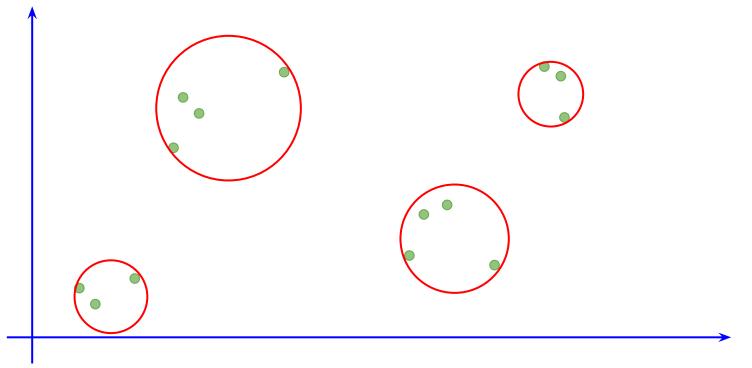
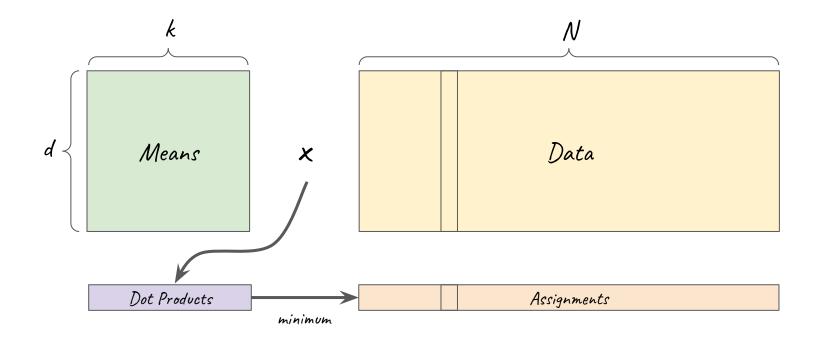
Detailed Analysis and Optimization of CUDA K-means Algorithm

Martin Kruliš, Miroslav Kratochvíl Department of Software Engineering, Charles University, Prague Czech Republic



- Iteratively update set of centroids (means)
 - Compute point assignment
 - Compute Euclidean distance between every point and every mean
 - Find nearest mean (minimum of distances) for each point
 - Update means (per-dimension average)
 - Compute sum of coordinates (per dimension) for each assigned point
 - Divide each sum by the number of points in the corresponding cluster



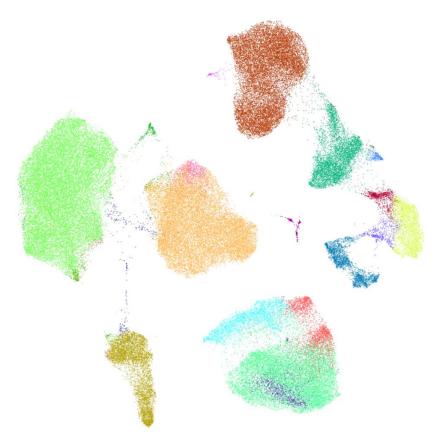
- Iteratively update set of centroids (means)
 - Compute point assignment
 - Compute Euclidean distance and the means-wide reduction (minimum)
 - Update means (per-dimension average)
 - Compute sum of coordinates (per dimension) for each assigned point
 - Divide each sum by the number of points in the corresponding cluster

- Iteratively update set of centroids (means)
 - Compute point assignment
 - Compute Euclidean distance and the means-wide reduction (minimum)
 - Add point coordinates (per dimension) to its nearest cluster
 - Update means (per-dimension average)
 - Divide each sum by the number of points in the corresponding cluster

Why k-means again?

