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Abstract—Given a temporal irregular tensor with missing
values, how can we perform accurate decomposition for the
tensor? Many real-world data can be represented as a temporal
irregular tensor which is a collection of matrices whose rows
corresponding to the time dimension have different sizes, but
columns have the same size. PARAFAC2 decomposition is a pow-
erful tool for analyzing an irregular tensor in many interesting
applications such as phenotype discovery and fault detection.
However, existing PARAFAC2 decomposition methods fail to
handle irregular tensors with missing values since they treat the
missing values as zeros. Furthermore, few methods that utilize
temporal regularization focus only on a specific type of temporal
irregular tensors.

In this paper, we propose ATOM, an accurate PARAFAC2
decomposition method which carefully handles missing values in
a temporal irregular tensor. ATOM provides a reformulated loss
function that fully excludes missing values and accurately updates
factor matrices by considering sparsity patterns of each row.
ATOM also captures temporal patterns by exploiting smoothing
regularization with time dependency. Extensive experiments show
that ATOM provides up to 7.9× lower error rate than existing
PARAFAC2 decomposition methods.

Index Terms—irregular tensor, parafac2 decomposition, miss-
ing value

I. INTRODUCTION

Given a temporal irregular tensor with missing values, how
can we accurately find latent factors by decomposition? A
temporal irregular tensor is a natural representation of real-
world data as a collection of matrices whose rows correspond-
ing to the time dimension have different sizes, but columns
have the same size. For example, stock data can be represented
as a temporal irregular tensor where all the stocks have the
same number of features but their listing periods are different.
Traffic data and movie rating data can be also represented as
temporal irregular tensors.

Many research works has studied tensor decomposition for
improving its performance [1]–[7] and applying it to real-
world applications including concept discovery [8], [9], fore-
casting [10], [11], anomaly detection [12]–[14], and knowl-
edge base completion [15]. It extracts meaningful information
from tensors by learning latent factor matrices. Among many
tensor decomposition methods, PARAFAC2 decomposition
is tailored for analyzing an irregular tensor by approximat-
ing it into latent factor matrices. Several applications using
PARAFAC2 decomposition include phenotype discovery [16]–
[18], trend analysis [19], and heart failure prediction [20].

An irregular 
input tensor

Results of PARAFAC2
decomposition

Fig. 1. PARAFAC2 decomposition converts each slice matrix Xk into Uk ∈
RIk×R, Sk ∈ RR×R, and V ∈ RJ×R for k = 1, ...,K, where R is a target
rank and Sk is a diagonal matrix.
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Fig. 2. Evaluation of missing value prediction for test ratio 30%. ATOM
outperforms existing PARAFAC2 decomposition methods, providing up to
7.9× lower error rate than the competitors.

Many recent works [14], [16]–[18], [21] have utilized
PARAFAC2 decomposition (see Fig. 1) to analyze irregular
tensors. They adopt alternating optimization (AO) which al-
ternatively updates factor matrices of PARAFAC2 decomposi-
tion. However, they fail to obtain accurate factor matrices in
temporal irregular tensors with missing values since they set
the missing values to zeros. Although few methods [17], [18]
utilize temporal regularization, they can be applied only in a
tensor with a special structure (e.g., non-negativity). The main
challenges to be tackled are 1) how to handle missing values,
2) how to capture temporal patterns, and 3) how to handle
sparsity patterns in a given tensor.

In this paper, we propose ATOM, an Accurate PARAFAC2
decomposition method for Temporal irregular tensOrs with
Missing values. We provide a reformulated loss function with
a scalar form, which excludes missing values completely in
the loss function. In addition, we add effective temporal reg-
ularization that makes nearby temporal factor vectors similar
to each other. Finally, we carefully derive row-wise update
rules to minimize the reformulated loss function. With these
ideas, ATOM performs a highly accurate decomposition in
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TABLE I
SYMBOL DESCRIPTION.

Symbol Description

{Xk}Kk=1 irregular tensor of slices Xk for k = 1, ...,K
Xk slice matrix (∈ Ik × J)

X(i, :) i-th row vector of a matrix X
X(:, j) j-th column vector of a matrix X
X(i, j) (i, j)-th element of a matrix X

Uk , Sk , Qk factor matrices of the kth slice
H, V factor matrices of an irregular tensor
R target rank
� Khatri-Rao product
∗ element-wise product

vec(·) vectorization of a matrix

temporal irregular tensors with missing values, achieving up to
7.9× lower error rate than existing PARAFAC2 decomposition
methods.

Our main contributions are summarized as follows:

• Method. we propose ATOM, an accurate PARAFAC2
decomposition method for temporal irregular tensors with
missing values.

• Theory. We analyze the convergence of ATOM, and show
that ATOM monotonically decreases the loss function.

• Experiments. Extensive experiments show that ATOM
provides up to 7.9× lower error rate than existing
PARAFAC2 decomposition methods (see Fig. 2).

The code and datasets are available at https://datalab.snu.
ac.kr/atom.

II. PRELIMINARIES

In this section, we describe tensor notations, tensor oper-
ations, and PARAFAC2 decomposition. Table I presents the
symbols used in this paper.

Boldface lowercases (e.g. x) and boldface capitals (e.g. X)
denote vectors and matrices, respectively. Note that indices
start at 1 in this paper.

Irregular Tensor. An irregular tensor is denoted by
{Xk}Kk=1 consisting of a slice matrix Xk ∈ RIk×J where
K is the number of slice matrices. Note that the column size
J is the same for all the slice matrices while their row sizes
Ik are different.

Frobenius Norm. The Frobenius norm of X ∈ RIk×J is
denoted by ‖X‖F and defined as follows:

‖X‖F =

√∑
i,j

(X(i, j))2.

where X(i, j) is the (i, j)-th element of X.
Khatri-Rao product. Given two matrices X ∈ Rp×q

and Y ∈ Rr×q , the Khatri-Rao product is denoted by
(X�Y) ∈ Rpr×q . The Khatri-Rao product performs the
Kronecker product column by column: (X�Y) = [X(:
, 1)⊗Y(:, 1) ‖ · · · ‖X(:, q)⊗Y(:, q)], where ⊗ is Kronecker
product and ‖ denotes the horizontal concatenation. Each
element of a = X(:, q)⊗Y(:, q) ∈ Rpr is defined as follows:

a((i− 1)r + k) = X(i, q)Y(k, q)

where a((i− 1)r + k) is the ((i− 1)r + k)th element of the
vector a.

PARAFAC2 decomposition. Harshman [22] proposed
PARAFAC2 decomposition which effectively analyzes irregu-
lar tensors. The definition of PARAFAC2 decomposition is as
follows. As shown in Fig. 1, PARAFAC2 decomposition de-
composes each k-th slice matrix Xk ∈ RIk×J into UkSkVT

when a target rank R and a 3-order irregular tensor {Xk}Kk=1

are given. Note that Uk is a matrix of the size Ik ×R, Sk is
a diagonal matrix of the size R×R, and V is a matrix of the
size J ×R which is common for all the slices.

The objective function of PARAFAC2 decomposition [22]
is given as follows.

min
{Uk},{Sk},V

K∑
k=1

||Xk −UkSkVT ||2F (1)

Many PARAFAC2 decomposition methods [16]–[18], [21],
[23] solve the above objective function (Eq. (1)) by adopting
Alternating Optimization which iteratively updates a target
factor matrix while fixing all the other factor matrices. Cheng
et al. [21] and Jang et al. [23] focus on improving the efficiency
of PARAFAC2 decomposition. Other works [16]–[18] focus
on analyzing EHR data represented as a sparse irregular
tensor with non-negative values by finding interpretable factor
matrices. They use regularizations to improve interpretability.
However, all the methods mentioned above fail to deal with
an irregular tensor with missing values since they do not
exclude missing values from the objective function (Eq. (1)).
Furthermore, temporal regularization used in the previous
works [17], [18] is limited since it is applicable only to a
specific type of irregular tensors (e.g., EHR data).

III. PROPOSED METHOD

In this paper, we propose ATOM, an accurate temporal irreg-
ular tensor decomposition method handling missing values. We
need to tackle the following challenges in obtaining accurate
factor matrices of PARAFAC2 decomposition:
C1. Fully excluding missing values in a loss function.

Previous works handle missing values as zeros. How can
we avoid handling missing values in the loss function?

C2. Capturing temporal patterns. Temporal patterns are
inherent in many temporal irregular tensors. How can we
capture the temporal patterns in the tensor?

C3. Optimizing an update procedure. Previous update pro-
cedures are based on the existing loss function with
the matrix form. However, they conflict with a loss
function that excludes missing values. How can we design
an update procedure for factor matrices of PARAFAC2
decomposition?

We address the above challenges with the following ideas
(see Fig. 3):
I1. Reformulating the loss function of PARAFAC2 de-

composition as a scalar form (Section III-A). A loss
function with the scalar form fully exclude missing values
when updating factor matrices.

I2. Temporal regularization (Section III-B). We regularize
nearby temporal factor vectors to be similar to each other.
Temporal factor vectors change smoothly over time.

https://datalab.snu.ac.kr/atom
https://datalab.snu.ac.kr/atom
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(a) Loss function with a scalar form (b) Temporal Smoothness (c) Update row by row

Fig. 3. Description of what we modify. Blue boxes indicate examples for main ideas of ATOM. (a) We reformulate a loss function with a matrix form into
that with a scalar form. It enables us to fully exclude missing values in an irregular tensor. (b) Temporal regularization makes the temporal factor matrix Uk

smooth for the time dimension by making nearby factor vectors similar. As you can see in the red circles, Our temporal factor vector Uk(:, r) is smoother
than the vector updated without temporal smoothness. (c) We update factor matrices row by row since rows of a factor matrix are updated by using different
inverse terms. Rows of a slice matrix have different sparsity patterns which affect an update procedure derived from a reformulated loss function with a scalar
form (lower one of Fig. 3(a)). A previous update rule derived from a loss function with a matrix form (upper one of Fig. 3(a)) does not need to consider
sparsity patterns of missing values since all rows of a factor matrices use the same inverse term.

I3. Row-wise update procedure for factor matrices (Sec-
tion III-C). We attain a highly accurate decomposition by
a row-wise update procedure tailored for the reformulated
loss function.

A. Loss Function with Scalar Form

Our objective is to fully exclude missing values from the
loss function (Eq. (1)), and reformulate the loss function
without them. We peer into the problem of the loss function
(Eq. (1)) in terms of missing values, and then provide a
solution to fully exclude them.

Problem. In the previous loss function (Eq. (1)), computing
the value ||Xk−UkSkVT ||2F of the Frobenius norm requires
setting all the missing values to 0, which leads to a degraded
performance.

Example. We provide a toy example to illustrate the prob-
lem. Assume that we minimize a loss function, ‖x−VSu‖22,
using alternating optimization where x ∈ R3 is an input vector
whose second element has a missing value, u ∈ RR is a factor
vector, S ∈ RR×R is a diagonal factor matrix, V ∈ R3×R is a
factor matrix, and R is a target rank. Then, we update u with
the following rule while fixing S and V:

u←
(
SVTVS

)−1
SVTx (2)

The above update rule is derived from ∂L
∂uk

= 0 where
L = ‖x−VSu‖22. The problem of Eq. (2) is that u is updated
to make V(2, :)Su close to 0 where V(2, :) ∈ R1×R is
the second row vector of V. This is because ‖x−VSu‖22
is minimized when V(2, :)Su is equal to zero. However,
this is not what we want since the missing value is not
necessarily 0. Previous PARAFAC2 decomposition methods
based on alternating optimization have slightly different update
procedures, but the concept is implicit in their procedures.

Solution. How can we fully exclude missing values when
updating factor matrices? As shown in Fig. 3(a), we reformu-
late the loss function for PARAFAC2 decomposition as a scalar
form. Given an irregular tensor {Xk}Kk=1 with observable
entries {Ωk}Kk=1, we aim to find factor matrices, Uk, Sk, and

V, which approximates the given tensor by minimizing the
following loss function with the scalar form:

L =

K∑
k=1

∑
(i,j)∈Ωk

(
Xk(i, j)−Uk(i, :)SkV(j, :)T

)2

(3)

where Xk is the k-th slice of the given irregular tensor, and
Ωk is the observable entries of the kth slice matrix. The loss
function (Eq. (3)) involves only observable entries Ωk for all k.
With the function, we accurately update factor matrices using
only observable entries Ωk for all k.

Example. We provide an example to compare our
loss function with the previous function. We first
reformulate ‖x−VSu‖22 into (x(1)−V(1, :)Su)

2
+

(x(3)−V(3, :)Su)
2 where x(i) is the ith element of the

vector x. We adopt alternating optimization, and update u
while fixing S and V. Then, updating u is computed:

u←
(
S
(
V(1, :)TV(1, :) + V(3, :)TV(3, :)

)
S
)−1

S
(
V(1, :)Tx(1) + V(3, :)Tx(3)

) (4)

Note that S
(
V(1, :)Tx(1) + V(3, :)Tx(3)

)
is equal to SVTx

when x(2) is set to 0 in SVTx. The main difference between
Eq. (4) and (2) is the inside of the inverse term. In contrast
to Eq. (2), the term, SV(2, :)TV(2, :)S, is fully excluded in
Eq. (4). This leads to accurate update of u by not interpreting
missing values to zero. In summary, the reformulation with
the scalar form is simple but powerful for excluding missing
values completely and laying the groundwork for updating
factor matrices accurately.

B. Regularizations

We add effective regularizations that mix well with the loss
function (Eq. (3)).

Temporal Smoothness. We add temporal smoothness reg-
ularization such that the values of temporal factor matrices
change gradually over time. Temporal regularization used in
few PARAFAC2 decomposition methods [17], [18] is effective
only on specific data with non-negativity. Therefore, we use
more general and effective temporal smoothness applicable to
various irregular tensors, capturing temporal patterns which
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Fig. 4. An example of a real-world slice matrix in US Stock data. Rows and
columns of Xk correspond to the time and feature dimensions, respectively.
The left and right figures show opening prices (one of features) during 88
days, and values of 88 features at one day, respectively. Compared to the
values in the right figure, the values gradually change in the left figure.

change gradually over time as described in Fig. 4. Our idea is
to make nearby temporal factor vectors Uk(i, :) similar to each
other. It helps capture temporal patterns and thus improves
the performance of tensor decomposition [11], [24]. The main
difference from the previous works [11], [20], [24] that handle
regular tensors or a binary irregular tensor comes from the fact
that ATOM focuses on analyzing real-valued irregular tensors
with missing values and using PARAFAC2 decomposition. We
add the following regularization in the loss function (Eq. (3)):

λs

Ik−1∑
i=1

‖Uk(i, :)−Uk(i+ 1, :)‖22 (5)

where λs is a hyperparameter to adjust the effect of temporal
smoothness. As shown in the example of Fig. 3(b), this regu-
larization enforces temporal factor vectors to change gradually
along the time axis.

Uniqueness. Recent works [16]–[18], [21], [23] use unique-
ness regularization for the interpretability of factor matrices.
They replace Uk with QkH for uniqueness as proved in
many works [25]–[27] where Qk is a column orthogonal
matrix. Then, they approximate Xk into QkHSkVT which are
unique factor matrices except for scaling and permutation of
the factor vectors. Note that non-unique factor matrices make
interpretation difficult since there can be several rotated factor
matrices that cast doubt on the reliability of interpretation.
Therefore, preserving uniqueness improves the interpretability
of factor matrices. However, the explicit replacement provokes
an accuracy issue due to under-fitting. Therefore, we add
Eq. (6) to Eq. (3), instead of the explicit replacement.

λu‖Uk −QkH‖2F (6)
where λu is a hyperparameter to adjust the effect of unique-
ness.

L2 regularization. We apply L2 regularization to V and
Sk.

λl‖V‖2F and λl

K∑
k=1

‖Sk‖2F (7)

where λl is a hyperparameter of L2 regularization. L2 reg-
ularization has been widely used for avoiding overfitting.
Furthermore, this regularization prevents the computation of
the inverse of a singular matrix in our update procedure. For
example, let the column size of V be R = 10 in Eq. (4).
Then, Sk

(
V(1, :)TV(1, :) + V(3, :)TV(3, :)

)
Sk ∈ R10×10 is

a singular matrix since its rank is equal to 2 and is smaller than
10. In other words, we fail to update uk when the number of

observed values in the row is smaller than the target rank R.
Applying L2 regularization transforms the inside of the inverse
term into λlI + Sk

(
V(1, :)TV(1, :) + V(3, :)TV(3, :)

)
Sk.

Therefore, we avoid computing the inverse of a singular matrix
by using L2 regularization. The detail of the derivation is
described in the next section.

Loss function. We propose the following loss function,
which fully excludes missing values and includes effective
regularizations:

L =

K∑
k=1

( ∑
(i,j)∈Ωk

(
Xk(i, j)−Uk(i, :)SkV(j, :)T

)2

+ λs

Ik−1∑
i=1

‖Uk(i, :)−Uk(i+ 1, :)‖22

+ λu‖Uk −QkH‖2F + λl‖Sk‖2F

)
+ λl‖V‖2F

(8)

C. Row-wise Update Procedure

Our goal is to update factor matrices that minimize the loss
function (Eq. (8)). To achieve the goal, we need to consider
sparsity patterns in an irregular tensor. Missing values in a
tensor are not aligned but spread out all over the tensor. In
addition, our loss function is in the scalar form, not the matrix
form. However, existing AO (Alternating Optimization)-based
methods, which alternatively update factor matrices, cannot
handle the loss function (Eq. (8)) with the scalar form since
they minimize the loss function with the matrix form by
updating the entire elements of a factor matrix at once. In
other words, they cannot address the problem of using different
inverse terms for rows of a factor matrix, which is important
to achieve high accuracy of decomposition. Therefore, we
need to design a new update procedure appropriate for the
reformulated function. Our idea is to update factor matrices
row by row since rows of a slice matrix have different sparsity
patterns and all the rows of a factor matrix are independent.
Note that sparsity patterns of a slice matrix make rows of a
factor matrix have different inverse terms. In the loss function
(Eq.(3)), the inside of the square term includes the row
vectors of U, W, and V where W ∈ RK×R is a matrix
whose kth row contains the diagonal elements of Sk (i.e.,
W(k, r) = Sk(r, r)). Therefore, we easily take the derivative
with respect to a row of a factor matrix, ∂L

∂Uk(i,:) , ∂L
∂W(k,:) , and

∂L
∂V(j,:) from the loss function (Eq. (8)).

Before describing our update procedure, we show that rows
of a factor matrix have different inverse terms depending
on the sparsity patterns of a slice matrix when updating
a factor matrix. We compare our update rule with a naive
update rule based on the derivative from the loss function
(Eq. (1)) as shown in Fig. 3(c). Assume that we update the
factor matrix Uk. The naive update rule updates each row
of Uk using Eq. (2), and all the rows of Uk are updated
using the same inverse term

(
SkVTVSk

)−1
. In contrast, each

row of Uk is updated based on Eq. (4) when we use our
update rule. Considering the sparsity pattern for each row,
we compute the inverse term differently for each row. For



Algorithm 1: ATOM

Input: Xk ∈ RIk×J for k = 1, ...,K
Output: Uk ∈ RIk×R, Sk ∈ RR×R for k = 1, ...,K, and

V ∈ RJ×R.
Parameters: target rank R

1: initialize matrices Uk, Qk, Sk for k = 1, ...,K, and H and V
2: repeat
3: for k = 1, ...,K do
4: update Uk, W, and V using Eq. (9), (10), and (11),

respectively
5: update Qk and H using Eq. (12) and (13), respectively
6: end for
7: until the maximum iteration is reached, or the error ceases to

decrease;
8: for k = 1, ...,K do
9: Sk ← diag(W(k, :))

10: end for

example, let Xk ∈ R2×3 be a slice matrix where Xk(1, 2),
Xk(2, 1), and Xk(2, 3) are missing. The naive update rule
updates both Uk(1, :) and Uk(2, :) using

(
SkVTVSk

)−1
.

Based on our update rule, we update Uk(1, :) using the
inverse term

(
Sk

(
V(1, :)TV(1, :) + V(3, :)TV(3, :)

)
Sk

)−1

while updating Uk(2, :) using
(
SkV(2, :)TV(2, :)Sk

)−1
.

We propose an alternating optimization based update pro-
cedure which independently updates rows of a factor matrix
while fixing the other factor matrices; it computes ∂L

∂Uk(i,:) = 0

while fixing Sk and V, and updates Uk(i, ; ) by arranging the
equation of the gradient. Other factor matrices, Sk and V, are
also updated in the same manner. The proofs of Lemmas 1
to 5 are described in Appendix.

Updating Uk. Based on the loss function (Eq. (8)), we
update Uk(i, :) by setting ∂L

∂Uk(i,:) = 0 and arranging it. We
update Uk row by row with the following lemma:

Lemma 1. When fixing all the factor matrices except for Uk,
the following update for the ith row of the factor matrix Uk

minimizes the loss function (Eq. (8)):

Uk(i, :)←

(
Xk(i, :)VSk + λuQk(i, :)H

+ λs(Uk(i− 1, :) +Uk(i+ 1, :))

)

×

(λu + 2λs)I+
∑

(i,j)∈Ωk,i

SkV(j, :)TV(j, :)Sk

−1

(9)

where Ωk,i is the observable entries of the ith row of the kth
slice matrix. Updating the first and the last row of Uk uses
λs instead of 2λs, and does not entail computing Uk(i− 1, :)
and Uk(i+ 1, :), respectively. �

Updating Sk. To update Sk for k = 1...K, we first
transform Sk for k = 1...K into W ∈ RK×R whose kth
row contains the diagonal elements of Sk (i.e., W(k, r) =
Sk(r, r)). Then, we update W(k, :) by setting ∂L

∂W(k,:) = 0
and arranging it based on the loss function (Eq. (8)). We update
W row by row with the following lemma:

Lemma 2. When all the factor matrices except for W are
fixed, the following update for the kth row of the factor

matrix W which corresponds to the diagonal elements of Sk

minimizes the loss function (Eq. (8)):
W(k, :)←

(
vec(Xk)

T (V �Uk)
)
×λlI+

∑
(i,j)∈Ωk

V(j, :)TV(j, :) ∗Uk(i, :)
TUk(i, :)

−1 (10)

where � is Khatri-Rao product, ∗ is element-wise matrix
multiplication, and vec(·) is a vectorization operation which
transforms a matrix into a vector. �

Note that only factor vectors corresponding to observable
entries are used in the inverse term. This leads to excluding
missing values and accurately updating the factor matrix, Sk.

Updating V. Then, we update V(j, :) by setting ∂L
∂V(j,:) =

0 and arranging it based on the loss function (Eq. (8)). The
following lemma describes how to update the factor matrix V
row by row:

Lemma 3. When fixing all the factor matrices except for V,
the following update for the jth row of the factor matrix V
minimizes the loss function (Eq. (8)):

V(j, :)←

(
K∑

k=1

(
Xk(:, j)

TUkSk

))
×λlI+

K∑
k=1

∑
(i,j)∈Ωk,j

SkUk(i, :)
TUk(i, :)Sk

−1 (11)

where Ωk,j consists of indices of the observed entries whose
column index is equal to j in Ωk. �

Updating Qk and H. We update Qk and H, which
are factor matrices for the uniqueness regularization, with
the following lemmas. Since they are not directly related to
missing values, we update the entire elements of the matrices
at once.

Lemma 4. When fixing all the factor matrices except for
Qk, we update the factor matrix Qk by solving Orthogonal
Procrustes Problem [28] due to column-orthogonality:

Qk ← ZkP
T
k (12)

where Qk is a column-orthogonal matrix (i.e., QTQ = I),
and Zk and PT

k are left and right singular vector matrices of
UkHT , respectively. �

Lemma 5. When fixing all the factor matrices except for H,
the following update for the factor matrix H minimizes the
loss function (Eq. (8)):

H← 1

K

K∑
k=1

QT
k Uk (13)

where K is the number of slice matrices in a given irregular
tensor. �

The overall procedure of ATOM is shown in Algorithm 1.
We first initialize all factor matrices (line 1 in Algorithm 1).
Then, we alternatively update factor matrices with our update
procedure in Lemmas 1 to 5 (lines 4 and 5 in Algorithm 1).
We repeat the updates until the stop condition is met (lines 2
to 7 in Algorithm 1) and then obtain Sk with W (line 10 in
Algorithm 1).



TABLE II
DESCRIPTION OF REAL-WORLD IRREGULAR TENSOR DATA. # OF NNZ, K,

M, AND B INDICATE THE NUMBER OF NONZEROS, THOUSANDS,
MILLIONS, AND BILLIONS, RESPECTIVELY.

Dataset Max Dim. Ik Dim. J Dim. K # of nnz Summary

US Stoctk1 [23] 7, 883 88 4, 742 1.3B Stock
Korea Stock2 [14] 5, 270 88 3, 619 859M Stock
China Stock 2, 431 88 219 46M Stock
Japan Stock 2, 204 88 215 41M Stock
VicRoads3 [29] 1, 084 96 2, 033 197M Traffic
PEMS-SF4 440 144 963 60M Traffic
ML-100k5 40 1, 682 344 50K Movie rating

D. Convergence Analysis

We theoretically prove the convergence of ATOM.

Theorem 1 (Convergence of ATOM). The update procedure
of ATOM decreases the loss function (Eq. (8)) monotonically
under the condition that the inverse terms in Eq. (9), (10),
and (11) exist.

Proof. As seen in Lemmas 1 to 5 and their proofs described
in Appendix, every update in ATOM never increases a loss
with respect to each factor matrix. Therefore, loss values never
increase, and ATOM converges.

ATOM converges to the local minimum by monotonically
decreasing the loss function (Eq. (8)). We provide experimen-
tal results for the convergence in Section IV-E. Our proposed
update procedure does not guarantee convergence to the global
minimum but works well in practice by generating accurate
factor matrices while guaranteeing the local minimum.

IV. EXPERIMENTS

We present experimental results to answer the following
questions:
Q1 Performance (Section IV-B). How accurately does

ATOM predict missing values for real-world irregular
tensors?

Q2 Ablation Study (Section IV-C). Do the ideas of temporal
smoothness and handling of missing values contribute to
the performance of ATOM?

Q3 Hyperparameter Sensitivity (Section IV-D). How much
do the regularization hyperparameters affect the perfor-
mance of ATOM?

Q4 Converge (Section IV-E). Does ATOM converge without
increasing loss values?

A. Experimental Settings

We present our experimental settings: machine, datasets,
competitors, task, evaluation metric, and hyperparameters.

Machine. We use a workstation with 2 CPUs (Intel Xeon
E5-2630 v4 @ 2.2GHz) where each CPU has 10 cores and
512GB memory.

Real-world Data. Table II describes the summary of
datasets used in our experiment. We use 7 real-world temporal

1https://datalab.snu.ac.kr/dpar2
2https://github.com/jungijang/KoreaStockData
3https://github.com/florinsch/BigTrafficData
4http://www.timeseriesclassification.com/
5https://grouplens.org/datasets/movielens/

irregular tensors. The first four datasets consist of stocks in the
United States, South Korea, China, and Japan, respectively. For
stock datasets, each temporal irregular tensor is a collection
of matrices each of which corresponds to a stock. The form
of each slice matrix is (date, feature). The time interval is
by day and the feature dimension includes 1) 5 basic features
consisting of opening price, closing price, highest price, lowest
price, and trading volume, and 2) 83 technical indicators.
The 83 technical indicators are extracted using the Technical
Analysis library6 based on the 5 basic features. The next
two datasets VicRoads and PEMS-SF are related to traffic
volume. They are represented as temporal irregular tensors of
the form (date, timeframe, location); location corresponds
to a slice matrix whose form is (date, timeframe) where
each timeframe represents a given range of time in the day
with fixed length: 15 minutes for VicRoads and 10 minutes
for PEMS-SF. The last dataset, ML-100k, is a collection of
ratings of items by users represented as a temporal irregular
tensor of the form (time,movie, user); a user corresponds
to a slice matrix, and its form is (time,movie). The time
intervals between rows are not necessarily the same since users
watch and rate movies whenever they want. Note that we do
not use the slice matrices whose row size is equal to 1.

Normalization. We normalize real-world datasets based on
their characteristics. For the four stock datasets, we use z-
normalization for each jth column X(:, j) of a slice matrix
X. For VicRoads and PEMS-SF datasets, we use min-max
normalization for each jth column X(:, j) of a slice matrix
X since these datasets contain only non-negative values and
maintain this characteristic. For ML-100k data, we divide all
values by 5 to make their ratings 0 to 1 since their range is
from 1 to 5.

Competitor. We compare ATOM with PARAFAC2 decom-
position methods working on irregular tensors: PARAFAC2-
ALS, RD-ALS [21], DPar2 [23], Spartan [16], COPA [17], and
REPAIR [18]. We use the codes of DPar27 [23], Spartan8 [16],
COPA9 [17], and REPAIR10 [18] provided by the authors.
We implement the code of RD-ALS [21] since there is no
public code. Spartan [16], COPA [17], and REPAIR [18] have
the sparsity and non-negativity regularizations that focus on
improving their interpretability under such constraints. Espe-
cially, COPA [17] and REPAIR [18] utilize the non-negativity
constraint to implement temporal smoothness regularization,
which is applicable only to datasets with no negative values.
Therefore, we remove these regularizations that degrade the
accuracy of missing value prediction, and then evaluate the
performance of these competitors for US Stock, Korea Stock,
China Stock, and Japan Stock datasets which contain negative
values.

Task. To evaluate the performance of ATOM, we perform
a missing value prediction task. We randomly split observed

6https://technical-analysis-library-in-python.readthedocs.io/en/latest/
7https://datalab.snu.ac.kr/dpar2/
8https://github.com/kperros/SPARTan
9https://github.com/aafshar/COPA
10https://github.com/Emory-AIMS/Repair
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https://grouplens.org/datasets/movielens/
https://technical-analysis-library-in-python.readthedocs.io/en/latest/
https://datalab.snu.ac.kr/dpar2/
https://github.com/kperros/SPARTan
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TABLE III
PERFORMANCE FOR MISSING VALUE PREDICTION. NOTE THAT BOLD AND UNDERLINED FONTS INDICATE THE LOWEST AND THE SECOND-LOWEST

ERRORS, RESPECTIVELY. ATOM OUTPERFORMS THE COMPETITORS ON ALL THE EXPERIMENTAL SETTINGS: DATASETS AND MISSING VALUE RATIOS.

Missing Value Prediction - Test Ratio: 10%

Model US Stock Korea Stock China Stock Japan Stock VicRoads PEMS-SF ML-100k

PARAFAC2-ALS 0.4148± 0.0018 0.4554± 0.0002 0.2620± 0.0016 0.2695± 0.0001 0.0958± 0.0011 0.1269± 0.0003 0.6124± 0.0037
RD-ALS [21] 0.4154± 0.0002 0.4508± 0.0001 0.2584± 0.0005 0.2682± 0.0001 0.0666± 0.0004 0.1204± 0.0010 0.6028± 0.0010
DPar2 [23] 0.4139± 0.0002 0.4487± 0.0004 0.2588± 0.0006 0.2654± 0.0003 0.0637± 0.0004 0.1174± 0.0004 0.6042± 0.0016
SPartan [16] 0.4117± 0.0005 0.4500± 0.0010 0.2600± 0.0021 0.2670± 0.0000 0.1049± 0.0020 0.1307± 0.0014 0.6080± 0.0022
COPA [17] 0.4178± 0.0018 0.4583± 0.0000 0.2738± 0.0015 0.2713± 0.0000 0.1123± 0.0003 0.2192± 0.0008 0.6023± 0.0019
REPAIR [18] 0.4547± 0.0052 0.4866± 0.0000 0.3136± 0.0044 0.3039± 0.0000 0.1225± 0.0007 0.2393± 0.0013 0.7562± 0.0010

ATOM 0.3677± 0.0013 0.3994± 0.0003 0.2086± 0.0023 0.2196± 0.0007 0.0365± 0.0001 0.0854± 0.0002 0.0778± 0.0014

Missing Value Prediction - Test Ratio: 20%

Model US Stock Korea Stock China Stock Japan Stock VicRoads PEMS-SF ML-100k

PARAFAC2-ALS 0.4618± 0.0006 0.4894± 0.0011 0.3072± 0.0027 0.3154± 0.0008 0.1578± 0.0013 0.1719± 0.0006 0.6426± 0.0032
RD-ALS [21] 0.4630± 0.0005 0.4855± 0.0002 0.3044± 0.0003 0.3153± 0.0002 0.1041± 0.0006 0.1575± 0.0012 0.6312± 0.0013
DPar2 [23] 0.4610± 0.0002 0.4831± 0.0002 0.3027± 0.0005 0.3130± 0.0004 0.0999± 0.0003 0.1552± 0.0001 0.6305± 0.0011
SPartan [16] 0.4598± 0.0007 0.4867± 0.0009 0.3035± 0.0005 0.3142± 0.0005 0.1662± 0.0024 0.1757± 0.0018 0.6428± 0.0065
COPA [17] 0.4664± 0.0027 0.4922± 0.0007 0.3169± 0.0021 0.3164± 0.0000 0.1410± 0.0007 0.2383± 0.0008 0.6283± 0.0040
REPAIR [18] 0.5109± 0.0037 0.5322± 0.0025 0.3659± 0.0053 0.3535± 0.0000 0.1569± 0.0010 0.2732± 0.0015 0.7764± 0.0028

ATOM 0.3942± 0.0022 0.4147± 0.0028 0.2200± 0.0026 0.2357± 0.0014 0.0374± 0.0001 0.0912± 0.0001 0.0798± 0.0022

entries of a given data into training and test entries with the
following ratios: (90%, 10%), (80%, 20%), and (70%, 30%).
Note that ML-100k dataset has about 1% observed entries
among all entries while almost all of the elements are observed
in the other datasets. We learn factor matrices using training
entries of irregular tensors, and predict values of test entries
using the learned factor matrices.

Normalized Reconstruction Error. For each irregular ten-
sor, we measure test errors by the normalized reconstruction
error (NRE) defined as follows:

NRE =


∑K

k=1

∑
(i,j)∈Ωk,test

(
Xk(i, j)− X̂k(i, j)

)2

∑K
k=1

∑
(i,j)∈Ωk,test

(Xk(i, j))
2


where Ωk,test includes test entries of the kth slice matrix, Xk

is the k-th input slice, and X̂k is the k-th reconstructed slice of
PARAFAC2 decomposition. Low NRE indicates that a method
decomposes a tensor well.

Hyperparameters. We use several hyperparameters for
ATOM: target rank, and regularization strengths λs, λu, and
λl. Except in Section IV-D, we set target rank R, λs, and λu
to 10, 10, and 0.01, respectively. We set λl to 10 for ML-100k
data while setting λl to 0 for the other datasets. The reason
is to avoid computing the inverse of a singular matrix in ML-
100k data where a few columns of slice matrices and a few
slice matrices have a smaller number of training entries than
R. The other datasets have a sufficient number of entries and
thus they do not have the problem.

B. Performance

We compare ATOM with competitors on the missing value
prediction task while increasing the missing value test ratio
from 10% to 30%. As shown in Fig. 2 and Table III, ATOM
gives the best performance for all datasets by up to 7.9×
lower error rate than competitors. For ML-100k dataset, the
performance gap is very large since this dataset has plenty
of missing values consisting of unobserved entries and test
entries, and existing methods fail to exclude missing values
in updating factor matrices. In addition, the performance gap

between ATOM and the competitors grows as the test ratio
increases from 10% to 30%. This is because handling missing
values becomes more challenging for the competitors when
we increase the test ratio.

C. Ablation Study

We provide an ablation study with respect to handling miss-
ing values and temporal smoothness. ATOM-M and ATOM-
S correspond to ATOM without the consideration of missing
values and ATOM without the temporal smoothness regular-
ization, respectively. ATOM-M-S is the same as PARAFAC2-
ALS. Table IV shows that our update procedure with the
loss function of the scalar form and temporal smoothness
effectively reduces prediction errors. ATOM-S, ATOM without
temporal smoothness, is not as good as ATOM, but it has
better performance than ATOM-M-S and competitors (see
Table III for comparisons). This result indicates that our update
procedure finds accurate factor matrices in a temporal irreg-
ular tensor including missing values even without temporal
smoothness.

D. Hyperparameter Sensitivity

We evaluate the hyperparameter sensitivity of ATOM by
measuring prediction errors while varying hyperparameters:
target rank, temporal smoothness, uniqueness, and L2 regular-
ization. We use 4 target ranks R ∈ [5, 10, 15, 20], 5 temporal
smoothness hyperparameters λs ∈ [0.01, 0.1, 1, 10, 100], 5
uniqueness hyperparameters λu ∈ [0.01, 0.1, 1, 10, 100], and 5
L2 regularization hyperparameters λl ∈ [0.01, 0.1, 1, 10, 100].

Rank. For the four ranks 5, 10, 15, and 20, we compare
ATOM with competitors on the two datasets, US Stock and
ML-100k datasets. As shown in Fig. 5(a), ATOM outperforms
the competitors in US Stock while achieving up to 1.36×
lower error rate than existing PARAFAC2 decomposition
methods on a large target rank R = 20. In contrast to
the competitors that fail to reduce the errors in the large
target rank, ATOM clearly decreases the errors as target rank
increases. As shown in Fig. 5(e), ATOM also outperforms the



TABLE IV
ABLATION STUDY. -S AND -M INDICATE THE ELIMINATION OF TEMPORAL SMOOTHNESS REGULARIZATION AND NO CONSIDERATION OF MISSING

VALUES, RESPECTIVELY. BOLD AND UNDERLINED FONTS INDICATE THE LOWEST AND THE SECOND-LOWEST ERRORS, RESPECTIVELY. NOTE THAT BOTH
THE TEMPORAL SMOOTHNESS AND CONSIDERATION OF MISSING VALUES CONTRIBUTE TO IMPROVING THE PREDICTION ACCURACY.

Missing Value Prediction - Missing Ratio: 30%

Model US Stock Korea Stock China Stock Japan Stock VicRoads PEMS-SF ML-100k

ATOM- M - S 0.5046± 0.0017 0.5341± 0.0012 0.5206± 0.0012 0.5141± 0.0006 0.2171± 0.0007 0.2228± 0.0006 0.6757± 0.0011
ATOM- M 0.4956± 0.0008 0.5252± 0.0014 0.5136± 0.0019 0.5066± 0.0009 0.2157± 0.0012 0.2213± 0.0005 0.6798± 0.0021
ATOM- S 0.4533± 0.0042 0.4822± 0.0040 0.4571± 0.0013 0.4510± 0.0010 0.0409± 0.0001 0.0986± 0.0001 0.1268± 0.0013

ATOM 0.4094± 0.0027 0.4399± 0.0017 0.4269± 0.0021 0.4210± 0.0008 0.0391± 0.0001 0.0976± 0.0001 0.1005± 0.00166 8 10 12 14 16 18 20
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(e) Target rank for ML-100k
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Fig. 5. Hyperparameter sensitivity in terms of normalized reconstruction error on US Stock and ML-100k datasets. See Section IV-D for details.

competitors in ML-100k while achieving up to 8.7× lower
error rate than existing PARAFAC2 decomposition methods.
Since the previous methods set missing values to zero, they
fail to predict them accurately. ATOM has similar errors for
all the ranks since the number of nonzero values in ML-100k
is insufficient for learning large factor matrices (e.g., target
ranks 15 and 20).

Smoothness. We evaluate the temporal smoothness regular-
ization of ATOM. As shown in Fig. 5(b) and 5(f), the temporal
smoothness is more effective on US Stock dataset than on ML-
100k dataset; a large λs (e.g., 10) provides lower error than a
small λs for US Stock dataset while small λs provides lower
error than large λs for ML-100k dataset. This is because there
is a clear temporal pattern where the value changes smoothly
over time on the US stock dataset. A slice matrix in US
Stock dataset has a constant time interval (e.g., day) while
a slice matrix of a user in ML-100k dataset has irregular time
intervals.

Uniqueness. We measure the prediction performance with
respect to uniqueness regularization. As shown in Fig. 5(c)
and 5(g), NRE of ATOM are proportional to the uniqueness
hyperparameter λu. The uniqueness regularization degrades
prediction performance although it helps improve the in-
terpretability for factor matrices as used in previous meth-

ods [16]–[18].
L2 regularization. We measure the prediction performance

concerning L2 regularization. As shown in Fig. 5(d) and 5(h),
there are different patterns between the two datasets. For US
Stock dataset, the errors do not vary significantly with respect
to the hyperparameter of L2 regularization. Since there are
plenty of observed values in US Stock dataset for updating
factor matrices, W and V are stably updated even without
L2 regularization. For ML-100k dataset, L2 regularization is
effective since the number of observed values is small. L2 reg-
ularization provides stable updates by avoiding computations
of the inverse of a singular matrix and overfitting.

E. Convergence

For US Stock and ML-100k datasets, we experimentally
evaluate the convergence of ATOM. We measure the loss
value of (Eq. (8)) at each iteration. Fig. 6 shows that the
loss values dramatically decrease in the first 5 iterations and
locally converge in the subsequent iterations. This result is
consistent with the theoretical analysis in Section III-D that
ATOM converges to a minimum where loss values do not
increase.
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Fig. 6. Convergence in updating factor matrices of ATOM.

