This site uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Simon Kirschler x
  • Refine by Access: All Content x
Clear All Modify Search
Seethala Chellappan
,
Paquita Zuidema
,
Simon Kirschler
,
Christiane Voigt
,
Brian Cairns
,
Ewan C. Crosbie
,
Richard Ferrare
,
Johnathan Hair
,
David Painemal
,
Taylor Shingler
,
Michael Shook
,
Kenneth L. Thornhill
,
Florian Tornow
, and
Armin Sorooshian

Abstract

Five cold-air outbreaks are investigated with aircraft offshore of continental northeast America. Flight paths aligned with the cloud-layer flow from January through March span cloud-top temperatures from −5° to −12°C, in situ liquid water paths of up to 500 g m−2, while in situ cloud droplet number concentrations exceeding 500 cm−3 maintain effective radii below 10 μm. Rimed ice is detected in the four colder cases within the first cloud pass. After further fetch, ice particle number concentrations reaching 2.5 L−1 support an interpretation that secondary ice production is occurring. Rime splintering is clearly evident, with dendritic growth increasing ice water contents within deeper clouds with colder cloud-top temperatures. Buoyancy fluxes reach 400–600 W m−2 near the Gulf Stream’s western edge, with 1-s updrafts reaching 5 m s−1 supporting closely spaced convective cells. Near-surface rainfall rates of the three more intense cold-air outbreaks are a maximum near the Gulf Stream’s eastern edge, just before the clouds transition to more open-celled structures. The milder two cold-air outbreaks transition to lower-albedo cumulus with little or no precipitation. The clouds thin through cloud-top entrainment.

Significance Statement

Cold-air outbreaks off of the eastern U.S. seaboard are visually spectacular in satellite imagery, with overcast, high-albedo clouds transitioning to more broken cloud fields. We use data from the recent NASA Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) aircraft campaign to examine the microphysics and environmental context of five such outbreaks. We find the clouds are not ice-deprived, but updrafts still supply significant liquid water. Cloud transitions are encouraged through near-surface rain for the deeper clouds, and otherwise, clouds thin and break through mixing in drier air from above. These observations support understanding and further modeling examining how mixed-phase cloud microphysics affect cloud reflectivity and surface rainfall rates, important for both weather and climate forecasting.

Restricted access
Xiang-Yu Li
,
Hailong Wang
,
Jingyi Chen
,
Satoshi Endo
,
Geet George
,
Brian Cairns
,
Seethala Chellappan
,
Xubin Zeng
,
Simon Kirschler
,
Christiane Voigt
,
Armin Sorooshian
,
Ewan Crosbie
,
Gao Chen
,
Richard Anthony Ferrare
,
William I. Gustafson Jr.
,
Johnathan W. Hair
,
Mary M. Kleb
,
Hongyu Liu
,
Richard Moore
,
David Painemal
,
Claire Robinson
,
Amy Jo Scarino
,
Michael Shook
,
Taylor J. Shingler
,
Kenneth Lee Thornhill
,
Florian Tornow
,
Heng Xiao
,
Luke D. Ziemba
, and
Paquita Zuidema

Abstract

Large-eddy simulation (LES) is able to capture key boundary layer (BL) turbulence and cloud processes. Yet, large-scale forcing and surface turbulent fluxes of sensible and latent heat are often poorly prescribed for LESs. We derive these quantities from measurements and reanalysis obtained for two cold-air outbreak (CAO) events during Phase I of the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) in February–March 2020. We study the two contrasting CAO cases by performing LES and test the sensitivity of BL structure and clouds to large-scale forcings and turbulent heat fluxes. Profiles of atmospheric state and large-scale divergence and surface turbulent heat fluxes obtained from ERA5 data agree reasonably well with those derived from ACTIVATE field measurements for both cases at the sampling time and location. Therefore, we adopt the time-evolving heat fluxes, wind, and advective tendencies profiles from ERA5 data to drive the LES. We find that large-scale thermodynamic advective tendencies and wind relaxations are important for the LES to capture the evolving observed BL meteorological states characterized by the hourly ERA5 data and validated by the observations. We show that the divergence (or vertical velocity) is important in regulating the BL growth driven by surface heat fluxes in LESs. The evolution of liquid water path is largely affected by the evolution of surface heat fluxes. The liquid water path simulated in LES agrees reasonably well with the ACTIVATE measurements. This study paves the path to investigate aerosol–cloud–meteorology interactions using LES informed and evaluated by ACTIVATE field measurements.

Full access
Xiang-Yu Li
,
Hailong Wang
,
Jingyi Chen
,
Satoshi Endo
,
Simon Kirschler
,
Christiane Voigt
,
Ewan Crosbie
,
Luke D. Ziemba
,
David Painemal
,
Brian Cairns
,
Johnathan W. Hair
,
Andrea F. Corral
,
Claire Robinson
,
Hossein Dadashazar
,
Armin Sorooshian
,
Gao Chen
,
Richard Anthony Ferrare
,
Mary M. Kleb
,
Hongyu Liu
,
Richard Moore
,
Amy Jo Scarino
,
Michael A. Shook
,
Taylor J. Shingler
,
Kenneth Lee Thornhill
,
Florian Tornow
,
Heng Xiao
, and
Xubin Zeng

Abstract

Aerosol effects on micro/macrophysical properties of marine stratocumulus clouds over the western North Atlantic Ocean (WNAO) are investigated using in situ measurements and large-eddy simulations (LES) for two cold-air outbreak (CAO) cases (28 February and 1 March 2020) during the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE). The LES is able to reproduce the vertical profiles of liquid water content (LWC), effective radius r eff and cloud droplet number concentration Nc from fast cloud droplet probe (FCDP) in situ measurements for both cases. Furthermore, we show that aerosols affect cloud properties (Nc , r eff, and LWC) via the prescribed bulk hygroscopicity of aerosols ( κ ¯ ) and aerosol size distribution characteristics. Nc , r eff, and liquid water path (LWP) are positively correlated to κ ¯ and aerosol number concentration (Na ) while cloud fractional cover (CFC) is insensitive to κ ¯ and aerosol size distributions for the two cases. The realistic changes to aerosol size distribution (number concentration, width, and the geometrical diameter) with the same meteorology state allow us to investigate aerosol effects on cloud properties without meteorological feedback. We also use the LES results to evaluate cloud properties from two reanalysis products, ERA5 and MERRA-2. Compared to LES, the ERA5 is able to capture the time evolution of LWP and total cloud coverage within the study domain during both CAO cases while MERRA-2 underestimates them.

Open access
  翻译: