectors, and using these,
feature vectors classify the driving session as aggressive

Table 9 Confusion matrix of aggressiveness classification for
80-s-long data

Predicted class

Aggressive Smooth
Real class Aggressive 67 5
Smooth 4 74

or smooth. The aggressiveness classifier is trained with
data annotated by observers and performs classification
using data collected in real-world conditions. The paper
also studies the required driving session duration that
can be efficiently decided if it involves aggressive driving
behaviour. According to test results the proposed system
performs good results in terms of detecting driver aggres-
siveness since it considers different driving behaviours in a
real time operation. As a future work, the proposed system

Table 11 Sample driving sessions with their narratives and
aggressiveness interpretation

Sample  Narrative of the session

number

Aggressiveness

8354 Subject vehicle is driving relatively fast in the
left lane as the traffic is merging into right
lane. Lead vehicle is decelerating with right
turn signal on, preparing to merge into right
lane, and the subject vehicle must brake to
avoid hitting lead vehicle in the rear. Subject
vehicle is trying to get ahead of right lane
traffic before merging.

Aggressive

8392 Subject vehicle is travelling in the rain and
almost misses the intended exit. Subject
vehicle enters the exit ramp at the last
minute, nearly side swiping a vehicle already
on the ramp beside it. Subject driver steered
slightly left to avoid the crash and the other
vehicle went ahead on the exit ramp.

Aggressive

8420 Subject vehicle is preparing to merge onto
an exit ramp and a vehicle from the adjacent
left lane realizes that they need to get onto
the exit ramp also, and the lead vehicle
suddenly crosses the subject vehicle's left
lane line into the subject vehicle’s lane. The
subject brakes hard to avoid hitting the lead
vehicle in the rear.

Aggressive

8374 Subject driver is talking/singing to herself ~ Smooth
and stops behind a line of cars at a light.
A following vehicle approaches rapidly and

almost hits the subject vehicle in the rear.

8471 There are 2 left turn lanes with the subject  Smooth
driver in the far left lane. Vehicle 2 at the left
turn lane to the right of the subject’s vehicle
starts to turn left and cuts the subject driver

off.

Both the subject driver and lead vehicle
are decelerating when the subject driver
glances out his right side window. When
the subject driver glances, the lead vehicle
comes to a stop in front of him.

9059 Smooth
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Table 12 Confusion matrix of aggressiveness classification for
100-car data

Predicted class

Aggressive Smooth
Real class Aggressive 118 12
Smooth 8 152

will be tested with more data to observe its performance
with different classifiers. The system will be improved
in order to provide a rate for driver aggressiveness in a
granular approach. In other words, the measurement of
aggressiveness level will be provided quantitatively.
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