
PA
PE

R
S

www.jogh.org • doi: 10.7189/jogh.14.04115 1 2024  •  Vol. 14  •  04115

Post-natal gestational age assessment using 
targeted metabolites of neonatal heel prick 
and umbilical cord blood: A GARBH-Ini cohort 
study from North India

Electronic supplementary material: 
The online version of this article contains supplementary material.

Cite as: Ramasamy T, Varughese B, Singh M, Tailor P, Rao A, Misra S, Sharma N, Desiraju K, Thiru-
vengadam R, Wadhwa N, GARBH-Ini Study Group, Kapoor S, Bhatnagar S, Kshetrapal P. Post-natal 
gestational age assessment using targeted metabolites of neonatal heel prick and umbilical cord blood: 
A GARBH-Ini cohort study from North India. J Glob Health 2024;14:04115.

Thirunavukkarasu Ramasamy1 , Bijo 
Varughese2 , Mukesh Singh3, Pragya Tailor1 , 
Archana Rao1 , Sumit Misra4, Nikhil Sharma5, 
Koundiya Desiraju5 , Ramachandran 
Thiruvengadam5 , Nitya Wadhwa5 , GARBH-
Ini Study Group6, Seema Kapoor2*, Shinjini 
Bhatnagar5* , Pallavi Kshetrapal1,5*
1 Lab of Perinatal Research, Maternal and Child Health, 
Translational Health Science and Technology Institute, 
Faridabad, Haryana, India

2 Genetics Laboratory, Department of Paediatrics, Maulana 
Azad Medical College, New Delhi, India

3 Department of Gastroenterology, All India Institute of 
Medical Sciences, New Delhi, India

4 Gurugram Civil Hospital, GCH, Haryana, India
5 Maternal and Child Health, Translational Health Science and 
Technology Institute, Faridabad, Haryana, India

6 Interdisciplinary Group for Advanced Research on Birth 
Outcomes - DBT India Initiative, Translational Health Science 
and Technology Institute, Faridabad, Haryana, Indiaa

*Joint senior authorship.

Correspondence to:
Pallavi Kshetrapal (Lab of Perinatal Research, Maternal and Child 
Health), Translational Health Science and Technology Institute 
NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon 
Expressway, Faridabad, Haryana 
India 
pallavi.kshetrapal@thsti.res.in

Shinjini Bhatnagar 
Maternal and Child Health, Translational Health Science and 
Technology Institute
NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon 
Expressway 
Faridabad, Haryana 
India 
shinijini.bhatnagar@thsti.res.in

Background Accurate assessment of gestational age (GA) 
and identification of preterm birth (PTB) at delivery is essen-
tial to guide appropriate post-natal clinical care. Undoubted-
ly, dating ultrasound sonography (USG) is the gold standard 
to ascertain GA, but is not accessible to the majority of preg-
nant women in low- and middle-income countries (LMICs), 
particularly in rural areas and small secondary care hospi-
tals. Conventional methods of post-natal GA assessment are 
not reliable at delivery and are further compounded by a 
lack of trained personnel to conduct them. We aimed to de-
velop a population-specific GA model using integrated clin-
ical and biochemical variables measured at delivery.

Methods We acquired metabolic profiles on paired neona-
tal heel prick (nHP) and umbilical cord blood (uCB) dried 
blood spot (DBS) samples (n = 1278). The master data set 
consists of 31 predictors from nHP and 24 from uCB after 
feature selection. These selected predictors including bio-
chemical analytes, birth weight, and placental weight were 
considered for the development of population-specific GA 
estimation and birth outcome classification models using 
eXtreme Gradient Boosting (XGBoost) algorithm.

Results The nHP and uCB full model revealed root mean 
square error (RMSE) of 1.14 (95% confidence interval 
(CI) = 0.82–1.18) and of 1.26 (95% CI = 0.88–1.32) to esti-
mate the GA as compared to actual GA, respectively. In ad-
dition, these models correctly estimated 87.9 to 92.5% of 
the infants within ±2 weeks of the actual GA. The classifica-
tion models also performed as the best fit to discriminate the 
PTB from term birth (TB) infants with an area under curve 
(AUC) of 0.89 (95% CI = 0.84–0.94) for nHP and an AUC 
of 0.89 (95% CI = 0.85–0.95) for uCB.

Conclusion The biochemical analytes along with clinical 
variables in the nHP and uCB data sets provide higher ac-
curacy in predicting GA. These models also performed as 
the best fit to identify PTB infants at delivery.
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Preterm birth (PTB) is defined as a live-born baby delivered before 37 completed weeks of gestation [1,2]. It is 
one of the major global pregnancy complications with more than 60% of PTB occurring in lower-middle-in-
come countries (LMICs) [3,4]. Preterm birth, small for gestational age (SGA) and low birth weight (LBW) 
newborns have been categorised as small vulnerable newborns (SVNs) under a new conceptual framework. 
The rate of SVNs has been reported to be the highest in South Asia and sub-Saharan Africa [5,6]. Global 
Network’s population-based registry of pregnant women in LMICs has reported the overall PTB rate to be 
12.6% [7]. In India, ~ 3.5 million babies are born PTB every year that contributes to the largest percentage 
(23.5%) of the global burden of 15 million born as PTB annually. Preterm birth is one of the leading causes 
of death among children under five years of age with adverse consequences beyond early infancy and later 
in life resulting in major human and economic loss [8,9]. A recent systematic analysis presents India with 
the highest number of PTB in 2020 (3.02 million) that accounts for over 20% of all PTB worldwide [1]. The 
PTB rates of 13.5%, based on dating ultrasonography (USG) have been documented systematically for the 
first time in India from a longitudinal large pregnancy cohort in North India [10].

In most LMICs, estimating GA at or after delivery is highly challenging; more so, in un-booked pregnan-
cies [11]. Accurate GA is essential for timely decisions on effective therapeutic interventions at birth and 
documenting the developmental milestones of neonates. Currently, assessing the true GA postnatally in a 
clinical setting is based on birthweight, which may be affected by ethnicity, socioeconomic status, living 
conditions, and natural environment [12,13]. Gestational age is also determined at delivery using the last 
menstrual period which has also been reported to be unreliable due to recall bias or irregular periods [14]. 
Other postnatal GA assessment methods currently practiced by neonatologists such as Dubowitz and New 
Ballard score system have poor reliability and high inter-user variability [15–17]. Examination by USG is the 
only proven reliable method to assess the GA accurately but has limited accessibility in most of the LMICs 
settings. High equipment costs and lack of trained manpower further prohibit its use in most clinical settings. 
Thus, there is a need for a novel, feasible, and cost-effective diagnostic tool for post-natal GA assessment.

Pregnancy is a phase of steady physiologic adaptation that affects nutrient metabolism [18]. Multiple metab-
olites accessed in maternal plasma longitudinally across pregnancy revealed that metabolic clock of five 
blood metabolites accurately predict GA [19]. Reports from mid-trimester plasma have associated maternal 
metabolites with PTB delivery [20]. In addition, to modulation of amino acid and fatty acid metabolites in 
maternal circulation during pregnancy, alterations in umbilical cord blood (uCB) metabolites collected at 
delivery have been found to be associated with PTB and LBW. Besides maternal and uCB metabolites, sev-
eral prediction models using metabolic markers from neonatal heel prick (nHP) collected during routine 
newborn screening (NBS) have been developed to determine GA at birth [21,22]. External validation of 
these models in other global populations has demonstrated satisfactory performance in accurately predict-
ing GA and SGA [23–25]. However, these models also over or under-estimated GA in PTB and TB infants 
[24] respectively. To the best of our knowledge, no studies have reported development of a post-natal GA 
prediction model based on paired nHP and uCB samples from the same participant and its use in discrim-
inating PTB in an Indian population. We included the uCB in the development of the metabolic models 
due to the enhanced acceptability of metabolites testing and ease in sample collection methods both for the 
family members and health care providers.

This study aims to develop a population-specific machine learning (ML) prediction model within an ongo-
ing pregnancy cohort coordinated by the interdisciplinary Group for Advanced Research on BirtH out-
comes-DBT India Initiative (GARBH-Ini). Metabolites from paired uCB and nHP samples were measured 
using mass-spectrometry platforms at a newborn clinical facility. GA estimation and birth outcome classifi-
cation models have been developed using XGBoost algorithm. These models would be crucial to accurately 
assess GA at delivery for immediate clinical care of adverse birth outcomes. Besides these models may aid 
as surveillance tools to inform region-specific PTB rates in LMICs.

METHODS

Study cohort and participants

The GARBH-Ini cohort is an ongoing prospective observational hospital-based pregnancy cohort at the 
district hospital in Gurugram, North India. Detailed information can be assessed from our previous study 
[10]. Briefly, pregnant women are enrolled after providing informed consent at <20 weeks of gestation deter-
mined by dating USG as per the World Health Organization criteria [26]. Those women are followed at reg-
ular intervals to document their clinical, medical history, socio-demographic characteristics, and pregnancy 
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outcomes. Maternal and neonatal samples were collected and processed at the clinical site and bio-banked 
at the institutional biorepository. Institutional ethics approvals have been obtained from all participating 
organisations. Participants for this study were selected from the mothers who delivered singleton live births 
and had provided paired nHP and uCB samples. Detailed information on the selection of samples used to 
develop the population-specific model for the GARBH-Ini cohort is presented in Figure 1. Figure S1 in the 
Online Supplementary Document presents the overview of the study design.

Sample collection and processing

The uCB was collected immediately after delivery and nHP sample, after 20 hours but within 72 hours 
post-delivery was spotted on Protein Saver 903 cards. These cards were air-dried and stored at the insti-
tutional biorepository at –80°C as described previously [10]. The qualified dried blood spot (DBS) Protein 
saver 903 cards (nHP and uCB) were shipped on dry ice to the Pediatrics Research and Genetic NBS labo-
ratory established as a part of Government initiative for Neonatal Early Evaluation Vision, at Maulana Azad 
Medical College, New Delhi. Using DBS Panthera auto-puncher (PerkinElmer, Inc.), the discs were punched 
from each sample for testing of the following analytes: thyroid-stimulating hormone (TSH); 17-O hydroxy-
progesterone (17-OHP), galactose-1-phosphate uridylyltransferase (GALT), 11 amino acids and 30 acylcar-
nitines. These samples were subjected to extraction of the above biochemical analytes using NeoBase Non-
derivatized MSMS kit (PerkinElmer, USA) according to manufacturer instructions. The neonatal 17-OHP 
and TSH were measured using PerkinElmer AutoDELFIA Immunoassays (PerkinElmer); GALT level was 
measured using the GSP® Instrument (PerkinElmer), and amino acids and acylcarnitine analysis were per-
formed using flow injection analysis- tandem mass spectrometry (FIA-tandem-MS) (SCIEX, USA) (Table S1 
in the Online Supplementary Document).

Data pre-processing and statistical analysis

Clinical and biochemical analytes were compiled as a master data set. The missing value of the biochemical 
parameters was imputed using the k-nearest neighbor (KNN) algorithm [27]. Birth outcomes such as SGA 
(<10th percentile), appropriate for GA (AGA, 10th to 90th percentile), and large for GA (LGA, >90th percen-

Figure 1. Screening and selection of study population for nHP and uCB samples from the GARBH-Ini cohort. 
*Samples collected between 31 May 2017 and 31 December 2019. nHP – neonatal heel prick, uCB – umbilical cord 
blood
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tile) were determined based on the INTERGROWTH-21st standardised growth charts [28]. To minimise the 
outlier influence and reduce skewness, the data set was scaled by standard score. Mean and standard devi-
ation (SD) was described for continuous variables. Categorical variables were described as percentages and 
proportions. Univariate analysis was performed to compare the baseline characteristics between PTB and 
TB infant groups using t-tests and Chi-squared tests for continuous and categorical variables, respectively.

Feature selection and its implementation for model development

The nHP and uCB data sets consisted of 47 predictor variables including 44 measured biochemical analytes 
and three clinical factors (birthweight, placental weight, and gender of the baby (Table S1 in the Online 
Supplementary Document). For implementing the development of machine learning (ML) algorithms, the 
data set was randomly split into training (70%) and testing (30%) subsets for both the nHP and uCB data 
sets. To remove multicollinearity and to improve the model accuracy, we performed feature selection on pre-
dictor variables against GA as a continuous dependent variable on 70% of the training data set to obtain the 
best predictors using the Boruta package [29]. The confirmed and tentative variables were selected and the 
unconfirmed variables with the hit score <0.5 were omitted from further analysis. A t-test was performed 
to compare the mean differences between PTB and TB infants in nHP and uCB data sets. With the help of 
selected predictors, six different models were developed for estimating the post-natal GA and also for dis-
criminant analysis of the PTB from TB as described (Table S3 in the Online Supplementary Document). 
To address the nonlinearity between dating USG GA and each confirmed variable, all the linear predictors 
were squared. The linear and squared terms of selected predictors were used in the model-building data set 
(Table S1 in the Online Supplementary Document).

Selection of ML algorithm

For implementing the ML algorithms, the selected predictors were used for the data sets. A 10-fold cross-val-
idation method with three repeats was used as a resampling procedure on the training data set to evaluate 
and select the ML algorithms [30]. Five ML algorithms: Linear regression (LR), random forest (RF), Elastic 
net (EN), linear support vector machines (L-SVM), and XGBoost were used to achieve the best model [31,32].

Implementation of XGBoost algorithm for model development

XGBoost algorithm, a decision tree-based ensemble algorithm has been widely used for diagnosis and prog-
nosis as a predictive tool in the medical field [33–35]. For better prediction of GA using biochemical analytes 
along with placental weight, and birth weight, the XGBoost was employed. It is a robust algorithm capable 
of a high degree of accuracy and interpretability [36]. The regularisation parameters used for calibration of 
the model prevent overfitting of the data sets. Moreover, every tree learns from the residuals of all previous 
trees in XGBoost. To attempt to improve predictive performance and find a balance between bias and vari-
ance, the following hyper-parameters were optimised such as 1) resampling method (repeatedcv = 10 with 
3 repeats as constant) and 2) tuneGrid parameters (n_rounds, eta, max_depth, gamma, colsample_bytree, 
subsample, and min_child_weight). The XGBoost regression (reg: squared error) was tuned for estimating 
the GA as a continuous outcome and as a classifier function (binary: logistic) to discriminate the PTB from 
TB. All the above algorithms and parameters were implemented using XGBoost with essential dependency 
packages in the R programme (R Core Team, Statistical Computing, Vienna, Austria).

