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testforDEP: An R Package for Modern
Distribution-free Tests and Visualization
Tools for Independence
by Jeffrey C. Miecznikowski, En-shuo Hsu, Yanhua Chen, Albert Vexler

Abstract This article introduces testforDEP, a portmanteau R package implementing for the first
time several modern tests and visualization tools for independence between two variables. While
classical tests for independence are in the base R packages, there have been several recently developed
tests for independence that are not available in R. This new package combines the classical tests
including Pearson’s product moment correlation coefficient method, Kendall’s τ rank correlation
coefficient method and Spearman’s ρ rank correlation coefficient method with modern tests consisting
of an empirical likelihood based test, a density-based empirical likelihood ratio test, Kallenberg data-
driven test, maximal information coefficient test, Hoeffding’s independence test and the continuous
analysis of variance test. For two input vectors of observations, the function testforDEP provides a
common interface for each of the tests and returns test statistics, corresponding p values and bootstrap
confidence intervals as output. The function AUK provides an interface to visualize Kendall plots and
computes the area under the Kendall plot similar to computing the area under a receiver operating
characteristic (ROC) curve.

Introduction

In this article, we present the testforDEP R package, a package for testing dependence between
variables. Since in nonparametric settings there are no most powerful tests for independence, it is
important to be able to implement various reasonable independence tests tuned for different classes
of alternatives. This package addresses a need for implementing both classical and novel tests of
independence in a single easy to use function. The function cor.test offered in the base R package
gives classical tests for association/correlation between two samples, using the Pearson product
moment correlation coefficient (Pearson, 1920), Kendall τ rank correlation coefficient (Kendall, 1938)
and Spearman ρ rank correlation coefficient (Spearman, 1904). The function cor.test is helpful to test
for independence between two samples when the samples are linearly dependent or monotonically
associated. However the function cor.test is less powerful to detect general structures of dependence
between two random variables, including non-linear and/or random-effect dependence structures.
Many modern statistical methodologies have been proposed to detect these general structures of
dependence. These methods include an empirical likelihood based test (Einmahl and McKeague,
2003), a density-based empirical likelihood ratio test for independence (Vexler et al., 2014), data-driven
rank test for independence (Kallenberg and Ledwina, 1999), maximal information coefficient (Reshef
et al., 2011) and a continuous analysis of variance test (Wang et al., 2015). These methods are useful
to detect complex structures of dependence and until now there were no R packages available that
implement these modern tests.

We propose the new package testforDEP, combining both classical and modern tests. The package
testforDEP also provides dependence visualization tools such as the Kendall plot with the area under
Kendall plot (Vexler et al., 2017) which previously has not been available in R packages. Moreover, we
develop an exact test based on the maximal information coefficient to detect dependence between two
random variable and we perform a power analysis for these different tests. The testforDEP package is
available from the Comprehensive R Archive Network and also available for download at the author’s
department webpage.

We will focus on tests of bivariate independence of two random variables X and Y where we have
n sample measurements or observations (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn), respectively. If X and
Y have cumulative distribution functions FX(x) and FY(y) and probability density functions fX(x)
and fY(y) we say X and Y are independent if and only if the combined random variable (X, Y) has a
joint cumulative distribution function F(x, y) = FX(x)FY(y) or equivalently, if the joint density exists,
f (x, y) = fX(x) fY(y) for all x, y ∈ R. We are interested in testing the null hypothesis:

H0 : X and Y are independent, (1)

which is equivalent to
H0 : F(x, y) = FX(x)FY(y) for all x, y ∈ R. (2)

We note there are no most powerful testing strategies in this setting. Thus a strategy for choosing a
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test depends on the type of correlation that a user is trying to detect. The following sections detail
the different tests for independence, outline the components of the testforDEP package and provides
real data examples demonstrating the power of the modern methods to detect nonlinear dependence.
Finally, we conclude with a brief summary and future directions.

Classical tests of independence

In the following subsections we outline the classical tests of independence.

Pearson product moment correlation coefficient

The Pearson product-moment correlation coefficient γ is a well known measure of linear correlation (or
dependence) between two random variables with a full presentation in Pearson (1920) and Hauke and
Kossowski (2011). Using the standard Pearson estimator (denoted γ̂ we have that Tγ̂ asymptotically
follows a t distribution with n− 2 degrees of freedom under independence. Accordingly, a size α
rejection rule is:

|Tγ̂| > t1−α/2, (3)

where t1−α/2, is the 1− α/2 quantile for the t distribution with n− 2 degree of freedom. Advantages
of the Pearson test are that it is simple to execute, has high power to detect linear dependency
and also when the underlying data are normally distributed in which it also has the form of a
maximum likelihood estimator. A weakness of the Pearson test is that it has very weak power to
detect dependency that is not characterized by first moments and is often not powerful in many
nonparametric settings. For example, if Xi is a normally distributed random variable and Yi = 1/Xi
then the Pearson test will have very lower power to detect this structure (see, Miecznikowski et al.
(2017)).

Kendall rank correlation coefficient

The Kendall rank correlation coefficient τ is a well known method proposed in Kendall (1938) as a
nonparametric measure of monotonic association between two variables. Using the standard estimator
τ̂, the test statistic Zτ is given by:

Zτ =
3τ
√

n(n− 1)√
2(2n + 5)

, (4)

where Zτ approximately follows a standard normal distribution under independence. A level α
rejection rule for the null hypothesis is as follows:

|Zτ | > z1−α/2 (5)

where z1−α/2 is 1− α/2 quantile for a standard normal distribution. A weakness of the Kendall rank
correlation coefficient test is that it has low power to detect non-monotonic dependency structures.

Spearman rank correlation coefficient

Spearman’s rank correlation coefficient ρ proposed by Spearman (1904) is a nonparametric measure of
statistical dependence between two variables. Spearman’s rank correlation measures the monotonic
association between two variables (Spearman, 1904; Hauke and Kossowski, 2011). The statistic ρ is
defined as:

ρ = 1− 6 ∑n
i=1 di

2

n(n2 − 1)
, di = Ri − Si, (6)

where Ri, Si are the ranks of Xi and Yi, respectively. Note ρ = 0 suggests X and Y are independent.
To conduct a test for statistical independence under the null hypothesis, we use the test statistic Tρ

defined as:

Tρ = ρ

√
n− 2
1− ρ2 , (7)

which is distributed approximately as a Student’s t distribution with n− 2 degrees of freedom under
null hypothesis. Accordingly, a level α rejection rule is:

|Tρ| > t1−α/2. (8)
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Similar to the Kendall rank correlation coefficient, a weakness of the Spearman rank correlation
coefficient test is that it has low power to detect non-monotonic dependency structures.

Hoeffding’s test for independence

Hoeffding’s test for dependence is proposed in Hoeffding (1948) as a test for two random variables
with continuous distribution functions. Hoeffding’s D is a nonparametric measure of the distance
between joint distribution, F(x, y) and product of marginal distributions, FX(x)FY(y) (Harrell Jr and
Dupont, 2006). The coefficient D is defined as:

D(x, y) = F(x, y)− FX(x)FY(y). (9)

We can also define ∆ as:
∆ = ∆(F) =

∫
D2(x, y)dF(x, y), (10)

where F is the joint distribution of X and Y and the integral is over R2.

We denote Ω′ as the class of X, Y’s such that their joint density function F(x, y) is continuous.
Denote Ω′′ as the class of X, Y’s such that their joint and marginal probability density functions are
continuous. It has been shown that if F(x, y) belongs to Ω′′, ∆(F) = 0 ⇐⇒ D(x, y) = 0. The random
variables X and Y are independent if and only if D(x, y) = 0.

It can be shown that D ranges between − 1
60 and 1

30 where larger values of D suggest dependence.
An estimator of D, D̂ is defined as:

D̂(x, y) = F̂(x, y)− F̂X(x)F̂Y(y). (11)

We use D̂ as the test statistic and note that it only depends on the rank order of observations (Hoeffding,
1948). For computing the test statistic D̂, we use the R package Hmisc (Harrell Jr et al., 2017). Note the
returned test statistic D̂′ is 30 times the original D̂ in Hoeffding (1948). A size α test can be given by:

D̂′ > Cα, (12)

where Cα is a size α critical value.

Due to the limiting computing tools available for the original publication in 1948, the author only
provided cutoff tables for small sample sizes. With advanced computing power, we compute the Cα

cutoffs for n = 10, 20, 50, 100, 200, 500 in Table 1.

n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

α = 0.01 0.2976 0.1145 0.0377 0.0191 0.0086 0.0037
α = 0.05 0.1548 0.0589 0.0209 0.0098 0.0045 0.0020
α = 0.1 0.0952 0.0378 0.0131 0.0061 0.0028 0.0013
α = 0.2 0.0437 0.0184 0.0060 0.0028 0.0011 0.0006
α = 0.8 -0.0635 -0.0232 -0.0078 -0.0037 -0.0018 -0.0007
α = 0.9 -0.0794 -0.0294 -0.0097 -0.0045 -0.0021 -0.0008

Table 1: Hoeffding cutoff values for D̂′ based on 5000 Monte Carlo simulations.

We note this test is not as powerful as Pearson’s test when the dependency is linear.

Modern tests of independence

In the following subsections we outline the modern tests of independence.

Density-based empirical likelihood ratio test for independence

A density-based empirical likelihood ratio test is proposed in Vexler et al. (2014) as a nonparametric
test of dependence for two variables. Following Vexler et al. (2014), to test the null hypothesis we use
the test statistic VTn defined as:

VTn = max
0.5nβ2≤m≤γn

max
0.5nβ2≤r≤γn

n

∏
i=1

n∆̃i(m, r)
2m

, (13)
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where γn = min(n0.9, n/2), 0.75 < β2 < 0.9 and ∆̃i(m, r) is defined as,

∆̃i(m, r) ≡ F̂(X(si+r) ,Y(i+m))−F̂(X(si−r) ,Y(i+m))−F̂(X(si+r) ,Y(i−m))+F̂(X(si−r) ,Y(i−m))+n−β1

F̂X(X(si+r))−F̂X(X(si−r))
, (14)

where F̂ is the empirical joint distribution of X, Y and Y(1) ≤ Y(2), . . . ,≤ Y(n) are the order statistics
of Y1, Y2, . . . Yn and Xt(i) is the concomitant of the ith order statistic defined in David and Nagaraja
(1970). F̂X is the empirical marginal distribution of X, si is the integer number such that X(s) = Xt(i),
β1 ∈ (0, 0.5).

The statistic VTn reaches its maximum with respect to m ≥ 0.5nβ2 and r ≥ 0.5nβ2 at m = 0.5nβ2

and r = 0.5nβ2 (Vexler et al., 2014). Thus, we simplify (13) to

VTn =
n

∏
i=1

n1−β2 ∆̃i

(
[0.5nβ2 ], [0.5nβ2 ]

)
, (15)

where the function [x] denotes the nearest integer to x. Accordingly, a size α rejection rule of the test is
given by:

log(VTn) > Cα, (16)

where Cα is an α-level test threshold. It is established in Vexler et al. (2014) that VTn is distribution
free under (1) and the critical values Cα are estimated by 50,000 Monte Carlo simulations from
X1, . . . , Xn ∼ Uni f orm[0, 1] and Y1, . . . , Yn ∼ Uni f orm[0, 1].

This test is very powerful for many nonparametric alternatives as it is designed to approximate
corresponding nonparametric likelihood ratios, however, when the dependency is linear with normal
data other methods such as Pearson and Spearman tests will outperform this method.

Kallenberg data-driven test for independence

Kallenberg and Ledwina (1999) propose two data-driven rank tests for independence, TS2 and V. The
TS2 statistic uses the intermediate statistic Tk defined as:

Tk =
k

∑
j=1

{
1√
n

n

∑
i=1

bj

(
Ri − 1

2
n

)
bj

(
Si − 1

2
n

)}2

, (17)

where bj denotes the jth orthonormal Legendre polynomial. The selection of the order k in Tk is done
by the modified Schwarz’s rule, given by

S2 = min{1 ≤ k ≤ d(n), Tk − k log n ≥ Tj − j log n, j = 1, . . . , d(n)}, (18)

where d(n) is a sequence of numbers tending to infinity as n→ ∞. The test statistic is,

TS2 =
S2

∑
j=1

{
1√
n

n

∑
i=1

bj

(
Ri − 1

2
n

)
bj

(
Si − 1

2
n

)}2

. (19)

It is reported in Kallenberg and Ledwina (1999) that there is almost no change in the critical value of
TS2 for d(n) > 2. By default, we choose d(n) = 4. The decision rule to reject the null hypothesis in (2)
is

TS2 > Cα, (20)

where Cα is an α-level test threshold.

In Kallenberg and Ledwina (1999) the TS2 test statistic in (19) is called the "diagonal" test statistic
and the other test statistic, V is called the "mixed" statistic due to the fact that it involves "mixed"
products. To derive the V statistic, we only consider the case d(n) = 2 and have sets of indexes
{(1, 1)}, {(1, 1), (i, j)}, where (i, j) 6= (1, 1). Let Λ be one of these sets and define

TΛ = ∑
(r,s)∈Λ

V(r, s), (21)

where

V(r, s) =

{
1√
n

n

∑
i=1

br

(
Ri − 1

2
n

)
bs

(
Si − 1

2
n

)}2

. (22)

Letting |Λ| denote the cardinality of Λ, we now search for a model, say Λ(max), for which TΛ−|Λ| log n
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is maximized. Having obtained Λ(max), the second test statistic of (2) is

V = TΛ(max) . (23)

It can be easily seen that the test statistic V can be rewritten (for d(n) = 2) in the simple form,

V =

 V(1, 1) , if max
{

V(1, 2), V(2, 1), V(2, 2)
}
< log n

V(1, 1) + max
{

V(1, 2), V(2, 1), V(2, 2)
}

, otherwise.

A size α rejection rule for the test is given by

V > Cα, (24)

where Cα is a size α critical value.

This test is very powerful when data are from an exponential family, however the statistic is rather
complicated and a required assumption is that the data distributions belong to semiparametrically
defined families.

Maximal information coefficient

The maximal information coefficient (MIC) proposed in Reshef et al. (2011) is a measure of strength
of the linear and non-linear association between two variables X and Y. The maximal information
coefficient uses binning as a means to apply mutual information on continuous random variables.
Defining D as a finite set of ordered pairs, we can partition the x-values of D into x bins and the
y-values of D into y bins, allowing empty bins. We call such partition an x-by-y grid, denoted G. For a
fixed D, different grids G results in different distributions D|G. The MIC of a set D of two-variable
data with sample size n and grid size less than B(n) is defined as:

MIC(D) = max
xy<B(n)

{M(D)x,y}, (25)

where x and y are observed values of variables X and Y, ω(1) < B(n) ≤ o(n1−ε) for some 0 < ε < 1.
Note M(D)x,y is called the characteristic matrix of a set D of two-variable data x, y and defined as:

M(D)x,y =
I∗(D, x, y)

log min{x, y} , (26)

where I∗(D, x, y) is defined as:
I∗(D, x, y) = max I(D|G), (27)

for a finite set D ⊂ R2 and positive integers x, y. We define the mutual information of two discrete
random variables X and Y as:

I(D|G) = ∑
y∈Y

∑
x∈X

F̂(x, y) log
(

F̂(x, y)
F̂X(x)F̂Y(y)

)
, (28)

The MIC statistic in (25) is computed using the R package minerva (see Albanese et al. (2013)). To our
knowledge there is no hypothesis tests published to detect general structures of dependence based on
MIC. We use an approach similar to the one in Simon and Tibshirani (2014) to develop an exact test
based on the MIC statistic. A size α MIC test can be given by,

MIC(D) > Cα (29)

where Cα is a size α critical value. To evaluate our approach, we simulated 5000 Monte Carlo sets
of independent random variables X and Y of size n from standard normal distribution, exponential
distribution and reverse of the standard normal distribution. The cutoff results are shown in Table 2.
Regardless of the data distribution, the cutoff values for a given sample size are very similar.

It has been noted in Simon and Tibshirani (2014) that the MIC approach has serious power
deficiencies and when used for large-scale exploratory analysis will result in too many false positives.

Empirical likelihood based test for independence

An empirical likelihood based test is proposed by Einmahl and McKeague (2003). The approach is
via localizing the empirical likelihood with one or more "time" variables implicit in the given null
hypothesis and then constructing an omnibus test statistic by integrating the log-likelihood ratio over
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n = 10 n = 35 n = 75 n = 100

N | E | RN N | E | RN N | E | RN N | E | RN

α = 0.01 0.61|0.61|0.61 0.50|0.52|0.50 0.38|0.37|0.38 0.33|0.33|0.33
α = 0.05 0.61|0.61|0.61 0.43|0.43|0.43 0.33|0.33|0.33 0.30|0.30|0.30
α = 0.1 0.61|0.61|0.61 0.41|0.40|0.41 0.31|0.31|0.31 0.28|0.28|0.28
α = 0.5 0.24|0.24|0.24 0.31|0.30|0.31 0.25|0.25|0.25 0.23|0.24|0.23
α = 0.75 0.24|0.24|0.24 0.27|0.26|0.27 0.23|0.23|0.23 0.21|0.21|0.21
α = 0.9 0.12|0.12|0.12 0.24|0.23|0.24 0.21|0.21|0.21 0.20|0.20|0.20
α = 0.95 0.12|0.12|0.12 0.23|0.22|0.23 0.20|0.20|0.20 0.19|0.19|0.19
α = 0.99 0.11|0.11|0.11 0.20|0.20|0.20 0.18|0.18|0.18 0.17|0.17|0.17

Table 2: Cutoff values from 5000 Monte Carlo simulations for a normal distribution (N), exponential
distribution (E) and reverse normal distribution (RN).

those variables. We first consider a null hypothesis,

H0 : FX = F0, (30)

where F0 is a fully specified distribution function. We define the localized empirical likelihood ratio
R(x) as:

R(x) =
sup{L(F̃X) : F̃X(x) = F0(x)}

sup{L(F̃X)}
, (31)

where F̃ is an arbitrary distribution function, L(F̃X) = ∏n
i=1(F̃X(Xi)− F̃X(Xi−)). The supremum in

the denominator is achieved when F̃ = F̂, the empirical distribution function. While the supremum in
the numerator is attained by putting mass F0/(nF̂(x)) on each observation up to and including x and
mass (1− F0(x))/(n(1− F̂(x))) on each observation beyond x (Einmahl and McKeague, 2003). This
gives the log localized empirical likelihood ratio:

log R(x) = nF(x) log
F0(x)
F̂(x)

+ n(1− F̂(x)) log
1− F0(x)
1− F̂(x)

. (32)

Note that 0 log(a/0) is defined as 0. For an independence test, the local likelihood ratio test statistic is:

R(x, y) =
sup{L(F̃) : F̃(x, y) = F̃X(x)F̃Y(y)}

sup{L(F̃)} , (33)

for (x, y) ∈ R2, with L(F̃) = ∏n
i=1 P̃({Xi}), where P̃ is the probability measure corresponding to F̃.

The log local likelihood ratio test statistic is then:

log R(x, y) =nP̂(A11) log
F̂X(x)F̂Y(y)

P̂(A11)

+ nP̂(A12) log
F̂X(x)(1− F̂Y(y))

P̂(A12)

+ nP̂(A21) log
(1− F̂X(x))F̂Y(y)

P̂(A21)

+ nP̂(A22) log
(1− F̂X(x))(1− F̂Y(y))

P̂(A22)
,

(34)

where P̂ is the empirical measure of joint probability and

A11 = (−∞, x]× (−∞, y],
A12 = (−∞, x]× (y, ∞),

A21 = (x, ∞)× (−∞, y],
A22 = (x, ∞)× (y, ∞).

(35)

The test statistic Tel is defined as:

Tel = −2
∫ ∞

−∞

∫ ∞

−∞
log R(x, y)dF̂X(x)F̂Y(y), (36)
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where Tel is distribution-free. We reject H0 when

Tel > Cα, (37)

where Cα is a size α critical value.

This test is characterized by moments and is very powerful for many nonparametric alternatives.
However, when the dependency is linear with normally distributed data, this test is outperformed by
Pearson and Spearman tests.

Kendall plot and area under Kendall plot

The Kendall plot, also called K-plot, is a visualization of dependence in a bivariate random sample.
It is proposed in Genest and Boies (2012). Similar to a Chi-plot which detects association in random
samples from continuous bivariate distributions, the K-plot adapts the concept of a probability plot to
detect dependence.

The horizontal axis in a K-plot, Wi:n is the expectation of the ith order statistics in a random sample
of size n from the distribution K0 of the Hi (defined below) under the null hypothesis of independence.
(Genest and Boies, 2012). Wi:n can be computed as:

Wi:n = n
(

n− 1
i− 1

) ∫ 1

0
w{K0(w)}i−1 × {1− K0(w)}n−idK0(w), (38)

for all 1 ≤ i ≤ n. Note K0 is given as:

K0(w) = w− w log(w), 0 ≤ w ≤ 1. (39)

The vertical axis is the sorted Hi. Unlike Wi:n, Hi is computed base on information provided by data.

Note Hi is defined as:

Hi =
1

n− 1

n

∑
i=1

Ind(X ≤ Xi, Y ≤ Yi), (40)

where Ind is indicator function.

Let 0 ≤ p ≤ 1 then some properties of the K-plot are:

1. when Y = X, all points fall on curve K−1(p),

2. when Y = −X, all points fall on a horizontal line,

3. when X and Y are independent, the graph is linear.

The area under the Kendall plot (AUK) is proposed in Vexler et al. (2017) as an index to indepen-
dence. It applies area-under-curve analysis and computes the area under the Kendall plot. Some
properties are listed below:

1. when Y = X, AUK = 0.75,

2. when Y = −X, AUK = 0,

3. when X and Y are independent, AUK = 0.

Note AUK = 0 does not imply independence. The AUK is similar to computing the area under the
curve (AUC) for a receiver operating curve (ROC). In an ROC curve the true positive rate (sensitivity)
is plotted as a function of the false positive rate for different cut-off points. A large AUC (near 1)
suggests a good prediction model whereas a small AUC (near 0.5) suggests a model that is no better
than chance. Similarly, a large AUK suggests dependence while an AUK near 0 may be suggestive
of independence and should be further examined using one of the proposed tests. Further, more
complicated correlation patterns such as a mixture of positive and negative correlations as in Example
2 (see Data analysis examples) can be detected with the K-plot.

What is the package testforDEP

The R Package testforDEP includes two functions, testforDEP(), AUK() and one data frame, LSAT.

testforDEP

The function testforDEP() is the interface for the tests. The function testforDEP() takes two vectors
X, Y as inputs and returns an S4 object containing the
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1. test statistic,

2. p-value,

3. bootstrap confidence intervals.

The interface of testforDEP() is:

testforDEP(x, y, data, test = c("PEARSON", "KENDALL", "SPEARMAN",
"VEXLER", "TS2", "V", "MIC", "HOEFFD", "EL"),
p.opt = c("dist", "MC", "table"), num.MC = 10000,
BS.CI = 0, rm.na = FALSE, set.seed = FALSE)

where x and y are two equal-length numeric vectors of input data. The parameter data is an alternative
input that takes a data frame with two columns representing X and Y. When x or y are not provided,
parameter data is taken as input. The parameter test specifies the hypothesis test to implement. A
summary of the test options with the associated statistic returned is given below,

• "PEARSON", Tγ̂,

• "KENDALL", Zτ ,

• "SPEARMAN", Tρ,

• "VEXLER", log(VTn),

• "TS2", TS2,

• "V", V,

• "MIC", MIC(D),
• "HOEFFD", D̂,

• "EL", Tel .

Parameter p.opt is the option for computing p-values in which p-values can be computed by the
asymptotic null distribution of the test statistic (applicable for Pearson, Kendall and Spearman only),
by an exact method (applicable for all tests) or by pre stored simulated tables based on an exact
method. By default, p.opt = "MC". The parameter num.MC gives the Monte Carlo simulation number
and will only be used when p.opt = "MC". When p.opt = "dist" or p.opt = "table", num.MC will
be ignored. To balance accuracy and computation time, num.MC must ∈ [100, 10000], with num.MC =
10000 as default. The parameter BS.CI specifies a 1− α for bootstrap confidence intervals. When
BS.CI = 0, the confidence intervals will not be computed. Parameter rm.na is a flag for removing
rows with missing data. Parameter set.seed is a flag for setting the random number generator seed.

AUK

The function AUK() provides an interface for Kendall plots and AUK. It takes two vectors X, Y and
returns a list containing:

1. AUK,

2. Wi:n,

3. sorted Hi,

4. bootstrap confidence intervals.

The interface of AUK() is:

AUK(x, y, plot = FALSE, main = "Kendall plot", Auxiliary.line = TRUE,
BS.CI = 0, set.seed = FALSE)

where x and y are two equal-length numeric vectors of input data. Parameter plot is a flag for drawing
the Kendall plot. Parameter main determines the title of the plot. If plot = FALSE, main will be ignored.
Parameter Auxiliary.lie is a flag for auxiliary line. Parameter BS.CI specifies a 1− α for bootstrap
confidence intervals. The bootstrap confidence intervals were produced using a non-parametric
bootstrap procedure with a normal, pivotal and percentile based confidence interval obtained as
described in Wasserman (2013). The bootstrap confidence intervals are on the scale of the test statistics
that are returned from each test in testforDEP. When BS.CI = 0, confidence intervals will not be
computed. Parameter set.seed is a flag for setting seed.
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School LSAT GPA School LSAT GPA School LSAT GPA

1 622 3.23 28 632 3.29 56 641 3.28
2 542 2.83 29 587 3.16 57 512 3.01
3 579 3.24 30 581 3.17 58 631 3.21
4 653 3.12 31 605 3.13 59 597 3.32
5 606 3.09 32 704 3.36 60 621 3.24
6 576 3.39 33 477 2.57 61 617 3.03
7 620 3.10 34 591 3.02 62 637 3.33
8 615 3.40 35 578 3.03 63 572 3.08
9 553 2.97 36 572 2.88 64 610 3.13
10 607 2.91 37 615 3.37 65 562 3.01
11 558 3.11 38 606 3.20 66 635 3.30
12 596 3.24 39 603 3.23 67 614 3.15
13 635 3.30 40 535 2.98 68 546 2.82
14 581 3.22 41 595 3.11 69 598 3.20
15 661 3.43 42 575 2.92 70 666 3.44
16 547 2.91 43 573 2.85 71 570 3.01
17 599 3.23 44 644 3.38 72 570 2.92
18 646 3.47 45 545 2.76 73 605 3.45
19 622 3.15 46 645 3.27 74 565 3.15
20 611 3.33 47 651 3.36 75 686 3.50
21 546 2.99 48 562 3.19 76 608 3.16
22 614 3.19 49 609 3.17 77 595 3.19
23 628 3.03 50 555 3.00 78 590 3.15
24 575c 3.01 51 586 3.11 79 558 2.81
25 662 3.39 52 580 3.07 80 611 3.16
26 627 3.41 53 594 2.96 81 564 3.02
27 608 3.04 54 594 3.05 82 575 2.74

55 560 2.93

Table 3: LSAT data from Efron and Tibshirani (1994).