V. RELATED WORKS

We review previous works on PARAFAC2 decomposition
for irregular tensors and their relation to ours.

PARAFAC2 decomposition for irregular tensors. Many
works have proposed efficient PARAFAC2 methods to inter-
pret irregular tensors, as PARAFAC2 is the only practical
method for irregular tensor decomposition as of now. In con-
trast to the classical ALS algorithm for PARAFAC2 decompo-
sition, RD-ALS [21] and DPar2 [23] involve a preprocessing
stage of a given tensor before updating the factor matrices.
SPADE [30] is an effective method designed to handle irregu-
lar tensors in online streaming, even for higher-order tensors.
These methods are limited in handling real-world tensors
with missing data since they treat missing values to zero.
Perros et al. proposed SPARTan [16], a scalable PARAFAC2
decomposition method for irregular sparse tensors, and later
works such as COPA [17] and REPAIR [18] have improved
its performance and robustness with additional constraints.
They provide phenotype discoveries by obtaining interpretable
factor matrices, but they also fail to provide accurate factor
matrices of PARAFAC2 decomposition due to setting the value
of missing entries to zeros.

Applications of PARAFAC2 decomposition. Previous
works [31], [32] suggest the application of PARAFAC2 for
monitoring substances and multi-way analysis in chemo-
metrics which extracts information from chemical systems.
Many recent works have used PARAFAC2 decomposition for
analyzing EHR data which can be represented as irregular
sparse tensors with many missing entries. Perros et al. [33]
applied PARAFAC2 decomposition on EHR data of medically
complex children to discover phenotypes and temporal trends.
TASTE [34] proposed a coupled irregular tensor decompo-
sition for EHR data. LogPar [20] is a logistic PARAFAC2
decomposition method for binary irregular tensors representing
temporal binary data including missing values. TedPar [35]
considers the temporal dependency for better interpretation of
EHR data. The above studies exploit the irregularity of one
mode in multi-dimensional data, and maximize the effect of
PARAFAC2 decomposition.

ATOM is a novel PARAFAC2 decomposition method which
accurately handles temporal irregular tensors with missing
values.

VI. CONCLUSION

In this paper, we propose ATOM, an accurate PARAFAC2
decomposition method for temporal irregular tensors with
missing values. We observe that existing PARAFAC2 de-
composition methods fail to fully exclude missing values in
updating factor matrices. To address the issue, we reformulate
the loss function for PARAFAC2 decomposition and propose
a row by row update rule that considers the sparsity patterns
of rows of a temporal irregular tensor. In addition, we further
improve the accuracy by adding effective temporal smoothness
regularization. Extensive experiments show that ATOM outper-
forms existing PARAFAC2 decomposition methods providing
up to 7.9× lower error rate. Future works include extending
ATOM to predicting future values and speeding up ATOM
while maintaining accuracy.
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APPENDIX

We provide proofs for Lemmas 1 to 5 described in Sec-
tion III-C.

A. Proof of Lemma 1

Proof. We first compute ∂L
∂Uk(i,:) as follows:

∂L

∂Uk(i, :)
= −2

∑
(i,j)∈Ωk,i

((
Xk(i, j)−Uk(i, :)SkV(j, :)T

)
V(j, :)Sk

)
− 2λs (Uk(i− 1, :)−Uk(i, :) +Uk(i+ 1, :)−Uk(i, :))

− 2λu (Qk(i, :)H−Uk(i, :))
(14)

We set ∂L
∂Uk(i,:) to zero, arrange the equation for Uk(i, :), and

obtain Eq. (9). Note that
∑

(i,j)∈Ωk,i
(Xk(i, j)) V(j, :)Sk is

equal to Xk(i, :)VSk when missing values in Xk(i, :) are
treated as zeros.

B. Proof of Lemma 2

Proof. We first compute ∂L
∂W(k,:) as follows:

∂L

∂W(k, :)
= −2

∑
(i,j)∈Ωk

((
Xk(i, j)−W(k, :) (V(j, :)�Uk(i, :))

T
)

× (V(j, :)�Uk(i, :))

)
+ 2λlW(k, :)

(15)
We set ∂L

∂W(k,:) to zero, arrange the equation
for W(k, :), and obtain Eq. (10). Note that∑

(i,j)∈Ωk
(Xk(i, j)) (V(j, :)�Uk(i, :)) is equal to(

vec(Xk)T (V �Uk)
)

when missing values in Xk are
treated as zeros.

C. Proof of Lemma 3

Proof. We first compute ∂L
∂V(j,:) as follows:

∂L

∂V(j, :)
= 2λlV(j, :)

− 2

K∑
k=1

∑
(i,j)∈Ωk,j

((
Xk(i, j)−V(j, :)SkUk(i, :)

T
)
Uk(i, :)Sk

)
(16)

We set ∂L
∂V(j,:) to zero, arrange the equation for V(j, :), and

obtain Eq. (11). Note that
∑

i∈ (Xk(i, j)Uk(i, :)Sk) is equal
to Xk(:, j)TUkSk when missing values in Xk are treated as
zeros.

D. Proof of Lemma 4

Proof. Minimizing ‖Uk−QkH‖2F with respect to Qk is equal
to maximizing the following term:

tr(QT
k UkHT ) =< ZT

k QkPk,Σk >F (17)
where ZkΣkPT is the SVD result of UkHT , and tr and
< · >F indicate the trace and Frobenius inner product, respec-
tively. Since Zk and QkPk are column orthogonal matrices,
< ZT

k QkPk,Σk >F is maximized when QkPk = Zk (i.e.,
ZT

k QkPk = I). Therefore, Qk is updated using ZkPT
k as in

Eq. (12).

E. Proof of Lemma 5

Proof. We compute ∂L
∂H as follows:

∂L

∂H
=

K∑
k=1

(
QT

k (Uk −QkH)
)

(18)

We set ∂L
∂H to zero, arrange the equation for H, and obtain

Eq. (13). Note that QT
k Qk is equal to I since Qk is a column-

orthogonal matrix.
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