High-performance use cases Meta-clustering single-cell data

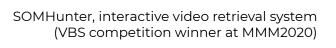
- <50 dimensions
- Millions of data points
- Time available: a few seconds (the analysis is interactive)



UMAP projection of 32-dim data to 2D

High-performance use cases Video browsing & retrieval

- ~1000 dimensions from a neural net
- Millions of data points
- Time available: <1s



High-performance use cases **Real-time video super-pixel segmentation in Full HD**

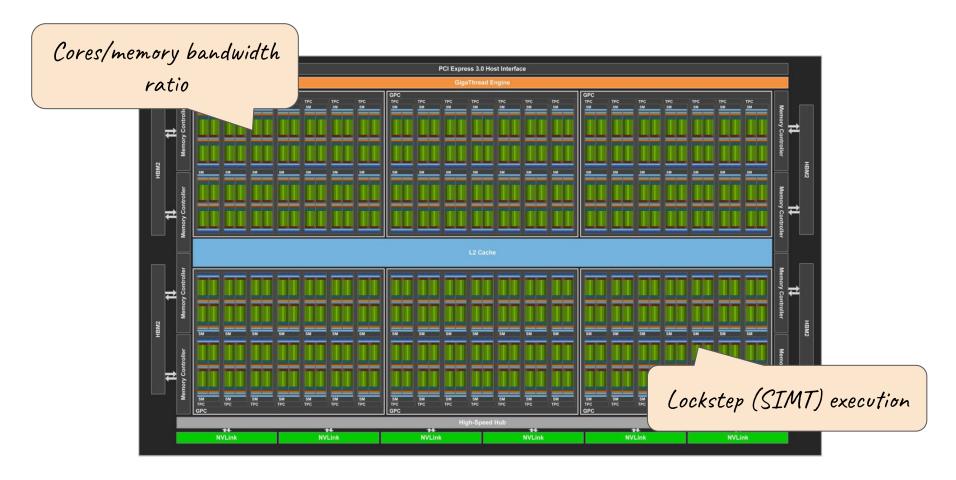
- <10 dimensions
- ~2 million data points
- Time available: ~50ms

News in CUDA-kmeans: Raw performance

2 million data points, 32 dimensions, time per iteration:

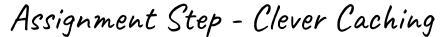
	16 clusters	1024 clusters
nVidia GTX 980	7.31 ms = 136 ips	104.84 ms = 9 ips
nVidia V100 SXM2	1.58 ms = 632 ips	25.45 ms = 39 ips