Data analysis examples

Here we present two data analysis example to demonstrate the utility of the testforDEP package. In
the first example, the data are average law school admission test (LSAT) and grade point average
(GPA) from 82 law schools (details described in Efron and Tibshirani (1994)). The data frame "LSAT"
is available in testforDEP package. The aim is to determine the dependence between LSAT and GPA.
Table 3 gives the data and a scatter plot is shown in Figure 1 (Top Left).

Figure 1 (Top Left) suggests a linear positive relationship between LSAT and GPA. To confirm this,
we draw the Kendall plot and compute AUK (see Figure 1 (Top Right)). Figure 1 (Top Right) shows a
curve above the diagonal and AUK of 0.665, both of which suggest a positive dependence.

Now consider the dependence tests provided in package testforDEP. Table 4 shows the test
statistics and p-values. All tests, classical and modern, suggest dependence between LSAT and GPA.
From this analysis, it is clear that LSAT and GPA variables are dependent.

To further examine this data and explore the comparable power of the modern methods, we also
examine a subset of 15 randomly chosen points from the full dataset as shown in Figure 1 (Bottom
Left). An analysis of this subset reveals significant p-values for the empirical likelihood, density
based empirical likelihood and Kallenberg tests (see Table 4). The small p-values, especially for the
density-based empirical likelihood method, indicate the power of modern methods to detect non
linear dependence in small sample sizes. We further explore this point in the next example.

In the second example, we demonstrate the power of the modern methods to detect non-linear
dependence. This example was originally published in Rohrer et al. (2004) and re-examined in Chen
et al. (2010). It involves analyzing microarray expression data collected to identify critical genes
in photoreceptor degeneration. The data in Figure 2 are from 2 genes (Pcp2 and Pla2g7) with each
point representing another gene with its x-coordinate being the Euclidean distance from Pla2g7 and
the y-coordinate as the Euclidean distance from Pcp2. The Euclidean distance is calculated from
expression profiles between wild type (wt) and rod degeneration (rd) mice. The correlation shown
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Figure 1: Top Left: Scatter plot based on data in Table 3. Top Right: Kendall plot of the full dataset.
Bottom Left: A scatter plot of a subset of the LSAT/GPA data. Bottom Right: A Kendall plot of the
subset of data.
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Full Data Subset Data

test statistic p-value statistic p-value

Pearson 10.46 < 0.0001 1.77 0.1074
Kendall 7.46 < 0.0001 69.00 0.0990
log(VTn) 65.70 < 0.0001 12.05 0.0067
TS2 80.76 < 0.0001 3.16 0.2003
V 69.04 < 0.0001 8.51 0.0146
MIC 0.53 < 0.0001 0.38 0.0993
Hoeffding 0.22 < 0.0001 0.08 0.0658
Tel 13.64 < 0.0001 2.15 0.0238

Table 4: Example 1: Test results for the full LSAT/GPA data and for a randomly chosen subset of 15
data points.

test statistic p-value

Pearson -1.015 0.3156
Kendall -2.321 0.0196
Spearman -2.900 0.0050
log(VTn) 140.554 < 0.0001
TS2 13.347 0.0042
V 82.712 < 0.0001
MIC 0.666 < 0.0001
Hoeffding 0.085 < 0.0001
Tel 12.254 < 0.0001

Table 5: Example 2: Dependence test results for the microarray study with genes Pla2g7 and Pcp2
displayed in Figure 2 and published in Rohrer et al. (2004) with re-examination in Chen et al. (2010).

in Figure 2 measures the relationship between how the Pla2g7 gene interacts with all the other
genes vs. how the Pcp2 gene interacts with all the other genes. From Figure 2 we see the genes are
negatively correlated when their transformed levels are both less than 5. Otherwise, these genes are
positively correlated. We proceed to analyze the data using the testforDEP package. The results are
presented in Table 5. From this analysis, we see a large gain in power using the modern methods
such as log(VTn), TS2, V, MIC, Hoe f f ding, Tel compared to the traditional methods (Pearson, Kendall,
Spearman). Taken together, these examples demonstrate the power advantage of using modern
methods to detect nonlinear dependence while still maintaining comparable power to traditional
methods in detecting linear dependence.

Conclusion

The R package testforDEP is a new package that allows users for the first time to analyze complex
structures of dependence via modern test statistics and visualization tools. Moreover, a novel exact
method based on the MIC measurement have been proposed in the package testforDEP. Future work
is necessary to further develop a formal testing structure based on the MIC statistic. We note that
users of this package should carefully consider the strengths and weaknesses of the proposed tests
as outlined in each section when deciding what test to apply. Further, a topic for future work is to
develop a complete set of consistent criteria to determine which test is most appropriate for a specific
setting. We note extensive simulations comparing each of the tests is provided in Miecznikowski et al.
(2017) which may help guide users to choose among the tests. Ultimately, we believe that the package
testforDEP will help investigators identify dependence using the cadre of modern tests implemented
to detect dependency.

Acknowledgments

Albert Vexler’s efforts were supported by the National Institutes of Health (NIH) grant 1G13LM012241-
01. We are grateful to the Editor, Associate Editor and the two referees for helpful comments that
clearly improved this manuscript.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 293

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

12

Pla2g7

P
cp

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kendall plot

W1:n

H

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxxxxxx

xxxxx
xxxxxx

xxxx
xx
xxx

xxx
xxx

x
xxxxx

xxx
xxx

xxxx
xxx

xxxx
x
xxx

xx
x

xxx

xx
xxxx

xx

xx
xx

x

xx
x
xx

xxxxxxx
x

x
xx

x x x

x

x
x

x x x

x x x

x
x x x

x

x x
x

x x

x

Figure 2: Left: Scatter plot of the transformed expression levels of Pla2g7 and Pcp2 genes studied
in Chen et al. (2010). Right: Kendall plot of the dataset highlighting the negative correlation (points
below y = x line) for smaller expression values and positive dependence (points above y = x line) for
larger values.
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rFSA: An R Package for Finding Best
Subsets and Interactions
by Joshua Lambert, Liyu Gong, Corrine F. Elliott, Katherine Thompson and Arnold Stromberg

Abstract Herein we present the R package rFSA, which implements an algorithm for improved
variable selection. The algorithm searches a data space for models of a user-specified form that are
statistically optimal under a measure of model quality. Many iterations afford a set of feasible solutions
(or candidate models) that the researcher can evaluate for relevance to his or her questions of interest.
The algorithm can be used to formulate new or to improve upon existing models in bioinformatics,
health care, and myriad other fields in which the volume of available data has outstripped researchers’
practical and computational ability to explore larger subsets or higher-order interaction terms. The
package accommodates linear and generalized linear models, as well as a variety of criterion functions
such as Allen’s PRESS and AIC. New modeling strategies and criterion functions can be adapted easily
to work with rFSA.

Introduction

In recent years, novel statistical modeling techniques have become more computationally intensive in
an effort to accommodate the massive datasets afforded by advances in fields such as data mining and
genetic sequencing. The volume and complexity of available data continue to grow, overwhelming
even the fastest modern computers (Goudey, 2015). Efforts to analyze such complex data usually
involve some level of data reduction (e.g., Principle Component Analysis, Partial Least Squares,
Sufficient Dimension Reduction), which can yield convoluted statistical models whose parameters
researchers and statisticians alike struggle to interpret. Furthermore, many of these strategies are
limited to specific model forms and lack the flexibility to explore higher-order interactions. Herein we
present an alternative to data reduction that accommodates a variety of modeling strategies, including
large-subset selection and identification of higher-order interaction terms. The resulting models,
coefficient estimates, and predictions remain easily interpretable and flexible to traditional modes of
statistical inference.

The Feasible Solutions Algorithm (FSA) overcomes the problems described above by searching a re-
duced data space to produce feasible solutions (Hawkins, 1994; Miller, 1984). Feasible models (Hawkins,
1994) are optimal under a given criterion function in the sense that no single exchange of an explana-
tory variable contained in the model for a variable outside the model will yield an improvement to
the criterion. Miller (1984) first introduced the idea of a sequential-replacement algorithm such as
the FSA. According to Miller, this computationally "cheap" method boasts rapid convergence; flexible
implementation; and improved results compared to forward or backward selection. Miller also noted
that the replacement algorithm could give too many solutions if repeated. However, Hawkins (1994)
applied a similar exchange algorithm to the problem of finding robust regression estimators and
minimum-volume ellipsoid estimators in multivariate data, demonstrating that with a sufficient num-
ber of random starts, the algorithm could find the optimal solution with arbitrarily high probability.
Upon testing the algorithm, Hawkins also exhibited its superior performance relative to exhaustive
search.

Exhaustively searching for an optimal model containing interactions is particularly demanding,
computationally speaking, and not always reasonable or even attainable. For this reason, many
published analyses do not even attempt to explore interactions. In other cases, interaction terms are
identified by a primary investigator on the basis of his or her prior knowledge of the field, and then
screened on an individual level by a statistician or data scientist. Such a process is tedious and time-
consuming, and usually results in interactions being ignored or overlooked due to the sheer number of
possibilities. These factors unite to afford a widespread lack of consideration for interactions, thereby
undermining the predictive power of models attempting to capture complex relationships (Foster
and Stine, 2004). We address these limitations by implementing an FSA with the capacity to explore
higher-order terms, combined with the accessibility and ease of use associated with an R package.

The R implementation of our Feasible Solution Algorithm, rFSA 0.9.1, is now accessible via GitHub
and CRAN.
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