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Abstract 

Crude oil is an essential energy source that affects international trade, transporta-
tion, and manufacturing, highlighting its importance to the economy. Its future price 
prediction affects consumer prices and the energy markets, and it shapes the devel-
opment of sustainable energy. It is essential for financial planning, economic stability, 
and investment decisions. However, reaching a reliable future prediction is an open 
issue because of its high volatility. Furthermore, many state-of-the-art methods utilize 
signal decomposition techniques, which can lead to increased prediction time. In 
this paper, a model called K-means-dense-sparse-dense long short-term memory 
(K-means-DSD-LSTM) is proposed, which has three main training phrases for crude 
oil price forecasting. In the first phase, the DSD-LSTM model is trained. Afterwards, 
the training part of the data is clustered using the K-means algorithm. Finally, a copy 
of the trained DSD-LSTM model is fine-tuned for each obtained cluster. It helps 
the models predict that cluster better while they are generalizing the whole dataset 
quite well, which diminishes overfitting. The proposed model is evaluated on two 
famous crude oil benchmarks: West Texas Intermediate (WTI) and Brent. Empirical 
evaluations demonstrated the superiority of the DSD-LSTM model over the K-means-
LSTM model. Furthermore, the K-means-DSD-LSTM model exhibited even stronger 
performance. Notably, the proposed method yielded promising results across diverse 
datasets, achieving competitive performance in comparison to existing methods, even 
without employing signal decomposition techniques.
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Introduction
Crude oil, a fundamental energy source, plays a crucial role in shaping global economies, 
driving transportation, and powering manufacturing processes. Predicting its future 
price is essential for various stakeholders, including consumers, businesses, and govern-
ments. Accurate forecasts can help:

• Consumers: Understand potential changes in gasoline prices and other energy costs, 
influencing household budgets and purchasing decisions.

• Energy Markets: Optimize production, storage, and distribution of oil and gas, lead-
ing to more efficient resource allocation and price stability.

• Financial Planning: Enable businesses to make informed investment decisions and 
manage financial risk associated with energy costs.

• Sustainable Energy Development: Inform the development and adoption of alterna-
tive energy sources by providing insights into the future cost and availability of tradi-
tional fuels.

However, predicting crude oil prices accurately is a complex task due to its inherent 
volatility. Numerous factors, including global demand, geopolitical events, and techno-
logical advancements, can significantly influence price fluctuations. This volatility makes 
forecasting difficult and increases the risk of prediction errors. As a result, extensive 
research efforts have been undertaken to develop more reliable predictive models that 
can better account for these complexities. The importance of energy price prediction has 
grown significantly in recent years, as evidenced by the surge in research studies since 
2017 [1].

Although classical techniques, such as autoregressive integrated moving average 
(ARIMA), have been used for price forecasting [2, 3], they cannot find the nonlinear 
relations and patterns in actual financial time series well. Neural networks (NNs) have 
solved this problem by adding more nonlinearity, and they have been widely used in the 
price prediction field. Srivinay et al. [4] employed prediction rule ensembles (PRE) and 
deep NNs (DNNs) for stock price prediction, in which the results of the PRE and DNN 
were combined to make the final prediction. Rather [5] utilized DNN in a model with 
support vector regression and decision trees to forecast the future price of cryptocur-
rency and demonstrated that the combined model performs better than the individual 
models.

Zhang and Chen [6] proposed a model for stock price forecasting in which DNN, 
besides other prediction models, was used after preprocessing the data using variational 
mode decomposition (VMD). Also, combinations of evolutionary algorithms and NNs 
were employed for this purpose. Chiroma et al. [7] proposed using the genetic algorithm 
with NNs to optimize its hyperparameters. The optimized hyperparameters are the net-
work’s topology, biases, and weights.

Simple DNNs proved to be useful in price prediction, yet they could not discern com-
plex patterns within time series data. In contrast, recurrent NNs (RNNs) were more 
adept at forecasting prices due to their enhanced capacity for learning from sequences. 
Despite this, RNNs faced difficulties in grasping long-term dependencies within time 
series. To address this issue, long short-term memory (LSTM) networks [8] were 
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introduced. Both LSTM and gated recurrent unit (GRU) models are prominent in finan-
cial time series analysis and have been widely utilized in numerous studies [9–20]. While 
LSTM and GRU are sometimes used independently [17], their integration with convolu-
tional NNs (CNNs) and the attention mechanism has also become a popular approach 
[16, 19, 20]. As another example, Shen and Shafiq [10] employed LSTM after feature 
expansion, feature selection (using recursive feature elimination (RFE)), and dimension-
ality reduction (using principal component analysis (PCA)) to predict stock market price 
trends. Furthermore, some studies have focused on leveraging price points from differ-
ent time periods (e.g., daily, weekly, monthly) to enhance the accuracy of daily price pre-
dictions [20, 21].

Furthermore, various studies have shown signal decomposition techniques such as 
VMD and wavelet transform (WT) to enhance LSTM’s predictive performance [11, 12, 
14–16, 18, 22]. It is noteworthy that while signal decomposition techniques have demon-
strated notable improvements in accuracy, they also introduce a significant increase in 
prediction time during deployment. This is due to the requirement of executing a sepa-
rate model for each decomposed signal.

Bidirectional-LSTM (BiLSTM) and bidirectional-GRU (BiGRU) are the improved 
versions of LSTM and GRU, which process input sequences not only in the forward 
direction but also in the backward direction, learning both the forward and backward 
patterns as well. Due to this strength, many studies considered them. Lin et al. [22] and 
Lu et al. [23] utilized BiLSTM with CNN and attention mechanism, while it is employed 
without other networks as well [24]. Wang and Wang [25] also combined BiGRU and 
the random inheritance formula for energy futures price prediction. Jahandoost et  al. 
[26] further demonstrated the versatility of BiLSTM by incorporating it into an ensem-
ble model. Specifically, they utilized BiLSTM within the adaptive boosting (AdaBoost) 
framework, alongside extreme gradient boosting machine (XGBM) and light gradient 
boosting machine (LGBM).

Dense-sparse-dense (DSD) is a technique in deep learning, proposed by Song et  al. 
[27], that can improve the performance of NNs. It is based on the pruning technique 
proposed by Song et al. [28], which is a technique to reduce the number of parameters 
in NNs while the performance does not drop significantly. It could, for example, reduce 
the size of the VGG16 model sixteen times without affecting its accuracy [27]. While 
DSD has proven effective in enhancing accuracy, evidenced by a 1.1% improvement in 
ResNet-50 on ImageNet [27], its application in financial time series prediction remains 
relatively unexplored.

Clustering, a classical machine learning technique, is widely used in time series pre-
diction. Li et  al. [29] introduced logistic weighted dynamic time warping (LWDTW) 
as a similarity measure and trained LSTM with each cluster’s data. The performance of 
LSTM-LWDTW was better compared to RNN-LWDTW, GRU-LWDTW, and vanilla 
RNN, LSTM, and GRU. Zhang et al. [30] used K-means clustering for the passenger flow 
forecasting task and demonstrated that cluster-based LSTM (CB-LSTM) is more appli-
cable than other studied methods. With a similar idea, Zhou et  al. [31] predicted the 
wind power spot with K-means-LSTM. Nevertheless, in the case of crude oil price pre-
diction, clustering is not utilized significantly.
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Therefore, in this study, the effect of clustering and the DSD strategy is examined to 
improve crude oil price forecasting, since having a more robust crude oil price predic-
tion model can diminish future losses in many areas, such as future planning. Moreo-
ver, the K-means-DSD-LSTM model is proposed to enhance performance using these 
two techniques. The training process for this model consists of three main phases. First, 
the DSD-LSTM model is trained. Then, using K-means, the training data is clustered. 
Finally, for each obtained cluster, a copy of the DSD-LSTM model is fine-tuned to be 
specialized for that cluster. Clustering offers a distinct advantage over signal decompo-
sition techniques in terms of computational efficiency. By training a dedicated model 
for each cluster, the prediction process requires the execution of only the model corre-
sponding to the identified cluster of a given signal. Conversely, decomposition methods 
necessitate the execution of all models, resulting in a significantly increased computa-
tional burden. Also, the model is evaluated on two famous crude oil benchmarks: West 
Texas Intermediate (WTI) and Brent.

The main contributions of this study are listed below:

1.  The utilization of the DSD training strategy has the potential to enhance the efficacy 
of models when applied to financial time series data.

2.  Employing the K-means algorithm in the suggested manner has the capability to 
improve model performance while mitigating the risk of overfitting. Also, it is more 
efficient compared to using signal decomposition techniques, since it reduces the 
number of executed models for each prediction to one. Furthermore, this approach 
demonstrates greater efficiency compared to signal decomposition techniques, as it 
reduces the number of models required for each prediction to a single model.

3.  The proposed K-means-DSD-LSTM model demonstrates comparable or superior 
performance levels, even in comparison to more intricate methodologies, such as 
models integrating signal decomposition modules.

The remainder of this paper is organized as follows: Sect.  "Methods and materials" 
delves into the methodology, detailing the proposed K-means-DSD-LSTM approach 
for forecasting crude oil prices. Sect.  "Proposed method" presents the experimental 
results, including comparisons with previous models, and discusses the findings. Finally, 
Sect. "Results and discussion" summarizes the key conclusions of the study.

Methods and materials
LSTM

LSTM is a complex RNN capable of learning both short- and long-term dependen-
cies. Each LSTM cell comprises three primary gates. The forget gate ( ft ) modulates the 
portion of the previous cell’s memory to be disregarded. Conversely, the input gate ( it ) 
determines the portion of the current cell’s memory to be transmitted to the subsequent 
cells as the cell’s memory. Additionally, the output gate ( ot ) regulates the function of the 
current cell’s memory in the current cell’s hidden state. These three gates are defined as 
follows:

(1)ft = σ
(
Whf ht−1 +Wxf xt + bf

)
,
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where σ denotes the gate activation function, which is a sigmoid, ht−1 is the previous 
cell’s hidden state, xt is the current input, b represents bias, Wh represents kernel weights, 
and Wx represents recurrent-kernel weights.

After calculating the gates’ outputs, the current cell’s hidden state ( ht ) and memory 
( Ct ) are expressed as follows:

where ⊙ denotes the Hadamard product (element-wise multiplication of vectors).

DSD

DSD [27] is a training strategy that can improve the model’s accuracy without affect-
ing other aspects, such as size. As shown in Fig. 1, this strategy consists of three main 
steps, which are described as follows:

Step 1:  Training the initial dense model

During this stage, the model undergoes training with all parameters, resembling 
traditional training methods. However, the primary objective is identifying the NN’s 
crucial connections (parameters).

