Search Results
You are looking at 1 - 10 of 30 items for
- Author or Editor: Armin Köhl x
- Refine by Access: All Content x
Abstract
On interannual time scales, regional sea level variability is largely determined by changes in the steric component. The relation between the thermosteric and halosteric components is studied by separating the components into contributions from the mixed layer and, below the mixed layer, into the part that is related to isopycnal motion and that contributes to the steric sea level and the inactive part related to changes of spiciness. The decomposition provides a simple diagnostic to detect and understand physical mechanisms leading to regional sea level changes. In most areas of the world’s oceans, steric sea level variability is dominated by the contribution from isopycnal motion to the thermosteric sea level while halosteric variability relates more to spiciness. Because of the salinity minimum at middepth, different spatial salinity gradients above and below the minimum lead to opposing contributions and thus to a small contribution from isopycnal motion to the halosteric sea level. In nonpolar regions, both active components oppose each other, rendering the thermosteric variability larger than the steric variability. In the Arctic, the variability of both components is governed by spiciness in the Eurasian Basin and isopycnal motion in the Amerasian Basin.
Abstract
On interannual time scales, regional sea level variability is largely determined by changes in the steric component. The relation between the thermosteric and halosteric components is studied by separating the components into contributions from the mixed layer and, below the mixed layer, into the part that is related to isopycnal motion and that contributes to the steric sea level and the inactive part related to changes of spiciness. The decomposition provides a simple diagnostic to detect and understand physical mechanisms leading to regional sea level changes. In most areas of the world’s oceans, steric sea level variability is dominated by the contribution from isopycnal motion to the thermosteric sea level while halosteric variability relates more to spiciness. Because of the salinity minimum at middepth, different spatial salinity gradients above and below the minimum lead to opposing contributions and thus to a small contribution from isopycnal motion to the halosteric sea level. In nonpolar regions, both active components oppose each other, rendering the thermosteric variability larger than the steric variability. In the Arctic, the variability of both components is governed by spiciness in the Eurasian Basin and isopycnal motion in the Amerasian Basin.
Abstract
In the Nordic seas the Lofoten Basin is a region of high mesoscale activity. The generation mechanism and the conditions for the stability of a quasi-permanent vortex in the center of the Lofoten Basin are studied with a high-resolution ocean circulation model and altimeter data. The vortex and its generation mechanism manifest themselves by a pronounced sea surface height (SSH) signature and variability, which are found to be in agreement with altimeter data. The vortex results primarily from anticyclonic eddies shed from the eastern branch of the Norwegian Atlantic Current, which propagate southwestward. The large-scale bottom depression of the Lofoten Basin plays a crucial role for attracting anticyclones into the trough and for enabling the dynamical stability of the vortex. The water mass characteristics of the anticyclone lead to enhanced atmospheric interaction (heat loss) during wintertime. The cold water trapped in the upper part of the vortex preconditions convection in the following winter. This positive feedback mechanism tends to deepen convection progressively within the upper part of the vortex.
Abstract
In the Nordic seas the Lofoten Basin is a region of high mesoscale activity. The generation mechanism and the conditions for the stability of a quasi-permanent vortex in the center of the Lofoten Basin are studied with a high-resolution ocean circulation model and altimeter data. The vortex and its generation mechanism manifest themselves by a pronounced sea surface height (SSH) signature and variability, which are found to be in agreement with altimeter data. The vortex results primarily from anticyclonic eddies shed from the eastern branch of the Norwegian Atlantic Current, which propagate southwestward. The large-scale bottom depression of the Lofoten Basin plays a crucial role for attracting anticyclones into the trough and for enabling the dynamical stability of the vortex. The water mass characteristics of the anticyclone lead to enhanced atmospheric interaction (heat loss) during wintertime. The cold water trapped in the upper part of the vortex preconditions convection in the following winter. This positive feedback mechanism tends to deepen convection progressively within the upper part of the vortex.
Abstract
Optimal observations are used to investigate the overturning streamfunction in the North Atlantic at 30°N and 900-m depth. Those observations are designed to impact the meridional overturning circulation (MOC) in numerical models maximally when assimilated and therefore establish the most efficient observation network for studying changes in the MOC. They are also ideally suited for studying the related physical mechanisms in a general circulation model. Optimal observations are evaluated here in the framework of a global 1° model over a 10-yr period. Hydrographic observations useful to monitor the MOC are primarily located along the western boundary north of 30°N and along the eastern boundary south of 30°N. Additional locations are in the Labrador, Irminger, and Iberian Seas. On time scales of less than a year, variations in MOC are mainly wind driven and are made up through changes in Ekman transport and coastal up- and downwelling. Only a small fraction is buoyancy driven and constitutes a slow response, acting on time scales of a few years, to primarily wintertime anomalies in the Labrador and Irminger Seas. Those anomalies are communicated southward along the west coast by internal Kelvin waves at the depth level of Labrador Sea Water. They primarily set the conditions at the northern edge of the MOC anomaly. The southern edge is mainly altered through Rossby waves of the advective type, which originate from temperature and salinity anomalies in the Canary Basin. Those anomalies are amplified on their way westward in the baroclinic unstable region of the subtropical gyre. The exact meridional location of the maximum MOC response is therefore set by the ratio of the strength of these two signals.
Abstract
Optimal observations are used to investigate the overturning streamfunction in the North Atlantic at 30°N and 900-m depth. Those observations are designed to impact the meridional overturning circulation (MOC) in numerical models maximally when assimilated and therefore establish the most efficient observation network for studying changes in the MOC. They are also ideally suited for studying the related physical mechanisms in a general circulation model. Optimal observations are evaluated here in the framework of a global 1° model over a 10-yr period. Hydrographic observations useful to monitor the MOC are primarily located along the western boundary north of 30°N and along the eastern boundary south of 30°N. Additional locations are in the Labrador, Irminger, and Iberian Seas. On time scales of less than a year, variations in MOC are mainly wind driven and are made up through changes in Ekman transport and coastal up- and downwelling. Only a small fraction is buoyancy driven and constitutes a slow response, acting on time scales of a few years, to primarily wintertime anomalies in the Labrador and Irminger Seas. Those anomalies are communicated southward along the west coast by internal Kelvin waves at the depth level of Labrador Sea Water. They primarily set the conditions at the northern edge of the MOC anomaly. The southern edge is mainly altered through Rossby waves of the advective type, which originate from temperature and salinity anomalies in the Canary Basin. Those anomalies are amplified on their way westward in the baroclinic unstable region of the subtropical gyre. The exact meridional location of the maximum MOC response is therefore set by the ratio of the strength of these two signals.
Abstract
An estimate of the time-varying ocean circulation, obtained over the period 1952–2001, is analyzed here with respect to its decadal and longer-term changes in sea level. The estimate results from a synthesis of most of the ocean datasets available during this 50-yr period with the Estimating the Circulation and Climate of the Ocean/Massachusetts Institute of Technology (ECCO/MIT) ocean circulation model. Over the period 1992 through 2001, the increase in thermosteric sea level rise on average amounts to 1.2 mm yr−1 over the top 750 m and 1.8 mm yr−1 over the total water column. This corresponds to an increase in upper-ocean heat content of 1.5 × 1022 J yr−1 and is in agreement with the estimates of Willis et al. However, over the period 1962 through 2001 the global net thermosteric sea level rise is estimated as 0.66 mm yr−1 over the top 750 m, which is twice the recent estimate from Antonov et al. (0.33 mm yr−1). The corresponding trend over the total water column of 0.92 mm yr−1 is also about twice their value for the layer of 0–3000 m (0.40 mm yr−1). For the last decade, the global heat flux into the ocean of 1.5 W m−2 is twice as large as the recent estimate by Willis et al. due to the heat content change in deeper layers. Regional changes in sea level are predominantly associated with an intensification of the subtropical gyre circulation and a corresponding redistribution of heat. The horizontal advection of heat due to an increase in wind stress curl is found to explain a major fraction of the estimated regional sea level trends over the last 40 years. However, the mechanisms appear different during the last decade when in some regions changes in surface heat flux may explain as much as 50% of the sea level changes.
Abstract
An estimate of the time-varying ocean circulation, obtained over the period 1952–2001, is analyzed here with respect to its decadal and longer-term changes in sea level. The estimate results from a synthesis of most of the ocean datasets available during this 50-yr period with the Estimating the Circulation and Climate of the Ocean/Massachusetts Institute of Technology (ECCO/MIT) ocean circulation model. Over the period 1992 through 2001, the increase in thermosteric sea level rise on average amounts to 1.2 mm yr−1 over the top 750 m and 1.8 mm yr−1 over the total water column. This corresponds to an increase in upper-ocean heat content of 1.5 × 1022 J yr−1 and is in agreement with the estimates of Willis et al. However, over the period 1962 through 2001 the global net thermosteric sea level rise is estimated as 0.66 mm yr−1 over the top 750 m, which is twice the recent estimate from Antonov et al. (0.33 mm yr−1). The corresponding trend over the total water column of 0.92 mm yr−1 is also about twice their value for the layer of 0–3000 m (0.40 mm yr−1). For the last decade, the global heat flux into the ocean of 1.5 W m−2 is twice as large as the recent estimate by Willis et al. due to the heat content change in deeper layers. Regional changes in sea level are predominantly associated with an intensification of the subtropical gyre circulation and a corresponding redistribution of heat. The horizontal advection of heat due to an increase in wind stress curl is found to explain a major fraction of the estimated regional sea level trends over the last 40 years. However, the mechanisms appear different during the last decade when in some regions changes in surface heat flux may explain as much as 50% of the sea level changes.
Abstract
Decadal changes of the liquid freshwater content in the Arctic Ocean are studied with a suite of forward and adjoint model simulations. Adjoint sensitivities show that freshwater volume changes in the Norwegian Atlantic Current north of the Lofoten basin and a salinity maximum in the Fram Strait and in the Canadian Archipelago lead to an enhanced northward transport of freshwater. The dynamical sensitivities indicate that stronger freshwater export from the Arctic is related to an enhanced cyclonic circulation around Greenland, with an enhanced export through the Canadian Archipelago and a stronger circulation within the Fram Strait. Associated with this circulation around Greenland is a large-scale cyclonic circulation in the Arctic. Cyclonic wind stress anomalies in the Arctic Ocean as well as over the Nordic seas and parts of the subpolar Atlantic are optimal to force the freshwater transport changes.
Results from a simulation over the period 1948–2010 corroborate the result that Arctic freshwater content changes are mainly related to the strength of the circulation around Greenland. Volume transport changes are more important than salinity changes. Freshwater content changes can be explained by wind stress–driven transport variability, with larger export for cyclonic atmospheric forcing. By redistributing freshwater within the Arctic, cyclonic wind stress leads to high sea level in the periphery of the Arctic, and the stronger gradient from the Arctic to the North Atlantic enhances the export through the passages. A second mechanism is the wind-driven Sverdrup circulation, which can be described by Godfrey’s (1989) “island rule” including friction. For this, wind stress in the Arctic is not important.
Abstract
Decadal changes of the liquid freshwater content in the Arctic Ocean are studied with a suite of forward and adjoint model simulations. Adjoint sensitivities show that freshwater volume changes in the Norwegian Atlantic Current north of the Lofoten basin and a salinity maximum in the Fram Strait and in the Canadian Archipelago lead to an enhanced northward transport of freshwater. The dynamical sensitivities indicate that stronger freshwater export from the Arctic is related to an enhanced cyclonic circulation around Greenland, with an enhanced export through the Canadian Archipelago and a stronger circulation within the Fram Strait. Associated with this circulation around Greenland is a large-scale cyclonic circulation in the Arctic. Cyclonic wind stress anomalies in the Arctic Ocean as well as over the Nordic seas and parts of the subpolar Atlantic are optimal to force the freshwater transport changes.
Results from a simulation over the period 1948–2010 corroborate the result that Arctic freshwater content changes are mainly related to the strength of the circulation around Greenland. Volume transport changes are more important than salinity changes. Freshwater content changes can be explained by wind stress–driven transport variability, with larger export for cyclonic atmospheric forcing. By redistributing freshwater within the Arctic, cyclonic wind stress leads to high sea level in the periphery of the Arctic, and the stronger gradient from the Arctic to the North Atlantic enhances the export through the passages. A second mechanism is the wind-driven Sverdrup circulation, which can be described by Godfrey’s (1989) “island rule” including friction. For this, wind stress in the Arctic is not important.
Abstract
An important part of ocean state estimation is the design of an observing system that allows for the efficient study of climate related questions in the ocean. A solution to the design problem is presented here in terms of optimal observations that emerge as singular vectors of the modified data resolution matrix. The actual computation is feasible only for scalar quantities and in the limit of large observational errors. Identical twin experiments performed in the framework of a 1° North Atlantic primitive equation model demonstrate that such optimal observations, when applied to determining the heat transport across the Greenland–Scotland ridge, perform significantly better than traditional section data. On seasonal to interannual time scales, optimal observations are located primarily along the continental shelf and information about heat transport, wind stress, and stratification is being communicated through boundary waves and advective processes. On time scales of about 1 month, sea surface height observations appear to be more efficient in reconstructing the cross-ridge heat transport than hydrographic observations. Optimal observations also provide a tool for understanding changes of ocean state associated with anomalies of integral quantities such as meridional heat transport.
Abstract
An important part of ocean state estimation is the design of an observing system that allows for the efficient study of climate related questions in the ocean. A solution to the design problem is presented here in terms of optimal observations that emerge as singular vectors of the modified data resolution matrix. The actual computation is feasible only for scalar quantities and in the limit of large observational errors. Identical twin experiments performed in the framework of a 1° North Atlantic primitive equation model demonstrate that such optimal observations, when applied to determining the heat transport across the Greenland–Scotland ridge, perform significantly better than traditional section data. On seasonal to interannual time scales, optimal observations are located primarily along the continental shelf and information about heat transport, wind stress, and stratification is being communicated through boundary waves and advective processes. On time scales of about 1 month, sea surface height observations appear to be more efficient in reconstructing the cross-ridge heat transport than hydrographic observations. Optimal observations also provide a tool for understanding changes of ocean state associated with anomalies of integral quantities such as meridional heat transport.
Abstract
The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.
Abstract
The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.
Abstract
The impact of new geoid height models on estimates of the ocean circulation, now available from the Gravity Recovery and Climate Experiment (GRACE) spacecraft, is assessed, and the implications of far more accurate geoids, anticipated from the European Space Agency’s (ESA) Gravity and Ocean Circulation Explorer (GOCE) mission, are explored. The study is based on several circulation estimates obtained over the period 1992–2002 by combining most of the available ocean datasets with a global general circulation model on a 1° horizontal grid and by exchanging only the EGM96 geoid model with two different geoid models available from GRACE. As compared to the EGM96-based solution, the GRACE geoid leads to an estimate of the ocean circulation that is more consistent with the Levitus temperature and salinity climatology. While not a formal proof, this finding supports the inference of a substantially improved GRACE geoid skill. However, oceanographic implications of the GRACE model are only modest compared to what can be obtained from ocean observations alone. To understand the extent to which this is merely a consequence of a not-optimally converged solution or if a much more accurate geoid field could in principle play a profound role in the ocean estimation procedure, an additional experiment was performed in which the geoid error was artificially reduced relative to all other datasets. Adjustments occur then in all elements of the ocean circulation, including 10% changes in the meridional overturning circulation and the corresponding meridional heat transport in the Atlantic. For an optimal use of new geoid fields, improved error information is required. The error budget of existing time-mean dynamic topography estimates may now be dominated by residual errors in time-mean altimetric corrections. Both these and the model errors need to be better understood before improved geoid estimates can be fully exploited. As is commonly found, the Southern Ocean is of particular concern.
Abstract
The impact of new geoid height models on estimates of the ocean circulation, now available from the Gravity Recovery and Climate Experiment (GRACE) spacecraft, is assessed, and the implications of far more accurate geoids, anticipated from the European Space Agency’s (ESA) Gravity and Ocean Circulation Explorer (GOCE) mission, are explored. The study is based on several circulation estimates obtained over the period 1992–2002 by combining most of the available ocean datasets with a global general circulation model on a 1° horizontal grid and by exchanging only the EGM96 geoid model with two different geoid models available from GRACE. As compared to the EGM96-based solution, the GRACE geoid leads to an estimate of the ocean circulation that is more consistent with the Levitus temperature and salinity climatology. While not a formal proof, this finding supports the inference of a substantially improved GRACE geoid skill. However, oceanographic implications of the GRACE model are only modest compared to what can be obtained from ocean observations alone. To understand the extent to which this is merely a consequence of a not-optimally converged solution or if a much more accurate geoid field could in principle play a profound role in the ocean estimation procedure, an additional experiment was performed in which the geoid error was artificially reduced relative to all other datasets. Adjustments occur then in all elements of the ocean circulation, including 10% changes in the meridional overturning circulation and the corresponding meridional heat transport in the Atlantic. For an optimal use of new geoid fields, improved error information is required. The error budget of existing time-mean dynamic topography estimates may now be dominated by residual errors in time-mean altimetric corrections. Both these and the model errors need to be better understood before improved geoid estimates can be fully exploited. As is commonly found, the Southern Ocean is of particular concern.
Abstract
We investigate mechanisms underlying salinity changes projected to occur under strong representative concentration pathway (RCP) 8.5 forcing conditions. The study is based on output of the Max Planck Institute Earth System Model, medium resolution (MPI-ESM-MR) run with an ocean resolution of 0.4°. In comparison to the present-day oceanic conditions, sea surface salinity (SSS) increases toward the end of the twenty-first century in the tropical and the subtropical Atlantic. In contrast, a basinwide surface freshening can be observed in the Pacific and Indian Oceans. The RCP8.5 scenario of the MPI-ESM-MR with a global surface warming of ~2.3°C marks a water cycle amplification of 19%, which is equivalent to ~8%°C−1 and thus close to the water cycle amplification predicted according to the Clausius–Clapeyron (CC) relationship (~7%°C−1). Large-scale global SSS changes are driven by adjustments of surface freshwater fluxes. On smaller spatial scales, it is predominantly advection related to circulation changes that affects near-surface SSS. With respect to subsurface salinity, it is changes in surface freshwater flux that drive their changes over the upper 500 m of the subtropical Pacific and Indian Oceans by forcing changes in water mass formation (spice signal). In the subtropical Atlantic Ocean, in contrast, the dynamical response associated with wind stress, circulation changes, and associated heaving of isopycnals is equally important in driving subsurface salinity changes over the upper 1000 m.
Abstract
We investigate mechanisms underlying salinity changes projected to occur under strong representative concentration pathway (RCP) 8.5 forcing conditions. The study is based on output of the Max Planck Institute Earth System Model, medium resolution (MPI-ESM-MR) run with an ocean resolution of 0.4°. In comparison to the present-day oceanic conditions, sea surface salinity (SSS) increases toward the end of the twenty-first century in the tropical and the subtropical Atlantic. In contrast, a basinwide surface freshening can be observed in the Pacific and Indian Oceans. The RCP8.5 scenario of the MPI-ESM-MR with a global surface warming of ~2.3°C marks a water cycle amplification of 19%, which is equivalent to ~8%°C−1 and thus close to the water cycle amplification predicted according to the Clausius–Clapeyron (CC) relationship (~7%°C−1). Large-scale global SSS changes are driven by adjustments of surface freshwater fluxes. On smaller spatial scales, it is predominantly advection related to circulation changes that affects near-surface SSS. With respect to subsurface salinity, it is changes in surface freshwater flux that drive their changes over the upper 500 m of the subtropical Pacific and Indian Oceans by forcing changes in water mass formation (spice signal). In the subtropical Atlantic Ocean, in contrast, the dynamical response associated with wind stress, circulation changes, and associated heaving of isopycnals is equally important in driving subsurface salinity changes over the upper 1000 m.
Abstract
We examine a 1000-yr-long forced historical run of the Max Planck Institute Earth System Model (henceforth, past1000) with respect to freshwater-induced sea surface height (SSH) variability in the Arctic Ocean, with a focus on time scales up to and longer than centuries. As a test of the degree to which sea surface height and freshwater content covariability is due to internal climate variability in the model, and how much is due to external forcing, the past1000 results are compared to a control run using the same model, (henceforth, Ctl-P). We find that the freshwater transport associated with circulation changes, the freshwater input at the surface from the atmosphere and runoff, and ice export out of the Arctic jointly contribute to the centennial-scale freshwater variability in the Arctic. Low-frequency winds generate freshwater variability mostly through ocean circulation changes, but appear to be less important compared with earlier studies. The ice transport varies most clearly with Arctic air temperatures, and it appears that ice thickness variability is at least as important as the wind and ocean current transport variability. The largest difference in freshwater forcing in the forced run, compared to Ctl-P, is enhanced precipitation variability driven by the volcanic forcing only present in the forced, past1000 run.
Abstract
We examine a 1000-yr-long forced historical run of the Max Planck Institute Earth System Model (henceforth, past1000) with respect to freshwater-induced sea surface height (SSH) variability in the Arctic Ocean, with a focus on time scales up to and longer than centuries. As a test of the degree to which sea surface height and freshwater content covariability is due to internal climate variability in the model, and how much is due to external forcing, the past1000 results are compared to a control run using the same model, (henceforth, Ctl-P). We find that the freshwater transport associated with circulation changes, the freshwater input at the surface from the atmosphere and runoff, and ice export out of the Arctic jointly contribute to the centennial-scale freshwater variability in the Arctic. Low-frequency winds generate freshwater variability mostly through ocean circulation changes, but appear to be less important compared with earlier studies. The ice transport varies most clearly with Arctic air temperatures, and it appears that ice thickness variability is at least as important as the wind and ocean current transport variability. The largest difference in freshwater forcing in the forced run, compared to Ctl-P, is enhanced precipitation variability driven by the volcanic forcing only present in the forced, past1000 run.