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Abstract 

The Underwater Internet of Things (UIoT) has emerged as one of the prominent technologies in the development of 
future ocean monitoring systems, where mobile edge elements (such as autonomous underwater vehicles (AUVs)) 
provide a promising method for the data collection from sensor nodes. However, as an important part of the UIoT, 
underwater wireless sensor networks (UWSNs) are severely affected by the underwater dynamic environment. For 
instance, node locations change continuously, which significantly increases the difficulty of data collection. To solve 
this problem, the concept of an inevitable communication space (ICS) is proposed. The ICS is calculated by analyzing 
the variation in the position of nodes and the communication range. Furthermore, an ICS-based dynamic data collec-
tion algorithm (ICS-DDCA) for UIoT is proposed to collect underwater data. This method utilizes the ICS instead of the 
initial location of the node for data collection to further improve the performance of the algorithm and shorten the 
data collection time. The simulation results demonstrate that compared with the energy-efficient data collection over 
AUV-assisted (EEDA) and data collection algorithms based on probabilistic neighborhood (PNCS-GHA), ICS-DDCA can 
effectively reduce the collection time, while ensuring the full completion of data collection.

Keywords UIoT, Underwater wireless sensor networks, Data collection, AUV, Path planning, Mobile node

Introduction
The Internet of Things (IoT) has widely applied in smart 
home, smart city, and transportation [1–4]. As the impor-
tant technologies of the IoT, mobile devices and wireless 
technologies provide great potential developments for 
mobile edge computing [5]. Mobile edge computing is a 
computing paradigm that implements cloud computing 
services on the edges of network by using mobile edge 
devices. Mobile edge devices are closer to the network 
edge and have the advantages of storage, mobility, and 
computing.

As an extension of IoT in the marine environment, 
Underwater Internet of Things (UIoT) has a wide 

application prospect in water quality monitoring, pollu-
tion observation, ocean resource exploration [6], which 
have attracted more and more attention from academic 
institution and industry [7, 8]. Underwater wireless sensor 
network (UWSN) is an imprtant part of the UIoT, which is 
composed of a large number of underwater sensor nodes 
(i.e., anchored nodes, mobile nodes, and surface sink) with 
the ability to sensing, acquisition and communication [9]. 
Underwater node can communicate with other node via 
underwater acoustic links. In most of UIoT, underwater 
sensor nodes are fixed by anchor rope to prevent them 
from being washed away by the current. Anchored sen-
sor nodes towed by rope move within a certain range with 
the water current and perceive data of the surrounding 
environment. Then the perceived data is collected to the 
sink node on water surface or base station on near shore 
for further process. Data collection in the UIoT can be 
regarded as a mobile edge application [10].
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Multi-hop data collection methods and autonomous 
underwater vehicle aided (AUV-aided) data collection 
methods are common methods for data collection [11, 
12]. The advantage of the former is that the data col-
lection delay is shorter than using AUV to collect data. 
However, the drawback of multi-hop data collection is 
that nodes have the problem of unbalanced energy con-
sumption [13, 14]. The forwarding nodes close to the sink 
node consume more energy [15]. Besides, the mobility 
of nodes leads to dynamic changes in the network topol-
ogy and even leads to communication interruption, thus 
affecting the feasibility of the multi-hop data collection 
algorithms. The latter can compensate for the defect of 
unbalanced energy consumption caused by multi-hop 
transmission [16–18] and be more tolerant to frequent 
topology changes. However, in the dynamic underwater 
environment, the actual position of the anchored node 
does not always stay at its initial position because of the 
anchored node moves within a certain range with the 
water current. When AUV moves to the predefined posi-
tion according to a certain strategy, the nodes may have 
deviated from their initial position, hindering data col-
lection. In order to successfully collect the data perceived 
by anchored nodes, AUV needs to move with the node. 
The time of data collection is largely prolonged. This 
study aims to resolve the problem by eliminating the side 
effects caused by the mobility of nodes to reduce the path 
length of AUV and the time of data collection.

To address this problem, a new concept of inevita-
ble communication space (ICS) based on communica-
tion range and movement range of node is proposed. 
By calculating the ICS, AUV does not need to consider 
the exact position of sensor node any more for data col-
lection. As long as AUV passes through the ICS of sen-
sor node, it is ensured to have a link between AUV and 
this node to communicate with each other. Further-
more, an ICS-based dynamic data collection algorithm 

(ICS-DDCA) is proposed to reduce the path length of 
AUV, where the ICS information is used instead of the 
initial position of the anchored nodes to plan the route of 
data collection for AUV.

To the best of our knowledge, using the ICS to elimi-
nate the impact of node mobility is a highly efficient 
method for path planning of AUV. The main contribu-
tions of this study are as follows: 

1 The concept of inevitable communication space 
(ICS) based on node mobility is proposed. The ICS is 
calculated by analyzing the variation in the position 
of nodes and the communication range while fully 
considering the mobility of nodes.

2 An ICS-based dynamic data collection algorithm 
(ICS-DDCA) is proposed, which makes AUV pass 
through the ICS instead of the initial position, 
thereby shortening the path length.

The remainder of this paper is organized as follows. In 
Section  2, a brief survey of underwater data collection 
is presented. Section  3 describes the network model 
of UIoT. Section  4 analyzes the theoretical basis of ICS 
and presents the calculation steps. Section  5 proposes 
an ICS-based dynamic data collection algorithm. The 
experimental results are presented in Section  6. Finally, 
in Section 7, the main results are summarized, and future 
research is discussed.

Related works
Researchers have proposed numerous data collection 
methods for UIoT. Some works are listed in Table 1.

In the multi-hop data collection scheme, nodes trans-
mit data to the sink node through a multi-hop process 
of underwater acoustic communication. A typical multi-
hop collection method is depth-based routing protocol 
(DBR) [19]. DBR transmits data to sink node along the 

Table 1 Comparison of data collection methods

Data collection methods Algorithms Research contributions Shortcomings

Multi-hop data collection DBR [19] Reducing energy consumption and collision Energy imbalance

EECOR [20] Alleviating packet collisions Energy imbalance

RMER [21] Reducing energy consumption Multipath interference

EELA [22] Improving positioning accuracy Energy imbalance

AUV-aided data collection Mobicast [17], GAAP [18], 
PNCS-GHA [23]

Collecting data effectively Large delay

EEDA [24] Balancing energy consumption Suitable for dense networks

PPM-LUWSN [25] Shortening the mobile path while ensuring data 
collection

Suitable for 2D space

SDCS [26] Reducing energy consumption and balancing the 
energy consumption

Some edge nodes may lose 
packets due to movement
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direction of depth reduction. Because the depth infor-
mation of nodes are more accessible, DBR replaces the 
location information with depth information of nodes. 
To address the energy-limitation problem, either the 
best relay nodes are selected or a periodic sleep/activa-
tion mode is used to reduce energy consumption [20, 21]. 
In a sparse network, the routing overhead of data collec-
tion can be reduced via power adjustments. Yuan et  al. 
utilized a single-leader-multi-follower Stackelberg game 
to propose the Energy-Efficient Localization Algorithm 
(EELA) to adjust the communication power [22]. Even 
great efforts have been tried, unbalanced energy con-
sumption is still a non-negligible problem in multi-hop 
data collection scheme.

To solve the unbalanced energy consumption prob-
lem, some studies [17, 18, 23, 27] used AUVs or mobile 
nodes to collect underwater data. Chen et  al. [17] pro-
posed the Mobicast method for static sensor nodes, 
where AUV collects data according to the user-defined 
paths. Gjanci et  al. [18] designed a greedy and adaptive 
AUV path-finding (GAAP) heuristic algorithm to prior-
itize data collection with different information value. Han 
et  al. [23] proposed a data collection algorithms based 
on probabilistic neighborhood for underwater acoustic 
sensor networks (PNCS-GHA), in which the AUV trav-
erses a probabilistic neighborhood covering set for data 
collection. Gao et al. [27] proposed that the target nodes 
in the monitoring area can be covered by multiple AUVs 
or multiple mobile nodes to complete the data collec-
tion. To balance the energy consumption of the nodes, 
Yan et al. [24] proposed the energy-efficient data collec-
tion over AUV-assisted (EEDA), in which the network is 
divided into several small areas according to the deploy-
ment of data receivers. The sensor nodes relay data to a 
data receiver through a rigid graph, and AUV traverses 
the data receivers to retrieve the data. In [10, 28], it is 
assumed that the network is clustered with cluster heads 
and ordinary nodes. The ordinary node sends data to its 
cluster head, and AUV visits all the cluster heads to col-
lect data. The energy consumption is balanced by regu-
larly updating cluster heads. Cheng et  al. [29] proposed 
a data gathering protocol that considers the importance 
of data. Important data are transmitted to the sink node 
through multi-hop routing. Other nodes forward the 
data to nodes close to AUV. Then, these nodes transmit 
the data directly to AUV.

Considering node mobility, Zhou et al. [25] proposed 
a path planning method based on the location uncer-
tainty of water surface nodes (PPM-LUWSN) to collect 
data. In this structure, multiple anchored nodes are fixed 
at different depths via an anchor rope, and the anchor 
nodes located on the same rope transmit data to the 

water surface nodes through multi-hop transmission. 
Then, a high-altitude unmanned aerial vehicle (UAV) 
visits the water surface nodes to collect the stored data, 
which are restricted mobile nodes. The deviation range 
of the water surface node is limited to a circle, thus, this 
method is suitable for 2D structures in special environ-
ments. In a 3D underwater space, the movement of the 
nodes is more complex. The deviation range of the nodes 
is no longer limited to a circle, but a 3D space. Consider-
ing the characteristics of water delamination, Han et al. 
[26] divided the network into two layers with different 
mobility characteristics, and proposed a stratification-
based data collection scheme (SDCS). The nodes in the 
upper layer move with the water flow, and transmit data 
through a multi-hop process. The nodes in the lower 
layer are considered as relatively static, and AUV is used 
to collect data in this layer. By using different data col-
lection algorithms in different network layers, the energy 
consumption of nodes can be reduced and the network 
lifetime can be prolonged. However, this method is suit-
able for the specific underwater environment.

In summary, the existing data collection methods rarely 
consider the data collection problem due to node move-
ment in a 3D underwater space. For a 3D dynamic under-
water environment, the sensor node may have moved 
to other locations before AUV arrives at the pointed 
location according to the planned path. Therefore, it 
increases the difficulty of data collection and prolongs the 
time of data collection. Thus, static location-based path 
planning of AUV is not adequate for effective data col-
lection. Therefore, considering the mobility of nodes in 
3D underwater environment, a dynamic data collection 
algorithm is proposed in this paper. This article attempts 
to reduce the time of data collection and improve the effi-
ciency of data collection.

Network model
Model description
We investigate the problem in a 3D underwater space 
with a monitoring area of L×W ×H , where L, W, and 
H are length, width, and depth respectively. The moni-
toring area is described by a 3D coordinate system with 
coordinate axes, as illustrated in Fig.  1. The UIoT con-
sists of N underwater anchored nodes, capable of sensing 
data from surrounding environment, and AUV can move 
around and be responsible for collecting the data sensed 
by underwater anchored nodes. The set of anchored 
nodes is V = {V1,V2, . . . ,VN } . The anchored sensor 
nodes are prone to deviate from their initial position and 
move within a spherical crown surface due to the influ-
ence of water flow [30, 31].
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For ∀Vk ∈ V  , its communication radius and devia-
tion radius at time t are denoted as Rc(k) and Ra(k)t . As 
shown in Fig. 2, θ is the maximum offset angle, φt

k is the 
current offset angle with respect to the initial position 
of node Vk , and lk is the length of anchor rope of node 
Vk . The deviation radius at time t can be calculated by 
lk and φt

k , that is Ra(k)t = lk sin φ
t
k [30]. During the off-

set movement, the possible locations of anchored node 
Vk shape a spherical crown SCk . The node coordinates 
regarding the initial and offset positions at time t are 
denoted as (x0

k
, y0

k
, lk ) and (xtk , y

t
k , z

t
k) , respectively. Conse-

quently, based on the initial position and offset angle, the 
coordinate of Vk at time t can be expressed as [30, 31]

where φt
k ∈ (0, θ] , φ ′t

k  is the angle between the projection 
of the anchored rope in the x-y plane and the x-axis. The 
distance between the initial position and current position 
of node is 

√

(xt
k
− x0

k
)2 + (yt

k
− y0

k
)2 + (zt

k
− lk )

2 = lk

√

2(1 − cos�t
k
) . 

When the length of the anchor rope is fixed, the larger 
the offsetting angel is, the longer the distance of node 
motion will be. The offset angle determines whether the 

(1)
xtk = x0k + lk sin φ

t
k cosφ

′t
k

ytk = y0k + lk sin φ
t
k sin φ

′t
k

ztk = |lk cosφ
t
k |

node is still in the initial communication range after 
movement.

The offset angle is related to the movement of the 
current model. According to the typical multi-layer 
current model [32], the network monitoring area is 
divided into several layers. The ocean currents move at 
a constant speed and direction within a certain layer. 
The speed and direction of ocean currents affect the 
offset angle. In a more realistic scenario, a layer with 
greater depth has a smaller current velocity [33]. The 
nearer a layer is to the water surface, the greater the 
water flow rate is.

Definitions and assumptions
Homogeneous anchored sensor nodes are considered 
in this paper. All anchored sensor nodes are assumed 
to have the same capability of computing, sensing, and 
communication. To clarify the network model and sim-
plify the problem, other assumptions and definitions are 
provided.

Assumptions: 

1 The anchor nodes are randomly deployed in the 3D 
underwater environment.

Fig. 1 Network architecture
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2 The initial locations of anchored nodes are known 
(e.g., from manual deployment or by using localiza-
tion techniques), but the locations after movement 
are unknown.

3 Ram(k) < Rc(k) , Ram(k) is the maximum deviation 
radius corresponding to the maximum offset angle θ.

4 The velocity of AUV is constant and set to vm.

Definition 1: Inevitable communication space (ICS) 
of node. For ∀Vk ∈ V  , the ICS of Vk is defined as 
ICS(Vk ,Rc(k)) = ∩∀pk∈SCk

{q | d(pk , q) ≤ Rc(k)} , where 
q is a point in UIoT and pk is a point in SCk.

Calculation of ICS
Owing to the influence of water flow, the anchored 
nodes are likely to drift off their initial positions. Fur-
thermore, their deviation range is a spherical crown 
surface, as shown in Fig. 2. The red dotted sphere rep-
resents the possible communication range when the 
node is at the current deviation position. The offset 
movement of nodes within the spherical crown sur-
face results in an uncertain node position. The location 
uncertainty increases the difficulty of underwater data 
collection. To reduce the time and difficulty of collect-
ing data while considering the node offset movement, 
the ICS of nodes is calculated, which is the intersection 
of all possible communication ranges.

When the communication radius is larger than the 
maximum deviation radius, the ICS of nodes exists. 
Regardless of where the node is within its deviation 

range, AUV can communicate with the sensor node 
granted it passes through the ICS.

Calculating the ICS of a node is crucial. The calculation 
steps of the ICS are as follows:

Step 1. According to the sampling segmentation 
method, the offset angle is evenly divided into several 
equal angles. Then, we cut the spherical crown surface 
into several circles with decreasing radii, as shown in 
Fig. 3(a). The anchored node can be seen as moving on 
the circles whose center is on a straight line but whose 
radius varies. The circles are called deviation circles. A 
3D spherical communication range exists at each possi-
ble location, as shown in Fig. 3(a). In Fig. 3(a), O1 and O2 
are the boundary locations where node Vk moves to the 
boundary of its deviation range. The red dotted sphere 
centered at O1 with a radius of Rc(k) in Fig. 3(a) shows the 
communication range of node Vk at its deviation position 
at present time.

Step 2. When node Vk moves to two symmetrical posi-
tions of a deviation circle, there is an intersection area 
because the communication radius is greater than the 
deviation radius, as shown in Fig.  3(b). In Fig.  3(b), the 
black circle represents a deviation circle. The gray dotted 
spheres with a radius Rc(k) show the 3D communication 
ranges of node Vk at the two symmetrical positions. The 
red areas represent the intersection areas between the 
two communication ranges.

Step 3. The intersection area can be obtained 
by calculating the communication and the devia-
tion radii. As shown in Fig.  3(b), the minor and 

Fig. 2 Model of node movement
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major axis semidiameters of the intersection area 
can be obtained from the communication and cur-
rent deviation radii. The major axis semidiameter 
R1(k) = R3(k) =

√

Rc(k)2 − Ra(k)t2 , minor axis semid-
iameter R2(k) = Rc(k)− Ra(k)t , and 

√

Rc(k)2 − Ra(k)t2

> (Rc(k)− Ra(k)t).
Step 4. As shown in Fig. 3(c), the purple area is the inter-

section area that described in the Fig.  3(b). As the node 
moves, it becomes the blue area in Fig.  3(c) when the 
intersection area rotates 180 degrees. As the intersection 
region rotates, the intersection of all possible communi-
cation areas on a deviation circle is a sphere with radius 
R2(k), as shown in Fig. 3(c). There is an intersection area 
on each deviation circle. The intersection of the intersect-
ing areas on all deviation circles constitutes an inevitable 
communication space (ICS). Regardless of where the node 
is within its deviation range, AUV can communicate with 
the node granted it passes through the ICS.

For ∀Vk ∈ V  , when the node moves from boundary 
position to initial position, sin φt

k and Ra(k)t decrease, 
since Ra(k)t = lk sin φ

t
k . Because communication radius 

Rc(k) is a fixed value, and the deviation radius Ra(k)t 
decreases as the offset angle decreases, R1(k), R2(k), and 
R3(k) are all increased. The intersection area with radius 
R2(k) increases gradually as shown in Fig.  3(d). When 
Ra(k)t = Ram (i.e., R2(k) = Rc(k)− Ram ), the intersec-
tion area is at the minimum, and when Ra(k)t = 0 (i.e., 
R2(k) = Rc(k) ), the intersection area is at the maximum. 
The ICS of node can be seen as the intersection of the 
maximum and minimum intersection area. The green 
area in Fig. 3(d) represents the ICS of node.

Hence, for ∀Vk ∈ V  , the ICS(Vk ,Rc(k)) can be calcu-
lated using the communication range and the deviation 
radius. The ICS of node satisfies the following conditions:

where (x0k , y
0
k , lk) is the initial position coordinate of node 

Vk , and (x0k , y
0
k , lk cos θ) is the center coordinate of the 

maximum deviation circle of node Vk.
Therefore, the ICS of a node can be calculated using 

the initial position, maximum offset angle, com-
munication radius, and maximum deviation radius. 
And the size of ICS is mainly determined by the 
minimum value of R2, the minimum value of R2 is 
R2 = Rc − Ram = Rc − lk sinθ.

ICS‑DDCA
Path planning procedure
According to the ICS obtained in previous section, this 
section combines ICS and path planning of AUV to 
reduce the time of data collection. Suppose AUV can 
move continuously in any direction and stop anywhere, 
and the area has no obstacles that hinder AUV move-
ment. AUV dives underwater at regular intervals to col-
lect relevant data sensed by the anchored nodes.

Most methods regard the path planning of AUV as a 
traveling salesman problem (TSP), which is a class of 
NP hard problems. AUV moves to the initial position 
of the nodes to collect data. If the node deviates from 
its initial position, its current position coordinates need 

(2)
{

(x − x0
k
)2 + (y − y0

k
)2 + (z − lk )

2 ≤ Rc2

(x − x0
k
)2 + (y − y0

k
)2 + (z − lk cos �)

2 ≤ (Rc − Ram)
2

Fig. 3 The calculation steps of ICS
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to be predicted using different prediction approaches. 
Then AUV moves toward the predicted position coordi-
nates of node. The operations of location prediction and 
AUV movement are repeated until AUV successfully 
visits all nodes and collects the data. The uncertainty 
movement of nodes increases the difficulty of data col-
lection, as well as the time of collection.

The focus of this study is to propose an ICS-based 
dynamic data collection algorithm (ICS-DDCA), in which 
AUV moves to ICS rather than the initial position of node 
to visit nodes and collect data. The travel time of AUV from 
node Vi to node Vj is t(i, j) = d(pi ,pj)

vm
 , where d(pi, pj) is the 

travel distance of AUV, pi is the point in ICS(Vi,Rc(i)) , and 
vm is the moving velocity of AUV. Suppose that AUV starts 
from the sink node. Then, the objective function that mini-
mizes the data collection time can be formulated as:

If AUV moves from node Vi to Vj , then aij = 1 , other-
wise aij = 0 . The first constraint indicates that AUV can 
only leave once for each node. N + 1 indicates that AUV 
eventually returns to the sink node and unloads the 
collected data. The second constraint means that AUV 
can only arrive once to each node. The third constraint 
indicates that all nodes must be visited. In contrast 
to the traditional methods that use the original posi-
tion directly for the distance calculation, our proposed 

(3)

Min(

N+1
∑

i

N+1
∑

j

aijt(i, j))

s.t.
∑

i∈V

aij = 1, ∀j ∈ {1, · · · ,N + 1}, i �= j

∑

j∈V

aij = 1, ∀i ∈ {1, · · · ,N }, i �= j

N+1
∑

i

N+1
∑

j

aij = N + 1

aij = {0, 1}, ∀i, j ∈ V

method also needs to consider the uncertainty caused 
by node mobility when calculating the movement dis-
tance for AUV.

In order to plan the path of AUV, we must solve 
the problems of determination of target node and the 
determination of destination location coordinates on 
ICS of the target node. The target node is determined 
based on the 3D convex hull algorithm. After select-
ing the target node Vk , it is necessary to determine 
a point pk in ICS as the destination location coordi-
nates after AUV moves. The details of ICS-DDCA are 
as follows:

Step 1. The calculation of ICS. The ICS of each 
anchored node is calculated using Eq. (2). Then, the 
boundary information of ICS is determined.

Step 2. The selection of target node. Using the 3D con-
vex hull algorithm, a maximum 3D convex polyhedron is 
determined by connecting the initial location coordinates 
of nodes to the sink node, as shown by gray solid line in 
Fig. 4(a).

Step 3. The center of the convex polyhedron is point 
o. The intersection of the line between the vertex and 
the center of convex polyhedron and the ICS of node is 
regarded as the target location point. These target loca-
tion points are connected as the initial path, as indicated 
by black dotted line in Fig. 4(a).

Step 4. There are still some discrete anchored nodes 
in polyhedron. When the minimum distance between 
initial position of these nodes and the nearest initial 
path is less than communication radius, AUV can visit 
these node when passing through this path. Otherwise, 
the target location points of these nodes need additional 
calculation. The intersection of the shortest distance 
and ICS is regarded as the target location point of dis-
crete sensor nodes, as indicated by black dotted line in 
Fig. 4(b).

Step 5. The total time of AUV visiting all nodes is 
calculated.

Fig. 4 The process of ICS-DDCA
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The process of data collection is described as Algorithm 1.

Algorithm  1 Data Collection Algorithm ICS-DDCA-
This algorithm operates as follows. First, according to 
the communication radius and the maximum offset 
angle θ , the boundary location coordinates, where the 
node moves to the boundary of its deviation range, are 
computed using Eq. (1) for each node in V. The ICS of a 
node is calculated using Eq. (2) (Lines 1 to 4). The ini-
tialization parameters and the maximum 3D convex 
polyhedron are determined by connecting the initial 
location coordinates of nodes to the sink node (Lines 
5 to 9). Then, according to the ICS of nodes, target 
location points are calculated, and the visit sequence 
is determined (Lines 10). By calculating the distance 
between discrete nodes and convex polyhedron, we can 
determine whether the discrete nodes can be visited. 
If the distance is greater than communication radius, 
the target location point on ICS needs to be calculated 
(Lines 11 to 16). When all nodes are visited, the time of 
data collection T is returned.

Analysis of ICS‑DDCA
The advantage of ICS
Let’s first analyze the advantages of ICS computing for 
data collection. In the case of communication radius is 
large enough, in order to ensure that AUV can com-
municate with node, it moves to the initial position of 

node to collect the data. As shown in the Fig. 5, AUV 
moves from point A to the initial position B4 of node 
to collect data, and the moving distance is |AB4| . For 
ICS-DDCA, the effect of data collection using ICS of 
node is the same as that using initial position. How-
ever, if ICS of node is used, the moving distance of 
AUV is |AB| , and |AB| < |AB4| . That is, using ICS of 
node can reduce the unnecessary path of AUV mov-
ing from region boundary of ICS to initial position of 
node, which helps to shorten the path length of AUV 
and time of data collection.

If AUV communicates with a node based on the com-
munication radius, that is, AUV moves to the edge of 
the communication area to communicate with the 
node, AUV needs to adjust the movement trajectory 
according to the position of node. Some localization 
or prediction schemes are used to determine the loca-
tion of nodes. The trajectory of AUV moving with node 
is shown in Fig. 5. The moving distance of AUV based 
on the position of node is |AB1| . For effective data col-
lection, the trajectories of AUV moving with the node 
are |B1B2| and |B2B3| . Owing to the limitations of cost, 
energy, and environment, the locations of nodes are 
inaccurate. In other words, the movement of node in 
its deviation range increases the path length of AUV 
and the time of data collection. Moreover, positioning 
and prediction algorithm increase the cost of network. 
Compared with using communication radius, using ICS 
can avoid some needless moving paths of AUV due to 
AUV moves with node.

Fig. 5 Comparison of calculating distance
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Analysis of complexity
The time complexity of PNCS-GHA is O(N 2) . For 
EEDA, the time complexity of constructing a optimal 
rigid graph in a subarea is O(N 3) . Thus, the complexity 
of constructing rigid graphs in M subareas is O(M · N 3) . 
The complexity of routing algorithm in a subarea is O(N). 
Therefore, the complexity of EEDA is O(M · N 3) . The 
time complexity of ICS-DDCA is related to the num-
ber of nodes. The time complexity for calculating ICS of 
nodes is O(N). According to algorithm  1, the complex-
ity of constructing a convex polyhedron is O(NlogN). 
The time complexity of adding discrete nodes to the 
visit sequence composed of a 3D convex polyhedron is 
O(N −M) , where M is the number of nodes that make up 
the polyhedron. As a result, the time complexity of ICS-
DDCA is O(N )+ O(NlogN )+ O(N −M) = O(NlogN ) . 
Therefore, the complexity of the proposed scheme is 
smaller than those of the EEDAc and PNCS-GHA. The 
performance advantage of ICS-DDCA is shown by the 
simulation results in next section.

Simulation evaluation
ICS-DDCA is evaluated by observing the performance 
variation when adopting different parameters and by 
comparing ICS-DDCA to EEDA, PNCS-GHA. For 
EEDA, AUV selects the next cluster to be visited based 
on the distance. AUV moves to the communication range 
of cluster-head node to collect data. If cluster-head node 
moves out of the communication range of initial position, 
the path of AUV needs to be adjusted according to the 
node position to complete the data collection. PNCS-
GHA is a nearest neighbor heuristic trajectory plan-
ning algorithm, in which AUV traverses a probabilistic 
neighborhood covering set for data collection. Similarly, 
the path of AUV needs to be adjusted again when node 
moves out of the communication range of initial position. 
EEDA-ICS is the improved algorithm of EEDA that takes 
into account the ICS of node.

ICS-DDCA is implemented in MATLAB, and the 
result is the average of 10 repetitive simulation results. 
N anchored sensor nodes are randomly distributed in an 
underwater convex space. Every node has the same maxi-
mum offset angle.

The offset angle is determined by the velocity and 
direction of water flow that lashes the node. The relation-
ship between velocity of the water flow and offset angle 
can be analyzed through the force balance of node [34]. 
According to the result of [34], it can be calculated as

where ξ is a constant environmental parameter value, and 
−−→
uk(t) is the velocity at which the water flow lashes node 

(4)φt
k = arctan ξ

−−→
uk(t)

2
,

Vk at time t. In the multi-layer current model, the cur-
rent velocity is related to depth. The nearer a layer is to 
the water surface, the greater the water flow rate is. The 
water velocity is u.

It can be observed from Eq. (4) that offset angle φt
k 

of node Vk in time t is related to the square of velocity 
−−→
uk(t)

2 . Furthermore, when the velocity reaches its maxi-
mum value, the offset angle can also obtain its maximum 
value. In other words, the offset angle can be obtained 
when the velocity and direction of the current are given. 
In multi-layer current model, the velocity and direction 
of water flow are constant at a certain depth. In other 
words, the velocity of water flow affects the offset angle 
and the movement of nodes. The parameters are shown 
in Table 2.

The effect of number of nodes
The data collection time with respect to varying num-
ber of nodes using EEDA, PNCS-GHA, EEDA-ICS, and 
ICS-DDCA are compared. Figure  6 illustrates the data 
collection time with Rc = 200m and vm = 1m/s . From 
Fig. 6, it is observed that the data collection time of ICS-
DDCA is less than that of the other algorithms. Because 
the ICS-DDCA proposed in this study states that AUV 
moves directly to ICS to collect data, AUV does not need 
to move according to the node deviation. For EEDA-
ICS, AUV moves directly to ICS to collect data as well. 
Therefore, it takes less time than EEDA. For EEDA and 
PNCS-GHA, AUV needs to move according to the 
node deviation. Therefore, they take more time than 
ICS-DDCA.

The effect of communication radius
Figure  7 shows that the communication radius of sen-
sor nodes has a significant influence on data collection 
time. With an increase in the communication radius, 
the ICS becomes larger, so it takes less time for AUV to 
collect data from ICS than from initial position. There-
fore, ICS-DDCA effectively reduces the time required 

Table 2 The basic simulation parameters

Parameter Description Value

N Number of sensor nodes 5-30

L × W × H Deployment space 10
3 × 10

3 × 10
3
m

Rc Communication radius 50-500m

θ Maximum offset angle π/18

u Water velocity 0.5-2m/s

vm Speed of AUV 0.5-5 m/s

m Number of layers 5
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for data collection via the ICS construction. With an 
increase in communication radius, the advantages of 
ICS-DDCA are becoming increasingly obvious. When 
communication radius is sufficiently large, AUV can suc-
cessfully collect data as long as it passes the initial loca-
tion of node. Therefore, when N = 5 and vm = 1m/s , the 
data collection time of PNCS-GHA remains unchanged 
after Rc = 250m . Compared to EEDA and PNCS-GHA, 
ICS-DDCA reduces the time required for data collec-
tion by 26.7% and 33.84%, respectively, when Rc = 250m . 
When communication radius is large enough, the time 

of ICS-DDCA cannot be infinitely reduced, it tends to 
a certain range. For EEDA-ICS, AUV moves directly to 
ICS to collect data, and AUV does not need to move with 
node. Therefore, it takes less time than the EEDA. How-
ever, it selects the node closest to AUV as the next visit 
node. It tends to be trapped in local optima. Therefore, it 
takes more time than the ICS-DDCA.

The effect of the speed of AUV
The speed of AUV has a significant influence on the 
data collection time, as shown in Fig.  8. Figure  8(a) 

Fig. 6 Data collection time with different N 

Fig. 7 Data collection time with different Rc 
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shows a comparison of the data collection times of 
EEDA, PNCS-GHA, EEDA-ICS, and ICS-DDCA with 
respect to different speed settings of AUV, where N = 5 
and Rc = 200m . In Fig.  8(a), when the speed of AUV 
is very small, it requires more time to chase the mov-
ing sensor nodes. For EEDA and PNCS-GHA, it takes 
a longer time to complete data collection. However, 
when the speed of AUV is greater, the collection time 
is reduced. When the speed of AUV is greater, it can 
catch up with the sensor nodes to complete data col-
lection before the node moves too far. According to 
Fig. 8(a), we can conclude that the time of ICS-DDCA 
is less than EEDA, PNCS-GHA, and EEDA-ICS regard-
less of the change in AUV speed. This is because AUV 
in ICS-DDCA passes through the ICS of node to collect 
data. When the speed of AUV is greater, the results of 
EEDA and EEDA-ICS are almost the same. In the fol-
low-up analysis, ICS-DDCA is mainly compared with 
EEDA and PNCS-GHA.

The mobility of anchored nodes has a significant 
influence on data collection time. In Fig.  8(b), Z-axis 
represents the time taken by AUV to complete data 
collection, X-axis represents the speed of AUV, and 
Y-axis represents the water velocity. According to 
physical oceanography, the water velocity is usually 1 
m/s to 2 m/s on average. The water velocities of 1m/s 
and 2m/s are recorded as the general velocity and 
faster velocity, respectively. The water velocity can-
not be zero in the actual situation. In this paper, the 
flow velocity of 0.5m/s is considered close to static 
[26]. When the water flows slowly, nodes move slightly 
(nodes can be regarded as stay at the initial position), 
the time required for data collection will be reduced 

with the increase of the speed of AUV. When the speed 
of AUV is large enough, the time of ICS-DDCA is close 
to that of EEDA and PNCS-GHA. However, when 
AUV is slow, even if the nodes move slightly, AUV 
still requires more time to chase the moving sensor 
nodes. Thus, it takes more time to complete data col-
lection. Compared to EEDA and PNCS-GHA, the time 
required for data collection of ICS-DDCA is signifi-
cantly shorter.

The effect of node movement
The influence of node mobility and communication 
radius on time was observed and analyzed in this simu-
lation. Two observations can be seen in Fig.  9. When u 
is fixed, an increase in Rc results in a reduction in col-
lection time. When communication radius is sufficiently 
large, the data collection time of PNCS-GHA remains 
unchanged, while the data collection time of EEDA and 
ICS-DDCA tends to a certain range. The time of EEDA 
and PNCS-GHA is greater than that of ICS-DDCA. 
The time of PNCS-GHA is also greater than that of the 
EEDA. If communication radius is sufficiently large, AUV 
can successfully collect data when it moves to initial posi-
tion of node. For EEDA, AUV moves to communication 
range of the node to collect data. Therefore, the time of 
EEDA is less than that of PNCS-GHA. When Rc is fixed, 
the collection time increases as u increases. If nodes 
move frequently, AUV requires more time to chase the 
moving sensor nodes. For ICS-DDCA, when Rc is suffi-
ciently large, the offset movement of nodes does not lead 
to a change in data collection time. No matter how the 
nodes move, as long as the ICS is formed, AUV can pass 
through ICS to collect data. Therefore, the value of u has 

Fig. 8 The effect of the speed of AUV
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an inconspicuous effect on the collection time when Rc is 
sufficiently large.

The effect of length of anchor rope
For multi-layer current model, the layer with great-
est depth has the smallest current velocity. The depth 
of node is determined by the length of anchor rope. 
The nodes close to the water surface with a longer 
anchor rope are greatly affected by the flow. Thus, 
these nodes move more frequently. In addition, for 
∀Vk ∈ V  , the maximum deviation radius of Vk is defined 
as Ram(k) = lk sin θ , and Ram(k) < Rc(k) . When the 
maximum offset angle θ is fixed, the maximum devia-
tion radius increases as lk increases. According to the 
previous analysis, the major and minor axis semi-
diameters of the intersection area on a deviation cir-
cle are R1(k) = R3(k) =

√

Rc(k)2 − Ra(k)t2 , and 
R2(k) = Rc(k)− Ra(k)t , respectively. Because commu-
nication radius Rc(k) is a fixed value, and the deviation 
radius Ra(k)t increases as lk increases, while R1(k), R2(k), 
and R3(k) all decrease. Thus, the ICS of node Vk is small. 
The nodes with longer anchor ropes have greater devia-
tion ranges and smaller ICS. For ∀Vk ∈ V  , when commu-
nication radius Rc(k) = 200m and the maximum offset 
angle θ = π/18 , the length of anchor rope can be calcu-
lated as lk < Rc(k)/ sin θ.

Figure  10 illustrates the influence of the length of 
anchor rope with Rc(k) = 200m , θ = π/18 , vm = 1m/s , 
and N = 5 . When u is fixed, an increase in lk results in 
a reduction in collection time. As lk becomes longer, 
the node is closer to the sink node located on the 
water surface, and the time AUV takes to collect data 
becomes smaller. However, ICS of the node decreases 

as lk increases. Therefore, the time taken by AUV to 
collect data becomes dynamically smaller. The times of 
EEDA and PNCS-GHA are greater than that of ICS-
DDCA. For ICS-DDCA, the offset movement of nodes 
does not lead to a change in data collection time when 
Rc(k) = 200m . AUV collects data via the ICS. For 
EEDA and PNCS-GHA, when lk is fixed, the collection 
time increases as u increases. Therefore, regardless of 
the length of anchor rope, as long as the ICS can be 
formed, ICS-DDCA requires less time to collect data.

Therefore, ICS-DDCA effectively shortens the time 
of data collection in 3D UIoT. Compared to PPM-
LUWSN proposed by Zhou et al., we propose the con-
cept of ICS and extend the ICS to a 3D underwater 
environment. In dynamic underwater sensor networks, 
it is important to consider both the ICS and path plan-
ning of AUV. This algorithm, which considers the joint 
problem of ICS and path planning, is also suitable for 
other 3D scenes.

Conclusion
To solve the dynamic data collection problem of node 
location uncertainty in complex marine environments, we 
propose an ICS-based dynamic data collection algorithm 
(ICS-DDCA). First, the concept of an inevitable commu-
nication space (ICS) is proposed. The ICS is obtained by 
analyzing the deviation range and communication radius 
of anchored sensor nodes. Then, the problems of ICS and 
path planning are considered jointly to improve the per-
formance of data collection algorithms and shorten the 
data collection time. Compared to previous algorithms, 
ICS-DDCA extends the concept of ICS to a 3D under-
water environment and improves the performance of 

Fig. 9 Influence of node mobility and radius
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underwater data collection algorithms. The simulation 
results show that ICS-DDCA shortens the time of data 
collection through constructing ICS. Compared to EEDA, 
PNCS-GHA, and EEDA-ICS, ICS-DDCA reduces the 
time required for data collection. Compared to EEDA, 
EEDA-ICS reduces the time required for data collection. 
AUV does not need to be adjusted when nodes deviate 
from their initial positions. Thus, the ICS concept can be 
combined with other algorithms to further improve the 
performance of the algorithms.

In the future work, the proposed algorithm can be 
applied to other application scenarios, such as, target 
detection, navigation and obstacle avoidance, hierarchi-
cal data collection, and multi-objective path planning. 
The concept of ICS can also be introduced into other 
dynamic path planning algorithms of AUV to further 
shorten the path length of AUV. And in the process of 
data collection, the influence of motion status and veloc-
ity of AUV are not considered. In the future work, we 
will analyze the impact of motion status and velocity of 
AUV on data collection. In addition, the size of ICS can 
be changed by adjusting the power of nodes to reduce 
energy consumption and ensure communication. And 
this will be the focus of our future work. Besides, the data 
collection of heterogeneous nodes is also a research focus 
of our future work.
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