(2)it = σ(Whiht−1 +Wxixt + bi),

(3)ot = σ(Whoht−1 +Wxoxt + bo),

(4)C̃t = tanh(Whcht−1 +Wxcxt + bc),

(5)Ct = ft ⊙ Ct−1 + it ⊙ C̃t ,

(6)ht = ot ⊙ tanh(Ct),

Fig. 1 Different steps of DSD training strategy. a train the whole model to find the important connections 
(b) Remove insignificant connections and train the model again to make the crucial connections stronger (c) 
reestablish the removed connections and train the model again
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Step 2:  Training the sparse model

In the next step, the model is pruned. Then, the model is re-trained with the same 
learning rate value as in the previous step. The re-training helps the model reinforce 
the important connections. A hyperparameter called sparsity, which denotes the per-
centage of the parameters that will be pruned, should be specified for pruning. Then, 
for pruning the layer L with N  parameters, after sorting the parameters by their val-
ues, the  kth largest parameter is defined as k = N ∗ (1− sparsity) . Afterwards, all the 
parameters with a value lower than the  kth parameter are pruned.

Step 3:  Training the final dense model

In the final step, all the pruned parameters are recovered and initiated with zero. Then, 
the model will be trained with one-tenth of the learning rate. Reducing the learning rate 
addresses the current situation where the model is trapped in a local minimum. The 
model’s capacity is enhanced by reinstating the pruned weights and conducting addi-
tional training, allowing it to explore and discover a more favorable local minimum.

K‑means

K-means clustering is an unsupervised machine learning algorithm widely used for par-
titioning a given dataset into K groups (where K is the number of pre-determined clus-
ters based on initial analysis). The algorithm operates on a simple principle of optimizing 
the within-cluster variance, commonly known as the inertia or the within-cluster sum of 
squares criterion.

The process commences by randomly selecting K centroids, one for each cluster. The 
subsequent steps involve assigning data points to the nearest centroid based on some 
distance metric, typically the Euclidean distance, and recalculating the centroids as the 
barycenter (mean point) of all the points in the cluster. These steps are reiterated until 
the centroids stabilize with minimal or no change in the assignment of points to clusters 

Fig. 2 Architecture of the DSD-LSTM Model



Page 7 of 22Jahandoost et al. Journal of Big Data          (2024) 11:117  

or until a pre-determined number of iterations is reached. This iterative refinement is 
conducted to minimize an objective function: the sum of squared distances between 
points and their respective cluster centroid, which measures cluster tightness and sepa-
ration from other clusters.

Proposed method
This study proposes a novel hybrid model for oil price prediction. The procedure 
consists of three separate steps. First, the DSD-LSTM model is trained on the train-
ing set. This model consists of two LSTM layers, followed by a fully connected layer 
and the output layer. The architecture is shown in Fig. 2. Subsequently, the K-means 
algorithm is employed to acquire clusters within the training data. Following this, a 
duplicate of the trained DSD-LSTM model undergoes fine-tuning for each identified 
cluster. Consequently, specialized models are created for individual clusters. This spe-
cialization enhances predictive accuracy by tailoring models to specific data patterns 
within each cluster. Furthermore, fine-tuning rather than retraining each specialized 
model reduces the risk of overfitting to the training data, thereby improving the mod-
el’s ability to predict new, unseen data. These models retain effective generalization 
across the entire training set through comprehensive training on the whole dataset 
before fine-tuning. The proposed framework is depicted in Fig.  3. Also, a detailed 
explanation of each step is provided below:

Step 1:  Training DSD-LSTM model

In the first step of the DSD process (Dense), the LSTM model is trained, and the 
most important parameters are specified. In the second step (Sparse), the insignificant 

Fig. 3 Overview of the proposed hybrid oil price prediction model. This flowchart illustrates the three-phase 
training process: initial training of the DSD-LSTM model, application of the K-means algorithm to form 
clusters within the data, and subsequent fine-tuning of duplicated DSD-LSTM models for each specific 
cluster, resulting in specialized yet generalizable models for oil price forecasting
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weights of the two mentioned parameter sets are ignored, and the model is re-trained 
to make the crucial connections stronger. In the last step (re-dense), the ignored 
weights are re-initiated with zero, and the model is fine-tuned.

LSTM layers have three sets of parameters. The first set, kernel weights, is associ-
ated with the hidden state. These weights are: Whf  , Whu , Whc , and Who . The second set 
is related to the input, which is named recurrent-kernel weights. This set consists of 
Wxf  , Wxu , Wxc , and Wxo . The last set relates to bias. For the DSD-LSTM model, the 
bias is not pruned. So, the pruning is employed only on the first two sets of param-
eters for LSTM layers and on the weight matrix of the fully connected layer and the 
output layer.

Step 2:  Clustering using the K-means algorithm

This step divides the training set into several clusters using the K-means algorithm. 
The aim is to train some specialized models, each capable of predicting a subset of the 
inputs better than the generalized model.

The K-means algorithm is primarily employed due to its efficiency and simplic-
ity. It exhibits significantly faster computation times compared to numerous other 
algorithms, particularly hierarchical clustering, especially when dealing with large 
datasets. Additionally, its hyperparameter tuning process is less complex when juxta-
posed with algorithms like density-based spatial clustering of applications with noise 
(DBSCAN).

Furthermore, the proposed method is not well-suited for algorithms with a dynamic 
number of clusters that categorize certain data points as noise, such as DBSCAN. This 
is because handling noise clusters poses challenges. If a fine-tuned version of the DSD-
LSTM model is utilized for these points, any noise encountered during deployment 
would need to be predicted by that specific DSD-LSTM. This task may be challenging, 
as DSD-LSTM of the noise cluster is fine-tuned on the current noise data, which may 
not be similar to the noise data encountered during deployment. In contrast, algorithms 
with a predefined number of clusters assign each data point to its nearest cluster, which 
simplifies the prediction process.

Step 3:  Fine-tuning the copies for each cluster

The final step of the proposed method aims to obtain a more accurate model for each 
cluster. To achieve this, the following procedure is employed:

1. All samples in the training set are clustered based on the K-means model trained 
in the previous step.
2. For each cluster, a copy of the trained DSD-LSTM model is fine-tuned using the 
data belonging to that cluster.

During the prediction process, the cluster of the signal is first determined using the 
trained K-means model. Subsequently, the prediction is made using the DSD-LSTM 
model that has been fine-tuned for that specific cluster.
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This approach allows for the development of specialized models that are tailored to the 
unique characteristics of each cluster, resulting in improved prediction accuracy.

Results and discussion
Data

This study utilizes the K-means-DSD-LSTM model to predict the price of two crude oil 
benchmarks: WTI and Brent. There are many authentic sources to obtain the WTI and 
Brent datasets, two of which are the United States Energy Information Administration 
(EIA) and Investing. WTI is a high-quality, light, sweet crude oil produced in the United 
States. It is a key benchmark for North American crude oil prices and is widely traded on 
global markets. Brent crude oil, on the other hand, is a blend of sweet crude oils produced 
in the North Sea. It is a major benchmark for global oil prices, particularly in Europe and 
Asia. By using both WTI and Brent datasets, the study aims to assess the model’s ability to 
predict prices across different regions and oil types, providing a more comprehensive evalu-
ation of its performance.

The proposed model is trained on the same dataset as each benchmark for a fair com-
parison with benchmark studies. The first benchmark [22] trained its model on both WTI 
and Brent datasets downloaded from Investing. The applied period is from 01/04/2010 
until 07/31/2020. The second benchmark [24], the EIA Brent crude oil price from 1987 to 
2019, is used. Finally, the last benchmark [18] worked on EIA WTI crude oil price forecast-
ing from 1986 to 2022. Besides Table 6, which showed the comparisons with these bench-
marks, the other results presented in the paper relate to the employed period of the first 
benchmark (from 01/04/2010 to 07/31/2020).

In preparing the inputs and outputs, the sliding window technique is utilized, wherein the 
window traverses the dataset, designating the underlying data points as inputs and the sub-
sequent data point as the target (label) at each interval. Considering xi as the ith data point 
within the time series, and assuming a window size of w, the initial input spans from x0 to 
xw−1 , with the target being xw . Subsequently, by advancing the sliding window, the subse-
quent input covers the range from x1 to xw , with xw+1 serving as the target. This process 
endures until the final data point is reached.

It is imperative to underscore that training and testing sets should be isolated completely. 
One suggested approach involves initially segmenting the data points and applying the slid-
ing window technique. Employing this order ensures that the training and testing sets are 
entirely independent, as reversing the sequence may result in incomplete isolation between 
these sets.

Moreover, input standardization is implemented to improve the model’s convergence. 
This procedure is articulated in Eq. 7, involving the subtraction of the mean from the inputs 
and their division by the standard deviation. Consequently, this yields inputs with a mean of 
zero and a standard deviation of 1.

where µ and σ denote the mean and standard deviation of data points, respectively.

(7)x′ =
x − µ

σ
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Evaluation criteria

This study employs five distinct evaluation criteria: mean absolute error (MAE), mean 
squared error (MSE), root MSE (RMSE), mean absolute percentage error (MAPE), and  R2 
score. These are defined as follows:

where m denotes the number of data points, yi is the true label, ŷi is the predicted label, 
and y is the mean of true labels.

By considering these metrics, the study aims to comprehensively evaluate the mod-
el’s ability to predict oil prices accurately and assess the extent to which it avoids 
overfitting to the training data.

Hyperparameters

The hyperparameters of the K-means-DSD-LSTM model are chosen based on the lit-
erature and experiments. Each hyperparameter is explained below. Furthermore, any 
unmentioned hyperparameters are set to the default values specified by their respec-
tive libraries.

(a) Number of trials: In the case of crude oil price prediction, the initialized weights 
significantly affect the final result, and by training a model several times, the error 
obtained from each training may vary. To mitigate these effects, the proposed 
model undergoes training across multiple trials, from which the best model based 
on MAE is selected. This trick was previously done in the financial time series [32]. 
In this study, the number of trials is equal to 10.

(b) Number of epochs: The number of epochs in different studies varies, and it is 
dependent on the model. According to the observations, until the 50th epoch, all 
the models converged. So, the number of epochs was set to 50.

(8)MAE =
1

m

m∑

i=1

∣∣yi − ŷi
∣∣,

(9)MSE =
1

m

m∑

i=1

(
yi − ŷi

)2
,

(10)RMSE =

√√√√ 1

m

m∑

i=1

(
yi − ŷi

)2
,

(11)MAPE =
100

m

m∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣,

(12)R
2
= 1−

∑m
i=1

(
yi − ŷi

)2
∑m

i=1

(
yi − y

)2 ,
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(c) Batch size: The batch size denotes the quantity of inputs that traverse the model 
during each iteration. Evidently, a tradeoff exists in determining this value. A 
smaller batch size introduces greater noise during the training process, while 
a larger batch size results in heightened memory consumption. 64 is a batch size 
in many studies [20, 23, 32, 33]. Furthermore, Kanwal et al. [32] obtained a better 
result with a batch size of 64 compared to 32 and 128. Therefore, the K-means-
DSD-LSTM is trained with a batch size of 64.

(d) Optimizer: Optimizer is an algorithm that tunes the parameters in such a way 
that the loss is minimized. There are many optimizers, such as stochastic gradient 
descent, RMSprop, and adaptive moment estimation (Adam). Nevertheless, Adam 
is selected in this study because, besides being popular in this field [20, 23, 24, 32, 
34–38], it is computationally efficient [39].

