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Abstract 

Vehicle Logo Detection (VLD) is of great significance to Intelligent Transportation 
Systems (ITS). Although many methods have been proposed for VLD, it remains a chal-
lenging problem. To improve the VLD accuracy, an Intersection over Average (IoAver-
age) loss is proposed for enhancing the bounding box regression. The IoAverage loss 
accelerates the convergence of bounding box regression than using the Intersection 
over Union (IoU) loss. In the experiments, IoAverage loss has been incorporated into 
the state-of-the-art object detection framework YOLOV5s, namely YOLOV5s-IoAv in 
this paper. The advantages of the IoAverage loss are verified on the PASCAL VOC2007 
datasets. The results of using the IoAverage loss show performance gains of + 15.27% 
mAP0.5 and + 30.87% mAP0.5:0.95 higher than that of the Complete IoU (CIoU) loss. 
The application of YOLOV5s-IoAv is implemented to VLD on dataset VLD100K-61. 
VLD100K-61 is a self-collected dataset containing 100,041 images supplied by traf-
fic surveillance cameras in the real world from 61 categories. YOLOV5s-IoAv achieves 
performance gains as + 15.27% mAP0.5:0.95 for VLD than YOLOV5s-CIoU. The proposed 
method yields the mAP0.5 value of up to 0.992 on the dataset VLD100K-61, providing a 
promising solution to vehicle logo recognition applications.
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1 Introduction
Intelligent transportation systems (ITS) play an important role in intelligent cities. More 
and more scholars are devoted to the research of ITS [1–5]. Vehicle feature recognition 
based on computer vision technology is one of the research fields [6–9]. Vehicle feature 
recognition is helpful for vehicle tracking, suspect tracking, vehicle behavior analysis, 
and vehicle behavior understanding [10, 11]. Furthermore, the most important feature of 
the vehicle is the vehicle logo.

In recent years, vehicle log detection has received extensive research attention. The 
main reasons are as follows. Firstly, when the license plate is used as the only vehicle 
identification information, it may cause the problem of incorrect identification when 
the license plate is blocked, removed or tampered with. The vehicle logo contains crit-
ical information that may be used to improve the robustness and reliability of vehi-
cle identification. Secondly, recognizing the car logo might be a crucial indication in 
locating an illegal vehicle or identifying suspicious automobiles. Thirdly, the vehicle 
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logo contains vital information about the vehicle owner’s consumption-ability. A sta-
tistical study of a large number of car logos might be used to forecast client consump-
tion levels at the retail center.

However, vehicle logo detection still faces many challenges so far. On the one hand, 
the traditional handcrafted descriptors for manually extracting features cannot detect 
the vehicle logo in real traffic with high accuracy due to the requirement of the strong 
prior knowledge that the design of handcrafted descriptors needed. Furthermore, the 
generalization ability of handcrafted descriptors is weak for VLD in urban environ-
ments because of the camera placement, background clutter, and vehicle pose or ori-
entation variations, especially in the case of rainy or snowy days. On the other hand, 
there is no reliable large dataset for researchers to exploit the data-driven deep learn-
ing methods. The images in some existing datasets only show the vehicle logos with-
out any traffic background. Some datasets are composed of clear images downloaded 
from the internet, rather than images collected from realistic traffic shots. Traffic sur-
veillance cameras are usually installed on urban road sections, intersections, turns 
and tunnels. The diversity of parking postures, traffic jams, weather and lighting con-
ditions are constantly changing. These all pose additional challenges to VLD. The 
captured vehicle logo images collected from realistic traffic surveillance cameras are 
often more motion blurred, diverse and authentic, but data-driven method appetites 
for these images amazingly. In addition, the robustness of the previously proposed 
deep learning methods is considered unsatisfactory. In addition, the sizes of vehicle 
logos are generally quite small, which creates further difficulties for VLD. Detection 
of small objects in large images is challenging. The detection of small objects is prone 
to the problems of overlapping bounding boxes, omissions, and incorrect markings, 
which leads to a decrease in the mAP value. As a result, bounding box regression is 
necessary to be further optimized for object detection.