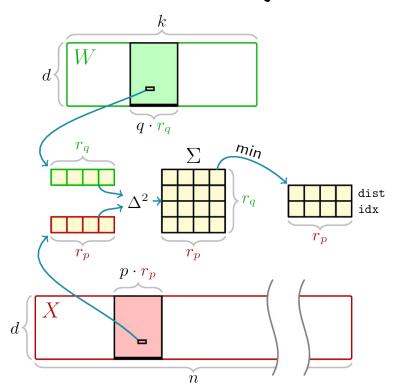
Our Contribution

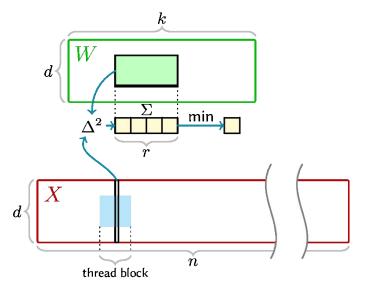


Assignment Step - Clever Caching



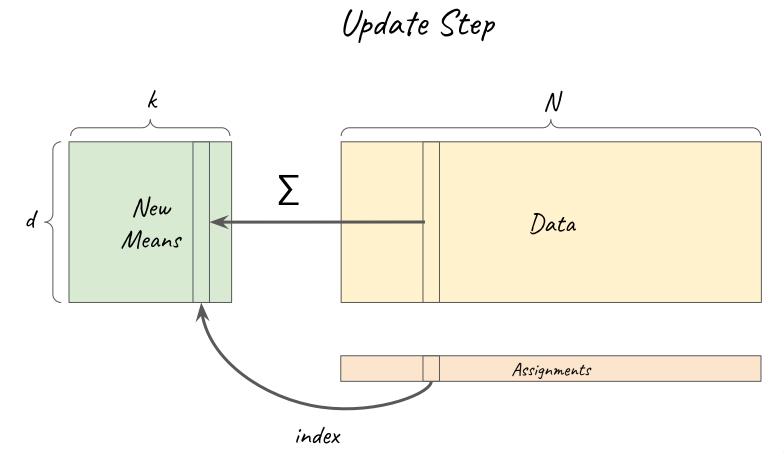




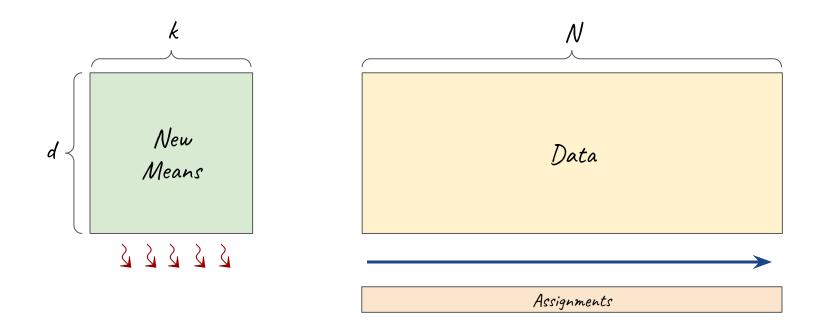


Regs caching strategy

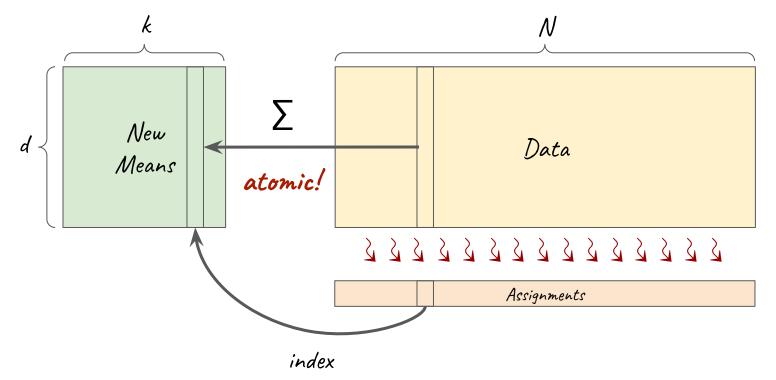
Fixed caching strategy



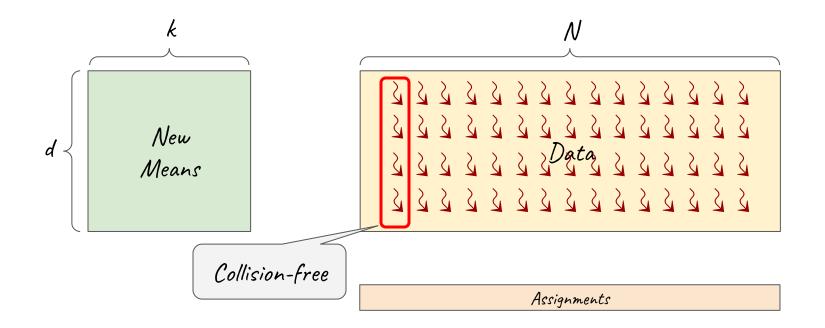
Update Step - Thread Allocation



