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Abstract

Scalability is a key feature for big data analysis and machine learning frameworks and for applications that need to
analyze very large and real-time data available from data repositories, social media, sensor networks, smartphones,
and the Web. Scalable big data analysis today can be achieved by parallel implementations that are able to exploit
the computing and storage facilities of high performance computing (HPC) systems and clouds, whereas in the
near future Exascale systems will be used to implement extreme-scale data analysis. Here is discussed how clouds
currently support the development of scalable data mining solutions and are outlined and examined the main
challenges to be addressed and solved for implementing innovative data analysis applications on Exascale systems.
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Introduction

Solving problems in science and engineering was the
first motivation for inventing computers. After a long
time since then, computer science is still the main area
in which innovative solutions and technologies are being
developed and applied. Also due to the extraordinary ad-
vancement of computer technology, nowadays data are
generated as never before. In fact, the amount of struc-
tured and unstructured digital datasets is going to in-
crease beyond any estimate. Databases, file systems, data
streams, social media and data repositories are increas-
ingly pervasive and decentralized.

As the data scale increases, we must address new chal-
lenges and attack ever-larger problems. New discoveries
will be achieved and more accurate investigations can be
carried out due to the increasingly widespread availabil-
ity of large amounts of data. Scientific sectors that fail to
make full use of the huge amounts of digital data avail-
able today risk losing out on the significant opportun-
ities that big data can offer.

To benefit from the big data availability, specialists
and researchers need advanced data analysis tools and
applications running on scalable architectures allowing
for the extraction of useful knowledge from such huge
data sources. High performance computing (HPC) sys-
tems and cloud computing systems today are capable
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platforms for addressing both the computational and
data storage needs of big data mining and parallel know-
ledge discovery applications. These computing architec-
tures are needed to run data analysis because complex
data mining tasks involve data- and compute-intensive
algorithms that require large, reliable and effective stor-
age facilities together with high performance processors
to get results in appropriate times.

Now that data sources became very big and pervasive,
reliable and effective programming tools and applica-
tions for data analysis are needed to extract value and
find useful insights in them. New ways to correctly and
proficiently compose different distributed models and
paradigms are required and interaction between hard-
ware resources and programming levels must be ad-
dressed. Users, professionals and scientists working in
the area of big data need advanced data analysis pro-
gramming models and tools coupled with scalable archi-
tectures to support the extraction of useful information
from such massive repositories. The scalability of a par-
allel computing system is a measure of its capacity to re-
duce program execution time in proportion to the
number of its processing elements (The Appendix intro-
duces and discusses in detail scalability in parallel sys-
tems). According to scalability definition, scalable data
analysis refers to the ability of a hardware/software par-
allel system to exploit increasing computing resources
effectively in the analysis of (very) large datasets.
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Today complex analysis of real-world massive data
sources requires using high-performance computing sys-
tems such as massively parallel machines or clouds.
However in the next years, as parallel technologies ad-
vance, Exascale computing systems will be exploited for
implementing scalable big data analysis in all the areas
of science and engineering [23]. To reach this goal, new
design and programming challenges must be addressed
and solved. The focus of the paper is on discussing
current cloud-based designing and programming solu-
tions for data analysis and suggesting new programming
requirements and approaches to be conceived for meet-
ing big data analysis challenges on future Exascale
platforms.

Current cloud computing platforms and parallel com-
puting systems represent two different technological so-
lutions for addressing the computational and data
storage needs of big data mining and parallel knowledge
discovery applications. Indeed, parallel machines offer
high-end processors with the main goal to support HPC
applications, whereas cloud systems implement a com-
puting model in which virtualized resources dynamically
scalable are provided to users and developers as a
service over the Internet. In fact, clouds do not mainly
target HPC applications; they instrument scalable com-
puting and storage delivery platforms that can be
adapted to the needs of different classes of people and
organizations by exploiting the Service Oriented (SOA)
approach. Clouds offer large facilities to many users that
were unable to own their parallel/distributed computing
systems to run applications and services. In particular,
big data analysis applications requiring access and ma-
nipulating very large datasets with complex mining algo-
rithms will significantly benefit from the use of cloud
platforms.

Although not many cloud-based data analysis frame-
works are available today for end users, within a few
years they will become common [29]. Some current so-
lutions are based on open source systems, such as
Apache Hadoop and Mahout, Spark and SciDB, while
others are proprietary solutions provided by companies
such as Google, Microsoft, EMC, Amazon, BigML,
Splunk Hunk, and InsightsOne. As more such platforms
emerge, researchers and professionals will port increas-
ingly powerful data mining programming tools and
frameworks to the cloud to exploit complex and flexible
software models such as the distributed workflow para-
digm. The growing utilization of the service-oriented
computing model could accelerate this trend.

From the definition of the big data term, which refers
to datasets so large and complex that traditional hard-
ware and software data processing solutions are inad-
equate to manage and analyze, we can infer that
conventional computer systems are not so powerful to
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process and mine big data [28] and they are not able to
scale with the size of problems to be solved. As men-
tioned before, to face with limits of sequential machines,
advanced systems like HPC, clouds and even more scal-
able architectures are used today to analyze big data.
Starting from this scenario, Exascale computing systems
will represent the next computing step [1, 34]. Exascale
systems refers to high performance computing
systems capable of at least one exaFLOPS, so their
implementation represents a very significant research
and technology challenge. Their design and development
is currently under investigation with the goal of building
by 2020 high-performance computers composed of a
very large number of multi-core processors expected to
deliver a performance of 10718 operations per second.
Cloud computing systems used today are able to store
very large amounts of data, however they do not provide
the high performance expected from massively parallel
Exascale systems. This is the main motivation for devel-
oping Exascale systems. Exascale technology will repre-
sent the most advanced model of supercomputers. They
have been conceived for single-site supercomputing cen-
ters not for distributed infrastructures as multi-clouds or
fog computing systems that are aimed to decentralized
computing and pervasive data management that could
be interconnected with Exascale systems that could used
as backbone for very large scale data analysis.

The development of Exascale systems urges to address
and solve issues and challenges both at hardware and
software level. Indeed it requires to design and imple-
ment novel software tools and runtime systems able to
manage a very high degree of parallelism, reliability and
data locality in extreme scale computers [14]. New pro-
gramming constructs and runtime mechanisms able to
adapt to the most appropriate parallelism degree and
communication decomposition for making scalable and
reliable data analysis tasks are needed. Their dependence
from parallelism grain size and data analysis task decom-
position must be deeply studied. This is needed because
parallelism exploitation depends on several features like
parallel operations, communication overhead, input data
size, I/O speed, problem size, and hardware configur-
ation. Moreover, reliability and reproducibility are two
additional key challenges to be addressed. Indeed at pro-
gramming level, constructs for handling and recovering
communication, data access, and computing failures
must be designed. At the same time, reproducibility in
scalable data analysis asks for rich information useful to
assure similar results on environments that dynamically
may change. All these factors must be taken into ac-
count in designing data analysis applications and tools
that will be scalable on exascale systems.

Moreover, reliable and effective methods for storing,
accessing and communicating data, intelligent techniques
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for massive data analysis and software architectures enab-
ling the scalable extraction of knowledge from data, are
needed [28]. To reach this goal, models and technologies
enabling cloud computing systems and HPC architectures
must be extended/adapted or completely changed to be
reliable and scalable on the very large number of proces-
sors/cores that compose extreme scale platforms and for
supporting the implementation of clever data analysis al-
gorithms that ought to be scalable and dynamic in re-
source usage. Exascale computing infrastructures will play
the role of an extraordinary platform for addressing both
the computational and data storage needs of big data ana-
lysis applications. However, as mentioned before, to have a
complete scenario, efforts must be performed for imple-
menting big data analytics algorithms, architectures, pro-
gramming tools and applications in Exascale systems [24].

Pursuing this objective within a few years, scalable
data access and analysis systems will become the most
used platforms for big data analytics on large-scale
clouds. In a longer perspective, new Exascale computing
infrastructures will appear as the platforms for big data
analytics in the next decades, and data mining algo-
rithms, tools and applications will be ported on such
platforms for implementing extreme data discovery
solutions.

In this paper we first discuss cloud-based scalable data
mining and machine learning solutions, then we exam-
ine the main research issues that must be addressed for
implementing massively parallel data mining applica-
tions on Exascale computing systems. Data-related is-
sues are discussed together with communication,
multi-processing, and programming issues. Section II in-
troduces issues and systems for scalable data analysis on
clouds and Section III discusses design and program-
ming issues for big data analysis in Exascale systems.
Section IV completes the paper also outlining some open
design challenges.

Data analysis on clouds
Clouds implement elastic services, scalable performance
and scalable data storage used by a large and everyday
increasing number of users and applications [2, 12]. In
fact, clouds enlarged the arena of distributed computing
systems by providing advanced Internet services that
complement and complete functionalities of distributed
computing provided by the Web, Grid systems and
peer-to-peer networks. In particular, most cloud com-
puting applications use big data repositories stored
within the cloud itself, so in those cases large datasets
are analyzed with low latency to effectively extract data
analysis models.

Big data is a new and over-used term that refers to
massive, heterogeneous, and often unstructured digital
content that is difficult to process using traditional data
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management tools and techniques. The term includes
the complexity and variety of data and data types,
real-time data collection and processing needs, and the
value that can be obtained by smart analytics. However
we should recognize that data are not necessarily im-
portant per se but they become very important if we are
able to extract value from them; that is if we can exploit
them to make discoveries. The extraction of useful
knowledge from big digital datasets requires smart and
scalable analytics algorithms, services, programming
tools, and applications. All these solutions need to find
insights in big data will contribute to make them really
useful for people.

The growing use of service-oriented computing is ac-
celerating the use of cloud-based systems for scalable
big data analysis. Developers and researchers are adopt-
ing the three main cloud models, software as a service
(SaaS), platform as a service (PaaS), and infrastructure
as a service (IaaS), to implement big data analytics solu-
tions in the cloud [27, 31]. According to a specialization
of these three models, data analysis tasks and applica-
tions can be offered as services at infrastructure,
platform or software level and made available every time
form everywhere. A methodology for implementing
them defines a new model stack to delivery data analysis
solutions that is a specialization of the XaaS (Everything
as a Service) stack and is called Data Analysis as a Ser-
vice (DAaaS). It adapts and specifies the three general
service models (Saa$, PaaS and IaaS), for supporting the
structured development of Big Data analysis systems,
tools and applications according to a service-oriented
approach. The DAaaS methodology is then based on the
three basic models for delivering data analysis services at
different levels as described here (see also Fig. 1):

o Data analysis infrastructure as a service (DAlaaS).
This model provides a set of hardware/software
virtualized resources that developers can assemble
and use as a an integrated infrastructure where
storing large datasets, running data mining
applications and/or implementing data analytics
systems from scratch;

e Data analysis platform as a service (DAPaaS). This
model defines a supporting software platform that
developers can use for programming and running
their data analytics applications or extending
existing ones without concerning about the
underlying infrastructure or specific distributed
architecture issues; and

e Data analysis software as a service (DASaaS). This is
a higher-level model that offers to end users data
mining algorithms, data analysis suites or ready-to-
use knowledge discovery applications as Internet ser-
vices that can be accessed and used directly through
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Data Analysis Frameworks/Suites
for composing
data analysis apps

offered as
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applications ready-to-use
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Fig. 1 The three models of the DAaaS software methodology. The
DAaaS software methodology is based on three basic models for
delivering data analysis services at different levels (application,
platform, and infrastructure). The DAaaS methodology defines a new
model stack to delivery data analysis solutions that is a specialization
of the Xaa$ (Everything as a Service) stack and is called Data Analysis
as a Service (DAaa9). It adapts and specifies the three general service
models (SaaS, PaaS and Saa$), for supporting the structured
development of Big Data analysis systems, tools and applications

according to a service-oriented approach

a Web browser. According to this approach, every
data analysis software is provided as a service, avoid-
ing end users to worry about implementation and
execution details.

Cloud-based data analysis tools

Using the DASaaS methodology we designed a
cloud-based system, the Data Mining Cloud Framework
(DMCEF) [17], which supports three main classes of data
analysis and knowledge discovery applications:

o Single-task applications, in which a single data mining
task such as classification, clustering, or association
rules discovery is performed on a given dataset;

e Parameter-sweeping applications, in which a dataset
is analyzed by multiple instances of the same data
mining algorithm with different parameters; and

e Workflow-based applications, in which knowledge
discovery applications are specified as graphs linking
together data sources, data mining tools, and data
mining models.

DMCEF includes a large variety of processing patterns
to express knowledge discovery workflows as graphs
whose nodes denote resources (datasets, data analysis
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tools, mining models) and whose edges denote depend-
encies among resources. A Web-based user interface al-
lows users to compose their applications and submit
them for execution to the Cloud platform, following the
data analysis software as a service approach. Visual
workflows can be programmed in DMCF through a lan-
guage called VL4Cloud (Visual Language for Cloud),
whereas script-based workflows can be programmed by
JS4Cloud (JavaScript for Cloud), a JavaScript-based lan-
guage for data analysis programming.

Figure 2 shows a sample data mining workflow com-
posed of several sequential and parallel steps. It is just
an example for presenting the main features of the
VLACloud programming interface [17]. The example
workflow analyses a dataset by using n instances of a
classification algorithm, which work on n portions of the
training set and generate the same number of knowledge
models. By using the n generated models and the test
set, n classifiers produce in parallel n classified datasets
(n classifications). In the final step of the workflow, a
voter generates the final classification by assigning a
class to each data item, by choosing the class predicted
by the majority of the models.

Although DMCF has been mainly designed to coordin-
ate coarse grain data and task parallelism in big data
analysis applications by exploiting the workflow para-
digm, the DMCF script-based programming interface
(JS4Cloud) allows also for parallelizing fine-grain opera-
tions in data mining algorithms as it permits to program
in a JavaScript style any data mining algorithm, such as
classification, clustering and others. This can be done
because loops and data parallel methods are run in par-
allel on the virtual machines of a Cloud [16, 26].

Like DMCE, other innovative cloud-based systems de-
signed for programming data analysis applications are:
Apache Spark, Sphere, Swift, Mahout, and CloudFlows.
Most of them are open source. Apache Spark is an
open-source framework developed at UC Berkeley for
in-memory data analysis and machine learning [34].
Spark has been designed to run both batch processing
and dynamic applications like streaming, interactive
queries, and graph analysis. Spark provides developers
with a programming interface centered on a data struc-
ture called the resilient distributed dataset (RDD), that is
a read-only multi-set of data items distributed over a
cluster of machines, that is maintained in a fault-tolerant
way. Differently from other systems and from Hadoop,
Spark stores data in memory and queries it repeatedly so
as to obtain better performance. This feature can be use-
ful for a future implementation of Spark on Exascale
systems.

Swift is a workflow-based framework for implementing
functional data-driven task parallelism in data-intensive
applications. The Swift language provides a functional
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Fig. 2 A parallel classification workflow designed by the VL4Cloud programming interface. The figure shows a workflow designed by the
VL4Cloud programming interface during its execution. The workflow implements a parallel classification application. Tasks/services included in
square bracket are executed in parallel. The results produced by classifiers are selected by a voter task that produces the final classification

programming paradigm where workflows are designed
as a set of calls with associated command-line argu-
ments and input and output files. Swift uses an implicit
data-driven task parallelism [32]. In fact, it looks like a
sequential language, but being a dataflow language, all
variables are futures, thus execution is based on data
availability. Parallelism can be also exploited through the
use of the foreach statement. Swift/T is a new imple-
mentation of the Swift language for high-performance
computing. In this implementation, a Swift program is
translated into an MPI program that uses the Turbine
and ADLB runtime libraries for scalable dataflow pro-
cessing over MPIL Recently a porting of Swift/T on very
large cloud systems for the execution of very many tasks
has been investigated.

DMCE, differently from the other frameworks dis-
cussed here, it is the only system that offers both a visual
and a script-based programming interface. Visual pro-
gramming is a very convenient design approach for
high-level users, like domain-expert analysts having a
limited understanding of programming. On the other
hand, script-based workflows are a useful paradigm for
expert programmers who can code complex applications
rapidly, in a more concise way and with greater flexibil-
ity. Finally, the workflow-based model exploited in
DMCF and Swift make these frameworks of more gen-
eral use with respect to Spark that offers a very re-
stricted set of programming patterns (e.g., map, filter
and reduce) so limiting the variety of data analysis appli-
cations that can be implemented with it.

These and other related systems are currently used for
the development of big data analysis applications on

HPC and cloud platforms. However, additional research
work in this field must be done and the development of
new models, solutions and tools is needed [13, 24]. Just
to mention a few, active and promising research topics
are listed here ordered by importance factors:

o Programming models for big data analytics. New
abstract programming models and constructs hiding
the system complexity are needed for big data
analytics tools. The MapReduce model and workflow
models are often used on HPC and clouds, but more
research effort is needed to develop other scalable,
adaptive, general-purpose higher-level models and
tools. Research in this area is even more important
for Exascale systems; in the next section we will dis-
cuss some of these topics in Exascale computing.

o Reliability in scalable data analysis. As the number
of processing elements increases, reliability of
systems and applications decreases, therefore
mechanisms for detecting and handling hardware
and software faults are needed. Although in [7] has
been proved that no reliable communication
protocol can tolerate crashes of processors on which
the protocol runs, as stated in the same paper some
ways in which systems cope with the impossibility
result can be found. Among them, at programming
level it is necessary to design constructs for handling
communication, data access, and computing failures
and for recovering from them. Programming
models, languages and APIs must provide general
and data-oriented mechanisms for failure detection
and isolation, avoiding that an entire application can
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fail and assuring its completion. Reliability is an issue
much more important in the Exascale domain where
the number of processing elements is massive and
fault occurrence increases making detection and re-
covering vital.

e Application reproducibility. Reproducibility is
another open research issue for designers of
complex applications running on parallel systems.
Reproducibility in scalable data analysis must face,
for example, with data communication, data parallel
manipulation and dynamic computing
environments. Reproducibility demands that current
data analysis frameworks (like those based on Map-
Reduce and on workflows) and the future ones, es-
pecially those implemented on Exascale systems,
must provide additional information and knowledge
on how data are managed, on algorithm characteris-
tics and on configuration of software and execution
environments.

e Data and tool integration and openness. Code
coordination and data integration are main issues in
large-scale applications that use data and computing
resources. Standard formats, data exchange models
and common APIs are needed to support interoper-
ability and ease cooperation among design teams
using different data formats and tools.

e Interoperability of big data analytics frameworks.
The service-oriented paradigm allows running large-
scale distributed applications on cloud heteroge-
neous platforms along with software components
developed using different programming languages or
tools. Cloud service paradigms must be designed to
allow worldwide integration of multiple data analyt-
ics frameworks.

Exascale and big data analysis
As we discussed in the previous sections, data analysis
gained a primary role because of the very large availabil-
ity of datasets and the continuous advancement of
methods and algorithms for finding knowledge in them.
Data analysis solutions advance by exploiting the power
of data mining and machine learning techniques and are
changing several scientific and industrial areas. For ex-
ample, the amount of data that social media daily gener-
ate is impressive and continuous. Some hundreds of
terabyte of data, including several hundreds of millions
of photos, are uploaded daily to Facebook and Twitter.
Therefore it is central to design scalable solutions for
processing and analysis such massive datasets. As a gen-
eral forecast, IDC experts estimate data generated to
reach about 45 zettabytes worldwide by 2020 [6]. This
impressive amount of digital data asks for scalable high
performance data analysis solutions. However, today
only one-quarter of digital data available would be a
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candidate for analysis and about 5% of that is actually
analyzed. By 2020, the useful percentage could grow to
about 35% also thanks to data mining technologies.

Extreme data sources and scientific computing

Scalability and performance requirements are challen-
ging conventional data storages, file systems and data-
base management systems. Architectures of such
systems have reached limits in handling very large pro-
cessing tasks involving petabytes of data because they
have not been built for scaling after a given threshold.
This condition claims for new architectures and analyt-
ics platform solutions that must process big data for
extracting complex predictive and descriptive models
[30]. Exascale systems, both from the hardware and the
software side, can play a key role to support solutions
for these problems [23].

An IBM study reports that we are generating around
2.5 exabytes of data per day.' Because of that continuous
and explosive growth of data, many applications require
the use of scalable data analysis platforms. A well-known
example is the ATLAS detector from the Large Hadron
Collider at CERN in Geneva. The ATLAS infrastructure
has a capacity of 200 PB of disk and 300,000 cores, with
more than 100 computing centers connected via 10
Gbps links. The data collection rate is very high and only
a portion of the data produced by the collider is stored.
Several teams of scientists run complex applications to
analyze subsets of those huge volumes of data. This ana-
lysis would be impossible without a high-performance
infrastructure that supports data storage, communica-
tion and processing. Also computational astronomers
are collecting and producing larger and larger datasets
each year that without scalable infrastructures cannot be
stored and processed. Another significant case is repre-
sented by the Energy Sciences Network (ESnet) is the
USA Department of Energy’s high-performance network
managed by Berkeley Lab that in late 2012 rolled out a
100 gigabits-per-second national network to accommo-
date the growing scale of scientific data.

If we go from science to society, social data and e-health
are good examples to discuss. Social networks, such as
Facebook and Twitter, have become very popular and are
receiving increasing attention from the research commu-
nity since, through the huge amount of user-generated
data, they provide valuable information concerning hu-
man behavior, habits, and travels. When the volume of
data to be analyzed is of the order of terabytes or peta-
bytes (billions of tweets or posts), scalable storage and
computing solutions must be used, but no clear solutions
today exist for the analysis of Exascale datasets. The same
occurs in the e-health domain, where huge amounts of pa-
tient data are available and can be used for improving
therapies, for forecasting and tracking of health data, for
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the management of hospitals and health centers. Very
complex data analysis in this area will need novel hard-
ware/software solutions, however Exascale computing is
still promising in other scientific fields where scalable stor-
ages and databases are not used/required. Examples of sci-
entific disciplines where future Exascale computing will be
extensively used are quantum chromodynamics, materials
simulation, molecular dynamics, materials design, earth-
quake simulations, subsurface geophysics, climate fore-
casting, nuclear energy, and combustion. All those
applications require the use of sophisticated models and
algorithms to solve complex equation systems that will
benefit from the exploitation of Exascale systems.

Programming models features for exascale data analysis
Implementing scalable data analysis applications in Exas-
cale computing systems is a very complex job and it re-
quires high-level fine-grain parallel models, appropriate
programming constructs and skills in parallel and dis-
tributed programming. In particular, mechanisms and
expertise are needed for expressing task dependencies
and inter-task parallelism, for designing synchronization
and load balancing mechanisms, handling failures, and
properly manage distributed memory and concurrent
communication among a very large number of tasks.
Moreover, when the target computing infrastructures are
heterogeneous and require different libraries and tools
to program applications on them, the programming is-
sues are even more complex. To cope with some of
these issues in data-intensive applications, different scal-
able programming models have been proposed [5].
Scalable programming models may be categorized by

i. Their level of abstraction: expressing high-level and
low-level programming mechanisms, and
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iil. How they allow programmers to develop
applications: using visual or script-based
formalisms.

Using high-level scalable models, a programmer de-
fines only the high-level logic of an application while
hides the low-level details that are not essential for ap-
plication design, including infrastructure-dependent exe-
cution details. A programmer is assisted in application
definition and application performance depends on the
compiler that analyzes the application code and opti-
mizes its execution on the underlying infrastructure. On
the other hand, low-level scalable models allow pro-
grammers to interact directly with computing and stor-
age elements composing the underlying infrastructure
and thus define the applications parallelism directly.

Data analysis applications implemented by some
frameworks can be programmed through a visual inter-
face, which is a convenient design approach for
high-level users, for instance domain-expert analysts
having a limited understanding of programming. In
addition, a visual representation of workflows or compo-
nents intrinsically captures parallelism at the task level,
without the need to make parallelism explicit through
control structures [14]. Visual-based data analysis typic-
ally is implemented by providing workflows-based lan-
guages or component-based paradigms (Fig. 3). Also
dataflow-based approaches, that share with workflows
the same application structure, are used. However, in da-
taflow models, the grain of parallelism and the size of
data items are generally smaller with respect to work-
flows. In general, visual programming tools are not very
flexible because they often implement a limited set of
visual patterns and provide restricted manners to
configure them. For addressing this issue, some visual

VISUAL DATA ANALYSIS

workflows

DATA ANALYSIS PROGRAMMING PARADIGMS

component-based

dataflow oriented

SCRIPT-BASED DATA ANALYSIS

complete language (general purpose or domain specific)
annotation-based

library-based

Fig. 3 Main visual and script-based programming models used today for data analysis programming
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languages provide users with the possibility to customize
the behavior of patterns by adding code that can specify
operations executed a specific pattern when an event
occurs.

On the other hand, code-based (or script-based) for-
malism allows users to program complex applications
more rapidly, in a more concise way, and with higher
flexibility [16]. Script-based applications can be designed
in different ways (see Fig. 3):

e With a complete language or a language extension
that allows to express parallelism in applications,
according to a general purpose or a domain specific
approach. This approach requires the design and
implementation of a new parallel programming
language or a complete set of data types and parallel
constructs to be fully inserted in an existing
language.

e With annotations in the application code that allow
the compiler to identify which instructions will be
executed in parallel. According to this approach,
parallel statements are separated from sequential
constructs and they are clearly identified in the
program code because they are denoted by special
symbols or keywords.

e Using a library in the application code that adds
parallelism to the data analysis application.
Currently this is the most used approach since it is
orthogonal to host languages. MPI and MapReduce
are two well-known examples of this approach.

Given the variety of data analysis applications and
classes of users (from skilled programmers to end users)
that can be envisioned for future Exascale systems, there
is a need for scalable programming models with different
levels of abstractions (high-level and low-level) and dif-
ferent design formalisms (visual and script-based), ac-
cording to the classification outlined above.

As we discussed, data-intensive applications are soft-
ware programs that have a significant need to process
large volumes of data [9]. Such applications devote most
of their processing time to run I/O operations and ex-
changing and moving data among the processing ele-
ments of a parallel computing infrastructure. Parallel
processing in data analysis applications typically involves
accessing, pre-processing, partitioning, distributing, ag-
gregating, querying, mining, and visualizing data that
can be processed independently.

The main challenges for programming data analysis
applications on Exascale computing systems come from
potential scalability, network latency and reliability,
reproducibility of data analysis, and resilience of mecha-
nisms and operations offered to developers for accessing,
exchanging and managing data. Indeed, processing very

(2019) 8:4 Page 8 of 16

large data volumes requires operations and new algo-
rithms able to scale in loading, storing, and processing
massive amounts of data that generally must be parti-
tioned in very small data grains, on which thousands to
millions of simple parallel operations do analysis.

Exascale programming systems

Exascale systems force new requirements on program-
ming systems to target platforms with hundreds of
homogeneous and heterogeneous cores. Evolutionary
models have been recently proposed for Exascale pro-
gramming that extend or adapt traditional parallel pro-
gramming models like MPI (e.g,, EPIGRAM [15] that
uses a library-based approach, Open MPI for Exascale in
the ECP initiative), OpenMP (e.g, OmpSs [8] that ex-
ploits an annotation-based approach, the SOLLVE
project), and MapReduce (e.g., Pig Latin [22] that imple-
ments a domain-specific complete language). These new
frameworks limit the communication overhead in mes-
sage passing paradigms or limit the synchronization con-
trol if a shared-memory model is used [11].

As Exascale systems are likely to be based on large dis-
tributed memory hardware, MPI is one of the most nat-
ural programming systems. MPI is currently used on
over about one million cores, therefore is reasonable to
have MPI as one programming paradigm used on
Exascale systems. The same possibility occurs for
MapReduce-based libraries that today are run on very
large HPC and cloud systems. Both these paradigms are
largely used for implementing Big Data analysis applica-
tions. As expected, general MPI all-to-all communica-
tion does not scale well in Exascale environments, thus
to solve this issue new MPI releases introduced neighbor
collectives to support sparse “all-to-some” communica-
tion patterns that limit the data exchange on limited re-
gions of processors [11].

Ensuring the reliability of Exascale systems requires a
holistic approach including several hardware and software
technologies for both predicting crashes and keeping
systems stable despite failures. In the runtime of parallel
APIs, like MPI and MapReduce-based libraries like
Hadoop, if do not want to behave incorrectly in case of
processor failure, a reliable communication layer must be
provided using the lower unreliable layer by implementing
a correct protocol that work safely with every implemen-
tation of the unreliable layer that cannot tolerate crashes
of the processors on which it runs. Concerning MapRe-
duce frameworks, reference [18] reports on an adaptive
MapReduce framework, called P2P-MapReduce, which
has been developed to manage node churn, master node
failures, and job recovery in a decentralized way, so as to
provide a more reliable MapReduce middleware that can be
effectively exploited in dynamic large-scale infrastructures.
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On the other hand, new complete languages such as
X10 [29], ECL [33], UPC [21], Legion [3], and Chapel
[4] have been defined by exploiting in them a
data-centric approach. Furthermore, new APIs based on
a revolutionary approach, such as GA [20] and SHMEM
[19], have been implemented according to a
library-based model. These novel parallel paradigms are
devised to address the requirements of data processing
using massive parallelism. In particular, languages such as
X10, UPC, and Chapel and the GA library are based on a
partitioned global address space (PGAS) memory model
that is suited to implement data-intensive Exascale appli-
cations because it uses private data structures and limits
the amount of shared data among parallel threads.

Together with different approaches, such as Pig Latin
and ECL, those programming models, languages and
APIs must be further investigated, designed and adapted
for providing data-centric scalable programming models
useful to support the reliable and effective implementa-
tion of Exascale data analysis applications composed of
up to millions of computing units that process small
data elements and exchange them with a very limited set
of processing elements. PGAS-based models, data-flow
and data-driven paradigms, local-data approaches today
represent promising solutions that could be used for
Exascale data analysis programming. The APGAS model
is, for example, implemented in the X10 language where
it is based on the notions of places and asynchrony. A
place is an abstraction of shared, mutable data and
worker threads operating on the data. A single APGAS
computation can consist of hundreds or potentially tens
of thousands of places. Asynchrony is implemented by a
single block-structured control construct async. Given a
statement ST, the construct async ST executes ST in a
separate thread of control. Memory locations in one
place can contain references to locations at other places.
To compute upon data at another place, the

at(p)ST

statement must be used. It allows the task to change its
place of execution to p, executes ST at p and returns,
leaving behind tasks that may have been spawned during
the execution of ST.

Another interesting language based on the PGAS
model is Chapel [4]. Its locality mechanisms can be ef-
fectively used for scalable data analysis where light data
mining (sub-)tasks are run on local processing elements
and partial results must be exchanged. Chapel data local-
ity provides control over where data values are stored
and where tasks execute so that developers can ensure
parallel data analysis computations execute near the var-
iables they access, or vice-versa for minimizing the com-
munication and synchronization costs. For example,
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Chapel programmers can specify how domains and ar-
rays are distributed amongst the system nodes. Another
appealing feature in Chapel is the expression of
synchronization in a data-centric style. By associating
synchronization constructs with data (variables), locality
is enforced and data-driven parallelism can be easily
expressed also at very large scale. In Chapel, locales and
domains are abstractions for referring to machine re-
sources and map tasks and data to them. Locales are lan-
guage abstractions for naming a portion of a target
architecture (e.g., a GPU, a single core or a multicore
node) that has processing and storage capabilities. A Jo-
cale specifies where (on which processing node) to exe-
cute tasks/statements/operations. For example, in a
system composed of 4 locales

const Locs : [4 |locale;

for executing the method Filter(D) on the first locale, we
can use

on Locs[0] do Filter(D);

and to execute the K-means algorithm on the 4 locales
we can use

forall Ic in Locs(i) do on Ic do Kmeans();

Whereas locales are used to map tasks to machine
nodes, domain maps are used for mapping data to a tar-
get architecture. Here is a simple example of a declar-
ation of a rectangular domain

const D: domain(2) = {1..n,1..n};

Domains can be also mapped to locales. Similar con-
cepts (logical regions & mapping interfaces) are used in
the Legion programming model [3, 5].

Exascale programming is a strongly evolving research
field and it is not possible to discuss in details all pro-
gramming models, languages and libraries that are con-
tributing to provide features and mechanisms useful for
exascale data analysis application programming. How-
ever, the next section introduces, discusses and classifies
current programming systems for Exascale computing
according to the most used programming and data man-
agement models.

Exascale programming systems comparison

As mentioned, several parallel programming models,
languages and libraries are under development for pro-
viding high-level programming interfaces and tools for
implementing high-performance applications on future
Exascale computers. Here we introduce the most signifi-
cant proposals and discuss their main features. Table 1
lists and classifies the considered systems and in it some
pros and fallacies of different classes are summarized.
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Since Exascale systems will be composed of millions of
processing nodes, distributed memory paradigms, and
message passing systems in particular, are candidate
tools to be used as programming systems for such class
of systems. In this area, MPI is currently the most used
and studied system. Different adaptations of this
well-known model are under development such as, for
example, Open MPI for Exascale. Other systems based
on distributed memory programming are Pig Latin,
Charm++, Legion, PaRSEC, Bulk Synchronous Parallel
(BSP), AllScale API, and Enterprise Control Language
(ECL). Just considering Pig Latin, we can notice that
some of its parallel operators such as FILTER, which se-
lects a set of tuples from a relation based on a condition,
and SPLIT, which partitions a relation into two or more
relations, can be very useful in many highly parallel big
data analysis applications.

On the other side, we have shared-memory models
where the major system is OpenMP that offers a simple
parallel programming model although it does not pro-
vide mechanisms to explicitly map and control data dis-
tribution and includes non-scalable synchronization
operations that are making very challenging its

Table 1 Exascale programming systems classification
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implementation on massively parallel systems. Other
programming systems in this area are Threading Build-
ing Blocks (TBB), OmpSs, and Cilk++. The OpenMP
synchronization model based on locks, atomic and se-
quential sections that limit parallelism exploitation in
Exascale systems are going to be modified and integrated
in recent OpenMP implementations with new tech-
niques and routines that increase asynchronous opera-
tions and parallelism exploitation. A similar approach is
used in Cilk++ that supports parallel loops and hyperob-
jects, a new construct designed to solve data race prob-
lems created by parallel accesses to global variables. In
fact, a hyperobject allows multiple tasks to share state
without race conditions and without using explicit locks.

As a tradeoff between distributed and shared memory
organizations, the Partitioned Global Address Space
(PGAS) model has been designed for implementing a
global memory address space that is logically partitioned
and portions of it are local to single processes. The main
goal of the PGAS model is to limit data exchange and
isolate failures in very large-scale systems. Languages
and libraries based on PGAS are Unified Parallel C
(UPC), Chapel, X10, Global Arrays (GA), Co-Array

Programming Models  Languages

Libraries/APls

Pros and Fallacies

Distributed memory Charm++, Legion, High Performance

Fortran (HPF), ECL, PaRSEC

Shared memory TBB, Cilk++

UPC, Chapel, X10, CAF

Partitioned memory

Hybrid models UPC 4+ MPI, C++/MPI,

MPI, BSP, Pig Latin, AllScale,

OpenMP, OmpSs

GA, SHMEM, DASH, OpenSHMEM, GASPI

MPI + OpenMP, Spark-MPI, FLUX,
EMPI4Re, DPLASMA,

Distributed memory languages/APIs

are very

close to the Exascale hardware model.
Systems in this class consider and deal
with communication latency however
data exchange costs are the main source
of overhead. Except AllScale, and some
MPI version, systems in this class do

not manage network and CPU failures.

Shared memory models do not map
efficiently on Exascale systems,
extensions have been proposed

to perform better dealing with
synchronization and network
failures. No single convincing
solution till now exists.

The local memory model is very
useful but combination with
global/shared memory mechanisms
introduce too much overhead.
GASPI is the only system in this
class enabling applications to
recover from failures.

Hybrid models facilitate the
mapping to the hardware
architectures, however the
different programming routines
compete for resources making
hard to control concurrency
and contention. Resilient
mechanisms are harder to
implement because of the
mixing of different constructs
and data models.
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Fortran (CAF), DASH, and SHMEM. PGAS appears to
be suited for implementing data-intensive exascale appli-
cations because it uses private data structures and limits
the amount of shared data among parallel threads. Its
memory-partitioning model facilitates failure detection
and resilience. Another programming mechanism useful
for decentralized data analysis is related to data
synchronization. In the SHMEM library it is imple-
mented through the shmem_barrier operation that per-
forms a barrier operation on a subset of processing
elements, then enables them to go further by sharing
synchronized data.

Starting from those three main programming ap-
proaches, hybrid systems have been proposed and devel-
oped to better map application tasks and data onto
hardware architectures of Exascale systems. In hybrid
systems that combine distributed and shared memory,
message-passing routines are used for data communica-
tion and inter-node processing whereas shared-memory
operations are used for exploiting intranode parallelism.
A major example in this area is given by the different
MPI + OpenMP systems recently implemented. Hybrid
systems have been also designed by combining message
passing models, like MPI, with PGAS models for
restricting data communication overhead and improving
MPI efficiency in execution time and memory consump-
tion. The PGAS-based MPI implementation EMPI4Re,
developed in the EPiGRAM project, is an example of
this class of hybrid systems.

Associated to the programming model issues, a set of
challenges concern the design of runtime systems that in
exascale computing systems must be tightly integrated
with the programming tools level. The main challenges
for runtime systems obviously include parallelism ex-
ploitation, limited data communication, data dependence
management, data-aware task scheduling, processor het-
erogeneity, and energy efficiency. However, together with
those main issues, other aspects are addressed in run-
time systems like storage/memory hierarchies, storage
and processor heterogeneity, performance adaptability,
resource allocation, performance analysis, and perform-
ance portability. In addressing those issues the currently
used approaches aim at providing simplified abstractions
and machine models that allow algorithm developers
and application programmers to generate code that can
run and scale on a wide range of exascale computing
systems.

This is a complex task that can be achieved by exploit-
ing techniques that allow the runtime system to cooper-
ate with the compiler, the libraries and the operating
system to find integrated solutions and make smarter
use of hardware resources by efficient ways to map the
application code to the exascale hardware. Finally, due
to the specific features of exascale hardware, runtime
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systems need to find methods and techniques that allow
bringing the computing system closer to the application
requirements. Research work in this area is carried out
in projects like XPRESS, StarPU, Corvette DEGAS, lib-
Water [10], Traleika-Glacier, OmpSs [8], SnuCL, D-TEC,
SLEEC, PIPER, and X-TUNE that are proposing innova-
tive solutions for large-scale parallel computing systems
that can be used in exascale machines. For instance a
system that aims at integrating the runtime with the lan-
guage level is OmpSs where mechanisms for data de-
pendence management (based on DAG analysis like in
libWater) and for mapping tasks to computing nodes
and handling processor heterogeneity (the target con-
struct) are provided. Another issue to be taken into ac-
count in the interaction between the programming level
and the runtime is performance and scalability monitor-
ing. In the StarPU project, for example, performance
feedback through task profiling and trace analysis is
provided.

In very large-scale high performance machines and in
Exascale systems, the runtime systems are more complex
than in traditional parallel computers. In fact, perform-
ance and scalability issues must be addressed at the
inter-node runtime level and they must be appropriately
integrated with intra-node runtime mechanisms [25]. All
these issues relate to system and application scalability.
In fact, vertical scaling of systems with multicore paral-
lelism within a single node must be addressed. Scalabil-
ity is still an open issue in Exascale systems also because
speed-up requirements for system software and runtimes
are much higher than in traditional HPC systems and
different portions of code in applications or runtimes
can generate performance bottlenecks.

Concerning application resiliency, the runtime of
Exascale systems must include mechanisms for restart-
ing task and accessing data in case of software or hard-
ware faults without requiring developer involvement.
Traditional approaches for providing reliability in HPC
include: checkpointing and restart (see for instance
MPI_Checkpoint), reliable data storage (through file and
in-memory replication or double buffering), and message
logging for minimizing the checkpointing overhead. In
fact, whereas the global checkpointing/restart technique
is the most used to limit system/application faults, in the
Exascale scenario new mechanisms with low overhead
and highly scalability must be designed. These mecha-
nisms should limit task and data duplication through
smart approaches for selective replication. For example,
silent data corruption (SDC) is recognized to be a crit-
ical problem in Exascale computing. However, although
replication is useful, their inherent inefficiency must be
limited. Research work is carried out in this area to
define technique that limit replication costs while
offering protection from SDC. For application/task
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checkpointing, instead of checkpointing the entire ad-
dress space of the application, as occurs in OpenMP and
MP], the minimal state of the tasks needed to be check-
pointed for the fault recovery must be identified thus
limiting data size and recovery overhead.