(e) Learning rate: The learning rate is a critical hyperparameter that facilitates proper 
convergence. Initially, the model’s learning rate is set to 0.001. This rate is then 
scaled down to 0.0001 during the re-dense phase. In the final step, where the mod-
els undergo fine-tuning for each specific cluster, the learning rate is further reduced 
to 0.00001. This reduction is strategic because, at this juncture, the model has 
already settled into a robust local minimum. Therefore, only subtle adjustments are 
required to nudge it towards an even more optimal local minimum, thus refining its 
performance for each cluster.

(f ) Sparsity: Sparsity specifies the percentage of parameters that will be pruned. The 
higher the sparsity, the fewer parameters will remain, which causes a drop in accu-
racy. The lower the sparsity, the lower the effect of the DSD strategy. An acceptable 
sparsity value is between 0.25 and 0.5 [27]. This study examines four different spar-
sity values to find an appropriate value.

(g) Window size: The window size specifies the number of days that are passed to NN 
for comparison. Choosing an appropriate window size value is important, since low 
values cause the model not to pay attention to the oldest data, and high values dis-
tract the model. A window size of 5 is selected in this study.

(h) Number of clusters: The quantity of clusters bears substantial importance within 
the K-means-DSD-LSTM model. A decreased number of clusters fails to yield spe-
cialized models, while an increased quantity raises the likelihood of overfitting. To 
determine the optimal number of clusters, this study explores various cluster num-
bers to identify the best value.

(i) Clustering distance measure: For the similarity measure of the clustering, DTW 
shows better performance than the Euclidean measure when the window size is 
large (e.g., stock price prediction [29]). However, in the case of crude oil price pre-
diction, small window sizes have shown great results [22]. Therefore, both distance 
measures are examined to find the more appropriate one.
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Environment

All experiments were conducted within the Google Colab environment utilizing the 
Tesla T4 GPU and the high-RAM configuration, affording a total of 51 gigabytes of 
RAM. The implementation makes use of the Python programming language version 
3.10.12. Specifically, the training of DNNs is facilitated through the Keras library with 
TensorFlow (version 2.15.0) as the backend framework, while clustering operations are 
conducted using the tslearn library (version 0.6.3).

Training

Algorithm  1 presents the pseudo-code outlining the training and evaluation pro-
cess of the proposed model. Following the establishment of constants in lines 2 to 4, 
the primary loop initializes. Within this loop, the model, comprised of two layers of 
LSTM, each containing 128 neurons, a fully connected layer ranging from 32 to 512 
neurons, and the output layer, is constructed (lines 8 to 12). Subsequently, the model 
undergoes training based on the DSD procedure (lines 13 to 16), followed by the exe-
cution of clustering in line 17. Afterward, fine-tuning takes place for each cluster in 
lines 18 to 22. Finally, the evaluation process occurs, storing the best model’s results 
in the’best_result’ variable.

The way that the number of neurons in the fully connected layer is selected ran-
domly is similar to the proposed procedure of Kanwal et  al. [32]. More specifically, 
Bergstra and Bengio [40] demonstrated that selecting hyperparameters randomly 
works the same as or better than the grid search technique in similar frontiers, while 
resource usage is lower. Based on that, Kanwal et  al. [32] randomly selected many 
hyperparameters, such as the number of hidden layers, dense layers’ neurons, and the 
learning rate. However, this study merely employed this technique to select the num-
ber of neurons in the fully connected layer.

Moreover, Fig.  4 illustrates the distribution of weights in the DSD-LSTM model 
across different stages of the DSD training strategy. During the initial step (dense), the 
distribution resembles a normal distribution. However, in the subsequent step, where 
weights are pruned, and the model undergoes re-training, a gap becomes evident at 

Fig. 4 The distribution of the proposed model’s parameters in (a) dense, (b) sparse, and (c) re-dense steps
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the center. In the final step, pruned weights are initialized with zero, resulting in a 
concentration of parameters near zero. Nonetheless, the distribution from the previ-
ous step remains largely unchanged due to using one-tenth of the original learning 
rate in the re-dense step to guide the model towards a slightly improved local mini-
mum by expanding its capacity.

Algorithm 1 K-means-DSD-LSTM model training and evaluation

Table 1 Performance of the Kmeans-LSTM model with different types of distance measures and 
different numbers of clusters on the WTI crude oil price dataset

Numbers in bold denote the best model of each distance measure

Number 
of clusters

Euclidean DTW

MAE RMSE MAPE R2 MAE RMSE MAPE R2

2 1.188545 2.708324 2.939189 0.951323 1.107342 2.575007 2.619946 0.955997

4 1.083473 2.557567 2.517239 0.956591 1.105117 2.579219 2.570919 0.955853

6 1.187116 2.648587 2.808644 0.953446 1.239063 2.783912 3.109238 0.948568

8 1.045722 2.558165 2.491987 0.956571 1.116483 2.598731 2.645108 0.955183

10 1.159671 2.675212 2.839293 0.952506 1.087441 2.588395 2.602121 0.955538



Page 14 of 22Jahandoost et al. Journal of Big Data          (2024) 11:117 

Examining number of clusters and distance measure

Tables 1 and 2 demonstrate the performance of the K-means-LSTM model with different 
numbers of clusters and two distance measures, i.e., Euclidean and DTW, for the WTI 
and Brent datasets. Evidently, the performance of the two distance measures is quite the 
same, but the impact of the number of clusters is clearer. Therefore, using Euclidean is a 
better choice since it is lighter and faster. By looking at different clusters in Table 1, The 
best number for Euclidean distance is 8, which is better than all K-means-LSTM models 
trained with DTW distance. Moreover, 6 clusters performed worse than 4 and 8 clusters 
for both distance measures. It shows the importance of several clusters since using the 
wrong number of clusters can diminish the performance, no matter what other hyperpa-
rameters are employed. Also, for DTW in the WTI dataset, the best numbers of clusters 
are 2, 10, and 4, respectively.

Moreover, Table 2 is related to the performance of K-means-LSTM on the Brent data-
set. Results demonstrate that the best performance of both distance measures is with 
two clusters. This means using two clusters is the best way to divide the dataset. Addi-
tionally, the second-best number of clusters is six for both measures. Again, the errors 
of Euclidean and DTW are close to each other in all clusters. However, the best error 
belongs to Euclidean distance.

Examining the sparsity value

Sparsity value plays an essential role in the DSD training strategy. While the higher 
values cause the model to lose important connections, the lower values do not impact 
much. Therefore, choosing an appropriate sparsity can lead to better performances. 
Table 3 depicts the performance of the DSD-LSTM model with different sparsities for 

Table 2 Performance of the Kmeans-LSTM model with different types of distance measures and 
different numbers of clusters on the Brent crude oil price dataset

Numbers in bold denote the best model of each distance measure

Number 
of clusters

Euclidean DTW

MAE RMSE MAPE R2 MAE RMSE MAPE R2

2 1.000318 1.474872 1.960125 0.987072 1.007957 1.466730 1.949342 0.987214
4 1.058394 1.521640 2.054001 0.986239 1.097625 1.537301 2.094018 0.985954

6 1.033895 1.494393 1.995331 0.986727 1.022946 1.502052 2.042137 0.986591

8 1.072304 1.555324 2.128014 0.985623 1.096028 1.551555 2.116267 0.985692

10 1.115839 1.584387 2.182653 0.985081 1.111074 1.579183 2.163946 0.985178

Table 3 Performance of DSD-LSTM model with different values of sparsity

Numbers in bold denote the best model of each dataset

Sparsity WTI Brent

MAE RMSE MAPE R2 MAE RMSE MAPE R2

25% 0.974754 2.502224 2.368392 0.958449 0.911691 1.360809 1.747625 0.988994

35% 0.980935 2.436269 2.256308 0.960611 0.914749 1.352749 1.753547 0.989124
45% 0.995815 2.465250 2.341496 0.959668 0.928068 1.351053 1.757691 0.989151

55% 0.975684 2.449034 2.278097 0.960197 0.926496 1.371404 1.790226 0.988822
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the pruning step. Although the MAE of DSD-LSTM models for the WTI and Brent data-
sets is better with 25% compared to 35%, using 35% has better RMSE and R2. Since the 
improvement in RMSE is greater than the MAE deterioration, the overall performance 
of 35% sparsity is better than 25%. Also, the performance diminishes with higher values 
of sparsity (i.e., 45% and 55%). Therefore, an appropriate amount of pruning can be 35%.

Evaluation against simplified models

Table 4 shows the results of the proposed model (K-means-DSD-LSTM), DSD-LSTM, 
K-means-LSTM, and LSTM. In the WTI dataset, the MAE of K-means-LSTM was 
reduced by about 0.11 compared to LSTM, and RMSE was decreased by about 0.04. 
Also, improvements in MAPE and R2 are evident. It demonstrates that using cluster-
ing in the proposed way could enhance the model’s performance. While the improve-
ment of K-means-LSTM compared to LSTM on the Brent dataset is clearer in the 
RMSE metric compared to MAE, it still proves that all metrics can be enhanced just 
by utilizing clustering.

However, DSD-LSTM is superior to LSTM in all metrics, and the improvement is 
significant in some metrics. For instance, in the WTI dataset, MAPE is reduced by 
about 0.44, whereas in the Brent dataset, the reduction is about 0.35. It is imperative 
to emphasize that this enhancement solely stems from altering the learning strategy 
to DSD. As a result, the execution time and size of the LSTM and DSD-LSTM models 
remain unaltered.

Furthermore, analysis of DSD-LSTM, K-means-LSTM, and K-means-DSD-LSTM 
on the WTI dataset demonstrates that K-means-DSD-LSTM has better performance 
on all metrics compared to both DSD-LSTM and K-means-LSTM. However, the per-
formance is closer to the DSD-LSTM. The same occurrence is observed with a dif-
ference in the Brent dataset. While K-means-DSD-LSTM is superior on all metrics 
compared to K-means-LSTM, DSD-LSTM is better than K-means-DSD-LSTM in 
MAE. Nevertheless, since the improvement in RMSE is greater than the deterioration 
in MAE, the overall performance of K-means-DSD-LSTM is arguably higher than 
DSD-LSTM. As a result, it can be concluded that using both DSD and K-means leads 
to an overall improvement.

Figures  5 and 6 show the predictions of the models. While the predictions of all 
models are indistinguishable in most of the points, discernible difficulties arise 
between the 700th and 800th data points. This phenomenon coincides with a period 

Table 4 Performance of the models on WTI and Brent crude oil prices from 01/04/2010 to 
07/31/2020

Numbers in bold denote the best model of each dataset

Models WTI Brent

MAE RMSE MAPE R2 MAE RMSE MAPE R2

LSTM 1.158161 2.591156 2.691512 0.955443 1.057295 1.575777 2.100901 0.985242

Kmeans-LSTM 1.045722 2.558165 2.491987 0.956571 1.000318 1.474872 1.960125 0.987072

DSD-LSTM 0.980935 2.436269 2.256308 0.960611 0.914749 1.352749 1.753547 0.989124

Kmeans-DSD-
LSTM

0.968076 2.431257 2.228398 0.960773 0.921519 1.342168 1.747593 0.989293
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characterized by significant price fluctuations in the crude oil market. Particularly 
noteworthy is the substantial drop in WTI crude oil prices on 04/20/2020, plunging 
from 55.90 dollars to -37.62 dollars per barrel. Forecasting these changes is inherently 
tricky; however, by looking at the plots, the performance of the proposed method 
(K-means-DSD-LSTM) is relatively better than the rest of the models. This observa-
tion alludes to the promising capability of the K-means-DSD-LSTM model not only 
in predicting future dramatic changes and handling such instances more effectively.