Most of the loss functions face challenges in distinguishing regression cases during 
training for VLD. Suppressing redundant frames during training requires a huge cost 
for AI agents. In this paper, we proposed a method to solve this problem by enhanc-
ing bounding box regression into learning and inference. We put forward an IoAverage 
loss for improving the accuracy of the bounding box for vehicle logo detection. IoAver-
age loss has been applied to state-of-the-art object detection YOLOV5s. This combined 
method is called YOLOV5s-IoAv. The proposed approach YOLOV5s-IoAv is directly 
performed based on the dataset consisting of frontal or rear images of vehicles. The vehi-
cle logo regions were detected without dependence on the existence of license plates. 
In addition, we construct a VLD100K-61 dataset baseline and statistically analyze the 
advantages of this dataset compared to other existing vehicle logo datasets. The contri-
butions of this paper include: (1) IoAverage loss for improving the accuracy of the vehi-
cle logo detection is proposed; (2) we construct a new multi-class dataset VLD100K-61 
containing 100,041 images and 105,111 objects from 61 categories, respectively.

The remainder of this paper is organized as follows: Section II is a brief review of the 
related work about vehicle logo detection and the bounding box regression. In Section 
III, the VLD100K-61 dataset is introduced in detail. In Section IV, the details of the pro-
posed IoAverage loss introduced into YOLOV5s for logo recognition are described. Sec-
tion V reports the experimental results, and Section VI gives the summary.
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2  Related work
Vehicle logo detection has been studied by scholars using different approaches. VLD 
methods can be divided into two categories: keypoint-based methods and deep-learn-
ing-based methods. In this section, firstly, we will briefly review these methods. Bound-
ing box regression directly affects the accuracy of vehicle logo detection. An appropriate 
loss function for bounding box regression can lead to the result that the overlap and 
misclassification of bounding boxes are corrected after training. What’s more, it can 
also improve the confidence of vehicle logo detection. Secondly, we will briefly review 
bounding box regression.

2.1  Vehicle logo detection

2.1.1  Keypoint‑based methods

There are many keypoint-based methods for VLD including Local Binary Patterns 
(LBP) [12], Scale-Invariant Feature Transform (SIFT) [13–16], Speeded Robust Features 
(SURF) [17], Binary descriptor based on BRIEF (ORB) and Histograms of Oriented Gra-
dients (HOG) method [18, 19]. Those methods have been studied as features to repre-
sent the vehicle logo. A multi-class Support Vector Machine (SVM) was then used to 
classify the regions. Even after image transformation, the feature points will remain sta-
ble, so that the image can still be correctly recognized. Keypoint-based methods were 
best for well-defined shapes and affine transformations. Psyllos et al. [13] presented an 
enhanced SIFT-based feature-matching scheme. The scheme demonstrated good perfor-
mance, yielding a 94% logo recognition rate on a dataset of 1200 images with 10 classes. 
Haoyu Peng et al. [20] proposed a new Vehicle Logo Recognition (VLR) method based 
on statistical random sparse distribution (SRSD) features and multi-scale scanning for 
low-resolution and inferior-quality images. The results show the recognition rate of 
97.21% on a dataset consisting of 3370 images with 56 classes. Llorca et  al. [18] pro-
posed a HOG + SVM framework for vehicle logo recognition. The proposed method 
is evaluated on a collection of 3579 vehicle logo images belonging to 27 different car 
manufacturers. The results indicated the recognition rate of 92.59%. Quan Sun et al. [21] 
proposed an improved vision-based scheme based on HOG + SVM methods. Ruilong 
Chen et al. [19, 22] introduced a framework based on spatial SIFT + LR (Logistic Regres-
sion) methods. The result shows a classifying precision of 99.93%. He also proposed an 
online image recognition framework using Cauchy prior logistic regression. As a result, 
accuracy reached as high as 98.80%. Sotheeswaran et al. [23] have proposed an approach 
for VLD using a coarse-to-fine strategy. The VLR accuracy is reported to be 86.3% on 
the dataset consisting of 250 images with 25 elliptical shapes of vehicle logos. Jiandong 
Zhao et  al. [24] extracted the vehicle logo features from the HU invariant and identi-
fies the logo using the SVM. Cross-validation (CV) methods have been introduced for 
optimizing SVM parameters. Grey Wolf Optimize (GWO) is used for further optimiza-
tion of the kernel function. The average recognition rate is 92%. Kittikhun Meethongjan 
et al. [25] have provided a method based on the HOG descriptor and feature selection 
through two sparse scores. The method achieved a precision of 75.25%.
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2.1.2  Deep‑learning‑based methods

Shuo Yang et al. [26] established a dataset known as VLD-45 (Vehicle Logo Dataset), 
which contained 45,000 images and 50,359 objects of 45 categories from the website. 
The dataset was evaluated by 6 detectors, and YOLOV4 achieved the highest mAP 
value of 0.847. Ye Yu et  al. [27] introduced a new learning-based approach called 
Multilayer Pyramid Network Based on Learning (MLPNL) to extract valuable fea-
tures. The scheme has been tested on the HFUT-VL and XMU datasets. The results 
demonstrated that the MLPNL was faster than most deep-learning-based learning 
methods. MLPNL requires only 511.03 s to achieve a 98.92% recognition rate on 100 
training images of the HFUT-VL dataset. Under the same recognition rate, MLPNL 
was six times faster than the Darknet53 framework. Yongtao Yu et al. [28] proposed 
two networks to detect a vehicle logo with a detection rate of 0.987 and a recogni-
tion rate of 0.994. The convolutional neural network for VLR was explored. As a 
result of significant computing costs, the pretraining method was implemented [29]. 
An accuracy of 95.18% was observed on the XMU dataset of 11,500 logo pictures 
from 10 manufacturers. Linghua zhou et  al. [30] coupled Filter-DeblurGAN with 
the VL-YOLO algorithm to recognize blurred car logos. This method yielded a final 
value of 0.981 mAP on the dataset LOGO-17. Chun Pan et al. [31] developed a VLR 
technique using a Convolutional Neural Network (CNN). A comparison was made 
between the CNN and SIFT methods. Comparative results show that VLR based on 
CNN had an average accuracy rate of 8.61% greater than SIFT. CNN and Multi-Task 
Learning (MTL) were integrated [32]. The expanded Xiamen University VLR dataset 
indicated that the approach performed well, with an accuracy of 98.14%. Li Huan 
et al. [33] created an algorithm using the Hough transform and Deep Learning. This 
algorithm was built in three stages. The logo region is first located. The shapes of 
the logo are then detected. Finally, Deep Belief Networks were used to classify the 
vehicle logo (DBNs). This algorithm achieved a recognition rate of 92%. On publicly 
accessible vehicle logo datasets, Ruilong Chen et  al. [34] suggested a capsule net-
work is suitable for rotating and noisy pictures, and obtained the maximum accu-
racy of 100%. Foo Chong Soon et al. [35, 36] proposed a method for automatically 
searching for and optimizing the CNN architecture. The experimental outcomes 
reach an accuracy of 99.1% on a dataset including 13 vehicle manufacturers. This 
VLR approach relied on deep CNN and the whitening transformation technique was 
also proposed. This methodology was claimed to have a classification accuracy of 
99.13%. Shuo Yang et al. [37] constructed a new dataset known as VLD-30. For VLD, 
the original YOLOv3 model was modified. On the dataset VLD-30, the improved 
YOLOV3 produced a result of 0.899 mAP. Zhongjie Huang et al. [38] combined the 
Faster-RCNN model with VGG-16 images on a dataset including 4000 photos of 8 
distinct car logos. The mAP scored 94.33%. Ruikang Liu et al. [39] presented a VLR 
approach based on improved matching, restricted region extraction, and the SSFPD 
network, a single deep neural network based on a modified ResNeXt model and Fea-
ture Pyramid Networks. The mAP was reported to be 99.52%. Hoanh Nguyen et al. 
[40] exhibited a deep learning-based car logo identification system that is built on 
a single-shot framework with multi-scale feature fusion. The vehicle region detec-
tion network was based on ResNet-50, while the logo recognition network used the 
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Darknet-53 method. The mAP level was reported to be 90.5%. Junxing Zhang et al. 
[41] developed SS-VLD, a much enhanced single-stage approach that employed 
multi-scale prediction with feature fusion on the stage of up-sampling. 0.881 mAP 

Table 1 The experimental results of some state-of-the-art handcrafted descriptor-based and deep-
learning-based methods on different datasets from the year 2010–2020

Bold indicates the maximum value of this column

EMS Enhanced Matching Scheme, PS Pretraining Strategy, LR logistic regression, CN Capsule Network, CtFS Coarse-to-Fine 
Strategy, HPO-DCNN hyper-parameters optimization of deep CNN, CPLR Cauchy Prior Logistic Regression, SS Sparsity Score, 
CDCN Cascaded Deep Convolutional Network; Ss single state

Author Images Image size Classes Scheme/
platform

mAP Precision Years Datasets

Apostolos [13] 1200 100 × 100 10 SIFT + EMS / 94% 2010 /

Chun Pan [31] 200 140 × 100 26 CNN / 99.23% 2013 /

Llorca [18] 3579 640 × 480 27 HOG + SVM / 92.59% 2013 /

Haoyu Peng 
[20]

3370 50 × 50 16 SRSD + MS / 97.21% 2015 /

Yue Huang 
[29]

11,500 70 × 70 10 CNN + PS / 99.07% 2015 XMU

Yizhang Xia 
[32]

19,780 64 × 64 15 CNN + MTL / 98.14% 2016 Xiamen 
University

Ruilong Chen 
[22]

11,500 70 × 70 10 Spatial-
SIFT + LR

/ 99.93% 2016 /

Ruilong Chen 
[19]

10,000 70 × 70 10 CPLR / 98.80% 2016 /

Li Huan [33] 80,000 1360 × 1024 10 DBNs / 92% 2017 /

Sotheeswaran 
[23]

500 800 × 600 25 CtFS / 86.30% 2018 /

Foo Chong 
[35]

1500 70 × 70 13 HPO-DCNN / 99.10% 2018 /

Ruilong Chen 
[34]

1500 70 × 70 10 CN / 100% 2018 /

Yu Ye [54] 16,000 64 × 96 80 OE-POEM / 99.10% 2018 HFUT-VL

Foo Chong 
[36]

11,500 70 × 70 10 CNN + ZCA / 99.13% 2019 XMU

Shuo Yang [37] 2010 320 × 240
− 1500 × 938

30 YOLOv3 0.899 2019 VLD-30

Ruikang Liu 
[39]

14,950 10 × 10–150 × 150 13 SSFPD + EMS / 99.52% 2019 CVLD

Zhongjie [38] 4000 1000 × 600 8 Faster-
RCNN + VGG-
16

0.943 / 2019 /

Yongtao Yu 
[28]

75,000 / 15 CDCN / 98.10% 2019 /

Junxing [41] 3015 938 × 668 45 Ss-VLD 0.881 / 2020 /

Shuo Yang [42] 2010 320 × 240
− 4608 × 3450

/ Faster-RCNN 0.875 / 2020 /

Nguyen [40] 8000 720 × 1160 13 Darknet-53 0.905 / 2020 /

Linghua Zhou 
[30]

18,089 576 × 576 17 Filter-Deblur-
GAN
 + VL-YOLO

0.981 / 2020 LOGO-17

Kittikhun [25] 4000 / 40 HOG + SS / 75.25% 2020 VLR-40

Ye Yu [27] 1500 70 × 70 10 MLPNL / 99.98% 2021

Junxing [53] 2010 320 × 240
− 1500 × 938

30 F-RCNN
 + VLD-C

0.911 / 2021 VLD-45-S

Shuo Yang [26] 45,000 610 × 378
− 7359 × 4422

45 YOLOV4 0.847 / 2021 VLD-45
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was reported as the finding. The VLD-A, B, and C models of deep convolutional 
networks were proposed. On the dataset VLD-45, the combination of F-RCNN with 
VLD-C achieved the greatest mAP of 0.874. The summary of the literature review is 
shown in Table 1.

2.2  2.2 Bounding box regression

Although deep learning architectures have been extensively explored, the loss function 
for bounding box regression also plays an essential role in vehicle logo identification. 
The mAP value of VLD will be directly affected by bounding box regression. Inspired 
by the success of the data-driven technique, deep learning models based on bounding 
box regression have been implemented for car logo identification. Detectors are classi-
fied into three kinds. Those are one-stage [43]-[48], two-stage [49, 50], and multi-stage 
detectors [51, 52]. The ℓn-norm loss functions used in bounding box regression are sen-
sitive to scale variation. IoU loss, which is scale-invariant, was also used. To solve the 
problem of gradient disappearance produced by IoU loss in non-overlapping situations, 
generalized IoU (GIoU) loss [55] was developed. However, GIoU has drawbacks such as 
delayed convergence and incorrect regression. Distance-IoU (DIoU) loss was suggested 
for directly reducing the normalized distance between two central points of the bound-
ing boxes to obtain accelerated convergence. More geometric parameters, such as over-
lap area, center point distance, and aspect ratio, were taken into account by CIoU [56]. 
As a result, CIoU achieves faster convergence and superior performance than DIoU. 
However, the CIoU did not include appropriate punishment terms. CIoU also has a fatal 
flaw in that when the value of IoU is less than 0.5, it degenerates into DIoU.

DIoU loss only incorporates distance[56], and can improve the performance with 
gains of 3.29% AP and 6.02% AP75 when IoU is used as an assessment metric. CIoU loss 
considers three essential geometric variables, resulting in higher performance increases 
of + 5.67%AP and + 8.95%t AP75. Figure 1 depicts the different bounding box regression 
findings, with the green box being the best result for VLD.

Despite the fact that numerous researchers have performed studies on the identifica-
tion of car logos, the following flaws remain: (1) there is no massive dataset made up 
of images from real-world traffic cameras. Furthermore, this collection includes a wide 
variety of vehicle logotypes. (2) No effective approach exists that can achieve high accu-
racy for vehicle logo detection on such a large real-traffic dataset.

Fig. 1 Diversity of bounding box regression, where green box is the ground-truth box
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3  VLD100K‑61 dataset
VLD100K-61 dataset consists of the images provided by the Institute of Static Trans-
portation Research of Xi’an University of Architecture and Technology. The dataset is 
36.78  GB in size. These photographs were taken in 2021 along roadside parking lots, 
underground parking lots, and surface parking lots, mostly in the cities of Lanzhou, 
Longnan, and Baiyin in Gansu Province, China. The surveillance camera takes these 
photographs primarily between 05:00 a.m. and 02:30 a.m. the following day. Most of the 
photos were taken in March. The specific details of the database are shown in Table 2.

The dataset contains a total of 100,041 RGB images from 61 manufacturers with 
bounding box annotations. The detection of these 61 types of vehicle logos can identify 
more than 99% of vehicles in China. The average size of the images in this dataset is 
1262 × 725 pixels. According to the total number of images and the vehicle logo classes, 
our dataset is named VLD100K-61. Figure  2 shows the vehicle logos included in this 
dataset.

Figure  3 shows the number of images that belong to different types of car logos. 
Among them, the least number of images is 945, and this image collection is the DS logo. 
The car with the VS logo has the most images. The number of images is 2018. The aver-
age number of images of each vehicle logo is 1640.

Table 2 The detail statistics of vld100k-61

Proportion of target refers to the ratio of the area of the vehicle logo to that of the image

Parameters VLD-100 K-61

Total number/target number 100,041/105339

Average size of image (w × h, in pixels) 1262 × 725

Maximum size of image 5184 × 3456

Minimum size of image 193 × 143

Proportion of target 0.408% (+ 12.197%, -0.403%)

Average seize of target (w × h, in pixels) 64 × 47

Fig. 2 Sixty-one classes of vehicle logo
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The photos are taken in different lighting environments and different weather con-
ditions. There are clear photos during the day, and there are also blurred photos under 
the condition of car lights or street lights. The car colors in the dataset are more than 
20 colors. The logo photos were taken from various angles in the dataset. Some car 
logos are even half-obscured. Some car logos are particularly blurred at night. Some 
car logos are very reflective under high light, so that only half of the car logo can be 
captured by the surveillance camera. The dataset is very valuable for the data-driven 
training method.

We take some photos as samples in the data set in terms of illumination conditions, 
weather conditions, perspective, distortions, occlusions, image qualities, and vehicle–
camera distances as shown in Fig. 4.

Fig. 3 Distribution of the number of images of different vehicle logo

Fig. 4 The examples for the dataset of VLD100K-61. A High beam environment, B half-obscured, C rainy day, 
D multi-objects, E strong sunlight, F clear logo, G low illumination condition, H indoor parking lot
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VlD100K-61 encourages researchers to develop a data-driven training method for 
their purpose. VLD100K-61 even provides a better dataset benchmark for small target 
detection. Our new dataset provides several research challenges involving small-sized 
objects, shape deformation, and low contrast. According to the result, our dataset has 
very significant research value for the task of vehicle logo detection, even being valu-
able for small-scale object detection.

4  IoAverage
IoAverage is defined as the intersection area divided by the average area of the predicted 
and ground-truth bounding box. IoU loss converges to poor solutions for non-over-
lapping cases, while GIoU loss leads to a slow convergence, especially for the boxes at 
horizontal and vertical orientations. DIoU loss is calculated by simultaneously consider-
ing the overlap area and the center point distance of bounding boxes. However, DIoU 
ignored the consistency of aspect ratios for bounding boxes, which is also an important 
geometric factor. CIoU loss considered the effect of consistency on aspect ratios. How-
ever, its penalty term is too mild, and the convergence speed of the loss function is too 
slow. Generally, the IoU-based loss can be defined as:

where P(B,Bgt) is the penalty term for predicted box B and target box Bgt by designing 
proper penalty terms, the CIoU loss has the ability to enhance the IoU loss. In the train-
ing phase, a bounding box B = [x, y,w, h]T is forced to approach its ground-truth box 
Bgt = [xgt , ygt ,wgt , hgt ]

T by minimizing the loss function:

Considering the geometric factors for modeling regression relationships in the experi-
ment, a loss function could take three geometric factors into account, i.e., overlap area, 
distance, and aspect ratio [57]. Generally, a complete loss can be defined as:

The CIoU [57] loss is proposed by imposing the consistency of the aspect ratio:

where V measures the consistency of aspect ratio. The loss function is then defined as:

(1)L = 1− IoU + P B,Bgt ,

(2)min
θ

∑

Bgt

L
(

B,Bgt |θ
)

.

(3)L = S
(

B, Bgt

)

+ D
(

B, Bgt

)

+ V
(

B, Bgt

)

,

(4)S = 1− IoU ,

(5)D =
ρ2(p,pgt)

c2
.

(6)V =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2,
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And the trade-off parameter α

However, we found that CIoU does not have such an absolute advantage in bounding 
box regression. Therefore, we accelerated the IoU scheme directly and proposed the 
IoAverage scheme. The definition of IoAverage is as follows:

where the Ainter sec tion refers to the area of the intersection. The denominator term refers 
to the average area of the two boxes. Although IoU is used as an evaluation index to 
measure whether two bounding boxes are completely overlapped, it brings spatial infor-
mation redundancy. But, IoAverage can eliminate this redundant spatial information. 
As a result, the IoAverage scheme can anchor the bounding box more accurately. The 
denominator term refers to the average area of the two boxes. 0 ≤ IoAverage ≤ 1 , as 
shown in Fig. 5, IoAverage has the smallest loss value. When the two boxes completely 
overlap, the value of IoAverage is 1. When the two boxes have no intersection, the value 
of IoAverage is 0.

The IoAverage loss function can be defined as:

We incorporated the IoAverage loss into YOLOV5s to evaluate the performance of 
IoAverage on the dataset PASCAL VOC2007. The performance of IoU, GIoU, DIoU 
and CIoU loss have been compared with that of the IoAverage loss in the next section. 
Finally, we apply the proposed scheme to vehicle logo recognition.

(7)LCIoU = 1− IoU +
ρ2

(

p,pgt

)

c2
+ αV .

(8)α =

{

0 if IoU < 0.5
V

(1−IoU)+V
if IoU ≥ 0.5

.

(9)IoAverage =
Aintsection

(Abox1 + Abox2)/2
,

(10)LIoAv = 1− IoAverage.

Fig. 5 The results of five schemes in three cases
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5  Experiment
5.1  5.1 Experimental setup

The model is trained on the training dataset with 500 epochs with a batch size of 312 
examples and a learning rate of 0.001. We take mean Average Precision (mAP) as the 
evaluation index, which is the most commonly used index in image evaluation. Two 
GPUs with model Tesla V100-SXM2-32  GB are used for calculation. For VOC2007, 
there are 2501 images in the training set, 2510 images in the validation set, and 4952 
images in the test set. The ratio of the number of images in the training set, validation set 
and test set is 6:2:2 for VLD100K-61. Split the 100,041 images into 60,049 images in the 
training set, 19,988 images in the validation set, and 20,004 images in the test set.

5.2  Experimental results on VOC2007

The research results show that the IoAverage loss has greater advantages in object detec-
tion than other IoU-based losses, especially in bounding box regression. Figure 6 shows 
that the result of the IoAverage loss has a slight improvement for mAP0.5, but it has 
greatly reduced the bounding box loss as shown in Fig. 7.

Table 3 analyzes the minimum bounding box loss obtained by using different strate-
gies after training for 500 epochs. The results show that the proposed IoAverage scheme 
can reduce the bounding box loss by about 40% compared to the IoU-based schemes. 
Compared to the IoU scheme, the value of the bounding box is reduced by 39.86%, and 
compared to the DIoU scheme, the value of the bounding box is reduced by 41.67% as 
shown in Table 3.

Table  4 shows the results obtained by testing different schemes on the VOC test 
dataset. The research results show that compared to the IoU loss, the use of the IoAv-
erage loss increases the value of mAP0.5 by 7.191%, which is much greater than that 
of the other IoU-based loss. The advantage is particularly shown in the improvement 
of the value of mAP0.5:0.95. Using IoAverage loss improves the value of mAP0.5:0.95 by 
30.87% compared to the value obtained by using IoU loss. The increase in the value of 
mAP0.5:0.95 by less than 0.792% using IoU-based loss.

Fig. 6 The variation of mAP0.5 value with epochs using different schemes on the training dataset
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Considering that CIoU is the state-of-the-art deep models of object detection in 
YOLOV5, in order to verify the advantages of IoAverage loss, object detection is per-
formed on the test dataset. We compared the results of object detection using CIoU 
and IoAverage loss. The results show that the IoAverage can achieve a better bound-
ing box effect and high confidence value. As shown in Fig. 8, the main advantages of 
using IoAverage loss performance are that (1) the bounding box is more accurate, (2) 
obtaining higher confidence, (3) correcting the wrong classification, (4) adding the 
missing bounding box, (5) removing the overlapping bounding boxes.

Fig. 7 The variation of bounding box loss value with epochs using different schemes on the training dataset

Table 3 The value of bbox loss obtained by different schemes after training 500 epochs

Bold indicates the results obtained by calculating the BBox loss using the method proposed in this paper

Relative reduction is calculated based on the bbox loss calculated by the IoAverage scheme

Value/scheme LIoU LGIoU LDIoU LCIoU LIoAverage

BBox loss 0.01556 0.01602 0.01607 0.01577 0.009357
Relative reduction % 39.86% 41.59% 41.77% 41.67% –

Table 4 Comparison between the performance of yolov5s trained using its own loss ( LIoU ) as 
well as LGIoU , LDIoU , LCIoU and proposed scheme LIoAverage losses. The results are reported on the test 
dataset of pascal voc 2007

Bold indicates the training results obtained using the method proposed in this paper

Loss/evaluation mAP0.5 mAP0.5:0.95

LIoU 0.598 0.379

LGIoU

Relative improv. %
0.601
0.502%

0.382
0.792%

LDIoU

Relative improv. %
0.599
0.167%

0.379
0.0%

LCIoU

Relative improv. %
0.596
− 0.334%

0.38
0.264%

LIoAverage

Relative improv. %
0.641
7.191%

0.496
30.87%
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5.3  Experimental results on VLD100K-61

We applied the proposed IoAverage loss to the vehicle logos detection on the 
VDL100k-61 dataset. The vehicle logo detection training finally took 53  h when two 
GPUs were used. As shown in Table  5, compared with the IoU loss, the value of the 
mAP0.5 calculated by the IoAverage loss has a slight increase of 0.1%. The main reason is 
that VLD100K-61 is a large and diverse dataset. The IoAverage loss has already received 
a high score of 0.992 of the mAP0.5. 

The value of mAP0.5:0.95 has greater potential for improvement. Compared with the 
CIoU loss, the IoAverage loss increased the value of mAP0.5:0.95 by 15.27%, and finally 
achieved a high score of 0.868 mAP0.5:0.95. IoAverage loss has significantly improved the 
value of mAP0.5:0.95, which is consistent with the performance on the VOC2007 dataset.

Figure 9 shows the comparison of the results of vehicle logo detection in different con-
ditions, such as parking in the daytime, parking at midnight, multi-targets image, reflec-
tion of car headlights at night, and cars parked diagonally. The results show that the 

Fig. 8 Detection results using CIoU loss and IoAverage loss on the VOC2007 dataset

Table 5 Comparison between the performance of yolov5s trained using LCIoU loss and proposed 
loss. The results are reported LIoAverage on the test dataset of vld100k-61

Bold indicates the experimental comparison results on yolov5s using the method proposed in this paper

Loss/evaluation P R mAP0.5 mAP0.5:0.95

LCIoU 0.992 0.985 0.991 0.753

LIoAverage

Relative improv. %
0.993
0.1%

0.983
 − 0.2%

0.992
0.1%

0.868
15.27%
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IoAverage loss incorporated into YOLOV5s can be used to identify vehicles’ logos with 
higher accuracy and confidence.

6  Summary
Smart cities are the future trend of urban development. The detection of vehicle logos 
is the basic requirement of a smart city. Statistics on vehicle logos can be used for many 
purposes, such as analyzing the vehicle market and guiding parking lot services. Firstly, 
we constructed a comprehensive vehicle logo dataset, 100,041 images with 61 classes, 
namely the VLD100k-61 dataset, which consists of images taken by surveillance cameras 
in real traffic. The average image size is 1262*725 pixels. The images are obtained under 
various environments, which improves the robustness of the dataset. We also release the 
benchmark vehicle logo image VLD100K-61 dataset for the research community. Sec-
ondly, to accelerate the convergence of bounding box regression, we proposed an IoAv-
erage loss. The IoAverage loss incorporated into YOLOV5s, named YOLOV5s-IoAv, can 
improve the accuracy of VLD. The advantages of the IoAverage loss are verified on the 
VOC2007 dataset. The mAP0.5 and mAP0.5:0.95 are increased by 15.27% and + 30.87%, 
respectively, using YOLOV5s-IoAv, which is higher than the original YOLOV5s com-
bined with CIoU loss. Finally, we apply the YOLOV5s-IoAv to VLD based on the 
VlD100k-61 dataset. The mAP0.5 value of the VLD is increased to 0.992. In addition, 
the mAP0.5:0.95 value of the VLD increased by 15.27% compared to the CIoU loss. The 
improvement of vehicle logo recognition accuracy lays the foundation for the construc-
tion of smart cities. For future work, we will continue to research vehicle feature recog-
nition and detection contributing to intelligent transportation systems.
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