Performance of the population-specific GA models

Initially, the final algorithm was tested for all the models to predict the GA using the test data set (n = 383). 
The performance of the models was assessed by estimating root mean squared error (RMSE) and mean abso-
lute error (MAE) against actual GA (dating USG). RMSE and MAE as units of GA, were used to access the 
optimal model in the test data set. In addition, the proportion of estimated GA of infants correctly within 1, 
2, 3, and 4 weeks of actual GA was also assessed. The XGBoost has also been used in several studies to pre-
dict the probability of a binary outcome (such as ‘yes’ or ‘no’). The binary outcome was converted to a prob-
ability of 0-1 for PTB (<37 weeks of GA) and TB (≥37 weeks of GA) with the help of the pROC package [37]. 
A threshold value was then chosen to classify the observations into two classes. If the predicted probability 
is greater than the threshold value (P > 0.5), the observation is classified as PTB, otherwise, it is classified 
as TB. The area under the receiver operator curve (AUC) was calculated through sensitivity and specificity 
for prediction of PTB<37 vs. TB≥37 weeks against the gold standard GA measured by dating USG [38]. To 
understand the GA model performances based on the birth outcomes, the test data was stratified into five 
different sub-groups, such as SGA, non-SGA, birth weight (<2500 g), PTB, and TB.
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RESULTS

Baseline characteristics of the study population

A total of 2556 DBS samples comprising 1278 paired nHP and uCB respectively were selected for the cur-
rent study. The baseline characteristics of the study population are presented in Table 1. The distribution of 
TB and PTB included in the study was 1181 and 97, respectively. The ratio of the male and female neonates 
was almost 1:1. Gestational age as confirmed by dating USG was 39.03 ± 1.8 weeks for TB and 35.6 ± 1.1 for 
PTB. Among neonates who weighed <2500 g, the frequency of PTB was higher (73.2%) as compared to TB 
(19.1%). Placental weight and birth weight were higher in the babies born term than those born preterm. 
Using the intergrowth charts, our study population reflected 37.8% SGA, 38.9% term SGA, and 60.2% term 
non-SGA. Among the PTB group, 24.7% were SGA and the remaining were non-SGA.

Table 1. Baseline characteristics of the study population selected for postnatal-GA model development

Characteristics Overall (n = 1278) Term birth (n = 1181) Preterm birth (n = 97)
Maternal age (mean ± SD) 23.7 ± 3.8 23.7 ± 3.7 23.7 ± 3.9

Sex, n (%)

Male 662 (51.7) 606 (51.3) 56 (57.7)

Female 616 (48.3) 575 (48.7) 41 (42.3)

GA (mean ± SD) 39.03 ± 1.50 39.3 ± 1.8 35.62 ± 1.1

Birth weight (g), (mean ± SD) 2793.26 ± 424.0 2839.9 ± 398.2 2266.3 ± 350.3

Birth weight group, n (%)

≥2500 g 981 (76.8) 955 (80.9) 26 (26.8)

<2500 g 297 (23.2) 226 (19.1) 71 (73.2)

Placental weight, mean ± SD 488.4 ± 109.7 491.4 ± 109.4 454.3 ± 107.7

Size for GA (n, %)

SGA 483 (37.8) 459 (38.9) 24 (24.7)

AGA 784 (61.3) 711 (60.2) 73 (75.3)

LGA 11 (0.8) 11 (0.9) 0 (0)

AGA – average for gestational age, LGA – large for gestational age, GA – gestational age, SD – standard deviation, SGA – small for 
gestational age

Selection of predictors for model building

Biochemical analytes including the amino acids (n = 11), acylcarnitines (n = 30), enzymes (n = 1), and hor-
mones (n = 2) were measured as per standard NBS procedures on 1278 paired nHP and uCB DBS cards. Along 
with these analytes, clinical data on baby gender, birth weight, and placental weight were also included in 
the model development data set (Table S1 in the Online Supplementary Document). Using the curated 
data set of these 47 features, a wrapper-based approach for feature selection (Boruta algorithm) resulted in 
31 and 24 predictors for the development of the post-natal GA model from nHP and uCB data sets, respec-
tively (Figures S2A–B in the Online Supplementary Document). Among 31 selected predictors in the nHP 
data set, eight analytes (two amino acids and six acylcarnitines), and two clinical factors (placental weight 
and birth weight) were significantly different between PTB and TB infants. Of the 24 selected predictors 
in the uCB data set, nine analytes (one hormone, two amino acids, and six acylcarnitines) and two clinical 
factors (birth weight and placental weight) were significantly different between these two groups (Tables 
2A–B in the Online Supplementary Document). Interestingly, five analytes (alanine, C2, C4DC, C5, and 
C14:1) were common both in the nHP and uCB data set that identified significant differences between PTB 
and TB infants.

Postnatal GA models and their performance in the overall test data set

Using the selected predictors, six models were built on the training data set (Table S3 in the Online 
Supplementary Document). Although these models were trained using five robust ML algorithms, the 
XGBoost was taken forward as the best fit robust algorithm for testing these population-specific models. 
When the XGBoost algorithm was applied to the data sets, birthweight only model (M1) revealed an RMSE 
of 1.3 (95% confidence interval (CI) = 0.91–1.38) and MAE of 1.01 (95% CI = 0.91–1.28). As compared to this, 
baseline clinical model, that consists of placental weight and birth weight, (M2) revealed a slightly better 
GA estimation performance, with RMSE of 1.28 (95% CI = 0.89–1.35) and MAE of 1.01 (95% CI = 0.9–1.26). 
Among the metabolites only models nHP analyte-only model (M3) provided better estimation performance 
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(RMSE = 1.33 with 95% CI = 0.96–1.37; MAE = 1.07 with 95% CI = 0.96–1.35) than uCB analyte only model 
(M4) (RMSE = 1.46 with 95% CI = 1.03–1.48; MAE = 1.13 with 95% CI = 0.99–1.41). When the clinical factors 
were combined with the analytes, in the nHP full model (M5), a more accurate GA (RMSE = 1.14 with 95% 
CI = 0.82–1.18; MAE = 0.9 with 95% CI = 0.81–1.11) as compared to the uCB full model (M6) (RMSE = 1.26 
with 95% CI = 0.88–1.32; MAE = 0.98 with 95% CI = 0.86–1.13) was attained. This was the best when com-
pared to any of the other above-indicated models. However, the uCB full model (M6) did perform better 
than the baseline clinical (M2) and analyte-only models (M4).

The ability to correctly classify PTB from TB by receiver operating characteristic (ROC) analysis by cal-
culating the AUC in the six models is shown in the Table 2 and Table S4 in the Online Supplementary 
Document. Of the six models analysed, three models performed very well (Figure 2, panels A–C). The 
birthweight-only model (M1) reported an AUC of 85% (95% C I = 0.80–0.90) and the nHP full model (M5) 
showed an AUC of 89% (95% CI = 0.84–0.94) that was similar to the uCB full model (M6) (AUC = 89%; 
95% CI = 0.84–0.94). The baseline clinical model (M2) (AUC = 87%; 95% CI = 0.81–0.92) performed better 
than the birthweight-only model (M1). The analyte-only models (M3 and M4) did not perform well when 
compared to the other four models.

Table 2. Overall model performance for GA estimation and birth outcome as preterm birth and term birth discrimi-
nation on test data sets

Model No. of predictors 
(linear, squared) RMSE (95% CI)* MAE (95% CI)* AUC (95% CI)

Baby weight (M1) 2 (1, 1) 1.30 (0.91–1.38) 1.01 (0.91–1.28) 0.85 (0.81–0.91)

Baseline clinical (M2) 4 (2, 2) 1.28 (0.89–1.38) 1.01 (0.90–1.26) 0.87 (0.82–0.92)

Neonatal heel prick (M3) 58 (29, 29) 1.33 (0.96–1.37) 1.07 (0.96–1.35) 0.73 (0.64–0.82)

Umbilical cord blood (M4) 44 (22, 22) 1.46 (1.03–1.48) 1.13 (0.99–1.41) 0.69 (0.59–0.78)

Heel prick full model (M5) 62 (31, 31) 1.14 (0.82–1.18) 0.91 (0.81–1.11) 0.89 (0.84–0.94)

Umbilical Cord blood full model (M6) 48 (24, 24) 1.26 (0.88–1.32) 0.98 (0.86–1.13) 0.89 (0.85–0.95)

AUC – area under roc curve, CI – confidence interval, GA – gestational age, MAE – mean absolute error, RMSE – root mean squared error
*Data is presented as the mean and 5th and 95th bootstrap percentiles. GA for 1000 bootstrap samples generated from each data set.

Figure 2. Performance of models in correctly classifying the infants based on PTB discrimination threshold (<37 weeks of GA) on test 
data set. ROC curve analysis for birth weight model (Panel A), nHP full model (Panel B), and uCB full model with their respective 
AUC (Panel C). AUC – area under the curve, nHP – neonatal heel prick, PTB – preterm birth, ROC – receiver operating characteristic, 
uCB – umbilical cord blood

Frequency of difference in weeks between predicted and actual GA on the overall 
test data sets

The frequency of difference in weeks between predicted and actual GA is presented in Table 3. The nHP 
full model (M5) accurately separated 245 (65.5%), and 346 (92.5%) of infants within ±1 week and ±2 weeks, 
respectively. The baseline clinical model (M2) classified 225 (60.2%) and 332 (88.8%) infants within ±1 
week and ±2 weeks respectively which was less predictive than nHP full model (M5) and slightly better than 
the uCB full model (M6); 329 (87.9%) within ±2 weeks. The baseline clinical (M2) and nHP analyte-only 
model (M3) revealed 332 (88.8%) of infant separation as an equal contribution for both the models within 
±2 weeks. The nHP full model (M5) performed the best to classify the maximum number of infants within 
±2 weeks (Table 3). The cross-tabulation between the actual and predicted GA in 2 weeks category interval 
in nHP and uCB full models, indicated the accuracy of the performance of these models (Table S5 in the 
Online Supplementary Document).
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Performance of GA estimation model on test data sets stratified by birth outcomes

In the test data sets stratified as per birth outcomes, the term birth, non-SGA for all the models accurately 
estimated the GA better than PTB, birth weight <2500 g, and SGA subgroups (Table 4). Between all the five 
subgroups, the Model-5 had the least prediction error in TB (RMSE of 1.05 with 95% CI = 0.97–1.13; MAE 
of 0.78 with 95% CI = 0.41–0.76) and non-SGA (RMSE of 1.09 with 95% CI = 0.99–1.22; MAE of 0.87 with 
95% CI = 0.62–0.89). The SGA group with an RMSE of 1.22 with 95% CI = 1.09–1.33; MAE of 1.01 with 95% 
CI = 0.88–1.15, birth weight <2500 g group with an RMSE of 1.42 with 95% CI = 1.23–1.59; MAE of 1.17 
with 95% CI = 0.83–1.21 and PTB group with RMSE of 1.88 with 95% CI = 1.56–2.19; MAE of 1.21 with 
95% CI = 0.95–1.24, are presented in Table 4. The Model-5 estimated 69.3% within ±1 week in non-SGA and 
93.9% within ±2 weeks in TB as the highest percentage ranging between ±1 and ±2 week to the reference 
GA. For the rest of the subgroup models, details of GA estimated percentage within ±1 and ±2 weeks of ref-
erence GA are presented in Table 4.

Table 4. Summary of model performance to estimate GA from nHP and uCB samples on five different test data sets stratified by birth outcomes

Model-1 Model-2 Model-3 Model-4 Model-5 Model-6
SGA (n = 136)

RMSE (95% CI)* 1.38 (1.24–1.55) 1.42 (1.26–1.61) 1.28 (1.15–1.64) 1.4 (1.23–1.58) 1.22 (1.09–1.33) 1.42 (1.25–1.58)

MAE (95% CI)* 1.12 (0.85–1.19) 1.14 (0.86–1.21) 1.07 (0.83–1.11) 1.12 (0.79–1.07) 1.1 (0.88–1.15) 1.12 (0.81–1.09)

n (%) within ±1 week 67 (49.3) 69 (50.7) 71 (52.2) 71 (52.2) 73 (53.7) 76 (55.9)

n (%) within ±2 weeks 115 (84.6) 114 (83.8) 119 (87.5) 117 (86.1) 122 (89.7) 110 (80.9)

Birth weight <2500 g (n = 91)

RMSE (95% CI)* 1.7 (1.43–1.96) 1.65 (1.44–1.86) 1.73 (1.45–1.99) 1.93 (1.61–2.24) 1.42 (1.23–1.59) 1.57 (1.36–1.78)

MAE (95% CI)* 1.28 (0.89–1.31) 1.29 (0.91–1.32) 1.48 (1.06–1.49) 1.68 (1.31–1.65) 1.17 (0.83–1.21) 1.30 (1.09–1.32)

n (%) within ±1 week 38 (41.8) 40 (43.9) 40 (43.9) 39 (42.9) 43 (47.3) 43 (47.3)

n (%) within ±2 weeks 71 (78.1) 71 (78.1) 70 (76.9) 65 (71.4) 76 (83.5) 69 (75.8)

Preterm birth (n = 31)

RMSE (95% CI)* 2.3 (1.95–2.76) 2.18 (1.89–2.48) 2.72 (2.34–3.13) 3.05 (2.87–3.4) 1.88 (1.56–2.19) 2.19 (1.65–2.31)

MAE (95% CI)* 1.91 (1.44–1.99) 1.87 (1.41–1.93) 1.98 (1.62–2.07) 2.71 (2.41–2.82) 1.21 (0.95–1.24) 1.71 (1.41–1.85)

n (%) within ±1 week 3 (9.7) 3 (9.7) 2 (6.4) 0 (0) 6 (19.3) 4 (12.9)

n (%) within ±2 weeks 15 (48.4) 17 (54.8) 11 (35.5) 6 19.3) 22 (71.1) 20 (64.5)

Non-SGA (n = 238)

RMSE (95% CI)* 1.25 (1.11–1.39) 1.19 (1.08–1.31) 1.37 (1.22–1.53) 1.51 (1.33–1.65) 1.09 (0.99–1.22) 1.18 (1.07–1.29)

MAE (95% CI)* 0.96 (0.82–1.09) 0.86 (0.76–0.98) 0.98 (0.73–0.94) 1.27 (1.09–1.34) 0.87 (0.62–0.91) 0.88 (0.77–0.99)

n (%) within ±1 week 149 (62.6) 153 (64.3) 133 (55.9) 127 (53.4) 165 (69.3) 144 (60.5)

n (%) within ±2 weeks 211 (88.6) 217 (91.2) 208 (87.4) 200 (84.1) 222 (93.3) 217 (91.2)

Term birth (n = 343)

RMSE (95% CI)* 1.16 (1.07–1.25) 1.16 (1.07–1.27) 1.14 (1.06–1.21) 1.23 (1.15–1.33) 1.05 (0.97–1.13) 1.19 (1.09–1.28)

MAE (95% CI)* 0.79 (0.68–0.91) 0.75 (0.61–0.88) 0.82 (0.68–0.83) 0.96 (0.84–0.98) 0.78 (0.41–0.67) 0.96 (0.83–1.2)

n (%) within ±1 week 213 (62.1) 219 (63.8) 202 (58.9) 198 (57.7) 232 (67.6) 216 (63.1)

n (%) within ±2 weeks 311 (90.7) 314 (91.5) 316 (92.1) 311 (90.7) 322 (93.9) 307 (89.5)

CI – confidence interval, MAE – mean absolute error, RMSE – root mean square error, SGA – small for gestational age
*Data is presented as the mean and 5th and 95th bootstrap percentiles for MAE, RMSE and the percentage of model estimates within 1 and 2 weeks of 
ultrasound. GA for 1000 bootstrap samples generated from each data set.

Table 3. Summary of model performance as the difference in weeks between predicted and dating ultrasound GA, as 
gold standard, on test data sets

Model Difference* 0 week 1 week 2 weeks 3 weeks ≥4 weeks

M1
n (%) 12 (3.2) 218 (58.3) 99 (26.5) 36 (9.6) 9 (2.4)

Cum (%) 12 (3.2) 230 (61.5) 329 (88.0) 365 (97.6) 374 (100)

M2
n (%) 10 (2.7) 215 (57.5) 107 (28.6) 32 (8.6) 10 (2.7)

Cum (%) 44 (4.9) 225 (60.2) 332 (88.8) 364 (97.3) 374 (100)

M3
n (%) 8 (2.1) 208 (55.6) 116 (31.1) 35 (9.3) 7 (1.9)

Cum (%) 8 (2.1) 216 (57.7) 332 (88.8) 367 (98.1) 374 (100)

M4
n (%) 8 (2.1) 204 (54.6) 109 (27.8) 44 (11.8) 14 (3.7)

Cum (%) 8 (2.1) 212 (56.7) 316 (84.5) 360 (96.3) 374 (100)

M5
n (%) 9 (2.4) 236 (63.1) 101 (27.0) 25 (6.7) 3 (0.8)

Cum (%) 9 (2.4) 245 (65.5) 346 (92.5) 371 (99.2) 374 (100)

M6
n (%) 15 (4.0) 213 (56.9) 101 (27.0) 37 (9.9) 8 (2.2)

Cum (%) 15 (4.0) 228 (60.9) 329 (87.9) 366 (97.8) 374 (100)

GA – gestational age
*n (%) = No. of observation (%); Cum (%) = Cumulative (%).
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DISCUSSION
In this study, we have established a population-specific post-natal GA estimation model using targeted 
metabolomics. Several ML-based models have been implemented in the field of maternal and child health 
towards predicting pregnancy outcomes [33–35]. Lately, the XGBoost has emerged as one of the most pow-
erful ensemble based ML algorithm and has been used for the better prediction of pregnancy complications 
and birth outcomes such as pre-eclampsia, gestational diabetes mellitus and growth restriction [39–41]. 
Out of the five algorithms we evaluated, the tree-based XGBoost algorithm had the best fit for accurately 
estimating post-natal GA. It is one of the most preferred and widely accepted ML algorithms for regression 
and classification tasks. Due to its high accuracy, scalability, regularisation, feature importance, and fast 
computational skills, has been utilised for building predictive models [36]. This algorithm not only helps in 
estimating the GA accurately but is also efficient in differentiating PTB from TB infants at delivery.

Before building our population-specific model, we validated the western-based GA model reported by the 
IOWA study group [21] on our data sets. We found trends of overestimation of the GA in weeks when com-
pared to the actual GA tested against the overall study population. A study also reported overestimation of 
GA among the PTB group in the Asian and African populations using the IOWA model [24]. This could be 
due to differences in diet and ethnicity which are known to influence circulatory metabolites in newborns 
that have been reported to be highly associated with GA [21,42].

We present the development of six different population-specific models established to achieve the best model 
with high accuracy in estimating the post-natal GA. In our study, the birth weight-only model is able to 
estimate GA within 1.3 weeks, as an error rate compared to actual GA. Moreover, this model marginally 
enhances its accuracy while adding placental weight (baseline clinical model) as one of the predictors. These 
two models are equally comparable to the previously reported models [21,22,24,43]. Our baseline clinical 
model performs similarly to the earlier reported IOWA model developed on 51 161 infants that comprised 
of birthweight and gender of infants as clinical variables [21].

The nHP population-specific metabolite-only model for post-natal GA assessment in our study revealed an 
RMSE of 1.33 weeks which is similar to the reported North American population models [21,22]. As our 
data set included paired nHP and uCB from the same participant, it helped us to compare the RMSEs using 
metabolites acquired on both types of samples. Our uCB metabolite-only and uCB full models predicted 
better RMSE when compared to a recent study conducted on an African population using only uCB data set 
models [44]. Nonetheless, the GARBH-Ini cohort’s nHP full model faired much better and classified up to 
92.5% of neonates within ±2 weeks by estimating GA accurately to 1.14 weeks as seen in the earlier pub-
lished models [21,22,24], while the uCB data set classified only 89.9% of neonates within ±2 weeks by esti-
mating GA accurately to 1.26 weeks.

The estimated GA in our study participants, based on the new Ballards score, revealed an RMSE of ±2 weeks 
(data not shown) compared to our best fit predicted nHP full model with an RMSE of ±1 week, suggesting 
a 50% higher error rate in GA estimation using conventional methods, thus, emphasising ML-based meth-
ods to be more powerful and independent of intra-observer variability.

A study conducted in LMIC setting reveals that 43.3 and 6.8% of pregnant mothers present themselves at 
the antenatal care in their second and third trimesters respectively [44]. This is a considerably high num-
ber of unbooked pregnant women who directly visit the hospital near to the time of delivery. There is suf-
ficient evidence to suggest that the third-trimester USG with an RMSE of 21–30 days, is the least reliable 
method of GA assessment near to the time of delivery [44,45], Compared to already published reports, our 
nHP full model with an RMSE of 1.14 weeks is a better fit for the USG-based GA assessment that is done 
in these trimesters or near to delivery. Based on our sub-group analysis, we found that the nHP full model 
performed best in estimating GA on test data sets stratified by different birth outcomes, especially for the 
TB and non-SGA sub groups compared to the PTB, SGA and LBW. The reason could be due to lesser num-
ber of samples from the adverse outcome groups as compared to the healthy outcome groups in our study 
population. The recent executive summary on SVN, projects that, globally every fourth baby is born too 
soon and/or born too small. If not addressed in time, these vulnerable infants may be affected in their later 
life [5,6]. To prevent this global health and economic burden, the need to accurately estimate GA for proper 
identification and clinical management of these neonates is important. Fortunately, our nHP full model is 
able to accurately predict GA at delivery in the PTB, SGA, and LBW, with the least error rate of ~ 7–13 days.

To the best of our knowledge, this is the first population-specific post-natal GA assessment model based 
on metabolic profiles acquired on NBS platforms in an Indian setting. Our models, which estimate GA as 
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close to the actual GA assessed by dating USG provide a proof of concept that may have the potential to be 
implemented as a metabolic profile-based GA assessment in clinical settings in LMICs.

The significant strength of our study is the ability to compare the estimated GA with the gold standard GA 
captured by dating USG before 20 weeks in the GARBH-Ini cohort. Accurate measurements of the period of 
gestation using dating USG are relatively rare in LMIC settings due to the high cost and inaccessibility of the 
equipment. In this pregnancy cohort, the GA for all new-borns at delivery is also calculated using the new 
Ballards score. This allowed us to compare the ML-based GA estimations with the conventional methods 
currently being followed. In our study, we were able to utilise the paired nHP and uCB stored samples from 
the same newborn. Interestingly, out of the selected features for model-building activities, 16 metabolites in 
the nHP and uCB data sets were found to be common. These models, may thus, be generalisable for these 
sample types in the study. Besides, when compared to the best of the ten variables reported from western 
populations, five of the metabolites were found to be common with our data sets [21]. To date, none of the 
studies have utilised the placental weight as one of the GA predictors in their population-specific models. 
Fortunately, we have identified the placental weight as the second-highest predictor in our data set.

The potential limitation of our study is the smaller sample size as compared to the usual sample sizes applied 
in the ML universe and previously used in Western models for estimating GA at delivery. We could not collect 
nHP samples from extremely PTB infants as parents refused consent and this reflects the very small numbers 
of such infants in our model-building strategies. Our maximum study population in the data set is from TB 
infants which may possibly overestimate the GA measurement in some of the subsets of the models built.

In future, adding extremely PTB infants to the data set may help improve the models to accurately measure 
GA for the small vulnerable populations. Potential factors that may affect the metabolic profiles, i.e. multi-
ple births, maternal nutrition or medications, environmental exposures during pregnancy, and timing of 
sample collection need to be considered during model development. We tried to reduce these biases in our 
model data sets by restricted selection of the study participants.

CONCLUSIONS
Accurate estimation of post-natal GA is an important guiding factor for physicians to provide best practice in 
neonatal critical care units at delivery. The XGBoost algorithm applied to the metabolic and clinical param-
eters of the nHP and uCB data sets offer an accurate GA at delivery in LMICs settings. This postnatal GA 
model proved far better to the conventional Ballard score based GA method that reduced the error rate by 
50% in estimating the predicted GA. As, both the nHP and uCB full models aided in similar identification 
of PTB at delivery, uCB may be a preferential choice for ease of sampling both for the parents and caregiv-
ers. Further, validation of these models in a larger sample size and external cohorts will aid the robustness 
to estimate the accurate GA and in classification of the birth outcomes especially for unbooked pregnan-
cies. With newborn metabolic testing picking up pace in India, in both government tertiary hospitals and 
private sectors, the application of these models in clinical settings may improve the GA assessment and aid 
neonatologists with the effective use of potentially life-saving interventions especially for PTB outcomes. 
Besides, identification of a handful of the best predictive metabolites could help translatability to clinical 
settings using point-of-care testing in low-resource settings. By addressing these practical and logistical con-
siderations, ML models can be implemented more effectively in LMIC settings, contributing to improved 
health care outcomes, resource utilisation and reducing the economic load both for the family and nation. 
This application may prove useful as a surveillance tool to determine the region-specific PTB rates in LMICs.
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