Comparison with benchmark studies

Three benchmarks are selected for comparison, which are depicted in Table 5. Table 6 
shows the comparison results between the proposed K-means-DSD-LSTM model and 

Fig. 5 Prediction of the WTI test set by LSTM, DSD-LSTM, Kmeans-LSTM, and the proposed method 
(Kmeans-DSD-LSTM)

Fig. 6 Prediction of the Brent test set by LSTM, DSD-LSTM, Kmeans-LSTM, and the proposed method 
(Kmeans-DSD-LSTM)
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the benchmarks. The proposed method is trained on the same dataset as the bench-
marks and tested on the same period for a fair comparison.

For comparison with the first benchmark [22], the model is trained on both the 
WTI and Brent datasets. The employed period is from 01/04/2010 to 07/31/2020, and 
the train-test division is 70% to 30%. The results show that the K-means-DSD-LSTM 
model outperforms the BiLSTM-Attention-CNN (BLAC) model in all metrics, i.e., 
MAE, RMSE, MAPE, and  R2.

However, the model is not 100% superior to WT-BLAC, but they are competitive. 
More specifically, the proposed model’s MAE and MAPE are lower than the WT-
BLAC model in the WTI dataset, demonstrating that the proposed model’s average 

Table 5 Benchmarks of the study

Ref Proposed models Description Metrics Data

[22] WT-BLAC - Decomposed and reconstructed the 
input signal by WT
- Predicted each of the obtained signals 
with a BiLSTM-Attention-CNN model
- Reconstructed the final prediction from 
each component

RMSE
MAPE
MAE
R2

Brent (investing.com)
WTI (investing.com)

[24] BOP-BL - Proposed a forecasting model named 
Brent oil price (BOP)-BL consisting of three 
BiLSTM layers

MSE
RMSE
MAE
MAPE

Brent (eia.gov)

[18] LSTM-SSA-DO
V-LSTM-SSA-DO

- Utilized the salp swarm algorithm with a 
disputation operator (SSA-DO) for tuning 
the LSTM hyperparameters
- Decomposed the input by VMD and 
passed its outputs to the LSTM-SSA-DO to 
improve the performance

R2

MAE
MSE
RMSE

WTI (eia.gov)
(zero–one normalized outputs)

Table 6 Comparison of the proposed model with the benchmarks

Numbers in bold denote the best model

Dataset train:val:test Models MAE MSE RMSE MAPE R2

WTI (investing.
com) From 
01/04/2010 To 
07/31/2020

0.7:0:0.3 BLAC [22] 1.1656 – 2.6181 2.7294 0.9545

WT-BLAC [22] 1.1780 – 2.2518 2.6261 0.9663

K-means-DSD-
LSTM

0.968076 5.911011 2.431257 2.228398 0.960773

Brent (invest-
ing.com) From 
01/04/2010 To 
07/31/2020

0.7:0:0.3 BLAC [22] 1.1777 – 1.6336 2.2150 0.9841

WT-BLAC [22] 0.8894 – 1.2936 1.8027 0.9900
K-means-DSD-
LSTM

0.921519 1.801415 1.342168 1.747593 0.989293

Brent (eia.gov) 
From 1987 To 
2019

0.7:0:0.3 BOP-BL [24] 1.2 2.4 1.55 2.15 –

K-means-DSD-
LSTM

0.995953 1.815638 1.347456 1.374833 0.997382

WTI (eia.gov) 
(targets are 
zero–one nor-
malized) From 
01/02/1986 To 
07/11/2022

0.7:0.1:0.2 LSTM-SSA-DO 
[18]

0.008316 0.000145 0.012038 – 0.991122

V-LSTM-SSA-DO 
[18]

0.007519 0.000120 0.010962 – 0.992600

K-means-DSD-
LSTM

0.005851 0.000143 0.011959 – 0.984895
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error is lower. Nevertheless, the lower value of RMSE in WT-BLAC compared to the 
proposed model denotes that WT helped the WT-BLAC model to have fewer severe 
mistakes, even though the average error is higher. Also, R2 of the WT-BLAC model is 
slightly better than the proposed model (about 0.006 in the WTI dataset and 0.0007 
in the Brent dataset), which indicates that the WT-BLAC is fitted a little better. So the 
WT-BLAC model, even though unlike the proposed model, it has a signal decomposi-
tion module (i.e., WT), could not outperform the proposed method.

The second benchmark [24] trained its proposed model (BOP-BL) on the Brent data-
set from 1987 to 2019. The train-test split is similar to the previous benchmark (0.7:0.3), 
and the data source is EIA. The results indicate that the proposed method performs bet-
ter in all metrics. Furthermore, the proposed model’s MAE and RMSE metrics are lower 
by about 0.2 compared to the BOP-BL model, demonstrating that the K-means-DSD-
LSTM model diminished the average and larger errors.

