This site uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Ewan C. Crosbie x
  • Refine by Access: All Content x
Clear All Modify Search
Seethala Chellappan
,
Paquita Zuidema
,
Simon Kirschler
,
Christiane Voigt
,
Brian Cairns
,
Ewan C. Crosbie
,
Richard Ferrare
,
Johnathan Hair
,
David Painemal
,
Taylor Shingler
,
Michael Shook
,
Kenneth L. Thornhill
,
Florian Tornow
, and
Armin Sorooshian

Abstract

Five cold-air outbreaks are investigated with aircraft offshore of continental northeast America. Flight paths aligned with the cloud-layer flow from January through March span cloud-top temperatures from −5° to −12°C, in situ liquid water paths of up to 500 g m−2, while in situ cloud droplet number concentrations exceeding 500 cm−3 maintain effective radii below 10 μm. Rimed ice is detected in the four colder cases within the first cloud pass. After further fetch, ice particle number concentrations reaching 2.5 L−1 support an interpretation that secondary ice production is occurring. Rime splintering is clearly evident, with dendritic growth increasing ice water contents within deeper clouds with colder cloud-top temperatures. Buoyancy fluxes reach 400–600 W m−2 near the Gulf Stream’s western edge, with 1-s updrafts reaching 5 m s−1 supporting closely spaced convective cells. Near-surface rainfall rates of the three more intense cold-air outbreaks are a maximum near the Gulf Stream’s eastern edge, just before the clouds transition to more open-celled structures. The milder two cold-air outbreaks transition to lower-albedo cumulus with little or no precipitation. The clouds thin through cloud-top entrainment.

Significance Statement

Cold-air outbreaks off of the eastern U.S. seaboard are visually spectacular in satellite imagery, with overcast, high-albedo clouds transitioning to more broken cloud fields. We use data from the recent NASA Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) aircraft campaign to examine the microphysics and environmental context of five such outbreaks. We find the clouds are not ice-deprived, but updrafts still supply significant liquid water. Cloud transitions are encouraged through near-surface rain for the deeper clouds, and otherwise, clouds thin and break through mixing in drier air from above. These observations support understanding and further modeling examining how mixed-phase cloud microphysics affect cloud reflectivity and surface rainfall rates, important for both weather and climate forecasting.

Restricted access
Ewan Crosbie
,
Zhen Wang
,
Armin Sorooshian
,
Patrick Y. Chuang
,
Jill S. Craven
,
Matthew M. Coggon
,
Michael Brunke
,
Xubin Zeng
,
Haflidi Jonsson
,
Roy K. Woods
,
Richard C. Flagan
, and
John H. Seinfeld

Abstract

Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings.

Full access
Armin Sorooshian
,
Bruce Anderson
,
Susanne E. Bauer
,
Rachel A. Braun
,
Brian Cairns
,
Ewan Crosbie
,
Hossein Dadashazar
,
Glenn Diskin
,
Richard Ferrare
,
Richard C. Flagan
,
Johnathan Hair
,
Chris Hostetler
,
Haflidi H. Jonsson
,
Mary M. Kleb
,
Hongyu Liu
,
Alexander B. MacDonald
,
Allison McComiskey
,
Richard Moore
,
David Painemal
,
Lynn M. Russell
,
John H. Seinfeld
,
Michael Shook
,
William L. Smith Jr
,
Kenneth Thornhill
,
George Tselioudis
,
Hailong Wang
,
Xubin Zeng
,
Bo Zhang
,
Luke Ziemba
, and
Paquita Zuidema

Abstract

We report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.

Full access
  翻译: