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The optimum and many suboptimum iterative soft-input soft-output (SISO) multiuser detectors require a priori information
about the multiuser system, such as the users’ transmitted signature waveforms, relative delays, as well as the channel impulse
response. In this paper, we employ adaptive algorithms in the SISO multiuser detector in order to avoid the need for this a priori
information. First, we derive the optimum SISO parallel decision-feedback detector for asynchronous coded DS-CDMA systems.
Then, we propose two adaptive versions of this SISO detector, which are based on the normalized least mean square (NLMS)
and recursive least squares (RLS) algorithms. Our SISO adaptive detectors effectively exploit the a priori information of coded
symbols, whose soft inputs are obtained from a bank of single-user decoders. Furthermore, we consider how to select practical
finite feedforward and feedback filter lengths to obtain a good tradeoff between the performance and computational complexity
of the receiver.
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tection, adaptive soft-input soft-output parallel decision-feedback detection, asynchronous coded CDMA systems.

1. INTRODUCTION

Iterative soft-input soft-output (SISO) multiuser receivers
for coded multiuser systems have received widespread atten-
tion since they can provide near single-user performance in
a system with multiple-access interference (MAI) by itera-
tively combining multiuser detection and single-user decod-
ing. The optimum SISO multiuser detector employs either
the cross-entropy minimization [1] or the maximum a pos-
teriori (MAP) algorithm [2]. The computational complex-
ity of these techniques is exponentially proportional to the

This is an open access article distributed under the Creative Commons
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reproduction in any medium, provided the original work is properly cited.

number of users which can be prohibitive for large systems.
Therefore, much work has been done on reduced-complexity
suboptimum SISO multiuser detectors.

SISO multiuser detection based on the reduced-com-
plexity MAP algorithms which are applied to the trellis of the
multiple-access channel is proposed in [3, 4]. The simplest
SISOmultiuser detector is the soft interference canceller pro-
posed in [5, 6], which has a linear computational complexity
in terms of the number of users. However, it slowly converges
to the performance of the single-user system. Linear itera-
tive SISO multiuser detectors, which employ a decorrelator
[7] or a minimum mean square error (MMSE) filter [8] on
the output of the soft interference cancellation, significantly
improve the system performance. Moreover, their compu-
tational complexity is only a cubic function of the number
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Figure 1: A general coded DS-CDMA system with an iterative receiver (I and D denote interleavers and deinterleavers, respectively).

of users. In [9, 10], nonlinear MMSE-based SISO decision-
feedback detectors are investigated.

The above optimum and suboptimum SISO multiuser
detectors require accurate a priori information about the
multiuser system, such as all users’ received signature wave-
forms which are functions of their transmitted signature
waveforms, relative delays, and the channel impulse re-
sponse. In practical situations, this information may not be
easily obtainable for time-varying fading channels.

Fortunately, if the system parameters are constant or
slowly varying, adaptive detectors (non-SISO) can success-
fully track these parameters from the received signal [11,
12, 13, 14, 15]. In [16], an adaptive SISO parallel decision-
feedback detector for synchronous direct-sequence code-
division multiple-access (DS-CDMA) systems with short
spreading sequences is presented. By employing an approxi-
mate least squares algorithm and soft symbol estimates, the
detector exploits the joint statistics of soft symbol estimates
and transmitted symbols.

In this paper, we use adaptive algorithms in the iterative
SISO parallel decision-feedback detector (PDFD) for asyn-
chronous coded DS-CDMA systems in order to avoid the
need for the a priori information about system parameters,
such as multiple users’ spreading codes and relative delays
between users. First, we derive the optimum SISO paral-
lel decision-feedback detector assuming the receiver knows
the transmitted signature waveforms and relative delays be-
tween all the users. Then, we propose two adaptive versions
of this SISO detector, which employ the normalized least
mean square (NLMS) and recursive least squares (RLS) al-
gorithms to estimate the filter coefficients of the detector. All
users are assumed to employ short spreading codes. A train-
ing sequence is required for each user. Our adaptive SISO de-
tectors effectively exploit the a priori information of coded
symbols, which is obtained from the soft outputs of a bank
of single-user decoders, to further improve their convergence
performance.

Furthermore, for adaptive implementation of the SISO
PDFD for asynchronous DS-CDMA systems, we select prac-
tical finite feedforward and feedback filter lengths to obtain
a good tradeoff between the system performance and com-
putational complexity of the receiver. We employ a feedfor-
ward filter which covers a two-symbol duration for each user
and we consider several options for the feedback filter length.

Monte-Carlo simulation results for these adaptive SISO de-
tectors are presented and compared.

The outline of the rest of this paper is as follows. A system
model of asynchronous coded DS-CDMA systems is intro-
duced in Section 2. The optimum SISO PDFD with a general
processing window for asynchronous coded DS-CDMA sys-
tems is derived in Section 3. Adaptive SISO PDFDs are pro-
posed in Section 4, which are based on the NLMS and RLS al-
gorithms. Monte-Carlo simulation results are presented and
compared in Section 5. Finally in Section 6, the conclusions
are given.

2. SYSTEMMODEL ANDNOTATION

Throughout the paper, matrices and vectors are denoted as
boldface uppercases and lowercases, respectively. Notations
(·)∗, (·)H , and (·)T denote the complex conjugate, Hermi-
tian transpose, and transpose, respectively.

A general coded DS-CDMA system with an iterative re-
ceiver is shown in Figure 1. There are K active users in
the system. The information bits of each user are first en-
coded, then interleaved, modulated, and spread before they
are transmitted over the channel. The iterative receiver con-
sists of two parts, an adaptive soft-input soft-output mul-
tiuser detector and a bank of SISO single-user decoders,
which are separated by deinterleavers and interleavers. These
two parts cooperate iteratively by transferring updated ex-
trinsic soft information of coded symbols between them.

In our paper, we consider an asynchronous coded DS-
CDMA system over the additive white Gaussian noise
(AWGN) channel. The equivalent baseband received mul-
tiuser signal is

r(t) =
K∑
k=1

Nb∑
i=1

bk(i)sk
(
t − iT − τk

)
+ n(t), (1)

where K is the number of active users, Nb is the number of
symbols transmitted by each user, bk(i) is the ith coded sym-
bol of the kth user, sk(t) is its transmitted signature wave-
form, τk and T are the delay of user k and the symbol inter-
val, respectively, and n(t) is an additive white Gaussian noise
process with double-sided power spectral density N0/2. Each
user’s information bits are encoded and then BPSK modu-
lated, that is, bk(i) ∈ {+1,−1}.
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Figure 2: System signature matrix Sk of user k, where the nonzero
part of each column is the signature vector sk of user k.

For simple implementation, we consider a chip-synchro-
nous and symbol-asynchronous DS-CDMA system. All us-
ers’ delays are uniformly distributed in [0,T] and are mul-
tiples of Tc, which is the chip interval. In the receiver, first
we employ a chip-matched filter on the received signal r(t)
and then sample its output at frequency 1/Tc. If the system
is chip-asynchronous, we can oversample the output of the
chip-matched filter and design a fractionally spaced feedfor-
ward filter instead. Without loss of generality and for sim-
plicity of notation, we assume the delays of multiple users
satisfy the following inequality:

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τK ≤ T. (2)

The symbol vector consisting of the transmitted symbols
of all users is denoted as

b =
[
bT1 , . . . ,b

T
k , . . . ,b

T
K

]T
KNb×1

, (3)

where

bk =
[
bk(1), bk(2), . . . , bk

(
Nb
)]T

. (4)

The received signal vector r at the output of the chip-
matched filter during the whole symbol transmission interval
can be expressed as follows:

r = Sb + n, (5)

where S is the system signature matrix and can be expressed
as

S = [S1, . . . , Sk, . . . , SK]N(Nb+1)×KNb
. (6)

The construction of Sk in (6) is shown in Figure 2, where the
nonzero part of each column is the signature vector sk of user
k and N is the number of chips per coded symbol. The vec-
tor n in (5) is an N(Nb + 1) × 1 column vector which repre-
sents the output noise component of the chip-matched filter.
It has zero mean and covariance matrix σ2nI, where σ

2
n is the

variance of the output noise component.

3. OPTIMUM SISO PDFD FOR ASYNCHRONOUS
DS-CDMA SYSTEMS

In general, the optimum SISO PDFD filters for asynchronous
DS-CDMA systems have infinite lengths [17]. For imple-
mentation purposes, we consider finite-length feedforward
and feedback filters. Furthermore, these filters are suitable
for use in adaptive applications. The use of these filters in our
adaptive detectors will be discussed in detail in Section 4.

In the receiver, we assume that the processing window
length is Np, which is measured in chips and is much less
than Nb × N . In each processing window, the received sig-
nal vector is denoted as rNp×1, which consists of Np rows of r
falling to this processing window. The windowed system sig-
nature matrix SNp×KNb and noise vector nNp×1 consist of Np

corresponding rows of S and n, respectively. Therefore, we
have the following equation:

r = Sb + n. (7)

We can write b as the following sum:

b = bU + bD, (8)

where bU consists of the symbols which are not fedback and
its other elements are zeros. The nonzero elements of bD con-
sist of the fedback symbols. They have no common elements.
In the same way by which we construct bU and bD, we extract
columns of S and construct the corresponding signature ma-
trices SU and SD. Therefore, the windowed received signal
vector r can also be expressed as

r = SUbU + SDbD + n. (9)

The feedforward filter of user k has Np taps and is de-
noted by a column vector m f k. The feedback filter mbk of
user k has the size KNb×1, whose nonzero elements are cor-
responding to fedback symbols. That is, its effective number
of taps is determined by the number of fedback symbols. The
optimum filters satisfy the following minimum mean square
error (MMSE) criterion:

min
m f k ,mbk

E
[
bk(i)−mH

f k · r−mH
bk · b̂D

]2
. (10)

Nonzero elements of b̂D are soft symbol estimates of those el-
ements of bD, respectively. We will introduce the soft symbol
estimate of each coded symbol in the following.

The soft inputs of a SISO multiuser detector, {λin[bk( j)],
1 ≤ k ≤ K , 1 ≤ j ≤ Nb}, are extrinsic log-likelihood ratios
(LLRs) of {bk( j)} provided by a bank of K single-user de-
coders. Based on these inputs, we can obtain the soft symbol
estimate of {bk( j)}:

b̂k( j)=E
[
bk( j)

∣∣λin[bk( j)]] = tanh
(
λin
[
bk( j)

]
2

)
. (11)

Furthermore, we have the following a priori statistics (12) for
nonzero elements of bU and bD. For fedback symbols, their
mean values are their soft symbol estimates, while nonfed-
back symbols have zero mean. Note that bk(i) in (10) belongs
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to nonfedback symbols. Denote u and v as one of the nonzero
elements of bU and bD, respectively. The soft symbol estimate
of v is denoted as v̂. Thus, we have

E[u] = 0,

E
[
u2
] = 1,

E[v] = v̂,

E
[
v2
] = 1− (v̂)2.

(12)

We also assume that all users’ transmitted symbols are inde-
pendent of one another and of the background noise vector
n as well.

Employing the above statistics about the coded symbols,
we can get the optimum feedforward and feedback filters of
user k which satisfy the MMSE criterion in (10):

m f k =
(
RU + RD + σ2nI

)−1 · sbk(i), (13)

mbk = −SHD ·m f k, (14)

where

RU = SUS
H
U ,

RD = SD
⌊
I− diag

(
b̂Db̂HD

)⌋
S
H
D ,

(15)

and sbk(i) is a one column of SU , whose column index is the
same as the row index of bk(i) in bU . The feedforward filter
in (13) is actually a linear MMSE filter which suppresses the
interference from non-fedback symbols, as well as the resid-
ual interference after canceling the fedback symbols and the
background Gaussian noise.

From (15), we can see that the optimum feedforward and
feedback filters require the knowledge of all users’ signature
vectors and delays. In order to avoid the need for this infor-
mation, we can adaptively implement the SISO PDFD, which
will be discussed in the next section.

4. ADAPTIVE SISO PDFD FOR ASYNCHRONOUS
DS-CDMA SYSTEMS

In this section, we assume that both short spreading codes
and delays of all users are unknown to the receiver. We design
and employ adaptive SISO PDFDs to track these parameters
from the received signal directly.

It is well known that the asynchronous system perfor-
mance can be improved by using detection filters with an in-
creased number of taps. However, increasing the number of
taps increases the computational complexity of the detector.
Moreover, this will have an adverse effect on the convergence
speed. Therefore, we need to select suitable filter lengths to
achieve a good tradeoff among the system performance, de-
tector complexity, and system overhead.

In the parallel decision-feedback detector, the feedfor-
ward and feedback filters cooperate to suppress the multiple-
access interference. Specifically, the feedback filter tries to
cancel some interfering symbols, while the feedforward filter

τ1
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τK

b1(i− 1)

b2(i− 1)

The processing window for the ith symbol

b1(i) b1(i + 1)

b2(i) b2(i + 1)

bK (i− 1) bK (i) bK (i + 1)

...

Figure 3: An asynchronous system.

suppresses the remaining MAI, as well as the residual inter-
ference due to imperfect cancellation by the feedback filter
and the background Gaussian noise. Therefore, if the feed-
back filter effectively cancels most of the interference caused
by the interfering symbols, the remaining interference to be
suppressed by the feedforward filter is reduced.

On each iteration except for the first one, the SISO PDFD
can obtain soft symbol estimates of all symbols from soft in-
puts. Thus, we have both causal and noncausal soft symbol
decisions of interfering symbols for the interested symbol.
We may cancel part or all of them by the feedback filter.

In this paper, we employ a feedforward filter which covers
a two-symbol duration and consider several options for the
feedback filter length. The length of the observation interval
is 2T , which is the minimum length such that one complete
symbol of each user falls in this interval regardless of its rel-
ative delay. Figure 3 shows the processing window of the de-
tector in the ith signaling interval. The output vector r(i) of
the chip-matched filter in this processing window is

r(i) = [P− P0 P+]

b(i− 1)

b(i)
b(i + 1)


 + n(i), (16)

where b(i) = [b1(i) b2(i) · · · bK (i)]T and n(i) is a Gaus-
sian random vector with zero mean and covariance matrix
σ2nI(2N×2N). We define the punctured signature vectors of user
k as

p−k =
[(
srk
)H

0H
]H
(2N×1),

p0k =
[
0H(1×Nr

k )
sHk 0H

(1×Nl
k)

]H
(2N×1),

p+k =
[
0H

(
slk
)H]H

(2N×1),

(17)

where 0 is a column vector. slk and srk are denoted in Figure 4
and are parts of sk:

sk =
[(
slk
)H (

srk
)H]H. (18)
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Figure 4: Punctured signatures of the kth user in the asynchronous
system.

The matrices P−, P0, and P+ in (16) are constructed as fol-
lows:

P− = [p−1 p−2 · · · p−K
]
,

P0 = [p01 p02 · · · p0K
]
,

P+ = [p+1 p+2 · · · p+K
]
.

(19)

Thus, when multiple users’ delays are unknown to the re-
ceiver, for the symbol of interest bk(i) of user k, it has at
most (3K − 1) interfering symbols. For implementation of
the adaptive SISOmultiuser detector in Figure 1, we consider
three adaptive SISO PDFDs with the same feedforward filter
length, that is, 2N taps. The feedback filter of the first de-
tector (labeled as detector1) has (K − 1) taps which tries to
cancel the current (K − 1) interfering symbols for the de-
sired symbol. Detector2 has a feedback filter with (2K − 1)
taps which tries to cancel the current (K − 1) and previous
K interfering symbols. The feedback filter of detector3 has
(3K − 1) taps and tries to cancel all possible previous, cur-
rent, and future interfering symbols.

In the following, we employ the NLMS and RLS algo-
rithms in adaptive SISO PDFDs to update the feedforward
filter m f k and feedback filter mbk. Moreover, the a priori in-
formation of coded symbols is employed efficiently to im-
prove the performance of the adaptive detector. The adaptive
SISO PDFD requires only a training sequence for each user
to estimate all filter coefficients.

The adaptive detector employing the NLMS algorithm to
resolve the MMSE criterion in (10) updates the feedforward
and feedback filters of user k as follows form = 0, 1, 2, . . .:

m f k(m + 1) =m f k(m)− µ̃ f

a +
∥∥r(m)

∥∥2
∣∣∣b̃k(m)

∣∣∣e∗k (m)r(m),

mbk(m + 1)=mbk(m)− µ̃b

a +
∥∥∥b̃D(m)

∥∥∥2
∣∣∣b̃k(m)

∣∣∣e∗k (m)b̃D(m),

(20)

where m is the recursive index and also the time index, µ̃ f

and µ̃b ∈ (0, 2) and are step sizes for the feedforward and
feedback filters, respectively. a is a small positive constant.
The error signal for themth recursion is

ek(m) = b̃k(m)−mH
f k(m) · r(m)−mH

bk(m) · b̃D(m), (21)

where b̃k(m) = bk(m) and b̃D(m) = bD(m) in the training

mode, b̃k(m) = b̂k(m) and b̃D(m) = b̂D(m) in the decision-

directed mode. Furthermore, in the decision-directed mode,
|b̂k(m)| is used as the reliability of the error signal ek(m) in
(20). Both filters are updated per symbol and their initial
states arem f k(0) = 0 andmbk(0) = 0.

When the detector employs the RLS algorithm, we denote
wk(m)=[mH

f k(m) mH
bk(m)]H and u(m)=[rH(m) b̃HD (m)]H .

Then the filters are updated form = 0, 1, 2, . . .:

gk(m + 1) = λ−1Pk(m)u(m + 1)
1 + λ−1uH(m + 1)Pk(m)u(m + 1)

,

ξk(m + 1) = b̃k(m + 1)−wH
k (m)u(m + 1),

wk(m + 1)=wk(m)+gk(m+1)
∣∣∣b̃k(m+1)

∣∣∣ξ∗k (m+1),

Pk(m+1)=λ−1Pk(m)−λ−1gk(m+1)uH(m+1)Pk(m).

(22)

The algorithm is initialized with Pk(0) = δ−1I, where δ is a
small positive number and wk(0) = 0.

Both of the adaptive detectors described above try to ex-
ploit the joint statistics of the received signal vector r, the
transmitted symbol bk or its soft estimate b̂k, and the soft

symbol estimates b̂D which are fedback. In the first iteration,
since there is no fedback information of coded symbols, we
only employ a linear MMSE feedforward filter and set the
feedback filter coefficients to zeros for each user.

The output of the adaptive SISO PDFD is

yk(m) =mH
f k(m) · r(m) +mH

bk(m) · b̂D(m). (23)

Applying the Gaussian assumption to the output in (23), we
can calculate the soft outputs of the SISO PDFD. For themth
symbol of the kth user, the output yk(m) can be expressed as

yk(m) = µkbk(m) + ηk, (24)

where µk is a constant and ηk is a Gaussian random variable
with zero mean and variance σ2ηk :

µk = E
[
b∗k (m)yk(m)

]
,

σ2ηk = E
[
yk(m)− µkbk(m)

]2
.

(25)

Estimates of (25) can be obtained by the corresponding sam-
ple averages in (26), respectively, where we replace bk(m) by
b̃k(m) in these equations:

µ̂k = 1
Nb

Nb∑
m=1

b̃∗k (m)yk(m),

σ̂2ηk =
1
Nb

Nb∑
m=1

[
yk(m)− µ̂kb̃k(m)

]2
.

(26)

The soft output, that is, the extrinsic log-likelihood ratio, of
bk(m) is

λok(m) = log
P
[
yk(m)

∣∣bk(m) = +1
]

P
[
yk(m)

∣∣bk(m) = −1] = 2µk yk(m)
σ2ηk

. (27)
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5. SIMULATION RESULTS

The DS-CDMA system which we simulate in this section has
12 active users. All users employ the same convolutional code
with rate 1/2, constraint length 7, and generators [1011011],
[1111001]. Each user has a randomly selected short spread-
ing code. The spreading factor is 16 chips per information
bit. The system load is 12/16 (K/spreading factor). Multiple
users’ delays are randomly selected and fixed during simula-
tion.

There are 300 training symbols which are randomly se-
lected and inserted at the beginning of coded symbol frames
of each user. SISO single-user decoders are based on the
log-MAP algorithm in [18]. Noise random variables at the
output of the chip-matched filter are identical independent
Gaussian random variables with zero mean and N0/2 vari-
ance.

At the first iteration, since there are no soft inputs from
single-user decoders, only a feedforward filter is employed
for each user. That is, at this time, a linear minimum mean
square error filter is used instead. It is initially trained by the
training symbols, and then is used for the following trans-
mitted coded symbols. For the later iterations, both the feed-
forward and feedback filters are employed. After the train-
ing mode, they are updated by fedback symbol decisions.
In the first two iterations, the filter coefficients are initial-
ized to zeros before the adaptive algorithm is employed. In
each of the following iterations, the filter coefficients are
set to the values obtained at the end of the previous itera-
tion.

We consider an asynchronous DS-CDMA system over
the additive white Gaussian noise (AWGN) channel. It is
assumed that the receiver has no knowledge of the short
spreading codes used by the users and their delays. Three
adaptive SISO PDFDs proposed in Section 4 are simulated.
Figures 5 and 6 show average bit error rates of all users in the
first, second, and tenth iterations provided by three adaptive
detectors based on the NLMS and RLS algorithms, respec-
tively. In (20) of the NLMS algorithm, we use a = 0.00001,
and step sizes µ̃ f = µ̃b = 0.2 in the training mode and
µ̃ f = µ̃b = 0.05 in the decision-directed mode. Parameters
in (22) of the RLS algorithm are λ = 1 and δ = 0.04. For
comparison, we also show the bit error rate performance of
the single-user system in these two figures, where the user’s
spreading code and delay are known to the receiver. In Fig-
ures 5 and 6, we observe that after the first iteration, all three
detectors have similar performances and their curves appear
to overlap. A similar behaviour is observed for the second it-
eration of detector1 and detector2 in Figure 5 and all three
detectors in Figure 6.

We can see that with our adaptive SISO detectors, the
system performance is improved with the increased num-
ber of iterations. Furthermore, Figure 6 shows that the per-
formance provided by the adaptive RLS receiver approaches
the performance of the single-user system after a few itera-
tions at high signal-to-noise ratios. Among the three adaptive
SISO PDFDs proposed in Section 4, detector3 provides the
best performance, though it has the highest computational
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Figure 5: Bit error rate performance provided by three NLMS adap-
tive SISO PDFDs for the asynchronous DS-CDMA system at the
first, second, and tenth iterations, and that of the single-user system
(SU).
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Figure 6: Bit error rate performance provided by three RLS adap-
tive SISO PDFDs for the asynchronous DS-CDMA system at the
first, second, and tenth iterations, and that of the single-user system
(SU).

complexity, since its feedback filter has the maximum num-
ber of taps compared with the other two detectors.
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Figure 7: Comparison between the experimental learning curves
of the adaptive SISO PDFD detector3 based on the NLMS and RLS
algorithms after the second iteration during the training mode at
SNR = 6dB.

By comparing average bit error rates of all the users
provided by the adaptive detector based on the RLS algo-
rithm in Figure 6 and those obtained by the NLMS algo-
rithm in Figure 5, we can see that the bit error rate per-
formance provided by the adaptive SISO PDFD based on
the RLS algorithm is better than the one provided by the
detector based on the NLMS algorithm. For example, at
a bit error rate 10−3, detector3 based on the RLS algo-
rithm has about 0.7 dB gain with respect to detector3 based
on the NLMS algorithm. This is due to the faster conver-
gence property of the RLS algorithm, which is shown by
Figure 7. The averaged squared errors e2k(m) and ξ2k (m) af-
ter the second iteration of the adaptive detector3 during
the training mode versus the number of updates in the
NLMS and RLS algorithms, respectively, are shown and
compared in Figure 7. We set the signal-to-noise (SNR) ra-
tio of each user to 6 dB. Each curve of the squared er-
ror is averaged over 200 independent trials of the exper-
iment. However, the RLS algorithm has a greater com-
putational complexity. Denote the length of the adaptive
filter as L. The computational complexity of the RLS and
the NLMS algorithms are ∼ O(L2) and ∼ O(L) per update,
respectively.

6. CONCLUSIONS

In this paper, first we presented an optimum SISO paral-
lel decision-feedback detector for asynchronous coded DS-
CDMA systems, and then proposed an adaptive implemen-
tation of it when all users’ signature waveforms and relative
delays were unknown to the receiver. All users were assumed
to employ short spreading codes. A chip-synchronous and
symbol-asynchronous DS-CDMA system was considered.

A training sequence was required by each user. We showed
that the resulting system performance provided by adaptive
SISO PDFDs approaches that of the single-user system af-
ter a few iterations at high signal-to-noise ratios. Moreover,
the adaptive detector employing the RLS algorithm provides
a better bit error rate performance than the adaptive detec-
tor based on the NLMS algorithm, though at the expense of
higher computational complexity. For asynchronous coded
DS-CDMA systems, we further showed that the adaptive de-
tector with more feedback filter taps gives a better bit error
rate performance.
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