The dataset of the third benchmark [18] exhibited certain distinctions. It utilized the 
WTI dataset from the EIA; however, the targets were subjected to zero–one normali-
zation. Therefore, the MAPE metric is not calculated for this case. The selected period 
encompasses 1986 to 2022 and integrates a validation set. The findings of this study 
indicate that the proposed model surpasses the LSTM-SSA-DO model across MAE, 
MSE, and RMSE measures. However, akin to WT-BLAC [1], employing a signal decom-
position method, namely VMD, considerably enhanced the LSTM-SSA-DO model’s 
performance. However, upon comparing the MAE and RMSE metrics, both of which 
possess a similar scale, the proposed method’s MAE is approximately 0.0017 less than 
that of V-LSTM-SSA-DO, while the RMSE of V-LSTM-SSA-DO stands 0.0010 lower 
than K-means-DSD-LSTM. Consequently, it can be contended that K-means-DSD-
LSTM demonstrates superior performance, even compared to V-LSTM-SSA-DO, which 
employs a signal decomposition module.

Comparison of clustering and signal decomposition

The proposed method offers several advantages over those employing signal decomposi-
tion techniques. Notably, the proposed method requires only a single NN during predic-
tion. Conversely, methods incorporating signal decomposition modules necessitate the 
execution of all NNs. Furthermore, signal decomposition must be performed for each 
prediction, potentially leading to computationally intensive and memory-consuming 
operations for certain algorithms.

The primary drawback of the proposed method compared to those using signal 
decomposition is the requirement for training a clustering algorithm. However, cluster-
ing algorithms are not inherently slow, particularly K-means, which is employed in this 
study. Additionally, in many cases, training time can be disregarded as it is a one-time 
process.

Practical applications

The K-means-DSD-LSTM model presented in this study holds significant practical 
implications for various stakeholders in the energy sector, particularly those involved 
in financial planning, economic stability, and investment decisions. The model’s 
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demonstrated ability to accurately predict oil prices, evidenced by its low MAPE of 
approximately 2%, provides valuable insights for informed decision-making.

For businesses engaged in oil and gas production, refining, or transportation, the 
model can assist with resource allocation, pricing strategies, and risk management. 
Accurate oil price predictions enable these businesses to better forecast energy costs, 
adjust production schedules, and make more informed investment decisions.

Furthermore, policymakers can leverage the model’s insights to promote economic 
stability and energy security. Understanding future oil price trends allows them to 
develop more effective policies related to energy production, consumption, and taxation. 
This can lead to more predictable energy markets, minimize volatility, and contribute to 
a stable economic environment.

For investors, the model offers a powerful tool for evaluating investment opportunities 
in the energy sector. Its ability to predict price fluctuations can help investors identify 
potential growth areas and avoid high-risk investments.

While the model focuses on predicting oil prices, its insights have significant implica-
tions for the development and adoption of sustainable energy alternatives. By providing 
a clearer understanding of the future cost and availability of fossil fuels, the model can 
support the transition to renewable energy sources.

As oil prices fluctuate, the relative cost of renewable energy technologies becomes 
more or less competitive. Accurate oil price forecasts can inform the development of 
policies and incentives that promote renewable energy adoption. By fostering a more 
predictable environment for renewable energy investments, the model can contribute to 
a sustainable energy future.

Moreover, the model’s ability to predict oil price volatility can help mitigate the risks 
associated with transitioning to renewable energy sources. By understanding potential 
disruptions in fossil fuel supply, policymakers and investors can make more informed 
decisions about investing in renewable energy infrastructure and supporting the devel-
opment of new technologies.

Conclusion and future works
In the context of this paper, the K-means-DSD-LSTM model was proposed for crude 
oil price prediction. The K-means-DSD-LSTM model predicts crude oil prices using a 
three-step training process. First, a DSD-LSTM model is trained on the entire dataset. 
Then, the data is clustered using K-means. Finally, the DSD-LSTM model is duplicated 
and fine-tuned for each cluster, resulting in specialized models that generalize the entire 
dataset and mitigate overfitting.

The assessment involving LSTM, DSD-LSTM, and K-means-LSTM revealed that 
both the DSD strategy and the K-means algorithm contributed to improved accuracy, 
with the DSD strategy exhibiting a particularly pronounced impact. The superior per-
formance of the K-means-DSD-LSTM model compared to DSD-LSTM and K-means-
LSTM suggests the potential for further advancements through their combined 
application. Furthermore, comparing the proposed model with established benchmarks 
demonstrated the superiority of the K-means-DSD-LSTM model over more intricate 
networks, such as BiLSTM and BLAC. Its performance remained competitive compared 
to methodologies incorporating signal decomposition methods, such as WT-BLAC and 
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V-LSTM-SSA-DO. Notably, the K-means-DSD-LSTM model offers a faster deployment 
speed due to its requirement for only one network execution. This is because, after iden-
tifying the cluster of a signal, only the network specific to that cluster is executed for 
prediction. Conversely, models utilizing signal decomposition techniques necessitate 
the execution of several networks, one for each decomposed signal, leading to increased 
computational time.

Future research endeavors to enhance the proposed method could focus on employing 
more sophisticated clustering techniques that consider not only signal shape but also 
other relevant characteristics. This approach aims to achieve clusters with greater signal 
homogeneity, potentially leading to improved overall performance. Additionally, incor-
porating evolutionary algorithms into the clustering process may enhance efficiency. The 
model’s versatility can be further evaluated by utilizing datasets beyond oil prices, such 
as gas prices or metals’ prices. Meticulous hyperparameter optimization and evaluations 
across diverse financial time series datasets, including cryptocurrencies, would provide 
additional insights. Investigating alternative NN architectures, such as transformers, 
may also yield promising results.
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