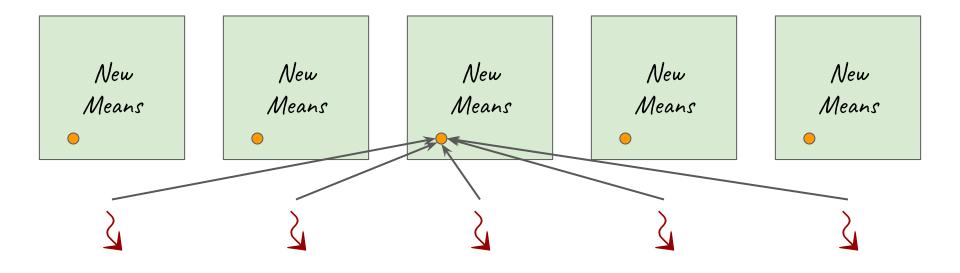
Update Step - Thread Allocation



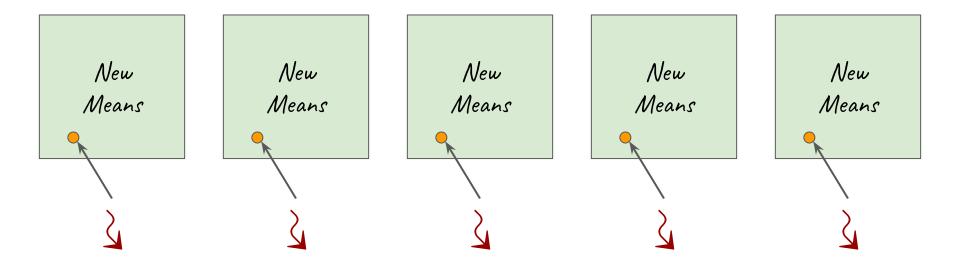
Update Step - Thread Allocation



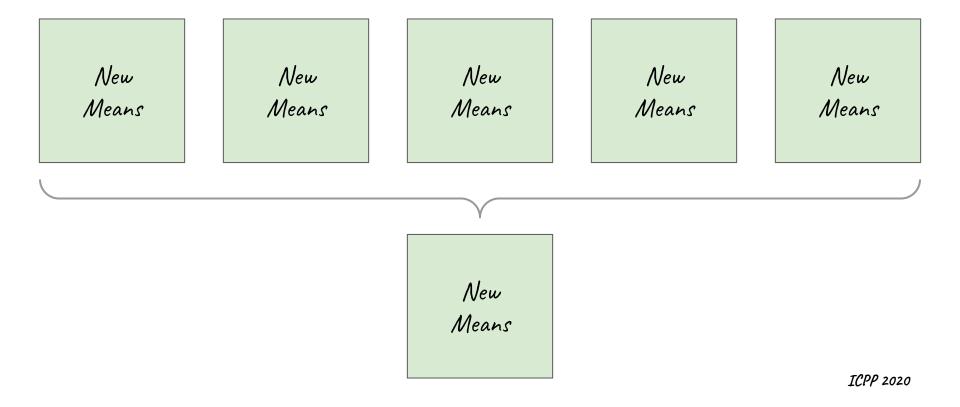
Increasing Atomic Throughput: Privatization



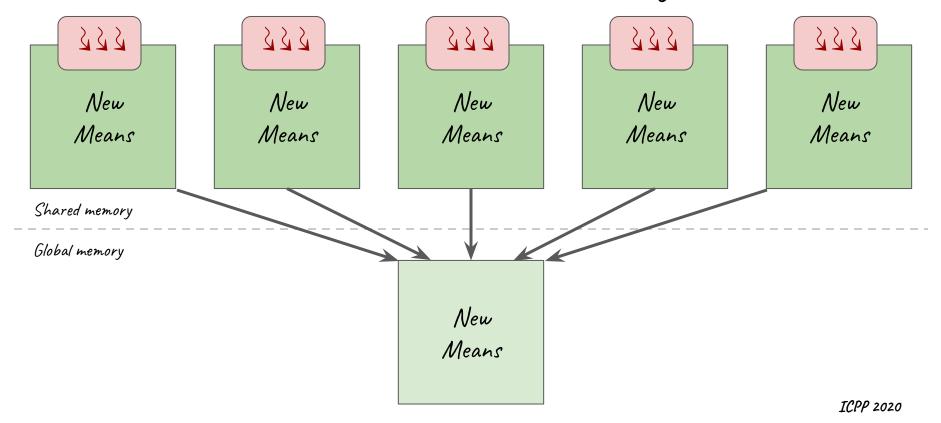
Increasing Atomic Throughput: Privatization



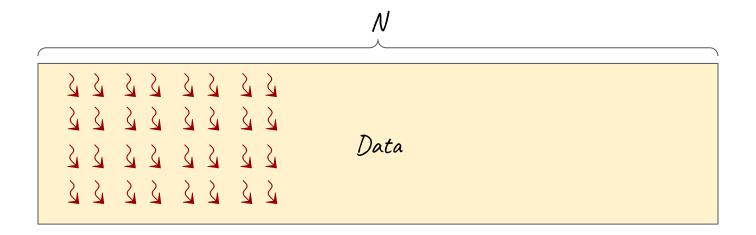
Increasing Atomic Throughput: Privatization



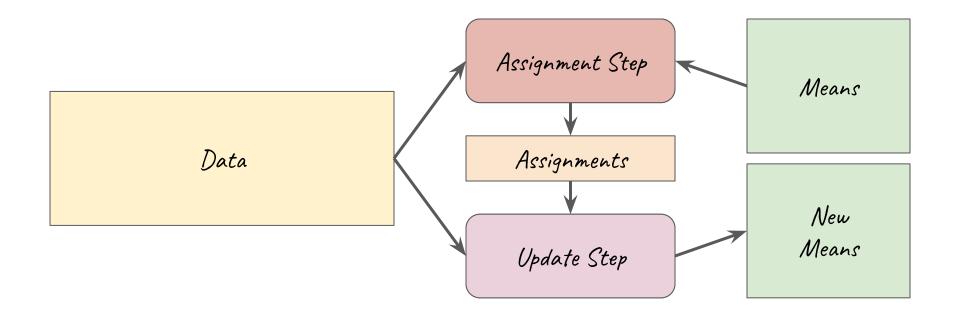
Privatization in Shared Memory



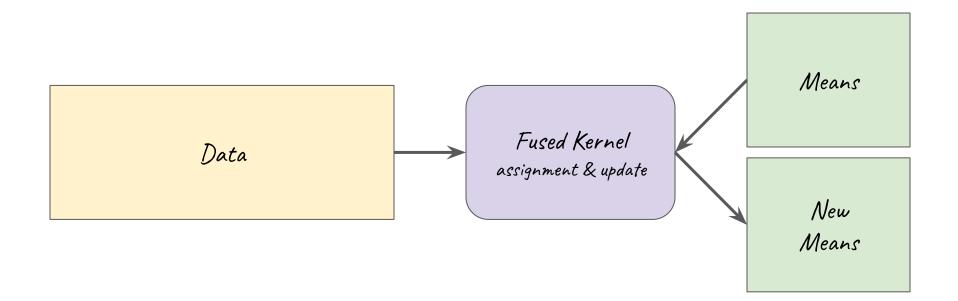
Privatization in Shared Memory



Complete Solution



Complete Solution - Fused Kernels



Technical Details

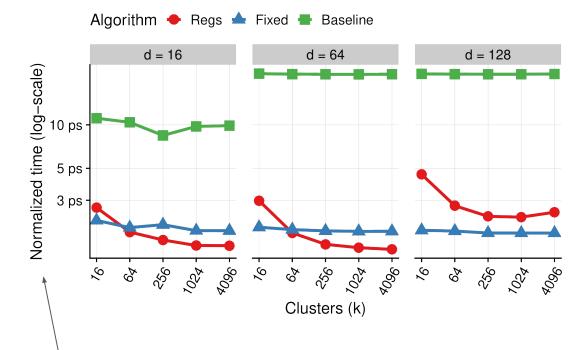
• Best data layout

. . .

- Atomic addition implementation
- Update step actually comprise two kernels sum and division
- Code templating and loop unrolling
- Thread block shape and size

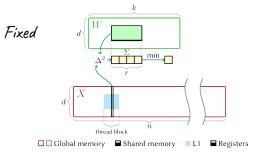
Experimental Results

Assignment step



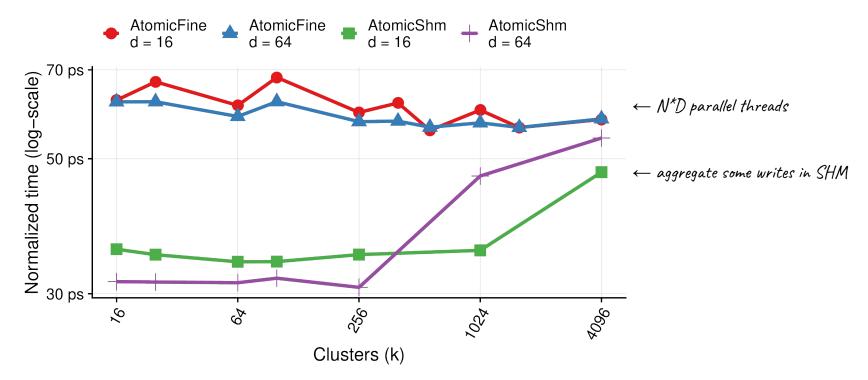
k $q \cdot r_q$ $q \cdot r_q$ r_q r_q r_q r_q r_q r_q r_p r_p

Regs



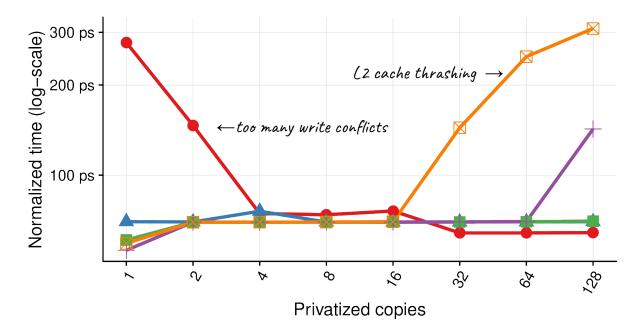
Actual time divided by N*D*k

Update step - avoiding write conflicts

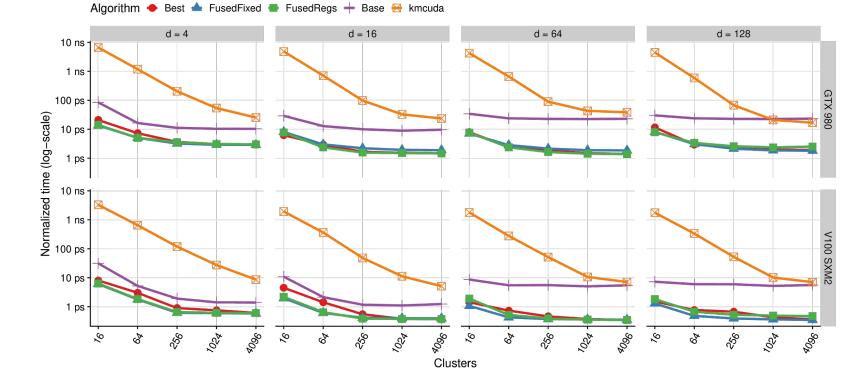


Update step - write conflicts of N*D threads

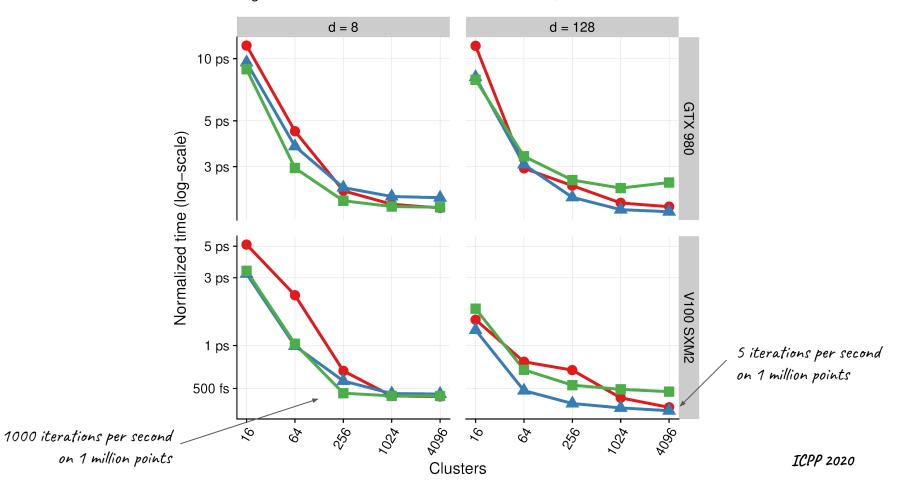
Clusters ◆ k = 16 ▲ k = 64 ➡ k = 256 ┿ k = 1024 😣 k = 4096



Combined results



Algorithm Best FusedFixed FusedRegs



https://github.com/krulis-martin/cuda-kmeans

Thank you for watching!

Martin Kruliš, Ph.D.

Department of software engineering, Charles University Prague, Czech Republic

krulis@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~krulis ORCID: 0000-0002-0985-8949

Miroslav Kratochvíl, M.Sc.

Department of software engineering, Charles University Prague, Czech Republic

kratochvil@ksi.mff.cuni.cz https://www.ksi.mff.cuni.cz/~kratochvil ORCID: 0000-0001-7356-4075

