This site uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Constantin Andronache x
  • Refine by Access: All Content x
Clear All Modify Search
Vaughan T. J. Phillips
,
Paul J. DeMott
, and
Constantin Andronache

Abstract

A novel, flexible framework is proposed for parameterizing the heterogeneous nucleation of ice within clouds. It has empirically derived dependencies on the chemistry and surface area of multiple species of ice nucleus (IN) aerosols. Effects from variability in mean size, spectral width, and mass loading of aerosols are represented via their influences on surface area. The parameterization is intended for application in large-scale atmospheric and cloud models that can predict 1) the supersaturation of water vapor, which requires a representation of vertical velocity on the cloud scale, and 2) concentrations of a variety of insoluble aerosol species.

Observational data constraining the parameterization are principally from coincident field studies of IN activity and insoluble aerosol in the troposphere. The continuous flow diffusion chamber (CFDC) was deployed. Aerosol species are grouped by the parameterization into three basic types: dust and metallic compounds, inorganic black carbon, and insoluble organic aerosols.

Further field observations inform the partitioning of measured IN concentrations among these basic groups of aerosol. The scarcity of heterogeneous nucleation, observed at humidities well below water saturation for warm subzero temperatures, is represented. Conventional and inside-out contact nucleation by IN is treated with a constant shift of their freezing temperatures.

The empirical parameterization is described and compared with available field and laboratory observations and other schemes. Alternative schemes differ by up to five orders of magnitude in their freezing fractions (−30°C). New knowledge from future observational advances may be easily assimilated into the scheme’s framework. The essence of this versatile framework is the use of data concerning atmospheric IN sampled directly from the troposphere.

Full access
Vaughan T. J. Phillips
,
Paul J. Demott
,
Constantin Andronache
,
Kerri A. Pratt
,
Kimberly A. Prather
,
R. Subramanian
, and
Cynthia Twohy

Abstract

A framework for an empirical parameterization (EP) of heterogeneous nucleation of ice crystals by multiple species of aerosol material in clouds was proposed in a 2008 paper by the authors. The present paper reports improvements to specification of a few of its empirical parameters. These include temperatures for onset of freezing, baseline surface areas of aerosol observed in field campaigns over Colorado, and new parameters for properties of black carbon, such as surface hydrophilicity and organic coatings. The EP’s third group of ice nucleus (IN) aerosols is redefined as that of primary biological aerosol particles (PBAPs), replacing insoluble organic aerosols. A fourth group of IN is introduced—namely, soluble organic aerosols.

The new EP predicts IN concentrations that agree well with aircraft data from selected traverses of shallow wave clouds observed in five flights (1, 3, 4, 6, and 12) of the 2007 Ice in Clouds Experiment–Layer Clouds (ICE-L). Selected traverses were confined to temperatures between about −25° and −29°C in layer cloud without homogeneously nucleated ice from aloft. Some of the wave clouds were affected by carbonaceous aerosols from biomass burning and by dust from dry lakebeds and elsewhere. The EP predicts a trend between number concentrations of heterogeneously nucleated ice crystals and apparent black carbon among the five wave clouds, observed by aircraft in ICE-L. It is predicted in terms of IN activity of black carbon.

The EP’s predictions are consistent with laboratory and field observations not used in its construction, for black carbon, dust, primary biological aerosols, and soluble organics. The EP’s prediction of biological ice nucleation is validated using coincident field observations of PBAP IN and PBAPs in Colorado.

Full access
  翻译: