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Abstract

In this paper, the trade-off among system sum energy consumption and robustness is studied. In this regard, a robust
power allocation problem is formulated for a two-tier heterogeneous network with uplink transmission mode and
consideration of imperfect channel state information. The objective is to minimize the total transmit power of
femtocell users (FUs), while the interference to macrocell user receiver is limited to a predefined interference level, the
transmit power of each FU transmitter is kept within their power budgets, and the actual
signal-to-interference-plus-noise ratio of each femtocell receiver is above a minimum threshold. Considering the
uncertainties of the interference links from FUs to macrocell base stations and forward transmission links of each FU,
the robust power allocation problem is formulated as a semi-infinite programming problem (SIPP). By the worst-case
approach, the SIPP is transformed into a convex optimization problem solved by the Lagrange dual decomposition
method. Moreover, the feasible regions of constraints, computational complexity, and sensitivity degree of the
proposed robust algorithm are also analyzed. Simulation results investigate the impact of channel uncertainties and
the superiority of the proposed algorithm by comparing with non-robust algorithm.
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1 Introduction
With the rapid increase of mobile data, more than 50%
phone calls and 70% data services take place in indoor
environment [1]. However, traditional homogeneous cel-
lular networks cannot meet this requirement. Femtocell
enabled in macrocell networks consists of a new heteroge-
neous cellular network which can satisfy the requirement
of the increasing wireless data services due to low-power
consumption and flexible deployment of femtocell users
[2]. In HetNets, there are usually two types of users: FUs
and MUs. On the one hand, FUs considered as low-power
nodes utilize the same spectrum resource with MUs and
improve indoor area coverage so that the spectrum effi-
ciency and system capacity of communication system
can be improved heavily. On the other hand, cross-tier
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interference from femtocell networks to macrocell net-
works and the interference from MBS must be carefully
controlled. Therefore, PA is a key technique for guaran-
teeing the QoS of users in HetNets.
Since PA can mitigate mutual interference of mul-

tiusers, ensure the QoS of each UE and improve system
overall throughput, it has been considered as an effec-
tive method to achieve resource allocation in HetNets.
In [3], for OFDMA femtocell networks, with considera-
tion of FUs’ fairness in each femtocell and protection of
MUs, a PA algorithm is proposed via distributed Foschini-
Miljanic power update technology. Similarly, in [4], a
PA scheme with consideration of femtocell clustering is
investigated based on branch-and-bound algorithm and
the simplex algorithm to enhance data rate of FUs and
alleviate the interference to MUs in macrocell-femtocell
HetNets. A distributed utility-based SINR strategy for
femtocell networks in [5] is investigated to reduce the
cross-tier interference from femtocell networks to macro-
cell networks. But maximum transmission power limi-
tation of each user is ignored in this paper. These PA
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schemes have an efficient performance in mitigating the
interference between MUs and femtocell users under per-
fect CSI. However, in practical systems, perfect CSI is hard
to be accurately acquired because of the effect of channel
fading and feedback delays. Therefore, PA under imper-
fect CSI should be considered ahead of time in practical
transmission system of HetNets.
Currently, to improve robustness of heterogeneous

communication network, based on robust optimization
theory, many authors have dedicated to study robust PA
algorithms under channel uncertainty in two-tier HetNets
[6]. In [7], to enhance the robustness of system, an uplink
RPA problem is investigated in two-tier femtocell net-
works to deal with the uncertainties and protect the QoS
of all users by using outage QoS constraints. Consid-
ering the same network scenario, a RPA scheme is put
forward under channel uncertainties in [8] to maximize
the network benefit among all users. In [9], a RPA algo-
rithm is investigated to minimize the transmission power
of FUs for energy-saving, which is a formulated sub-
ject to the QoS constraints and cross-tier interference
constraints with the consideration of channel estimation
errors. But the cross-tier interference received at FUs
is ignored. Moreover, only single user scenario and the
probability constraints are considered in [7–9]. A robust
Stackelberg game is presented to formulate the two-tier
uplink RPA problem to satisfy different service require-
ments of both FUs and MUs in [10]. However, they ignore
SINR protection of FUs. To improve system capacity, in
[11], a resource allocation scheme for two-tier OFDM-
based cognitive femtocell networks is proposed by taking
the mutual interference, imperfect spectrum sensing, and
channel uncertainty into account, where the energy con-
sumption is ignored. In [12], to maximize the utilities of
all users, based on hierarchical game theory, the authors
propose a robust uplink PA algorithm under the consider-
ation of probability interference constraints. For a multi-
tier cognitive HetNet, in [13], the authors study a SIP
problem to maximize the SINR of microcell users under
channel uncertainties, which is converted into a geomet-
ric programming problem by using a relaxation approach.
In [14], based on worst-case theory, a distributed RPA
algorithm is proposed to obtain maximum rate of femto-
cell users in OFDMA-based femtocell networks subject to
intra-tier and cross-tier interference uncertainties. Aim-
ing at enhancing the robustness of system, the author in
[15] studies an outage-based robust optimization prob-
lem under partial CSI feedback and no CSI feedback.
In [16], a RPA algorithm is proposed to minimize the
total power of all users subject to outage probability con-
straints under time-varying wireless channels in two-tier
femtocell networks. However, the existing works do not
deal with the channel uncertainties with the consideration
MU-to-FU links, interference links among FUs, and SINR

requirement of FUs, simultaneously. Additionally, the fea-
sible region of optimal power and sensitivity analysis is not
considered.
Energy consumption, user performance, and robustness

are the three important characteristics of each cellu-
lar network (i.e., macrocell network, femtocell network)
in HetNets where the trade-off between optimality and
robustness should be also studied. To this end, by con-
sidering the channel uncertainties in SINR constraint of
each FU and interference power constraint to MUs, we
investigate a RPA problem in two-tier HetNets under
uplink transmission mode that minimizes the total trans-
mit power of FUs. To solve the proposed problem,
we transform the problem into a convex one by using
bounded ellipsoidal model and worst-case approach, then
the analytical solution is obtained by using Lagrange
theory.
The main contributions of our paper are summarized as

follows:
• We proposed a RPA algorithm based on energy

minimization for the uplink of a HetNet with one
macrocell and multiple femtocells by considering all
channel uncertainties. Our motivations behind this
system model are (a) multiple overlapped femtocell
network is a more practical and promising candidate
to improve system throughput and spectrum
efficiency; (b) with considering all possible channel
uncertainties, the robustness of system can be
improved where both transmission links among
different femtocells and transmission links in
macrocell can be guaranteed at the same time.

• We used a simple method to transform the NP-hard
problem into a convex one. Also the feasible regions
of optimal PA problem and the proposed RPA
problem are given.

• Then, we addressed the complexity and sensitivity
degree of the algorithm and obtained the analytical
relationship between overall energy consumption and
uncertain parameters. The simulation parts
demonstrated the effectiveness of the proposed
algorithm.

The rest of the paper is given as follows. Section 2
presents the methods of this study. The system model
is given in Section 3 and transformation process of the
designed RPA problem is presented in Section 4. Section 5
proposes a RPA algorithm based on the above deter-
ministic model. And the performance analysis is given
in Section 6. The simulation results are presented in
Section 7. Finally, the conclusion is given in Section 8.

2 Methods
Considering system energy consumption and transmis-
sion robustness of a HetNet with one macrocell with
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multiple femtocells, this study presented a power min-
imization scheme subject to all channel uncertainties.
After network initialization is accomplished, our pro-
posed RPA algorithm at each FU transmitter is used to
adjust the corresponding transmit power to achieve total
power consumption minimization under the constraints
of interference power of MUs and SINR requirement of
each FU. Due to instability of wireless channel, we consid-
ered all channel uncertainties and converted the nominal
problem into a deterministic one based on worst-case
principle. Then, the optimal solution can be obtained by
utilizing Lagrange dual decomposition theory. The RPA
algorithm can be accomplished by the following steps: (1)
at FU’s receiver, it estimates the forward channel gains and
obtains the estimated direct channel gain values. Deter-
mine the error upper bound according to the robustness
requirement of system and the accuracy of channel esti-
mation algorithm. Then, the related system parameters
(e.g., estimated channel gains, background noise power)
are fed back to its transmitter. (2) Data fusion center
at FU’s BS collects the tolerable interference power lev-
els, determines the minimum value, and broadcasts to
all transmitters in femtocells. (3) Based on these sys-
tem parameters and its own robustness requirement, each
transmitter adjusts the transmit power by the designed
RPA algorithm.

3 Systemmodel
We consider an uplink transmission model of two-tier
HetNets with one macrocell and multiple femtocells as
shown in Fig. 1, where oneMBS serves LMUs andK FBSs.
Each FBS serves M FUs. Define the set of FUs as ∀i, j ∈
{1, 2, · · · ,M}, the set of FBSs as ∀k ∈ {1, 2, · · · ,K}, and
the set of MUs as ∀l ∈ {1, 2, · · · , L}. We suppose that both
users and femtocell base stations are randomly distributed
in the coverage area. For the sake of clarity, Table 1 gives
the summary of the notations which are adopted in this
paper.
In HetNets, femtocells share the same frequency

resources with macrocells [1]. To protect the basic QoS of
MUs, we need to limit the interference power caused from
femtocell networks to macrocell networks under a cer-
tain allowable range [17]. Therefore, we consider a global
interference constraint at the FU side, i.e.,
∑

k

∑
i
pki G

k
i ≤ Ith, (1)

According to information theory, the received SINR at
FBS over link i can be formulated as

γ k
i = pki h

k
i

M∑
j �=i

pkj h
k
j +

L∑
l=1

plgkl + σ k
i

, (2)

Fig. 1 System model. Signal link and interference link
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Table 1 Symbol definition

Notation Description

Gki Channel gain between the ith FU of the femtocell network k
and MBS.

pki transmit power of the ith FU in the femtocell network k.

Ith Maximum interference power that the MBS can tolerate.

γ k
i QoS requirement of the ith FU in kth femtocell.

hki Channel gain between ith FU-Tx and kth FBS.

hkj Channel gain between jth FU-Tx and kth FBS.

gkl Interference channel gain from the lth MU-Tx to the kth FBS.

pl Transmit power of the lth MU.

σ k
i Background noise received at each FBS.

where the first term of denominator denotes the
interference power from neighboring FUs (i.e., intra-tier
interference). The second part of denominator is the inter-
ference power from macrocell networks (i.e., cross-tier
interference).
To guarantee transmission qualities of each FU, i.e., the

received SINR at each FBS (i.e., γ k
i ) should be bigger than

a minimum SINR threshold, which is given as

γ k
i ≥ γ

k,min
i . (3)

where γ
k,min
i denotes the minimum SINR of the ith FU in

the kth femtocell.
Considering the limitation of battery capacity of FUs,

the transmit power of each FU is bounded, and we have
the following constraint,

0 ≤ pki ≤ pk,max
i , (4)

where pk,max
i denotes the maximum transmission power

of the ith FU in femtocell network k.
In order to better analyze the impact of interference

from femtocells to macrocells, we define the outage prob-
ability of MUs as follows,

P(m) =
{
0, Iac < Ith
Iac−Ith
Ith , Iac ≥ Ith.

(5)

where P(m) denotes the outage probability of mth MU-
Rx, and Iac denotes the actual interference from femtocells
to macrocells (i.e., Iac =∑k

∑
i p∗k

i Gk
i , where p∗k

i denotes
the optimal transmit power of FBS). When Iac < Ith,
there is no outage; otherwise, the actual outage can be
calculated by Iac−Ith

Ith × 100%.
To improve system capacity and spectrum efficiency, we

formulate the following total transmit power minimiza-
tion problem of FUs for uplink transmission model of
two-tier HetNets, i.e.,

Nominal optimization problem (P1)

min
pki ∈�n

K∑
k=1

M∑
i=1

pki

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1 :
K∑

k=1

M∑
i=1

pki G
k
i ≤ Ith,

C2 : γ k
i ≥ γ

k,min
i ,

C3 : pki ≤ pk,max
i .

(6)

where �n denotes the feasible region of P1 ( i.e., non-
robust optimization problem). To achieve these goals, we
should discuss �n when system information is exactly
obtained. Obviously, when Ith is extremely small, the fea-
sible solution may not exist since FUs are very close to
the MU-Rx. On the one hand, FUs cannot be allowed to
transmit high power in order to guarantee MU’s QoS. On
the other hand, FUs need to improve their transmission
power for their SINR requirement. Hence, we analyze the
feasible case for satisfying the QoS of both FUs and MUs.

Remark 1 Let pl =[ p1, ..., pL]T ,pk,max =
[
pk,max
1 , ...,

pk,max
M

]T
, m =

[
γ
k,min
1 σ k

1 /hk1, ..., γ
k,min
M σ k

M/hkM
]T

and

g =[ gij]=
[
γ
k,min
i gkl /h

k
i

]
. h is the M × M intra-tier

channel gain matrix with
[
hij
] =

{
hkj / hki if j �= i
0 if j = i

. F

is a M × M gain matrix of FUs whose elements are

F =[ Fij]=
{

γ
k,min
i hij if j �= i,

0 if j = i.
. From constraint (3),

we have pk,min = (I − F)−1 (gpl + m
)
, where pk,min =

[
pk,min
1 , ..., pk,min

M

]T
denotes the minimum transmission

power of FUs in the kth femtocell, and I is a M × M
unit matrix. The P1 is feasible if and only if the following
conditions hold [18]:

�n =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(F) < 1,
∑K

k
Gkpk ≤ Ith,

pk,min ≤ pk ≤ pk,max

(7)

where pk =[ pk1, ..., p
k
M]T is the feasible solution of P1, ρ(F)

is the spectral radius of F [19] and Gk =
[
Gk
i , ...,Gk

M

]

denotes channel gain vector between FU-Txs and MU-Rxs.

If channel gains in C1 and C2 can be perfectly known,
P1 can be proved to be a convex optimization problem,
which is easily solved under the feasible region �n by
the existing scheme, such as [20]. However, in practical
dynamic communication environment, channel gains are
actually uncertain that can influence system performance.
For example, channel uncertainties between FU-Txs and
MU-Rxs may bring the harmful interference toMUs, even
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cause in outage. Therefore, it is necessary to study RPA
problem.

4 Robust power allocationmodel
In this section, the uncertainties of channel gains in P1
are considered andwe use bounded ellipsoidal uncertainty
sets to model them. Then, the SIP problem is transformed
into a deterministic convex problem based on the Cauchy-
Schwartz inequality theory and worst-case approach.

4.1 Models of channel uncertainties
In practical systems, due to the effect of channel fading
and feedback delays, the CSI is uncertain, which can be
assumed to have a bounded uncertainty of unknown dis-
tribution. Ellipsoidal set is widely used to approximate
unknown and potentially complicated uncertainty sets
[21]. For example, for OFDM-based cognitive radio net-
works, the author in [22] proposed a worst-case robust
distributed PA scheme, which employs the ellipsoidal
approximate method to model the channel uncertain-
ties. In [23], based on game theory, the author presented
a robust optimization equilibrium for competitive rate
maximization under bounded channel uncertainty and
formulated the imperfect CSI by using ellipsoidal uncer-
tainty sets. According to those existing literatures, it is
obvious to see that the ellipsoidal approximation has
the advantage of parametrically modeling complicated
data sets and provides a convenient input parameter
to algorithms. Furthermore, there are statistical reasons
that lead to ellipsoidal uncertainty sets and also result
in optimization problems with convenient analytical
structures [24].
Therefore, by using ellipsoidal approximation, each

uncertain parameter can be written as the sum of its
nominal value and perturbation part, e.g.,

hij = h̄ij + �hij, (8)

where hij is the normalized intra-tier interference channel
gain relevant to channel gain of link i. h̄ij is the nom-
inal value of channel gain between active FU-Rx and
other FU-Txs from neighbor femtocells, and �hij is the
corresponding perturbation part.
Let Hi represent the uncertainty set of the ith row of

matrix h. We use an ellipsoid set to describeHi. Addition-
ally, we denote h̄ =[ h̄ij] and �h̄ = [�h̄ij]. Under ellipsoid
approximation, the uncertainty set of Hi can be written as

Hi =
{
h̄i + �hi :

∑
j �=i

∣∣�hij
∣∣2 ≤ ε2i

}
. (9)

where h̄i is the ith row of h̄, and the corresponding pertur-
bation part as �hi, and εi ≥ 0 is the maximum evaluated
error of every row in h̄i.

Similarly, the uncertainty relevant to the interference
channel gain between FU and MU-Rx can be written as

Gk
i = Ḡk

i + �Gk
i , (10)

where Ḡk
i and �Gk

i represent the nominal value and the
perturbation part of channel gain between FU and MU-
Rx, respectively.
LetGi represent the uncertainty set of the ith column of

matrix G = [
G1
1 · · ·G1

M; · · · ;GK
1 · · ·GK

M
]
. Denote the ith

column of Ḡ and the corresponding perturbation part as
Ḡi and �Gi, respectively. The uncertainty parameter Gi is
described by an ellipsoid set as follows

Gi =
{
Ḡi + �Gi :

∑
k

∣∣∣�Gk
i

∣∣∣
2 ≤ δ2i

}
. (11)

where δi ≥ 0 is the maximum deviation of each item in Ḡi.
Furthermore, we also consider uncertainties of the nor-

malized cross-tier interference channel gains fromMU-Tx
to FU-Rx.

gil = ḡil + �gil, (12)

where ḡil is the nominal value, and �gil is the perturba-
tion part. Let gi represent the uncertainty sets of the ith
row of matrix g. Denote the ith row of ḡ as ḡi, and the
corresponding perturbation part as �gi. In this case, the
uncertainty region is given as

gi =
{
ḡi + �gi :

∑
l

∣∣�gil
∣∣2 ≤ ω2

i

}
. (13)

where ωi ≥ 0 is the maximum deviation of each row in ḡi.

4.2 Robust power allocation optimization model
Considering the channel uncertainties, the RPA problem
is formulated as
Robust power allocation problem (P2)

min
pki ∈�r

K∑
k=1

M∑
i=1

pki

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C4 :
∑K

k=1
∑M

i=1

(
Ḡk
i + �Gk

i

)
pki ≤ Ith,

C5 :

M∑
j �=i

(
h̄ij+�hij

)
pkj +

L∑
l=1

(ḡil+�gil)pl+ σki
hki

pki
≤ 1

γ
k,min
i

,

C6 : pki ≤ pk,max
i ,

C7 :
∑

j �=i
∣∣�hij

∣∣2 ≤ ε2i ,∑
i |�Gi|2 ≤ δ2i ,∑
l
∣∣�gil

∣∣2 ≤ ω2
i .

(14)

where �r denotes the feasible region of RPA problem.
Since P2 is limited by an infinite number of constraints
like sets Hi, Gi, and gi, P2 is proved to be a SIP prob-
lem [10]. A feasible method to solve the SIP problem is to
transform it into a deterministic robust problem by con-
sidering the worst case in the constraints of P2. In other



Xu et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:224 Page 6 of 14

words, we can keep the system performance under any
case of estimation errors.
According to the Cauchy-Schwartz inequality theory

andworst-case approach [25], the uncertain part ofC4 and
C5 can be converted into

max
{

K∑
k=1

M∑
i=1

�Gk
i p

k
i

}
≤ δi

√
K∑

k=1

M∑
i=1

(
pki
)2 ≤ δi

K∑
k=1

M∑
i=1

pki ,

(15)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
{

M∑
j �=i

�hijpkj

}
≤ εi

√
M∑
j �=i

(
pkj
)2
,

max
{

L∑
l=1

�gilpl

}
≤ ωi

√
L∑

l=1
pl2.

(16)

Based on (15) and (18), the RPA problem (P2) can be
reformulated as follows
Worst-case power allocation problem (P3)

min
pki ∈�r

K∑
k=1

M∑
i=1

pki

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

C7 : IN ≤ 1,
C8 :

Zk
i +Eki
pki

≤ 1
γ
k,min
i

,

C9 : pki ≤ pk,max
i .

(17)

where

IN =
K∑

k=1

M∑

i=1

(
Ḡk
i + δi

)
pki / Ith. (18)

Eki = εi

√√√√
M∑

j �=i

(
pkj
)2 + ωi

√√√√
L∑

l=1
pl2. (19)

Zk
i =

M∑

j �=i
h̄ijpkj +

L∑

l=1
ḡilpl + σ k

i
hki

. (20)

It is obvious that the above P3 is a convex problem with
liner constraints. To get an insight on the solution to P3
and compare it with that of the nominal problem (i.e.,
P1), we need now study the feasibility region of the robust
problem. According to the feasible region of non-robust
problem [i.e., (7)], we derive the robust feasible region
with the following form:

�r =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(F) + ‖�ji‖F < 1, (21a)
∑K

k
Gkp̃k

T + ℵ [p̃δ
] ≤ Ith, (21b)

pk,min ≤ p̃k ≤ pk,max (21c)
(21)

where ℵ[ •] denotes the sum of matrix elements, F
denotes the nominal matrix of Remark 1, p̃ =

[
pki
]

=
[
p11, ..., p1M; ...; pK1 , ..., pKM

]
is the feasible solution of RPA

problem (i.e., P3) and p̃k is the kth row of matrix p̃
. Gk =

[
Gk
1, ...,G

k
M

]
and δ =[ δ1, ..., δM]T denote the

nominal cross-tier channel estimates andmaximum chan-
nel perturbation, respectively. Obviously, conditions (21c)
are satisfied. The proof of (21a) and (21b) is given in
Appendix A.

5 Robust power allocation algorithm
In this section, we will propose a RPA algorithm to solve
P3 by applying the decomposition theory. The Lagrange
function of P3 is defined as

L
({

pki
}
, λ,
{
μk
i

}
,
{
ξ ki

})
=

K∑

k=1

M∑

i=1
pki + λ(IN − 1)

+
K∑

k=1

M∑

i=1
μk
i

(Zk
i + Eki
pki

− 1
γ
k,min
i

)

+
K∑

k=1

M∑

i=1
ξ ki

(
pki − pk,max

i

)
.

(22)

where λ,
{
μk
i

}
and

{
ξ ki

}
are Lagrange multipliers and λ ≥

0,μk
i ≥ 0, ξ ki ≥ 0. And the dual Lagrange function is

D
({

pki
}
, λ,
{
μk
i

}
,
{
ξ ki

})
=min

pki
L
({

pki
}
, λ,
{
μk
i

}
,
{
ξ ki

})

=
∑

k

∑

i
min Lki

(
pki , λ,μk

i , ξ ki
)

− λ −
∑

i

∑

k
μk
i

1
γ
k,min
i

−
∑

i

∑

k
ξ ki p

k,max
i ,

(23)

where

Lki
(
pki , λ,μk

i , ξ ki
)
=pki +λIN+μk

i

(
Zk
i + Eki
pki

)
+ ξ ki p

k
i .

(24)

and the dual optimization problem is formulated as

max
λ,μk

i ,ξ
k
i

D
(
λ,
{
μk
i

}
,
{
ξ ki

})

s.t.λ ≥ 0,μk
i ≥ 0, ξ ki ≥ 0.

(25)

For any FUs, the dual decomposition method can be
separated into some sub-problems with parallel form.
Since Lki

(
pki , λ,μk

i , ξ ki
)
is a convex problem with respect

to pki . According to the KKT condition [25], the optimal
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transmit power pk∗i can be calculated by
∂Lki
(
pki ,λ,μ

k
i ,ξ

k
i

)

∂pki
= 0

and the result is

pk∗i =

√√√√√√√

μk
i

(
Zk
i + Eki

)

1 + ξ ki + λ
K∑

k=1

M∑
i=1

(
Ḡk
i + δi

)
/Ith

. (26)

Define

Sλ =
K∑

k=1

M∑

i=1

(
Ḡk
i + δi

)
pk∗i /Ith, (27)

S
μk
i

= Zk
i + Eki
pk∗i

− 1
γ
k,min
i

, (28)

S
ξki

= pk∗i − pk,max
i , (29)

where Sλ, Sμk
i
, and S

ξki
are the sub-gradients of λ,μk

i , and
ξ ki , respectively.
Update pk∗i (t+1) and Lagrange multipliers λ,μk

i , and ξ ki
as follows

pk∗i (t + 1) = min
{
pk,max
i , pk∗i (t)

}
. (30)

λ(t + 1) =[ λ(t) + αSλ]+ . (31)

μk
i (t + 1) =

[
μk
i (t) + βS

μk
i

]+
. (32)

ξ ki (t + 1) =
[
ξ ki (t) + θS

ξki

]+
(33)

where [ x]+ = max{0, x}, α,β , and θ are the step sizes
which are positive and t is the step time (Table 2). The
outline of our proposed RPA algorithm is described in the
Table 2.

6 Performance analysis
6.1 Computational complexity
For the specific variable (i, k), the convergence times of
finding the optimal solution pk∗i via Newton iterative
approach is assumed to be t1 for sub-problem. As the
dual problems can be decomposed into M × N sub-
problems, the sum iteration number of total sub-problems
is M × N × t1, for all (i, k). In addition, from (31)–(33),
we need the (2MN + 1) steps to update the Lagrange
multipliers. The iteration number of finding the optimal

Table 2 Proposed RPA algorithm

Proposed algorithm

1:Initialize maximum iteration number Tmax ; Set: iteration t=0, M > 0,
and L > 0; Lagrangian

multipliers λ(0) > 0, {μk
i }(0) > 0, and {ξ ki }(0) > 0; step sizes α >

0,β > 0, and θ > 0;
upper bound of estimation error in MU-to-FBS link is ωi ∈[ 0, 0.003];
upper bound of estimation error in femtocell link is εi ∈[ 0, 0.1];
upper bound of estimation error in FU-to-MBS link is δi ∈[ 0, 0.003] .
2:Set maximum transmit power pk,max

i > 0 and initialize power pki > 0
with different initialization
values among different FUs and MUs.

3:Define interference Ith and minimum rate γ
k,min
i , randomly generate

Ḡki , h̄ij and ḡij .

4:repeat

5: for t = 1 to Tmax do

6: form = 1 toM do

7: for l = 1 to L do

8: Calculate transmit power pk∗i according to (26);

9: Calculate actual SINR received at FU-Rx according to (2) and (26);

10: Calculate Iac according to (1) and (26);

11: Calculate Lagrange multipliers λ,μk
i , and ξ ki from (31) - (33);

12: end for

13: end for

13 t = t + 1;

14:end for

15:until t = Tmax or transmit power convergence.

variables
(
λ∗,μk∗

i , ξ k∗i
)
is assumed to be t2. Hence, the

complexity of our proposed algorithm can be expressed as
O((MNt1 + 2MN + 1)t2).

6.2 Sensitivity analysis
In this sub-section, we use local sensitivity analysis of P3
by perturbing its constraints. For all value of �hji,�Gk

i ,
and �gli , the reduction of achievable sum transmit power
can be approximated as

P� ≈ −
M∑

i=1
λ∗δi −

M∑

i=1

N∑

k=1

(
μk∗
i εi + μk∗

i ωi
)
. (34)

where λ∗ and μk∗
i denote optimal Lagrange multipliers.

The proof is given in Appendix B.

7 Numerical results
In this section, the simulation results and performance
analysis are provided to verify the efficiency and perfor-
mance of our proposed algorithm. In this part, we used
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MATLAB 2016 software to do the simulations via core
i5. In our simulation, we assumed that actual channel
fading follows Rayleigh fading model; therefore, actual
channel gains Gk

i , hki , andgki are followed as
{
0, A

dr
}
, where

d is the distance from transmitter to receiver, r ∈
[2, 5] denotes the path-loss exponent, and the attenuation
parameter A is frequency dependent [26]. The traditional
non-robust PA algorithm is given in [5] under perfect
CSI. Due to not taking into account the channel uncer-
tainty, our RPA algorithm has more advantages in improv-
ing network performance compared with the non-robust
PA algorithm. Other simulation parameters are given in
Table 3.
Figure 2 presents the transmission power of each FU

under multiuser scenarios, such as M = 3, and channel
uncertainties are εi, and ωi are supposed to be 1 × 10−3,
and δi is assumed to be 10% of Ḡk

i . As can be seen in Fig. 2,
with the increasing iteration numbers, the transmit power
increases and tends to be converging to a stable value
when the iteration number is about six, which demon-
strates the perfect convergence performance of our pro-
posed algorithm. In addition, transmit power is restricted
by the maximum value pk,max

i , which shows the proposed
algorithm is feasible. As a result, it satisfies the maximum
power constraint (4).
To demonstrate the effectiveness of our proposed algo-

rithm in term of QoS protection of both FUs and MUs,
we also give the comparison of performance between the
proposed RPA algorithm and traditional non-robust PA
algorithm [5].
Figure 3 shows comparison between our RPA algo-

rithm and non-robust PA algorithm in terms of SINR.
It is obvious that the SINR of each FU under our pro-
posed algorithm exceeds the minimum SINR value with
considering the estimation errors, whereas the non-robust
PA algorithm cannot guarantee SINR requirements of all
FUs, which will lead to a communication outage. Due to
the effects of channel fading and feedback delays, FUs
cannot respond in time by using traditional PA algorithm

Table 3 Simulation parameters

System parameter Values

Number of MUEs L 4

Number of FBSsM 1

Number of FUEs in each femtocellM 3

The background noise σ k
i 10−8 W

Minimum SINR rquirement of FUs γ
k,min
i 2dB

Transmit power of each MU pl [0.5 , 1]W

Maximum transmit power pk,max
i 1W

Allowable interference level Ith 10−3W [25]

so that the QoS of each FU is hard to guarantee. More-
over, it indicates that RPA algorithm can always ensure
the normal communication of FUs. Therefore, the robust-
ness of our proposed RPA algorithm is better than the
traditional PA algorithmwithout consideration of channel
uncertainties.
Figure 4 gives comparison of the interference power

received at MBS between our proposed robust algorithm
and the non-robust algorithm. As shown in Fig. 4, the
interference power introduced to the MBS with consid-
ering channel uncertainties is always under the interfer-
ence power threshold, whereas the actual received inter-
ference power at MBS under non-robust PA algorithm
exceeds the tolerable region. It can be explained that the
MUs may experience severe performance degradation.
Therefore, QoS of MUs are not guaranteed without the
consideration of estimation errors and an outage event
happens.
Figure 5 provides comparison of total energy consump-

tion under our proposed RPA algorithm and traditional
non-robust PA algorithm. From Fig. 5, the total power
consumption of FUs in both non-robust algorithm and
RPA algorithm increase with the increasing number of
iteration and converge to a stable value; however, the
total transmit power of RPA algorithm is higher than
that of non-robust PA algorithm. From Figs. 3, 4, and
5, we can get a conclusion that our RPA algorithm can
well protect the QoS of MUs at the expense of energy
consumption.
Considering imperfection of actual CSI, in order to

demonstrate the superiority of our proposed RPA algo-
rithm under different channel uncertainty (i.e., δi, εi,ωi)
clearly, we give the satisfaction probability of MU-Rx and
SINR performance of FUs in Figs. 6, 7, and 8.
Figure 6 shows that the satisfaction probability of MU-

Rx using two different algorithms can be presented sub-
ject to different channel estimation errors �Gk

i . It is
clear that the satisfaction probability of MU-Rx under
the non-robust PA algorithm is rapidly declining as the
increasing interference channel uncertainty δi. Whereas
the system with our RPA algorithm can cope with this
problem. This is because the RPA algorithm is adaptive
that can adjust pki according to channel perturbation δi.
In addition, bigger interference threshold Ith of MU-Rx
can increase the feasible region of transmit power pki and
then decrease the outage probability of MU-Rx. While
satisfaction probability of MU using non-robust PA algo-
rithm is lower than that of MU using our RPA algorithm,
in other words, non-robust PA algorithm can increase the
outage probability of MUs. Hence, it enables the proposed
RPA algorithm to protect the normal communication
of MUs.
Figure 7 shows the actual SINR received at FU-Rx under

inter-tier and cross-tier channel uncertainties (i.e., εi and
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Fig. 2 Transmit power versus number of iterations

ωi) by two algorithms. The bound of the interference per-
turbation is δi = 0.0001. As can be seen from Fig. 7, the
received SINR of FU-Rx decreases with the increase of
inter-tier channel perturbation εi and cross-tier channel
perturbation ωi by our RPA algorithm and non-robust PA
algorithm. The reason is that optimal power reduction
leads to the decrease of received SINR. Additionally, it

is obvious that the received SINR in [5] is lower than
the received SINR by using our proposed algorithm. And
when εi > 0.045, the received SINR in [5] cannot meet
the minimum SINR requirement. What is more, received
SINR of FU-Rx declines with cross-tier channel uncer-
tainties ωi increase. That is due to traditional non-robust
PA algorithm ignores channel estimation errors, and pki
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Fig. 3 Comparison of SINR received at FBS between robust and non-robust algorithm
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Fig. 4 Comparison of the interference power received at MU-Rx between robust and non-robust algorithm

cannot be adjusted in time under time-varying channel
uncertainty.
Figure 8 presents the comparison of received SINR

performance of FU-Rx between our proposed RPA
algorithm and non-robust PA algorithm under channel

uncertainties. From Fig. 8, we can see intuitively that the
SINR performance of our algorithm is superior to that
of non-robust algorithm and cannot lead to the interrup-
tion of communication when channel environment is bad.
In conclusion, the proposed RPA algorithm can improve
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Fig. 6 Outage probability at MU-Rx between robust and non-robust algorithm under different interference perturbation δi

the quality of communication system compared with
the traditional non-robust PA algorithm under channel
uncertainties.

8 Conclusions
In this paper, a RPA problem is studied in uplink two-tier
HetNets with all possible channel uncertainties. Based on
the worst-case approach, the robust resource optimization
problem is converted into a convex one which is solved
by using Lagrange dual method. The feasible regions and
the closed analytical solution are obtained. Furthermore,
performance analysis and the impact of channel uncer-
tainties have been presented. The numerical results show
that our proposed RPA algorithm is out-performance
to traditional non-robust algorithm in cases of protect-
ing the QoS of MUs at the cost of energy loss. In
our future work, we will extend the network structure
for multiple macrocells and relay-assisted transmission
cases.

Appendix A
Proof of condition (21a) According to the discussion of

Remark 1, the minimum transmission power of P3 is

pk,min = (I − F − �F
)−1 (gpl + � + m

)
(35)

where � =
[
γ
k,min
1 ω1� , ..., γ k,min

M ωM�
]T

denotes the
perturbation part of interference, and � = √∑

l pl2.

Additionally, �F is aM × M matrix whose elements

�F =[�ij]=
{

γ
k,min
i �hij if j �= i,

0 if j = i.
(36)

According to F = F + �F and ρ(F) < 1, we have

ρ(F + �F) < 1. (37)

According to the definition of spectral radius and the
property of Frobenius norm [27], we have

‖�ij‖F =
√∑

i

∑
j
�2

ij,

‖�ij‖2 ≤ ‖�ij‖F .
(38)

Combining with the triangle inequality [28], we have

ρ(F + �F) = ‖Fji + �ij‖2 ≤ ‖Fji‖2 + ‖�ij‖2
≤ ρ(F) + ‖�ij‖F < 1.

(39)

Proof of condition (21b) Considering cross-tier channel
uncertainties between FUs and MU-Rxs, the interference
constraint condition of �r is
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Fig. 7 Comparison of SINR between robust and non-robust algorithm under different channel perturbation ε and ω
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∑K

k

(
Gk + �Gk

)
p̃k ≤ Ith. (40)

According to inequality (11) and (15), we have

∑K

k
Gk p̃k+

∑K

k
�Gk p̃k ≤

∑K

k
Gk p̃k +

∑M

i
δi
∑K

k
pki

=
∑K

k
Gk p̃k

T + ℵ
[
p̃δ
]

≤ Ith
(41)

With that, the proof of condition (21a) and (21b) are
completed.

Appendix B
Based on the formula of Taylor series of the three element
function, we have

P∗ (Ḡk
i + �Gk

i , h̄ki + �hji, ḡ
k
i + �gki

)
= P∗ (Ḡk

i , h̄ki , ḡki
)

+
M∑

i=1

N∑

k=1

∂P∗
(
Ḡk
i , h̄ki + �hji, ḡki + �gki

)

∂�Gk
i

+
M∑

i=1

N∑

k=1

∂P∗
(
Ḡk
i + �Gk

i , h̄ki , ḡki + �gki
)

∂�hji

+
M∑

i=1

N∑

k=1

∂P∗
(
Ḡk
i + �Gk

i , h̄ki + �hji, ḡki
)

∂�gki

+ o,
(
�Gk

i → 0,�hji → 0,�gki → 0
)

(42)

where o denotes the corresponding high order infinites-
imal small quantities. And, P∗

(
Ḡk
i , h̄ki , ḡki

)
is the optimal

value for P3 without estimation errors (assuming that the
estimated channel gains are equal to the actual channel
gains).
Ignoring the effect of high order small variables,

since P3 is convex, P∗
(
Ḡk
i + �Gk

i , h̄ki + �hji, ḡki + �gki
)
is

obtained from the Lagrange dual function and using the
sensitivity analysis [29], we have

N∑

k=1

∂P∗
(
Ḡk
i , h̄ki + �hji, ḡki + �gki

)

∂�Gk
i

≈ −λ∗;

∂P∗
(
Ḡk
i + �Gk

i , h̄ki , ḡki + �gki
)

∂�hji
≈ −μk∗

i ;

∂P∗
(
Ḡk
i + �Gk

i , h̄ki + �hji, ḡki
)

∂�gki
≈ −μk∗

i .

(43)

According to (34) and (35), we have the following
expression

P� =P∗ (Ḡk
i + �Gk

i , h̄ki + �hji, ḡ
k
i + �gki

)

− P∗ (Ḡk
i , h̄ki , ḡki

)

≈
M∑

i=1
λ∗δi +

M∑

i=1

N∑

k=1

(
μk∗
i εki + μk∗

i ωk
i

)
.

(44)
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