Requirements of exascale runtime for data analysis

One of the most important aspect to ponder in applica-
tions that run on Exascale systems and analyze big data-
sets is the tradeoff between sharing data among
processing elements and computing things locally to re-
duce communication and energy costs, while keeping
performance and fault-tolerance levels. A scalable pro-
gramming model founded on basic operations for data
intensive/data-driven applications must include mecha-
nisms and operations for

e Parallel data access that allows increasing data
access bandwidth by partitioning data into multiple
chunks, according to different methods, and
accessing several data elements in parallel to meet
high throughput requirements.

e Fault resiliency that is a major issue as machines
expand in size and complexity. On Exascale systems
with huge amount of processes, non-local communi-
cation must be prepared for a potential failure of
one of the communication sides; runtimes must fea-
tures failure handing mechanisms for recovering
from node and communication faults.

e Data-driven local communication that is useful to
limit the data exchange overhead in massively
parallel systems composed of many cores; in this
case data availability among neighbor nodes dictates
the operations taken by those nodes.

e Data processing on limited groups of cores allows
concentrating data analysis operations involving
limited sets of cores and large amount of data on
localities of Exascale machines facilitating a type of
data affinity co-locating related data and
computation.

e Near-data synchronization to limit the overhead
generated by synchronization mechanisms and
protocols that involve several far away cores in
keeping data up-to-date.

e In-memory querying and analytics needed to reduce
query response times and execution of analytics
operations by caching large volumes of data in the
computing node RAMs and issuing queries and
other operation in parallel on the main memory of
computing nodes.

e Group-level data aggregation in parallel systems is
useful for efficient summarization, graph traversal
and matrix operations, therefore it is of great
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importance in programming models for data analysis
on massively parallel systems.

e Locality-based data selection and classification for
limiting the latency of basic data analysis operations
running in parallel on large scale machines in a way
that the subset of data needed together in a given
phase are locally available (in a subset of nearby
cores).

A reliable and high-level programming model and its
associated runtime must be able to manage and provide
implementation solutions for those operations together
with the reliable exploitation of a very large amount of
parallelism.

Real-world big data analysis applications cannot be
practically solved on sequential machines. If we refer to
real-world applications, each large-scale data mining and
machine learning software that today is under develop-
ment in the areas of social data analysis and bioinfor-
matics will certainly benefit from the availability of
Exascale computing systems and from the use of Exas-
cale programming environments that will offer massive
and adaptive-grain parallelism, data locality, local com-
munication and synchronization mechanisms, together
with the other features discussed in the previous sec-
tions that are needed for reducing execution time and
making feasible the solution of new problems and chal-
lenges. For example, in bioinformatics applications par-
allel data partitioning is a key feature for running
statistical analysis or machine learning algorithms on
high performance computing systems. After that, clever
and complex data mining algorithms must be run on
each single core/node of an Exascale machine on subsets
of data to produce data models in parallel. When partial
models are produced, they could be checked locally and
must be merged among nearby processors to obtain, for
example, a general model of gene expression correlations
or of drug-gene interactions. Therefore for those appli-
cations, data locality, highly parallel correlation algo-
rithms, and limited communication structures are very
important to reduce execution time from several days to
a few minutes. Moreover, fault tolerance software mech-
anisms are also useful in long-running bioinformatics
applications to avoid restarting them from the beginning
when a software/hardware failure occurs.

Moving to social media applications, nowadays the
huge volume of user-generated data in social media plat-
forms, such as Facebook, Twitter and Instagram, are
very precious sources of data from which to extract in-
sights concerning human dynamics and behaviors. In
fact, social media analysis is a fast growing research area
that will benefit form the use of Exascale computing sys-
tems. For example, social media users moving through a
sequence of places in a city or a region may create a
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huge amount of geo-referenced data that include exten-
sive knowledge about human dynamics and mobility be-
haviors. A methodology for discovering behavior and
mobility patterns of users from social media posts and
tweet includes a set of steps such as collection and
pre-processing of geotagged items, organization of the
input dataset, data analysis and trajectory mining algo-
rithm execution, and results visualization. In all those
data analysis steps, the utilization of scalable program-
ming techniques and tools is vital to obtain practical re-
sults in feasible time when massive datasets are
analyzed. The Exascale programming features and re-
quirements discussed here and in the previous sections
will be very useful in social data analysis for executing
parallel tasks like concurrent data acquisition (thus data
items are collected exploiting parallel queries from dif-
ferent data sources), parallel data filtering and data parti-
tioning by the exploitation of local and in-memory
algorithms, classification, clustering and association min-
ing algorithms that are very computing intensive and
need a large number of processing elements working
asynchronously to produce learning models from billions
of posts containing text, photos and videos. The man-
agement and processing of Terabytes of data that are in-
volved in those applications cannot be done efficiently
without solving issues like data locality, near-data pro-
cessing, large asynchronous execution and the other
ones addressed in Exascale computing systems.

Together with an accurate modeling of basic operations
and of the programming languages/APIs that include
them, supporting correct and effective data-intensive ap-
plications on Exascale systems will require also a signifi-
cant programming effort of developers when they need to
implement complex algorithms and data-driven applica-
tions such that used, for example, in big data analysis and
distributed data mining. Parallel and distributed data min-
ing strategies, like

e collective learning,
e meta-learning, and
e ensemble learning,

must be devised using fine grain parallel approaches
to be adapted on Exascale computers. Programmers
must be able to design and implement scalable algo-
rithms by using the operations sketched above specif-
ically adapted to those new systems. To reach this
goal, a coordinated effort between the operation/lan-
guage designers and the application developers would
be very fruitful.

In Exascale systems, the cost of accessing, moving,
and processing data across a parallel system is enormous
[24, 30]. This requires mechanisms, techniques and
operations for capable data access, placement and

(2019) 8:4 Page 13 of 16

querying. In addition, scalable operations must be de-
signed in such a way to avoid global synchronizations,
centralized control and global communications.
Many data scientists want to be abstracted away
from these tricky, lower level, aspects of HPC until
at least they have their code working and then po-
tentially to tweak communication and distribution
choices in a high level manner in order to further
tune their code. Interoperability and integration with
the MapReduce model and MPI must be investigated
with the main goal of achieving scalability on
large-scale data processing.

Different data-driven abstractions can be combined for
providing a programming model and an API that allow
the reliable and productive programming of very
large-scale heterogeneous and distributed memory sys-
tems. In order to simplify the development of applications
in heterogeneous distributed memory environments,
large-scale data-parallelism can be exploited on top of the
abstraction of n-dimensional arrays subdivided in par-
titions, so that different array partitions are placed on
different cores/nodes that will process in parallel the
array partitions. This approach can allow the comput-
ing nodes to process in parallel data partitions at
each core/node using a set of statements/library calls
that hide the complexity of the underlying process.
Data dependency in this scenario limits scalability, so
it should be avoided or limited to a local scale.

