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ftsa: An R Package for Analyzing
Functional Time Series
by Han Lin Shang

Abstract Recent advances in computer recording and storing technology have tremendously increased
the presence of functional data, whose graphical representation can be infinite-dimensional curve,
image, or shape. When the same functional object is observed over a period of time, such data
are known as functional time series. This article makes first attempt to describe several techniques
(centered around functional principal component analysis) for modeling and forecasting functional
time series from a computational aspect, using a readily-available R addon package. These methods
are demonstrated using age-specific Australian fertility rate data from 1921 to 2006, and monthly sea
surface temperature data from January 1950 to December 2011.

Introduction

The aim of this article is to describe the R functions that are readily-available in the ftsa package
(Hyndman and Shang, 2013), for modeling and forecasting functional time series. This article was
motivated by recent advances in computer recording and storing technology that have enabled
researchers to collect and store (ultra) high-dimensional data. When the high-dimensional data are
repeatedly measured on the same object over a period of time, a time series of continuous functions is
observed within a common bounded interval (Shen and Huang, 2008).

Analyzing functional time series has received increasing attention in the functional data analysis
literature (see for example, Hörmann and Kokoszka, 2010; Horváth et al., 2010; Horváth and Kokoszka,
2012). Hyndman and Shang (2010) presented a rainbow plot for visualizing functional time series,
where the distant past data are shown in red and most recent data are shown in purple. Aguilera et al.
(1999) proposed functional principal component regression (FPCR) to model and forecast functional
time series.

Before reviewing the FPCR, we first define the problem more precisely. Let yt(x) denote a function,
such as age-specific fertility rates for the continuous age variable x in year t, or monthly sea surface
temperatures for the continuous time variable x in year t. In the latter example, functional time
series techniques allow us to capture the underlying dynamic of the multiple seasonality in the data
(see Shang and Hyndman, 2011; Shang, 2013, for example). We assume that there is an underlying
smooth function ft(x) that observes with error at discretized grid points of x. In practice, we observe
{xi, yt(xi)} for t = 1, 2, . . . , n and i = 1, 2, . . . , p, from which we extract a smooth function ft(x), given
by

yt(xi) = ft(xi) + σt(xi)εt,i, (1)

where εt,i is an independent and identically distributed (iid) standard normal random variable, σt(xi)
allows the amount of noise to vary with xi, and {x1, x2, . . . , xp} is a set of discrete data points. Given
a set of functional data f (x) = [ f1(x), f2(x), . . . , fn(x)]>, we are interested in finding underlying
patterns using the FPCR, from which we obtain forecasts of yn+h(x), where h denotes the forecast
horizon.

This article proceeds as follows. Techniques for modeling and forecasting functional time series
are reviewed and their implementations using the ftsa package are described. Conclusions are given
at the end.

Functional time series modeling and forecasting techniques

Functional principal component regression

The theoretical, methodological and practical aspects of functional principal component analysis
(FPCA) have been extensively studied in the functional data analysis literature, since it allows finite
dimensional analysis of a problem that is intrinsically infinite-dimensional (Hall and Hosseini-Nasab,
2006). Numerous examples of using FPCA as an estimation tool in regression problem can be found in
different fields of applications, such as breast cancer mortality rate modeling and forecasting (Erbas
et al., 2007), call volume forecasting (Shen and Huang, 2008), climate forecasting (Shang and Hyndman,
2011), demographical modeling and forecasting (Hyndman and Shang, 2009), and electricity demand
forecasting (Antoch et al., 2008).
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At a population level, a stochastic process denoted by f can be decomposed into the mean function
and the sum of the products of orthogonal functional principal components and uncorrelated principal
component scores. It can be expressed as

f = µ +
∞

∑
k=1

βkφk,

where µ is the unobservable population mean function, βk is the kth principal component scores, and
φk is the kth population functional principal component.

In practice, we can only observe n realizations of f evaluated on a compact interval x ∈ [0, τ], de-
noted by ft(x) for t = 1, 2, . . . , n. At a sample level, the functional principal component decomposition
can be written as

ft(x) = f̄ (x) +
K

∑
k=1

β̂t,kφ̂k(x) + ε̂t(x), (2)

where f̄ (x) = 1
n ∑n

t=1 ft(x) is the estimated mean function, φ̂k(x) is the kth estimated orthonormal
eigenfunction of the empirical covariance operator

Γ̂(x) =
1
n

n

∑
t=1

[ ft(x)− f̄ (x)][ ft(x)− f̄ (x)],

the coefficient β̂t,k is the kth principal component score for year t, it is given by the projection of
ft(x)− f̄ (x) in the direction of kth eigenfunction φ̂k(x), that is, β̂t,k=< ft(x)− f̄ (x), φ̂k(x) >=

∫
x[ ft(x)−

f̄ (x)]φ̂k(x)dx, ε̂t(x) is the residual, and K is the optimal number of components, which can be chosen
by cross validation. Hyndman and Booth (2008) studied the impact on forecast accuracy with a smaller
or larger than the optimal value of K.

The functional principal component decomposition is first demonstrated using the age-specific
Australian fertility rate data between ages 15 and 49 observed from 1921 to 2006. This data set was
obtained from the Australian Bureau of Statistics (Cat No, 3105.0.65.001, Table 38). A functional
graphical display is given in Shang (2011).

Figure 1 presents the first two functional principal components and their associated principal
component scores. The bottom panel of Figure 1 also plots the forecasted principal component scores,
and their 80% prediction intervals (in yellow color), using an exponential smoothing state-space model
(Hyndman et al., 2008). As pointed out by a referee, the forecasts of principal component scores appear
to quickly level off, and the prediction intervals widen very quickly. This reflects the difficulty of our
model in forecasting medium or long term horizon, as a result of the increase in variability.
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Figure 1: The first two functional principal components and their associated principal component
scores for the Australian fertility rate data from 1921 to 2006.

Figure 1 was produced by the following code.

# load the package used throughout this article
library("ftsa")
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# Fit and plot functional principal components
# order specifies the number of principal components
# h specifies the forecast horizon
plot(forecast(ftsm(Australiasmoothfertility, order=2), h=20), "components")

By conditioning on the set of smoothed functions f (x) = [ f1(x), f2(x), . . . , fn(x)]> and the fixed
functional principal components B = [φ̂1(x), φ̂2(x), . . . , φ̂K(x)]>, the h-step-ahead forecasts of yn+h(x)
can be obtained as

ŷn+h|n(x) = E[yn+h(x)| f (x),B] = f̄ (x) +
K

∑
k=1

β̂n+h|n,kφ̂k(x),

where β̂n+h|n,k denotes the h-step-ahead forecasts of βn+h,k using a univariate time series.

Figure 2 shows the forecasts of Australian fertility rate data from 2007 to 2026 highlighted in
rainbow color, while the data used for estimation are grayed out. Both the multi-step-ahead and
iterative one-step-ahead forecasts exhibit a continuing shift to older ages of peak fertility rates, caused
by a recent tendency to postpone child-bearing while pursuing careers.
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(a) Multiple-step-ahead forecasts. Based on the historical data
from 1921 to 2006, we obtain 20-step-ahead forecasts for 2007 to
2026.
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(b) Iterative one-step-ahead forecasts. Based on the historical data
from 1921 to 2006, we obtain iterative one-step-ahead forecasts
for 2007 to 2026 using the rolling origin approach.

Figure 2: Forecasts of the Australian fertility rates from 2007 to 2026, based on the first two functional
principal components and their associated principal component scores as an illustration.

Figure 2 was produced by the following code.
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# Plot the historical data in gray
plot(Australiasmoothfertility, col = gray(0.8), xlab = "Age",

ylab = "Count of live birth (per 1,000 females)",
main = "Forecasted fertility rates (2007-2026)")

# Plot the forecasts in rainbow color for Fig. 4(a)
plot(forecast(ftsm(Australiasmoothfertility, order = 2), h = 20), add = TRUE)
legend("topright", c("2007", "2026"), col = c("red", "blue"), lty = 1)

plot(Australiasmoothfertility, col = gray(0.8), xlab = "Age",
ylab = "Count of live birth (per 1,000 females)",
main = "Forecasted fertility rates (2007-2026)")

# Plot the forecasts in rainbow color for Fig. 4(b)
plot(ftsmiterativeforecasts(Australiasmoothfertility, components = 2, iteration = 20),

add = TRUE)
legend("topright", c("2007", "2026"), col = c("red", "blue"), lty = 1)

To construct prediction interval, we calculate the forecast variance that follows from (1) and (2).
Because of orthogonality, the forecast variance can be approximated by the sum of component variances

ξn+h(x) = Var[yn+h(x)| f (x),B] = σ̂2
µ(x) +

K

∑
k=1

un+h,kφ̂2
k (x) + v(x) + σ2

n+h(x),

where un+h,k = Var(βn+h,k|β1,k, β2,k, . . . , βn,k) can be obtained from the time series model, and the
model error variance v(x) is estimated by averaging {ε̂2

1(x), ε̂2
2(x), . . . , ε̂2

n(x)} for each x, and σ̂2
µ(x)

and σ2
n+h(x) can be obtained from the nonparametric smoothing method used.

Based on the normality assumption, the 100(1− α)% prediction interval for yn+h(x) is constructed
as ŷn+h|n(x)± zα

√
ξn+h(x), where zα is the (1− α/2) standard normal quantile.
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Figure 3: Forecasts of fertility rates in 2007, along with the 80% prediction interval.

Figure 3 displays the forecasts of fertility rates in 2007, along with the 80% prediction interval. It
was created by the following code.

# Plot the point forecast
aus = forecast(ftsm(Australiasmoothfertility, order = 2), h = 1)
plot(aus, ylim = c(0, 140))
# Plot the lower and upper bounds
lines(aus$lower, col = 2); lines(aus$upper, col = 2)
# Add a legend to the plot
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legend("topright", c("Point forecasts", "Interval forecasts"), col = c(1, 2), lty = 1,
cex = 0.9)

For this Australian fertility rate data, the point and interval forecast accuracy obtained by the
FPCR have already been studied by Shang (2012).

Updating point and interval forecasts

A special case of functional time series is when the continuous variable is also a time variable, such
as the monthly sea surface temperature data from 1950 to 2011, obtained from National Oceanic and
Atmospheric Administration (http://www.cpc.noaa.gov/data/indices/sstoi.indices). A similar
type of functional graphical display is given in Shang (2011, Figure 2). Such data originate from a
univariate seasonal time series. Let {Zw, w ∈ [1, N]} be a seasonal time series which has been observed
at N equispaced times. We divide the observed time series into n trajectories, and then consider each
trajectory of length p as a curve rather than p distinct data points. The functional time series is given
by

yt(x) = {Zw, w ∈ (p(t− 1), pt]}, t = 1, 2, . . . , n.

The problem of interest is to forecast yn+h(x), where h denotes forecast horizon. In the sea surface
temperature data, we consider {Zw} to be monthly sea surface temperatures from 1950 to 2011, so
that p = 12 and N = 62× 12 = 744, and we are interested in forecasting sea surface temperatures in
2012 and beyond.

When N = np, all trajectories are complete, and forecasts can be obtained by the FPCR. However,
when N 6= np, we revisited the block moving (BM) and penalized least squares (PLS) proposed by
Shang and Hyndman (2011) to update point and interval forecasts, when the most recent curve is
partially observed.

When functional time series are segments of a univariate time series, the most recent trajectory
is observed sequentially (Hyndman and Shang, 2010). When we observe the first m0 time period of
yn+1(xl), denoted by yn+1(xe) = [yn+1(x1), yn+1(x2), . . . , yn+1(xm0 )]

>, we are interested in forecast-
ing the data in the remaining time period, denoted by yn+1(xl) for m0 < l ≤ p. By using the FPCR,
the partially observed data in the most recent curve are not incorporated into the forecasts of yn+1(xl).
Indeed, the point forecasts obtained from the FPCR can be expressed as

ŷn+1|n(xl) = E[yn+1(xl)| f (xl),Bl ] = f̄ (xl) +
K

∑
k=1

β̂n+1|n,kφ̂k(xl),

for m0 < l ≤ p, where f (xl) denotes the historical data corresponding to the remaining time periods;
f̄ (xl) is the mean function corresponding to the remaining time periods; and Bl = {φ̂1(xl), φ̂2(xl), . . . ,
φ̂K(xl)} is a set of the estimated functional principal components corresponding to the remaining time
periods.

In order to improve point forecast accuracy, it is desirable to dynamically update the point and
interval forecasts for the rest of year n + 1 by incorporating the partially observed data. In what
follows, I shall revisit two methods for updating point and interval forecasts.

Block moving (BM)

The BM method re-defines the start and end points of trajectories. Because time is a continuous variable,
we can change the function support from [1, p] to [m0 + 1, p]

⋃
[1, m0]. The re-defined functional time

series forms a complete block, at the cost of losing some observations in the first year. With the
complete data block, the FPCR can then be applied to update the point and interval forecasts.

The re-defined data are shown diagrammatically in Figure 4, where the bottom box has moved
to become the top box. The cyan colored region shows the data loss in the first year. The partially
observed last trajectory under the old “year" completes the last trajectory under the new year.

As an illustration, suppose we observe the monthly sea surface temperature data from January
1950 to May 2011, we aim to update the point and interval forecasts from June 2011 to December 2011.
Figure 5 displays the point and interval forecasts for the remaining months of 2011, by using the BM
method.

Figure 5 was created by the following code

# Name history to represent historical data,
history <- ElNino2011smooth
# Name obs to represent partially observed data,
obs <- ElNino2011smooth$y[1:5,62]

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://www.cpc.noaa.gov/ data/indices/sstoi.indices


CONTRIBUTED RESEARCH ARTICLES 69

xp

x1
D

im
en

si
on

al
it

y

xm0

n + 1

Number of curves

1

Figure 4: Dynamic update via the BM approach. The colored region shows the data loss in the first
year. The forecasts for the remaining months in year n + 1 can be updated by the forecasts using the
TS method applied to the upper block.
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Figure 5: Prediction interval of the sea surface temperature data between June 2011 and December
2011. By incorporating the sea surface temperature data between January 2011 and May 2011, the 80%
prediction interval can be updated using the BM method.

# Name fore to represent the forecasting period
fore <- ElNino2011smooth$y[6:12,62]
int <- dynupdate(data = history, newdata = obs, holdoutdata = fore,
method = "block", interval = TRUE, level = 80)

bmupdate <- dynupdate(data = history, newdata = obs, holdoutdata = fore,
method = "block", value = TRUE)

plot(6:12, fore, type = "l", ylim = c(19, 26), xlab = "Month",
ylab = "Sea surface temperature")
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lines(6:12, bmupdate, col = 4)
lines(6:12, int$low$y, col = 2); lines(6:12, int$up$y, col = 2)
legend("topright", c("True observations", "Point forecasts", "Interval forecasts"),

col=c(1, 4, 2), lty = 1, cex = 0.8)

Penalized least squares (PLS)

We can also update the remaining part of the trajectory by using regression-based approaches. Let Fe be
m0 × K matrix, whose (j, k)th entry is φ̂k(xj) for 1 ≤ j ≤ m0. Let βn+1 = [βn+1,1, βn+1,2, . . . , βn+1,K ]

>,
f̄ (xe) = [ f̄ (x1), f̄ (x2), . . . , f̄ (xm0 )]

>, and εn+1(xe) = [εn+1(x1), εn+1(x2), . . . , εn+1(xm0 )]
>. As the

mean-adjusted ŷ∗n+1(xe) = yn+1(xe)− f̄ (xe) become available, a regression can be expressed as

ŷ∗n+1(xe) = Feβn+1 + εn+1(xe).

The βn+1 can be estimated by ordinary least squares, assuming (F>e Fe) is invertible,

β̂OLS
n+1 = (F>e Fe)

−1F>e ŷ∗n+1(xe).

However, if (F>e Fe) is not invertible, then a regularized approach can be implemented, such as the
ridge regression (RR) and penalized least squares (PLS). The regression coefficients of the RR and PLS
are

β̂RR
n+1 = (F>e Fe + λIK)

−1F>e ŷn+1(xe),

β̂PLS
n+1 = (F>e Fe + λIK)

−1(F>e ŷn+1(xe) + λβ̂n+1|n), (3)

where β̂RR
n+1 → 0 as λ → ∞, and β̂RR

n+1 → β̂OLS
n+1 as λ → 0. In contrast, the β̂PLS

n+1 → β̂n+1|n as λ → ∞,

and β̂PLS
n+1 → β̂OLS

n+1 as λ→ 0.

The point forecasts of yn+1(xl) obtained by the RR and PLS methods are given by

ŷRR
n+1(xl) = f̄ (xl) +

K

∑
k=1

β̂RR
n+1,kφ̂k(xl),

ŷPLS
n+1(xl) = f̄ (xl) +

K

∑
k=1

β̂PLS
n+1,kφ̂k(xl).

Among these regression-based approaches, the PLS method can also update the interval forecasts.
Let the one-step-ahead forecast errors of the principal component scores be given by

ξ̂ j,k = β̂n−j+1,k − β̂n−j+1|n−j,k, for j = 1, 2, . . . , n− K.

{ξ̂1,k, ξ̂2,k, . . . , ξ̂n−K,k} can then be sampled with replacement to give a bootstrap sample of βn+1|n,k:

β̂b
n+1|n,k = β̂n+1|n,k + ξ̂b

∗,k, for b = 1, 2, . . . , B,

where ξ̂b
∗,k denotes the bootstrap samples, and B is the number of bootstrap replications. Based on (3),

the bootstrapped β̂b
n+1|n leads to the bootstrapped β̂b,PLS

n+1 , we obtain B replications of

ŷb,PLS
n+1 (xl) = f̄ (xl) +

K

∑
k=1

β̂b,PLS
n+1,kφ̂k(xl) + ε̂b

n+1(xl),

where ε̂b
n+1(xl) is obtained by sampling with replacement from {ε̂1(xl), ε̂2(xl), . . . , ε̂n(xl)}. Hence, the

100(1− α)% prediction interval for the updated forecasts are defined as α/2 and (1− α/2) quantiles
of ŷb,PLS

n+1 (xl).

Figure 6 displays the point and interval forecasts for the remaining time period of year 2011, by
using the PLS method. It was created by the following code

history <- ElNino2011smooth
obs <- ElNino2011smooth$y[1:5, 62]
fore <- ElNino2011smooth$y[6:12, 62]
# Implement the ridge and PLS regressions,
# The tuning parameter lambda=100 as an
# illustration
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Figure 6: Prediction interval of the sea surface temperature data between June 2011 and December
2011. By incorporating the sea surface temperature data between January 2011 and May 2011, the 80%
prediction interval can be updated using the PLS method.

rrmethod <- dynupdate(history, newdata = obs, holdoutdata = fore, method = "ridge",
value = TRUE, lambda = 100, level = 80)

plsmethod <- dynupdate(history, newdata = obs, holdoutdata = fore, method = "pls",
value = TRUE, lambda = 100, level = 80)

plsmethodint <- dynupdate(history, newdata = obs, holdoutdata = fore, method = "pls",
interval = TRUE, lambda = 100, level = 80)

# Plot the true observations for forecasting period
plot(6:12, fore, type = "l", ylim = c(19, 26), xlab = "Month",
ylab = "Sea surface temperature")

# Plot point forecasts obtained by RR and PLS
lines(6:12, plsmethod, col = 4); lines(6:12, rrmethod, col = "purple")
# Plot interval forecasts obtained by PLS
lines(6:12, plsmethodint$low$y, col = 2); lines(6:12, plsmethodint$up$y, col = 2)
legend("topright",c("True observations", "PLS point forecasts", "RR point forecasts",
"PLS interval forecasts"), col = c(1, 4, "purple", 2), lty = 1, cex = 0.8)

For this sea surface temperature data set, the point and interval forecast accuracy obtained by the
FPCR, BM and PLS methods have already been studied by Shang and Hyndman (2011).

Conclusion

This article described several techniques in the ftsa package, for modeling and forecasting functional
time series. These methods centered on the FPCR, which is a common dimension reduction technique
in the functional data analysis literature. FPCR reduces intrinsically infinite number of variables to
several orthogonal regressors, which captures the main mode of variation in data. As illustrated by
the Australian fertility rate data, FPCR is able to model and forecast annual Australian fertility rates
through either multi-step-ahead forecasts or iterative one-step-ahead forecasts using the rolling origin
approach. When the continuous variable in a functional time series is also a time variable, a new
observation arrives sequentially. As shown using the monthly sea surface temperature data, the BM
and PLS methods can update the point and interval forecasts based on the FPCR.

To sum up, the methods reviewed in this article focus on extracting patterns from a set of functional
time series, and should be considered when the interest lies in modeling and forecasting the future
realizations of a stochastic process.
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