Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Alice Grandin x
- Refine by Access: All Content x
Abstract
This paper describes development of a method for discriminating high ice water content (HIWC) conditions that can disrupt jet-engine performance in commuter and large transport aircraft. Using input data from satellites, numerical weather prediction models, and ground-based radar, this effort employs machine learning to determine optimal combinations of available information using fuzzy logic. Airborne in situ measurements of ice water content (IWC) from a series of field experiments that sampled HIWC conditions serve as training data in the machine-learning process. The resulting method, known as the Algorithm for Prediction of HIWC Areas (ALPHA), estimates the likelihood of HIWC conditions over a three-dimensional domain. Performance statistics calculated from an independent subset of data reserved for verification indicate that the ALPHA has skill for detecting HIWC conditions, albeit with significant false alarm rates. Probability of detection (POD), probability of false detection (POFD), and false alarm ratio (FAR) are 86%, 29% (60% when IWC below 0.1 g m−3 are omitted), and 51%, respectively, for one set of detection thresholds using in situ measurements. Corresponding receiver operating characteristic (ROC) curves give an area under the curve of 0.85 when considering all data and 0.69 for only points with IWC of at least 0.1 g m−3. Monte Carlo simulations suggest that aircraft sampling biases resulted in a positive POD bias and the actual probability of detection is between 78.5% and 83.1% (95% confidence interval). Analysis of individual case studies shows that the ALPHA output product generally tracks variation in the measured IWC.
Abstract
This paper describes development of a method for discriminating high ice water content (HIWC) conditions that can disrupt jet-engine performance in commuter and large transport aircraft. Using input data from satellites, numerical weather prediction models, and ground-based radar, this effort employs machine learning to determine optimal combinations of available information using fuzzy logic. Airborne in situ measurements of ice water content (IWC) from a series of field experiments that sampled HIWC conditions serve as training data in the machine-learning process. The resulting method, known as the Algorithm for Prediction of HIWC Areas (ALPHA), estimates the likelihood of HIWC conditions over a three-dimensional domain. Performance statistics calculated from an independent subset of data reserved for verification indicate that the ALPHA has skill for detecting HIWC conditions, albeit with significant false alarm rates. Probability of detection (POD), probability of false detection (POFD), and false alarm ratio (FAR) are 86%, 29% (60% when IWC below 0.1 g m−3 are omitted), and 51%, respectively, for one set of detection thresholds using in situ measurements. Corresponding receiver operating characteristic (ROC) curves give an area under the curve of 0.85 when considering all data and 0.69 for only points with IWC of at least 0.1 g m−3. Monte Carlo simulations suggest that aircraft sampling biases resulted in a positive POD bias and the actual probability of detection is between 78.5% and 83.1% (95% confidence interval). Analysis of individual case studies shows that the ALPHA output product generally tracks variation in the measured IWC.
Abstract
In the past two decades, more than 150 jet engine power-loss and damage events have been attributed to a phenomenon known as ice crystal icing (ICI). Ingestion of large numbers of ice particles into the engine core are thought to be responsible for these events, which typically occur at high altitudes near large convective systems in tropical air masses. In recent years, scientists, engineers, aviation regulators, and airlines from around the world have collaborated to better understand the relevant meteorological processes associated with ICI events, solve critical engineering problems, develop new certification standards, and devise mitigation strategies for the aviation industry. One area of research is the development of nowcasting techniques based on available remote sensing technology and numerical weather prediction (NWP) models to identify areas of high ice water content (IWC) and enable the provision of alerts to the aviation industry. Multiple techniques have been developed using geostationary and polar-orbiting satellite products, NWP model fields, and ground-based radar data as the basis for high-IWC products. Targeted field experiments in tropical regions with high incidence of ICI events have provided data for product validation and refinement of these methods. Beginning in 2015, research teams have assembled at a series of annual workshops to exchange ideas and standardize methods for evaluating performance of high-IWC detection products. This paper provides an overview of the approaches used and the current skill for identifying high-IWC conditions. Recommendations for future work in this area are also presented.
Abstract
In the past two decades, more than 150 jet engine power-loss and damage events have been attributed to a phenomenon known as ice crystal icing (ICI). Ingestion of large numbers of ice particles into the engine core are thought to be responsible for these events, which typically occur at high altitudes near large convective systems in tropical air masses. In recent years, scientists, engineers, aviation regulators, and airlines from around the world have collaborated to better understand the relevant meteorological processes associated with ICI events, solve critical engineering problems, develop new certification standards, and devise mitigation strategies for the aviation industry. One area of research is the development of nowcasting techniques based on available remote sensing technology and numerical weather prediction (NWP) models to identify areas of high ice water content (IWC) and enable the provision of alerts to the aviation industry. Multiple techniques have been developed using geostationary and polar-orbiting satellite products, NWP model fields, and ground-based radar data as the basis for high-IWC products. Targeted field experiments in tropical regions with high incidence of ICI events have provided data for product validation and refinement of these methods. Beginning in 2015, research teams have assembled at a series of annual workshops to exchange ideas and standardize methods for evaluating performance of high-IWC detection products. This paper provides an overview of the approaches used and the current skill for identifying high-IWC conditions. Recommendations for future work in this area are also presented.