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ABSTRACT

Projections of twenty-first-century Northern Hemisphere (NH) spring snow cover extent (SCE) from two

climate model ensembles are analyzed to characterize their uncertainty. Phase 5 of the Coupled Model In-

tercomparison Project (CMIP5)multimodel ensemble exhibits variability resulting frombothmodel differences

and internal climate variability, whereas spread generated from a Canadian Earth System Model–Large En-

semble (CanESM-LE) experiment is solely a result of internal variability. The analysis shows that simulated

1981–2010 spring SCE trends are slightly weaker than observed (using an ensemble of snow products). Spring

SCE is projected to decrease by 23.7% 6 1.1%decade21 within the CMIP5 ensemble over the twenty-first

century. SCE loss is projected to accelerate for all springmonths over the twenty-first century, with the exception

of June (because most snow in this month has melted by the latter half of the twenty-first century). For 30-yr

spring SCE trends over the twenty-first century, internal variability estimated from CanESM-LE is substantial,

but smaller than intermodel spread from CMIP5. Additionally, internal variability in NH extratropical land

warming trends can affect SCE trends in the near future (R25 0.45), while variability in winter precipitation can

also have a significant (but lesser) impact on SCE trends. On the other hand, amajority of the intermodel spread

is driven by differences in simulated warming (dominant in March–May) and snow cover available for melt

(dominant in June). The strong temperature–SCE linkage suggests thatmodel uncertainty in projections of SCE

could be potentially reduced through improved simulation of spring season warming over land.

1. Introduction

Seasonal snow cover is a crucial component of the cli-

mate system, with major impacts on the surface energy

budget and water balance. At its peak, snow covers ap-

proximately 47 3 106km2 of Northern Hemisphere (NH)

land (about 40% of the land area) each year (Hall 1988;

Robinson and Frei 2000). The reflective properties of snow

mean that it has a very strong influence on land surface

albedo, controlling its seasonal evolution. This high albedo

has a cooling influence on climate, with the contribution

from terrestrial snow to cryospheric cooling being roughly

equal to that of sea ice (Flanner et al. 2011). Furthermore,

snow cover can indirectly impact atmospheric circulation

(Fletcher et al. 2009; Cohen et al. 2012). Water resources

across most NH extratropical (poleward of 308N) land

areas rely on natural water storage provided by snowpack

(Diffenbaugh et al. 2013), with approximately one-sixth of

Earth’s population dependent on snowmelt for a por-

tion of their water supply (Barnett et al. 2005; Mankin
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et al. 2015). Earlier spring snowmelt across the western

United States has been linked to increased summer heat

extremes (Diffenbaugh et al. 2005; Hall et al. 2008) and

wildfires (Westerling et al. 2006). Snowcover also has a low

thermal conductivity, meaning that it can have an insu-

lating effect on soil temperatures, with important impacts

on permafrost extent (Zhang 2005; Zhang et al. 2008;

Lawrence and Slater 2010). Variability in snow conditions

also has implications for travel and tourism (e.g., Scott

et al. 2008). It is crucial, therefore, that we understand how

projected warming will affect snow cover.

Extensive climatological snow cover, and relatively

high insolation, make the climate system most sensitive

to snow and albedo changes during spring (changes during

fall and winter are less important because of decreasing

insolation across the NH) (Ingram et al. 1989; Hall 2004).

Snow albedo feedback (SAF) peaks during March–May

(Qu and Hall 2014). Numerous observational studies

have shown that Northern Hemisphere spring snow

cover extent (SCE) has been decreasing rapidly over

recent decades (Groisman et al. 1994; Déry and Brown

2007; Flanner et al. 2009; Brown et al. 2010; Brown and

Robinson 2011; Hernández-Henríquez et al. 2015).

Most of the loss in snow occurs over ‘‘temperature-

sensitive regions,’’ where changes in SCE are closely

linked to temperature variability (Karl et al. 1993; Déry
and Brown 2007). March–April SCE is decreasing at a

rate of 23.4% 6 1.1%decade21 (1979–2005) (Brown

and Robinson 2011), and June SCE has decreased by

approximately 218%decade21 from 1979 to 2014

(Derksen et al. 2015). This rate of decline in SCE ex-

ceeds the well-publicized declining trend in September

Arctic sea ice (213%decade21). It should be noted

that the absolute areal SCE loss in March–April is

comparable to that observed during June because there

is much less snow-covered area in June (section 3a).

By contrast, the suite of climate models contributing

to phase 5 of the Coupled Model Intercomparison

Project (CMIP5) simulate March–April SCE trends

roughly one-third as large as observed for the same time

period (21.0% 6 0.3%decade21) (Brutel-Vuilmet et al.

2013). This underestimation, also found for the CMIP3

models (Roesch 2006), is associated with underestimated

extratropical spring warming (Brutel-Vuilmet et al. 2013).

Derksen and Brown (2012) and Mudryk et al. (2014) illus-

trate other aspects of the observed trends that are not well

captured by general circulation models (GCMs).

Northern Hemisphere SCE is expected to continue

decreasing under future warming. Several studies over

the past 30 years have utilized GCMs to show that SCE

decreases substantially in a doubled-CO2 climate

(Manabe and Wetherald 1987; Boer 1993; Essery 1997).

More recently, the Intergovernmental Panel on Climate

Change (IPCC) Fifth Assessment Report (AR5) stated

that early spring (March–April) SCE is likely to de-

crease by 7%–25% (from RCP2.6 to RCP8.5 scenario)

by 2100 (Collins et al. 2013; Brutel-Vuilmet et al. 2013).

However, this projection was only assigned a medium

confidence level because of a large intermodel spread,

and a lack of sophistication in the representation of snow

processes in many models (e.g., single-layer snowpack,

and snow schemes that assume an equal distribution of

snow mass across a grid cell; Collins et al. 2013; Slater

et al. 2001). Furthermore, no projections of SCE were

provided for late spring (May–June), when snow cover is

largely restricted to the Arctic, but still represents a

significant area (mean 1982–2002Arctic SCE forMay and

Junewas 11.0 and 3.93 106km2, respectively; Brownet al.

2010). The Arctic has experienced the greatest warm-

ing in recent decades (Bekryaev et al. 2010), and that

trend is expected to continue due to positive feedback

mechanisms such as the lapse rate and albedo feed-

backs (Pithan and Mauritsen 2014) with implications

for spring snow cover.

CMIP (Meehl et al. 2007; Flato et al. 2013) and Snow

Models Intercomparison Project (SnowMIP; Etchevers

et al. 2004; Rutter et al. 2009) studies have demonstrated

that a large intermodel spread exists when simulating

snow properties (extent and mass). This limits our con-

fidence in future projections, and is likely to be caused

by a combination of internal climate variability and

model uncertainty (intermodel variability amongGCMs

in response to the same forcing) from physical processes

that are either missing or oversimplified (Hawkins and

Sutton 2011). For example, simulated snow mass (and

similarly SCE) is sensitive to different parameterizations

for snowfall, albedo, snow–vegetationmasking, and snow

cover fraction (see Slater et al. 2001; Bartlett et al. 2006;

Dai 2008; Rutter et al. 2009; Essery et al. 2013).

Internal climate variability arises primarily from nat-

urally occurring nonlinear atmospheric and oceanic

processes, and their interactions (Deser et al. 2012b; Kay

et al. 2015). The processes can be nearly instantaneous,

or take several years (Hegerl et al. 2007). Internal var-

iability influences projected regional trends in temper-

ature and precipitation, even in the presence of a

background trend in CO2 forcing (Hawkins and Sutton

2009, 2011; Deser et al. 2012b), both of which are crucial

factors for future winter snow accumulation patterns

(Räisänen 2008; Krasting et al. 2013; Mankin and

Diffenbaugh 2015; Shi and Wang 2015). Therefore, it is

likely that internal climate variability could also influ-

ence projected trends for spring SCE.

The primary goal of this work is to investigate the

spread in twenty-first-century changes to spring snow

cover as projected by the CMIP5 suite of climate models.

8648 JOURNAL OF CL IMATE VOLUME 29

Unauthenticated | Downloaded 01/01/25 07:45 AM UTC



We use the recent past to help understand the spread in

trend strength between simulations and observations.

We also seek to determine the influences of both in-

ternal variability and model uncertainty in these sim-

ulations, to answer the following research questions:

(i) What impact does the representation of snow–climate

processes [e.g., the sensitivity of snow cover to warming

(henceforth, snowmelt sensitivity)] have on simulations

of SCE? (ii)What are the respective roles of temperature

and precipitation changes in governing SCE trends? The

data and methods are described in section 2. In section 3,

we present historical and projected SCE trends, and di-

agnose the respective roles of model uncertainty and

internal variability. Last, section 4 highlights the key

findings of this research and provides a discussion of

how our findings relate to previous research.

2. Data and methods

a. Climate model data

Weusemonthlymeanoutput from the suite of historical

(1850–2005) and future (2006–2100) simulations from the

CMIP5 archive (Taylor et al. 2012; http://cmip-pcmdi.llnl.

gov/cmip5/) to evaluate snow cover in 15models (Table 1).

Only models that archived the variable snc [snow cover

fraction (SCF)] are included in this analysis so as to

avoid introducing uncertainty through the estimate of

SCE from snowwater equivalent (snowmass, the variable

snw) as done in previous studies (e.g., Roesch 2006). Fu-

ture snow cover projections are forced using the RCP8.5

scenario because it most closely resembles the observed

emissions pathway over the past decade (Peters et al.

2013). We use all available realizations (n 5 1, . . . , 10)

from each of the 15 CMIP5 models for a total of 61

historical runs and 41 runs for the representative con-

centration pathway 8.5 (RCP8.5) scenario. We compute

individual trends and averages for each realization and

then take the interrealization average across each model

to calculate ensemble means. These values are then used

to determine the CMIP5 multimodel mean values.

We also use output (variables snc, snw, tas, and psl)

from a large (50 realization) ensemble of the Second-

Generation Canadian Earth System Model (CanESM2;

Arora et al. 2011). To produce the 50-member Canadian

Earth System Model–Large Ensemble (CanESM-LE)

10 realizations are initiated in 1950 from each of the 5

original realizations of CanESM2 submitted to CMIP5.

Each new ensemble member is perturbed by changing

the seed of a random number generator used in the

parameterization of radiative transfer through clouds.

Following the CMIP5 design, historical forcing is ap-

plied from 1950 to 2005, followed by RCP8.5 from 2006

to 2100. This methodology is appropriate for sampling

the statistics of climate variability within CanESM2,

because the initial ocean conditions down to 300-m

depth have very little influence on the simulation after

5–10 years (Branstator and Teng 2012). This implies

that, by the time our analysis period begins in 1981,

CanESM-LE represents 50 statistically independent

climate states.

As a result, CanESM-LE is used to quantify the

component of internal variability within future pro-

jections from a single GCM, while the CMIP5 ensemble

includes a combination of model uncertainty and internal

variability. Similar large ensembles have previously been

used to separate the components of future climate pat-

terns related to forced and internal variability (Deser et al.

2012a,b; Wettstein and Deser 2014; Swart et al. 2015).

Consistent with previous research (Deser et al. 2012b,

2014), we estimate the ‘‘forced response’’ to greenhouse

gas (GHG) forcing as the ensemble mean response from

all 50 realizations of CanESM-LE. As in Hawkins and

Sutton (2011) we estimate the contribution of ‘‘internal

variability’’ to each realization by subtracting the ensem-

ble mean of a particular quantity from the values in that

realization. This approach is effective when there are

enough simulations so that climate noise can be suffi-

ciently diluted (Deser et al. 2012b, 2016).

b. Observational data

Seven observation-based estimates (Table 2) are used

to evaluate the CMIP5 models during recent decades

(1981–2010). The use of an observational ensemble re-

duces the chance of incorrectly identifying a model

bias due to errors in a single observational analysis. The

seven observation-based estimates are derived from

reanalyses, satellite data, and in situ measurements. Each

dataset must have complete Northern Hemisphere cov-

erage and a data record spanning the 1981–2010 period.

Those datasets that meet this criteria are 1) the NOAA

snow chart climate data record (NOAA CDR) (Brown

and Robinson 2011; ftp://eclipse.ncdc.noaa.gov/cdr/

snowcover/), 2) the Brown snow cover product derived

from a combination of climate station data and a simple

snow model (Brown et al. 2003), 3) the combined in situ

and satellite passive microwave derived Global Snow

Monitoring for Climate Research (GlobSnow) SWE

product (Takala et al. 2011; www.globsnow.info), 4) SWE

from the Modern-Era Retrospective Analysis for Re-

search andApplications (MERRA;Rienecker et al. 2011),

5) SWE from the European Centre for Medium-Range

Forecasts (ECMWF) interim reanalysis global land sur-

face dataset (ERA-I-Land; Balsamo et al. 2015), 6) SWE

from theGlobal LandDataAssimilation System, version 2

(GLDAS-2), product (Rodell et al. 2004), and 7) SWE
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output from the snowpack model Crocus driven by

ERA-Interimmeteorology (Brun et al. 2013). Three of

the snow products use the same atmospheric forcing

data from ERA-Interim (Brown dataset, Crocus, and

ERA-I-Land). However, despite this similarity, they

exhibit very different SCE trends due to differences

in the snow parameterizations between Crocus and

HTESSEL (ERA-I-Land), while the Brown dataset only

uses temperature and precipitation to force a simple snow

model (Table 2).

The NOAA CDR is derived primarily from optical

satellite data (Brown and Robinson 2011). This dataset

provides monthly fractional snow cover, which is cal-

culated as the percent of days per month that a grid

cell is at least 50% snow covered. The Brown dataset

(Brown et al. 2003) uses ground-based snow measure-

ments and a simple snowpack model to produce SCF

from daily SWE thresholds exceeding 4mm. The five

remaining datasets (MERRA,ERA-I-Land,GLDAS-2,

GlobSnow, and Crocus) were used in the SWE product

intercomparison described in Mudryk et al. (2015). For

these products, SWE is initially interpolated to a 18 3 18
grid and SCF is then derived from daily SWE thresholds

exceeding 4mm. The 1981–2010 time period is a shorter

record than available from individual datasets (e.g., the

NOAACDR starts in 1967) but the compromise in time

series length is mitigated by the advantages of a multi-

dataset perspective, which has typically not been used in

previous snow–climate studies.

An observational ensemble of temperature is used

to determine spring snow extent sensitivity. We select

five datasets for temperature: the Climatic Research

Unit (CRU) land station temperature database (Jones

et al. 1999; 2012), the Goddard Institute for Space

Studies (GISS) surface temperature analysis (Hansen

et al. 2010), the National Climatic Data Center (NCDC)

temperature product (Smith et al. 2008), and the Na-

tional Centers for Environmental Prediction (NCEP)

surface and 2-m (NCEP2m) temperature datasets (Kalnay

et al. 1996).

c. Analysis methods

The CMIP5 models output data at a variety of reso-

lutions (18–38 grid boxes), and to account for this we

must create a consistent land–sea mask such that land

area biases are reduced [particularly in the Canadian

Arctic Archipelago (CAA), where many narrow chan-

nels may not be resolved at coarser resolution; Laliberté
et al. 2016]. For each CMIP5 model a land–sea mask

extracted from theMERRA product is remapped to the

native model resolution to isolate simulated NH land-

only snow cover and temperature data. This ensures that

we reduce discrepancies in the amount of land area be-

tweenmodels (mainly in theCAA).Using thismask along

with the model-specific land mask reduces climatological

SCE in the models but has minimal impact on their trends

(not shown). Furthermore, the study area for this analysis

is spatially restricted to the Northern Hemisphere extra-

tropics (.308N), with Greenland excluded, and tempo-

rally restricted to March–June (MAMJ).

SCE is calculated from model output by multiplying

grid cell snow cover fraction (%) by the area of each grid

cell (m2) and then taking the hemispheric sum for each

month. Similarly, snow water mass (SWM) is computed

by multiplying grid cell level snow water equivalent

(SWE) by the area of each grid cell and summing over the

NH. This is applied to SWE data from the CanESM-LE

to allow for an illustration of the influence that changes

in winter precipitation have on SCE trends. The pre-

melt SWM is a useful measure of snowfall totals over

the winter months, particularly across theArctic, because

wind-driven snow processes are not represented in cur-

rent models (Turner et al. 2006; Lawrence et al. 2012).

We find that 1981–2010 winter (October–March) snow-

fall trends are strongly correlated with March SWM

trends within CanESM-LE (r 5 0.92; not shown). Along

TABLE 2. List of observational-derived snow data products analyzed in this study, the native resolution, and respective climatological SCE

and spring SCE trends (1981–2010). Trend values that are not significant are marked with an asterisk.

Data product

Resolution

(lat 3 lon)

MAMJ SCE trend

(106 km2 decade21)

MAMJ percent loss

(%decade21)

MAMJ mean snow

extent (106 km2)

1 Brown dataset (Brown et al. 2003) 0.758 3 0.758 20.74 23.9 19.0

2 Crocus (Brun et al. 2013) 18 3 18 20.63 23.8 16.6

3 ERA-I-Land (Balsamo et al. 2015) 0.758 3 0.758 20.38 22.2 17.9

4 GLDAS-2 (Rodell et al. 2004) 18 3 18 20.22* 21.6 14.1

5 GlobSnow (Takala et al. 2011) 25 km 20.55 23.4 16.2

6 MERRA (Rienecker et al. 2011) 0.58 3 0.668 20.50 23.3 15.1

7 NOAA CDR (Brown and Robinson 2011) 190 km 20.82 24.2 19.3

CMIP5 mean — 20.43 6 0.17 22.5 6 1.0 17.0 6 3.4

CanESM-LE 2.88 3 2.88 20.62 6 0.18 23.0 6 0.9 20.6 6 0.2
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with measures of correlation, we also use the coefficient

of determination R2 to recognize the contribution from

precipitation and temperature to SCE variability.

Time series of SCE and SWM data are used to cal-

culate climatologies and linear trends. We calculate

these values for each of the four 30-yr climatological time

frames during the study period: historical (1981–2010),

near-future (2011–40), midcentury (2041–70), and long-

term (2071–2100). In some cases, a twenty-first-century

trend (2011–2100) is used to simplify the discussion of

results. Since the historical CMIP5 data end in 2005, we

use RCP8.5 data to complete the 1981–2010 period so

that a comparison with recent observations can be made

[similar to Derksen and Brown (2012)]. SCE trends are

computed as both absolute area (106 km2decade21) and

percent changes (%decade21). Absolute area calcula-

tions are useful in the context of comparing different

months, whereas percent changes may be more suitable

for interensemble comparisons because they account

for potential differences in snow cover climatology.

Throughout, all trend values reported are accompa-

nied by one standard deviation (1s) to represent un-

certainty. Note that trends are calculated at each model’s

native resolution, and regridding to a 18 3 18 grid is only

used for spatial mapping of the snow cover from the

CMIP5 models. Last, the term ‘‘bias’’ will be used solely

for comparing models in relation to observation-based

estimates.

3. Results

a. Historical spring SCE trends

Considering first the entire spring season for the

Northern Hemisphere, SCE has decreased at a mean

rate of 20.55 6 0.21 3 106 km2decade21 from 1981 to

2010, according to the seven observation-based esti-

mates evaluated here (Table 2). Dividing this rate by the

climatological spring SCE produces a percent change

of 23.3%decade21. The strongest trend in terms of

absolute area occurs in March (mean: 20.66 6 0.26 3
106 km2decade21) and the weakest in June (20.41 6
0.30 3 106 km2decade21) (Fig. 1). However, direct

measures of trendmagnitude do not account for themuch

greater total snow area in March (32.6 6 2.5 3 106km2)

than June (2.66 1.93 106km2; not shown).When viewed

as a percent change relative to the monthly climatology,

March SCE is decreasing at a rate of 22.0% 6 0.8%

decade21, whereas the rate of June SCE loss is216% 6
11%decade21 (not shown). Both early spring and June

trends found here are weaker than those previously re-

ported that were based only on the NOAACDR; Brutel-

Vuilmet et al. (2013) reported trends of23.4%decade21

forMarch–April over the 1979–2005 period, andDerksen

and Brown (2012) reported trends of 218%decade21 in

June over the 1979–2011 period.

These reported differences result because there is a

substantial spread among the observation-based esti-

mates of SCE trends, and of the seven products evalu-

ated here the NOAA CDR trends are the largest in

magnitude (Table 2). Mudryk et al. (2015) have recently

shown an analogously large spread in SWM trends from

various snow analysis products. Such spread likely oc-

curs as a result of differences in methodology and the

type of data used to construct each dataset (e.g., in situ,

reanalysis, satellite-derived). Three of the four reanalysis

products (GLDAS-2, ERA-I-Land, and MERRA) ex-

hibit the weakest spring SCE trends over recent decades,

with GLDAS-2 losing the least SCE in each spring

month. On the other hand, two of the three products that

utilize either satellite-derived or in situ information

(NOAA CDR and Brown dataset) exhibit the strongest

trends in spring SCE over the recent past.

Simulated spring trends from the CMIP5 models are

approximately 22% weaker than observed on average

[multimodel ensemble mean (MM): 20.43 6 0.17 3
106 km2 decade21 or 22.5% 6 1.0%decade21]. This

is also weaker than that of the CanESM-LE (mean 5
20.62 6 0.18 3 106 km2decade21), which demonstrates

much greater late-spring snow loss. From a monthly

FIG. 1. Historical (1981–2010) Northern Hemisphere extra-

tropical snow cover extent trends among three ensembles: CMIP5,

CanESM-LE, and observation-based (OBS). For each box the

enclosed region shows the 25th–75th percentile range, the hori-

zontal line shows themedian, and the diamond shows the ensemble

mean. The dashed whiskers indicate the minimum and maximum.

The CMIP5 box uses the mean for each model (averaged over all

available realizations).
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perspective, the CMIP5mean SCE trend is largest during

April and weakest in June (Fig. 1). The agreement be-

tween CMIP5 models and observations is very good

duringApril andMay, but less so duringMarch and June,

when the models have weaker trends (MM: 21.4% 6
0.8%decade21 and 28.4% 6 5.4%decade21, re-

spectively). However, March is the only month with a

statistically significant difference between the observed

and simulated mean trends (p, 0.05; using a two-sided

Student’s t test). Furthermore, nearly all models exhibit

negative SCE trends throughout the spring, except for

INM-CM4.0, which has a slight increasing trend during

March. The CMIP5 models range from losing very

little snow in MAMJ at 13% of the observed baseline

(20.07 3 106 km2 decade21) to 142% of observed

(20.78 3 106 km2 decade21) (Table 1). As a demon-

stration that single model contributions to the CMIP5 ar-

chive may underestimate internal variability, CanESM2 is

themodel with the greatest spring snow loss of anyCMIP5

model from 1981 to 2010, yet we find that CanESM-LE

(the large ensemble produced using the same model) is

much closer to the CMIP5 average (Fig. 2).

The variability in 30-yr trends from the CMIP5 en-

semble is equally large for March, April, and May

(standard deviation s 5 0.24 3 106 km2decade21) and

slightly lower in June (s 5 0.17 3 106 km2decade21).

However, when we examine 10-yr trends the spread

widens dramatically for all spring months. For example,

in May the simulated range (maximum–minimum) for

decadal trends is more than 7 times that for 30-yr trends

(from23.7 to 2.73 106 km2decade21; see Fig. S1 in the

supplemental material). This highlights the larger con-

tribution to the SCE trends from internal variability,

compared to the forced response to GHG increases,

over shorter time periods. This result is consistent with

similar findings for temperature and precipitation trends

(Hawkins and Sutton 2009, 2011). The following section

will investigate possible factors contributing to the large

intermodel spread within historical simulations from the

current generation of climate models.

b. Sources of model uncertainty: Historical trends

1) SENSITIVITY OF SCE TO WARMING TRENDS

First we evaluate how differences in warming could be

affecting the simulated intermodel spread in SCE trends.

Although a very important contributor (R2 5 0.74), dif-

ferences in simulated warming do not explain all of the

intermodel spread in spring SCE trends for the 1981–2010

period.We use mean extratropical land warming rather

than local warming because unnaturally high sensitiv-

ities can occur for some models in areas where the

warming trend is close to zero. The observed spring NH

extratropical land warming trend over the 1981–2010 pe-

riod is 0.34 6 0.04Kdecade21. On average, the CMIP5

models accurately capture spring warming over recent

decades, with an ensemble mean of 0.366 0.11Kdecade21

(Fig. 2). In contrast, the CanESM-LE has a greater mean

warming trend (0.52 6 0.08Kdecade21), which overlaps

with the CMIP5 warming trend but falls outside the un-

certainty range of the observed warming trend. The mean

trend seen in the CanESM-LE ensemble reflects the ma-

jority of CMIP5 models (10 out of 15) that simulate recent

(1981–2010) spring warming that is greater than or equal to

the warming found in observations.

Despite realistically reproducing observed tempera-

ture trends, only two models produce more snow loss

than the observation-based estimates. This suggests that

snow in some models tends to be less sensitive to tem-

perature variations than in observations. To quantify

this property of the models, we compute a snowmelt

sensitivity lsmelt 5 hDSCEi/hDTsi, which measures how

much SCE is reduced per degree of warming, averaged

over the NH land area (averaging is denoted by the

angle brackets). Observed spring lsmelt during the spring

months (MAMJ mean) is 21.62 6 0.61 3 106 km2K21,

with the large uncertainty driven mainly by disagree-

ment among the observed SCE trends (illustrated by the

shaded rectangle in Fig. 2), which creates a large spread

FIG. 2. Relationship between spring SCE trends and NH extra-

tropical land warming for the CMIP5 models during the historical

period (1981–2010). Each model is represented by a letter, corre-

sponding to the information in Table 1. Filled circles represent the

CMIP5 (blue), CanESM-LE (black), and the observation-based

mean (red). Each member of the CanESM-LE is shown as a small

black square. The shaded red rectangle illustrates the range of

observation-based trends. Models that fall to the bottom-left por-

tion of the plot are most sensitive to warming.
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among the 35 possible combinations of observed tem-

perature (5 products) and SCE (7 products). This ex-

ceeds the estimate of lsmelt that is computed for both the

CanESM-LE (21.18 6 0.15 3 106 km2K21), and the

CMIP5 ensemble (MM521.196 0.313 106 km2K21).

The 68% confidence interval for the CMIP5 estimate of

lsmelt overlaps that from observations, indicating that the

two estimates of mean snowmelt sensitivity are not sig-

nificantly different. However, similar to Brutel-Vuilmet

et al. (2013), we find that the weaker-than-observed SCE

trends from the CMIP5 ensemble are likely due in part

to a weaker-than-observed snow response to warming.

2) CLIMATOLOGICAL MEAN SNOW COVER

A secondary cause of the weaker-than-observed SCE

trends in CMIP5 is biases in the simulated climatological

(1981–2010 mean) snow cover (SCE) for a given month.

The ability to accurately represent present-day snow

cover is important for simulated SCE trends because of a

positive correlation between snow extent and SAF

strength (Levis et al. 2007). This relationship indicates

that models with greater SCE produce stronger SAF

for a given rise in temperature, because larger SCE

implies a greater potential area over which albedo can

be reduced from its snow-covered to its snow-free value.

In the CMIP5 multimodel mean, nearly all land pole-

ward of 458N is at least 50% snow covered in March

(Fig. 3a; MM SCE of;30.56 3.53 106 km2). However,

there is a significant spread in March SCE within the

CMIP5 ensemble: the model with the highest SCE has

18%more snow-covered area than the mean (red line in

Fig. 3a), whereas the model with the lowest SCE has

28% less snow cover than the mean (green line in

Fig. 3a). Much of the disparity between these models is

found across western North America, western Eurasia,

and the Tibetan Plateau (similarly for April; Fig. 3b).

Comparatively, the observation-based estimates show

SCE ranging from 30 to 36 3 106 km2 in March, with a

mean of approximately 323 106 km2. Disparity between

the minimum and maximum observation-based snow

cover products is greatest over eastern Eurasia and

western North America (Fig. 3a). Of note is the good

agreement over western Eurasia, where both of the ex-

treme observation-based estimates exceed or closely re-

semble the maximummodel extent. This implies that the

CMIP5 models may be systematically underestimating

early spring snow cover in this region.

Late spring (May–June) snow cover resides primarily

across the Arctic (.608N), with much of the high lati-

tudes still more than 50% snow covered during May

(Fig. 3c). On average, the CMIP5 models simulate May

SCE of 11.8 6 3.9 3 106 km2, while the observation-

based products range from 6.9 to 14.7 3 106 km2, with a

mean of 10.6 6 2.6 3 106 km2. In June any remaining

snow cover is restricted to Siberia, Arctic Canada, and

Alaska and is characterized by local snow cover frac-

tions lower than 50% (CMIP5 mean SCE is 3.2 6 2.03
106 km2; Fig. 3d). Similar to themodels, the observation-

based estimates have a mean of 2.66 1.93 106 km2, and

a large spread spanning from 0.5 (GLDAS-2) to 5.9 3
106 km2 (NOAA CDR). Note that differences between

models in their SCE values is likely the result of model

uncertainty, rather than internal variability, as demon-

strated by a very small range within the CanESM-LE

(,1 3 106 km2 for all spring months; not shown).

Biases in June SCE have the most significant impact

on SCE trends of any month: those models with minimal

SCE in June tend to show very weak SCE trends because

in the future there is so little snow left to melt. The

models with low June SCE (e.g., BCC_CSM1.1, CSIRO

Mk3.6, INM-CM4.0, and MPI-ESM-LR; see Fig. S2 in

the supplemental material) exhibit a mean SCE trend

of only 20.06 3 106 km2decade21 (not shown), a factor

of 6 weaker than the other CMIP5 models (20.35 3
106 km2 decade21; not shown). These same models with

low June SCE have previously been shown to have

mean late spring near-surface air temperatures that are

substantially warmer than the other CMIP5 models

(Thackeray et al. 2015). Therefore, biases in SCE can

affect the SCE trend in seasons when SCE becomes

limited (e.g., late spring).

There is a slightly weaker correlation (r 5 0.43) be-

tween trends in 1981–2010March SWM (used as a proxy

for variability in winter snowfall) andMAMJ SCE trends

within the CMIP5 ensemble (not shown). A moderately

strong correlation also exists between March SWM

trends and lsmelt (r5 0.70).However, because SWMdoes

not have the same subseasonal importance as SCE (there

is aweak correlationwith SCE trends for all months other

than March) it is not investigated further. Furthermore,

although there aremany other potential sources of model

uncertainty in simulated SCE (e.g., model resolution,

land surface scheme complexity, and climatological

temperature biases), we do not find any clear linkages

between these parameters and spring SCE trends, so

they are not discussed further.

c. Projected trends in spring SCE

To evaluate projections of future spring SCE, we use

two model ensembles: the multimodel CMIP5 ensemble

and the CanESM-LE. As previously noted, the latter

only contains (land–atmosphere–ocean induced) spread

due to internal variability, so it provides a useful bench-

mark to compare with the estimate of intermodel spread

from CMIP5. It should be noted that CanESM-LE pro-

vides one model’s estimate of internal variability, which
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could vary for other CMIP5models (e.g., Kay et al. 2015).

First, we discuss the median projected change for the

spring as a whole, followed by early (March–April) and

late spring (May–June). On average, the CMIP5 models

project that spring SCE trends will strengthen during the

twenty-first century relative to the recent past. The mean

rate of spring snow loss over the twenty-first century (2011–

2100 trend) is approximately 23.7% 6 1.1%decade21,

33% greater than in the period 1981–2010 (Fig. S3 in

the supplemental material). Similarly, the CanESM-LE

exhibits a strengthening of 41% (more negative) com-

pared to its 1981–2010 trend. However, CanESM2 ex-

hibits the strongest 1981–2010 trend of theCMIP5models

(Table 1) so the median rate of twenty-first-century

spring snow loss from CanESM-LE is also larger

(24.3%decade21).

The CMIP5 models project that early spring (March–

April) SCE trends will strengthen in the twenty-first

century relative to the recent past (Figs. 4a,b). Themean

SCE responses over the twenty-first century (2011–2100

trend) from CMIP5 (20.80 6 0.23 3 106 km2decade21)

and CanESM-LE (21.02 6 0.22 3 106 km2decade21)

are more than 65% stronger than their respective sim-

ulated rates for the period of 1981–2010. This is con-

sistent with greater simulated rates of warming during

the twenty-first century (not shown). Since these two

ensembles have different mean SCE (Table 3), we also

calculate the ensemble mean percentage of snow loss

FIG. 3. Spatial distribution of monthly mean historical (1981–2010) snow cover fraction (%) from the CMIP5

ensemblemean for (a)March, (b)April, (c)May, and (d) June. Solid contours show the boundary of the regionwith

.50% SCF for the model with minimum (green line) and maximum (red line) SCE during each month. Dotted

contours show the minimum (yellow) and maximum (orange) observation-based estimates of the region with

.50% SCF. The observational minimum does not appear in June because SCF is below 50% everywhere.
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over the twenty-first century to account for differences

in the amount of snow cover available for melt: the

CMIP5 models lose 23.0% 6 0.9%decade21, while

CanESM-LE loses 3.3% 6 0.7%decade21.

Within the CMIP5 ensemble, mean twenty-first-century

MaySCE loss (2011–2100 trend) is projected to strengthen

slightly (by ;25%) compared to the 1981–2010 trend.

Trends in May also exhibit the greatest discrepancy

between CMIP5 (25.5% 6 2.0%decade21) and

CanESM-LE (26.5% 6 1.3%decade21) (Fig. 4c).

Unlike the other months, June SCE trends are projected

to weaken over the course of the twenty-first century

(Fig. 4d). A gradual weakening within CanESM-LE is

tied to a significant reduction in the amount of snow area

remaining for melt (mean SCE, 0.53 106 km2 by 2071–

2100). This same reasoning explains why the simulated

June trends (even under themost aggressiveGHG forcing

scenario) of 28.1% 6 4.9%decade21 from CMIP5 and

28.7% 6 1.9%decade21 from CanESM-LE are weaker

than observed in recent decades (216%decade21). In

summary, rates of projected snow cover loss are expected

to increase for all spring months, with the exception of

June, where a relatively small SCE remains in the latter

half of the twenty-first century.

Last, we consider the intermodel spread of land sur-

face warming trends as a possible source of uncertainty

for projected spring SCE trends within the CMIP5

ensemble. We estimate the uncertainty in the CMIP5

projections using the multimodel standard deviation

(Hawkins and Sutton 2011), and we average s over

three different 30-yr periods (2011–40, 2041–70, and

2071–2100). This procedure yields uncertainties in SCE

FIG. 4. Northern Hemisphere (a) March, (b) April, (c) May, and (d) June SCE trends over the twenty-first

century under the RCP8.5 emissions scenario for the CMIP5, CanESM-LE, and observation-based (OBS) en-

sembles. As in Fig. 1, each box shows the 25th–75th percentile range, the horizontal line shows the ensemble

median, and the diamond shows the ensemble mean. The dashed whiskers indicate the ensemble minimum and

maximum. Trends are shown in millions of square kilometers per decade and split into four 30-yr climatological

periods (1981–2010, 2011–40, 2041–70, and 2071–2100).
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trends for March (s 5 0.28 3 106km2decade21), April

(s5 0.363 106km2decade21),May (s5 0.343 106 km2

decade21), and June (s 5 0.18 3 106 km2decade21).

Taking the example of the relatively large uncertainty in

April, we find a wide range of projected SCE trends for

the 2011–40 period, from a small gain in one model to a

loss of21.63 106km2decade21 in anothermodel (Fig. S4

in the supplemental material). In this case, themodel with

the strongest (weakest) SCE loss also warms the most

(least) over this period. Warming trends explain much

of the intermodel spread in early spring SCE trends

(R2 5 0.79; Fig. 5), whereas June SCE trends are

heavily influenced by biases in SCE (R2 5 0.93; Fig. 5).

For the spring as awhole, variability in twenty-first-century

NH land warming explains approximately 80% of the in-

termodel spread in SCE trends. Therefore, reducing vari-

ability in simulated future warming should in turn reduce

uncertainty in SCE trends (further discussed in section 4).

d. The contribution of internal variability to projected
trends in SCE

Many of the CMIP5 models that project extremely

strong or weak spring SCE trends contributed only a

single realization in the CMIP5 archive, while consid-

erably better agreement in projected SCE trends exists

among the set of four models that contributed n $ 5

realizations (particularly in early spring when warming

trends dominate; not shown). This motivates an important

question as to the role of internal variability in SCE trends;

however, the majority of CMIP5 models completed fewer

than five realizations, which is likely insufficient for esti-

mating internal variability (Kay et al. 2015).

The 50-realization CanESM-LE exhibits a smaller

spread in MAMJ SCE trends throughout the twenty-

first century than the CMIP5 ensemble (s 5 0.18 and

0.29 3 106 km2decade21, respectively, averaged over

three epochs 2011–40, 2041–70, and 2071–2100). Internal

variability, as indicated by the shading for CanESM-LE

in Fig. 6, is likely a very important contributor to the

intermodel spread in the near term (2011–40), but the

fraction of total variance within the CMIP5 ensemble

attributable to internal variability decreases on longer

time scales as a relatively larger fraction is explained by

model uncertainty (Fig. 6). This same finding has also

been shown for precipitation and temperature trends,

where internal variability has a greater influence in the

near future than at the end of the century (Hawkins and

Sutton 2009, 2011).

Last, to demonstrate the interplay between internal

variability and model uncertainty, we can compare the

results from CanESM-LE with the intraensemble spread

for all CMIP5 models with n $ 5 realizations avail-

able for the RCP8.5 experiment (CanESM2, CCSM4,

CNRM-CM5, and CSIRO Mk3.6.0). This subset of

models, which we assume provides an improved estimate

of model uncertainty isolated from internal variability,

contains substantial variation, both in the intermodel SCE

trends (n 5 4, s 5 0.22 3 106km2decade21) and the in-

terrealization variability (n5 26, minimumandmaximum

s are 0.12 and 0.23 3 106km2decade21). The interreali-

zation spread of trends for each model is thus of similar

magnitude to the intermodel spread, making it plausible

that a significant fraction of the intermodel spread is

caused by internal variability. We find considerable simi-

larities between this analysis and the work on trends in

FIG. 5. Bar plot showing the R2 for twenty-first-century SCE

trends (2011–2100) from CMIP5 predicted based on projected NH

extratropical land warming trends (red) and climatological SCE

(blue) as predictors for March, April, May, and June. MAMJ

values are calculated from the average seasonal trends in SCE and

temperature rather than as an average of R2 values.

TABLE 3. Projected twenty-first-century (2011–2100)mean SCE trends (area and percent) along with 1981–2010mean climatological SCE

for each spring month. Percent loss is calculated by dividing the absolute area trend by mean SCE.

Projected absolute area trend

(106 km2 decade21)

Projected percent loss trend

(%decade21) 1981–2010 mean SCE (106 km2)

CMIP5 CanESM-LE CMIP5 CanESM-LE CMIP5 CanESM-LE

March 20.80 6 0.23 20.96 6 0.22 22.6 6 0.7 22.8 6 0.7 30.5 6 3.6 33.9 6 0.2

April 20.80 6 0.25 21.08 6 0.21 23.6 6 1.1 23.9 6 0.8 22.5 6 4.0 27.4 6 0.2

May 20.64 6 0.24 21.10 6 0.22 25.5 6 2.0 26.5 6 1.3 11.8 6 3.9 16.9 6 0.2

June 20.26 6 0.17 20.35 6 0.07 28.1 6 4.9 28.7 6 1.9 3.2 6 2.0 4.0 6 0.1
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September Arctic sea ice extent (SIE) by Swart et al.

(2015). For example, there is a remarkable similarity in

the contributions from internal variability and model un-

certainty to projected trends of SIE and SCE (not shown).

The conclusion for near-term projections is that the large

contribution from internal variability presents a challenge

to determining the physical cause of 30-yr SCE trends.

CASE STUDY: MAY SCE TRENDS IN CANESM-LE

In the CanESM-LE, near-future (2011–40) spring-

time (MAMJ) SCE trends range from 20.26 to 21.08 3
106km2decade21, with the largest monthly spread occur-

ring in May (from 20.42 to 21.49 3 106km2decade21).

ForMay, this represents amore than doubling of the range

exhibited by the five CanESM2 runs contributed to

CMIP5 (from20.69 to21.113 106 km2 decade21). We

will therefore use May as a case study for better un-

derstanding the primary physical factors contributing

to the spread.

First, we examine the contribution from variations in

trends of near-surface air temperature. Only a relatively

small fraction (17%) of the interrealization variability in

CanESM-LE projected near-future May SCE trends is

explained by annual mean global surface warming (land

plus ocean), with r 5 20.41 (Table 4) and the negative

sign implying that enhanced global warming is associ-

ated with greater snow loss. However, nearly half of the

interrealization variability (45%) is explained when we

restrict the analysis to include only contemporaneous

(e.g., May) and local (e.g., NH extratropical land aver-

aged) temperatures (Fig. 7a; r520.67). Themajority of

May snow cover resides across the Arctic (Fig. 3c), so

one would expect an even stronger correlation with

temperature there if local warming were the only con-

tributor to differences in SCE trends. Yet, when we re-

strict the temperatures to the Arctic (.608N) region, the

relationship becomes only slightly stronger (r 5 20.69).

This demonstrates that differences in simulated warming

cannot fully account for variability within CanESM-LE

SCE trends, and so next we examine the roles for changes

in precipitation and atmospheric circulation.

Whereas in CMIP5 we find that June SCE trends are

highly correlated with the intermodel spread in June

climatological SCE (Fig. 5), the spread in climatological

SCE in CanESM-LE is minimal (,1 3 106 km2) for all

spring months and there is no correlation with SCE

trends (not shown). However, we do find a relationship in

CanESM-LE between spring SCE trends and snow accu-

mulation during the previous winter.We useMarch SWM

as a proxy for simulated snowfall totals over the winter

months, and find a weak positive correlation (r5 0.44 for

2011–40; see Table 4; note that the R2 values for other

climatological periods are shown in Fig. 7b) between

twenty-first-century trends in SWM and May SCE. To

illustrate the importance of SWM for interrealization

differences in SCE trends, in Fig. 7 we compare May

land warming, May SCE loss andMarch SWM loss over

the NH extratropics for the period 2011–40. Across

the 50 realizations May land warming varies from

0.35 to 0.78Kdecade21, and the realization that warms

the most (run 40) also produces the greatest SCE loss

(Fig. 7a). However, the realization with the weakest SCE

loss (run 1) is not the realization with the least warm-

ing (run 49). The reason is that a weaker-than-average

TABLE 4. Correlation between May SCE trends (2011–40) and

global annual mean temperature, Northern Hemisphere extra-

tropical land temperature, Arctic land temperature, and Northern

Hemisphere March SWM within the CanESM large ensemble.

Variable Time period Correlation R2

Global annual temperature 2011–40 20.41 0.17

NH May temperature 2011–40 20.67 0.45

Arctic May temperature 2011–40 20.69 0.47

NH March SWM 2011–40 0.44 0.19

FIG. 6. Percentage of climatological Northern Hemisphere SCE

(1981–2010 mean) lost over the twenty-first century in CMIP5 and

CanESM-LE for (a) early spring and (b) late spring. Ensemble

mean shown with plus and minus one standard deviation shading.

Note that the decreasing CanESM-LE variability in (b) is caused

by June SCE falling closer to zero.
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decreasing trend inMarch SWM in run 1 contributes to a

weaker-than-average SCE trend (Fig. 7b). Positive SWM

anomalies extend snow cover duration because greater

melt energy is required to remove deeper snow.

Last, we explore the role of local temperature and at-

mospheric circulation changes in explaining the interre-

alization spread inCanESM-LESCE trends.We compute

local correlations between near-future May SCF trends

and contemporaneous temperature and sea level pressure

(SLP) changes. Trends in temperature and snow cover

have a very strong negative association over most NH

areas with substantial May snow cover (Fig. 8a). For

SLP, the relationship with snow cover is of hemispheric

spatial scale, with moderate correlations of either sign

that project onto the NorthAtlantic Oscillation (NAO)

pattern (Barnston and Livezey 1987) (Fig. 8b). Greater

Eurasian snow loss is associated with an increased

meridional pressure gradient across the North Atlantic

typical of a positive NAO phase, bringing enhanced

warm advection into Eurasia. In contrast, contributions to

changes in western North American SCE largely stem

from North Pacific SLP patterns. Figure 8b consequently

represents a combination of several unique circulation

patterns. This demonstrates that atmospheric circulation

responses associated with internal variability exert an in-

fluence on near-term SCE trends over much of NH land.

4. Discussion and conclusions

This study uses seven observation-based estimates of

snow cover, five surface temperature datasets, and two

climatemodel ensembles to characterize the uncertainty

in simulations of NH spring snow cover extent. We find

that weaker than observed historical (1981–2010) SCE

trends from the CMIP5 ensemble can be partially ex-

plained by biases in climatological spring snow extent

within these models. However, biases in simulated SCE

trends during recent decades are much smaller than

previously shown from studies that relied on a single

observation-based reference dataset (Derksen and

Brown 2012; Brutel-Vuilmet et al. 2013). These studies

used the NOAA CDR because of its long time series

(1967–present), which we find to have the strongest

spring SCE trend of the seven observation-based esti-

mates. SCE in somemodels appears to lack sensitivity to

warming, but the ensemble means are not significantly

different.

Spring snow cover is projected to decrease by

23.7% 6 1.1%decade21 within the CMIP5 ensemble

over the twenty-first century. This represents a strength-

ening of 33% relative to the rate simulated over recent

decades (1981–2010). Projected snow cover loss is ex-

pected to increase for all spring months over the twenty-

first century, with the exception of June (when nearly all

remaining snow has melted by the latter half of the

twenty-first century). For 30-yr spring SCE trends over

three time periods in the twenty-first century (2011–40,

2041–70, and 2071–2100), we find that internal variability,

as estimated from the CanESM initial condition en-

semble (CanESM-LE; s5 0.183 106 km2 decade21), is

substantial but smaller than the intermodel spread

from CMIP5 (s 5 0.29 3 106 km2 decade21). In con-

trast, the spread in SCE trends from CanESM-LE and

CMIP5 are very similar for the historical period (Fig. 1).

The main physical drivers of intermodel differences in

projected spring SCE trends are differences in simu-

lated warming trends (R2 5 0.80) and biases in mean

SCE, with the latter more important in late spring. In

theory, a reduction in the variability of projected warm-

ing should lead to a decrease in the spread of spring

SCE trends. Internal variability is a major contributor

FIG. 7. Relationship between May SCE trend anomalies within

CanESM-LE and (a) May warming anomalies over NH extra-

tropical land and (b) March SWM anomalies over NH extratropical

land. Each realization is represented by four points, one for each

of the climatological periods (color coded). Trend anomalies are

calculated by removing the ensemble mean (forced component).

The R2 value for each time period is shown in the bottom-left

corner (color coded).
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to intermodel spread (total variance) in the near-term,

but the fraction of total variance attributable to in-

ternal variability decreases on longer time scales be-

cause of greater model uncertainty. We find large

internal variability in near-term (2011–40) warming

trends over NH extratropical land, which explains al-

most 50% of the variability in projected SCE trends,

even in the presence of a strong forced trend from

GHGs. Furthermore, internal variability in winter

snowfall trends has a significant (but lesser) impact on

SCE trends (R2 5 0.20).

There are a number of ways to potentially reduce the

uncertainty in projections of NH SCE. The first involves

increasing the number of realizations from each model

as a part of future modeling efforts. Following the ap-

proach of Deser et al. (2012b), we calculate the minimum

number of realizations Nmin required to detect the near-

future forcedMay SCF trend at the 5% significance level,

FIG. 8. (a) Local correlation between near-future (2011–40)May snow cover fraction anomalies and near-surface

air temperature anomalies from the CanESM-LE, and (b) correlation between hemispheric (NH) mean May SCF

anomalies and local May SLP anomalies. Stippling indicates regions of statistical significance (p 5 0.05).

FIG. 9. (a) Near-future (2011–40) CanESM-LE ensemble mean May SCF trend. (b) The Nmin needed to detect

a significant trend response in near-future May SCF.
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given byNmin 5 8/(X/s)2, whereX is the ensemble mean

trend, and s is the standard deviation of the 50 trends.

Regions with stronger snow responses generally need

between 3 and 10 realizations to detect a significant trend,

whereas areas with weaker responses (eastern Siberia

and Canadian Arctic; Fig. 9a) require upward of 50 re-

alizations (Fig. 9b). The implication here is not that

hundreds of realizations are necessary, but that over

some regions the near-term forced response is so weak

that it cannot be captured. However, a majority of the

models contributing to CMIP5 provided fewer than three

realizations for RCP8.5.

Second, there is a very strong relationship between

projected spring SCE trends and warming trends (R2 5
0.80). However, under RCP8.5 the CMIP5 models ex-

hibit a rather large spread in twenty-first-century spring

warming (from 0.39 to 0.95Kdecade21). Therefore, a

reduction in the uncertainty of the forced component of

projected warming could lead to a decrease in the spread

for spring SCE trends (the component due to internal

variability is essentially random, and therefore uncon-

strained). Previous research has shown that 40%–50% of

the spread in CMIP5 twenty-first-century spring warming

over NH extratropical land can be explained by vari-

ability in simulated snow albedo feedback (SAF) (Qu and

Hall 2014). Furthermore, Thackeray and Fletcher (2016)

demonstrated that selecting only models with SAF clos-

est to observed estimates reduces the spread in CMIP5

twenty-first-century NH land warming by about 40%.

Therefore, model development focused on alleviating

process-level biases—particularly those related to SAF—

could help to reduce model uncertainty in future pro-

jections of warming and snow cover.
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