Abstract data types provided by libraries, so that they
can be easily integrated in existing applications, should
support this abstraction. As we mentioned above, another
issue is the gap between users with HPC needs and ex-
perts with the skills to make the most of these technolo-
gies. An appropriate directive-based approach can be to
design, implement and evaluate a compiler framework
that allows generic translations from high-level languages
to Exascale heterogeneous platforms. A programming
model should be designed at a level that is higher than
that of standards, such as OpenCL, including also check-
pointing and fault resiliency. Efforts must be carried out
to show the feasibility of transparent checkpointing of
Exascale programs and quantitatively evaluate the
runtime overhead. Approaches like CheCL show that
it is possible to enable transparent checkpoint and
restart, also in high-performance and dependable
GPU computing including support for process migra-
tion among different processors such as a CPU and a
GPU.

The model should enable the rapid development with
reduced effort for different heterogeneous platforms.
These heterogeneous platforms need to include low en-
ergy architectures and mobile devices. The new model
should allow a preliminary evaluation of results on the
target architectures.
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Concluding remarks and future work

Cloud-based solutions for big data analysis tools and
systems are in an advanced phase both on the research
and the commercial sides. On the other hand, new Exas-
cale hardware/software solutions must be studied and
designed to allow the mining of very large-scale datasets
on those new platforms.

Exascale systems raise new requirements on applica-
tion developers and programming systems to target
architectures composed of a very large number of
homogeneous and heterogeneous cores. General issues
like energy consumption, multitasking, scheduling,
reproducibility, and resiliency must be addressed to-
gether with other data-oriented issues like data distribu-
tion and mapping, data access, data communication and
synchronization. Programming constructs and runtime
systems will play a crucial role in enabling future data
analysis programming models, runtime models and
hardware platforms to address these challenges, and in
supporting the scalable implementation of real big data
analysis applications.

In particular, here we summarize a set of open design
challenges that are critical for designing Exascale pro-
gramming systems and for their scalable implementa-
tion. The following design choices, among others, must
be taken into account:

e Application reliability: Data analysis programming
models must include constructs and/or mechanisms
for handling task and data access failures and for
recovering. As new data analysis platforms appear
ever larger, the fully reliable operations cannot be
implicit and this assumption becomes less credible,
therefore explicit solutions must be proposed.

e Reproducibility requirements. Big data analysis
running on massively parallel systems demands for
reproducibility. New data analysis programming
frameworks must collect and generate metadata and
provenance information about algorithm
characteristics, software configuration and execution
environment for supporting application
reproducibility on large-scale computing platforms.

e Communication mechanisms: Novel approaches
must be devised for facing network unreliability [7]
and network latency, for example by expressing
asynchronous data communications and locality-
based data exchange/sharing.

e Communication patterns: A correct paradigm design
should include communication patterns allowing
application dependent features and data access
models, limiting data movement and simplify the
burden on Exascale runtimes and interconnection.

e Data handling and sharing patterns: Data locality
mechanisms/constructs, like near-data computing
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must be designed and evaluated on big data applica-
tions when subsets of data are stored in nearby pro-
cessors and by avoiding that locality is imposed
when data must be moved. Other challenges con-
cern data affinity control data querying (NoSQL ap-
proach), global data distribution and sharing
patterns.

e Data-parallel constructs: Useful models like data-
driven/data-centric constructs, dataflow parallel op-
erations, independent data parallelism, and SPMD
patterns must be deeply considered and studied.

o Grain of parallelism: from very fine-grain to
process-grain parallelism must be analyzed also in
combination with the different parallelism degree
that Exascale hardware supports. Perhaps different
grain size should be considered in a single model to
address hardware needs and heterogeneity.

Finally, since big data mining algorithms often require
the exchange of raw data or, better, of mining parameters
and partial models, to achieve scalability and reliability on
thousands of processing elements, metadata-based infor-
mation, limited-communication programming mecha-
nisms, and partition-based data structures with associated
parallel operations must be proposed and implemented.

Endnotes
"https://www.ibm.com/annualreport/2013/bin/assets/
2013_ibm_annual.pdf

Appendix

Scalability in parallel systems

Parallel computing systems aim at exploiting the capacity
of usefully employing all its processing elements during
application execution. Indeed, only an ideal parallel system
can do that fully because of its sequential times that can-
not be parallelized (As the Amdahls law suggests [35])
and due to several sources of overhead such as sequential
operations, communication, synchronization, [/O and
memory access, network speed, I/O system speed, hard-
ware and software failures, problem size and program in-
put. All these issues related to the ability of parallel
systems to fully exploit their resources are referred as sys-
tem or program scalability [36].

The scalability of a parallel computing system is a
measure of its capacity to reduce program execution
time in proportion to the number of its processing ele-
ments. According to this definition, scalable computing
refers to the ability of a hardware/software parallel sys-
tem to exploit increasing computing resources effectively
in the execution of a software application [37].

Despite the difficulties that can be faced in the parallel
implementation of an application, a framework or a pro-
gramming system, a scalable parallel computation can
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always be made cost-optimal if the number of processing
elements, the size of memory, the network bandwidth
and the size of the problem are chosen appropriately.

For evaluation and measuring scalability of a parallel
program some metrics have been defined and are largely
used: parallel runtime 7(p), speedup S(p) and efficiency
E(p). Parallel runtime is the total processing time of the
program using p processor (with p > I). Speedup is the
ratio between the total processing time of the program
on 1 processor and the total processing time on p pro-
cessors: S(p) = T(1)/T(p). Efficiency is the ratio between
speedup and the total number of used processors: E(p) =
Sp)/p.

Application scalability is influenced by the available
hardware and software resources, their performance and
reliability, and by the sources of overhead discussed be-
fore. In particular, scalability of data analysis applications
are tight related to the exploitation of parallelism in
data-driven operations and the overhead generated by
data management mechanisms and techniques. More-
over, application scalability also depends on the pro-
grammer ability to design the algorithms reducing
sequential time and exploiting parallel operations. Fi-
nally, the instruction designers and the runtime imple-
menters contribute to exploitation of scalability [38]. All
these arguments mean that for realizing exascale com-
puting in practice many issues and aspects must ne
taken into account by considering all the layers of hard-
ware/software stack involved in the execution of Exas-
cale programs.

In addressing parallel system scalability it must be
also tackled system dependability. As the number of
processors and network interconnection increases and
as tasks, threads and message exchanges increase, the
rate of failures and faults increases too [39]. As dis-
cussed in reference [40], the design of scalable paral-
lel systems requires assuring system dependability.
Therefore understanding of failure characteristics is a
key issue to couple high performance and reliability
in massive parallel systems at Exascale size.
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