This site uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Carole Peubey x
  • Refine by Access: All Content x
Clear All Modify Search
Carole Peubey
and
William Bell

Abstract

The sensitivity of numerical weather prediction (NWP) analysis and forecast accuracies with respect to frequency shifts in microwave passbands is quantified through a series of observing system experiments using the ECMWF Integrated Forecast System. First, a parameterization is developed to describe the form and magnitude of the brightness temperature errors arising from frequency shifts in Advanced Microwave Sounding Unit-A (AMSU-A) channels 4–10 and Microwave Humidity Sounder (MHS) channels 3–5. Observing system experiments are then run in which realistic synthetic brightness temperature errors are added to AMSU-A observations for various assumptions about the magnitude of a frequency shift, using the parameterization derived previously. A large negative impact on forecast quality is found when a 20-MHz frequency shift is introduced in experiments using a static bias-correction scheme. Although the degradation in forecast scores is reduced by using a variational bias-correction scheme, it remains around 7%–14% (relative) in RMS 6-h forecast errors for temperature and geopotential. Frequency shifts of 5 MHz or greater give rise to a measurable degradation of the forecast even when the variational correction scheme is used. Only low-frequency shifts (of ~1.5 MHz) are found to have a neutral impact on forecasts. Hence, the value of 1.5 MHz can be regarded as an upper limit below which frequency shifts do not degrade forecasts for the key tropospheric and lower-stratospheric temperature sounding channels in a microwave sounding mission. Calculations show that frequency shift is less problematic for 183-GHz humidity sounding channels due to the symmetric positioning of passbands relative to the 183-GHz absorption line. For these channels a passband center frequency stability of 10 MHz is adequate.

Full access
Qifeng Lu
,
William Bell
,
Peter Bauer
,
Niels Bormann
, and
Carole Peubey

Abstract

China’s Feng-Yun-3A (FY-3A), launched in May 2008, is the first in a series of seven polar-orbiting meteorological satellites planned for the next decade by China. The FY-3 series is set to become an important data source for numerical weather prediction (NWP), reanalysis, and climate science. FY-3A is equipped with a microwave temperature sounding instrument (MWTS). This study reports an assessment of the MWTS instrument using the ECMWF NWP model, radiative transfer modeling, and comparisons with equivalent observations from the Advanced Microwave Sounding Unit-A (AMSU-A). The study suggests the MWTS instrument is affected by biases related to large shifts, or errors, in the frequency of the channel passbands as well as radiometer nonlinearity. The passband shifts, relative to prelaunch measurements, are 55, 39, and 33 MHz for channels 2–4, respectively. Relative to the design specification the shifts are 60, 80, and 83 MHz, with uncertainties of ±2.5 MHz. The radiometer nonlinearity results in a positive bias in measured brightness temperatures and is manifested as a quadratic function of measured scene temperatures. By correcting for both of these effects the quality of the MWTS data is improved significantly, with the standard deviations of the (observed minus simulated) differences based on short-range forecast fields reduced by 30%–50% relative to simulations using prelaunch measurements of the passband, to values close to those observed for AMSU-A-equivalent channels. The new methodology could be applied to other microwave temperature sounding instruments and illustrates the value of NWP fields for the on-orbit characterization of satellite sensors.

Full access
Paul Poli
,
Hans Hersbach
,
Dick P. Dee
,
Paul Berrisford
,
Adrian J. Simmons
,
Frédéric Vitart
,
Patrick Laloyaux
,
David G. H. Tan
,
Carole Peubey
,
Jean-Noël Thépaut
,
Yannick Trémolet
,
Elías V. Hólm
,
Massimo Bonavita
,
Lars Isaksen
, and
Michael Fisher

Abstract

The ECMWF twentieth century reanalysis (ERA-20C; 1900–2010) assimilates surface pressure and marine wind observations. The reanalysis is single-member, and the background errors are spatiotemporally varying, derived from an ensemble. The atmospheric general circulation model uses the same configuration as the control member of the ERA-20CM ensemble, forced by observationally based analyses of sea surface temperature, sea ice cover, atmospheric composition changes, and solar forcing. The resulting climate trend estimations resemble ERA-20CM for temperature and the water cycle. The ERA-20C water cycle features stable precipitation minus evaporation global averages and no spurious jumps or trends. The assimilation of observations adds realism on synoptic time scales as compared to ERA-20CM in regions that are sufficiently well observed. Comparing to nighttime ship observations, ERA-20C air temperatures are 1 K colder. Generally, the synoptic quality of the product and the agreement in terms of climate indices with other products improve with the availability of observations. The MJO mean amplitude in ERA-20C is larger than in 20CR version 2c throughout the century, and in agreement with other reanalyses such as JRA-55. A novelty in ERA-20C is the availability of observation feedback information. As shown, this information can help assess the product’s quality on selected time scales and regions.

Full access
  翻译: