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Microwave Medical Imaging Based on Sparsity and
an Iterative Method with Adaptive Thresholding

∗Masoumeh Azghani, Panagiotis Kosmas, and Farokh Marvasti

1 Abstract— We propose a new image recovery method
to improve the resolution in microwave imaging applications.
Scattered field data obtained from a simplified breast model
with closely located targets is used to formulate an electro-
magnetic inverse scattering problem, which is then solved using
the Distorted Born Iterative Method. At each iteration of the
DBIM method, an underdetermined set of linear equations is
solved using our proposed sparse recovery algorithm, IMATCS.
Our results demonstrate the ability of the proposed method to
recover small targets in cases where traditional DBIM approaches
fail. Furthermore, in order to regularize the sparse recovery
algorithm, we propose a novel L2-based approach and prove
its convergence. The simulation results indicate that the L2-
regularized method improves the robustness of the algorithm
against the ill-posed conditions of the EM inverse scattering
problem. Finally, we demonstrate that the regularized IMATCS-
DBIM approach leads to fast, accurate and stable reconstructions
of highly dense breast compositions.

Index Terms— Microwave tomography, compressed sensing,
adaptive thresholding, breast imaging, inverse scattering.

I. INTRODUCTION

Microwave tomographic methods for clinical applications
estimate the spatial distribution of dielectric properties in a
tissue region by solving an electromagnetic (EM) inverse
scattering problem [1]. Various EM inverse scattering methods
have been proposed in recent years for this purpose, such as
conjugate gradient techniques [2], [3] and Gauss-Newton (GN)
optimization algorithms [4]–[6]. In this paper, microwave
tomography is implemented by applying the Distorted Born
Iterative Method (DBIM) which, as any GN approach, ap-
proximates the non-linear inverse scattering problem with an
underdetermined set of linear equations.

We propose a novel solution to the resulting linear system
at every DBIM iteration based on an Iterative Method with
Adaptive Thresholding for Compressed Sensing (IMATCS)
[7]. In the IMATCS method, a crude reconstruction is ap-
plied successively to the linear measurements of the signal
and the recovered signal at each iteration is sparsed using
an adaptive thresholding function. We should note here the
existence of other thresholding techniques such as iterative
hard thresholding (IHT) and K-sparse algorithms [8]- [9].
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The performance of these IHT algorithms, however, depends
highly on the value of the IHT threshold, which should be
determined by trial and error. On the contrary, an important
advantage of the proposed IMATCS method over algorithms
such as the iterative K-sparse method is that it does not require
knowledge of the sparsity number K of the signal as a priori
information for signal recovery. This important advantage is
based on the IMATCS’ adaptive thresholding approach, which
enables the algorithm to pick up the significant signal entries
at each iteration.

The proposed approach belongs to a wider category of
sparsity regularization techniques, which are currently pur-
sued in microwave imaging (MWI). In [10], for example, an
L1 regularizer is exploited to enforce sparsity in contrast-
enhanced MWI of breast tumors. The elastic net method
is proposed in [11] to solve the linear problem within the
DBIM, resulting in an improvement in the reconstruction of
the breast interior. These methods are inspired by Compressed
Sensing (CS) theory [12], [13], which can recover a sparse
signal from a lower dimensional measurement vector, i.e., the
number of measurements is much less than the number of
signal entries. Hence, CS methods are suitable for the solution
of underdetermined systems of equations using concepts of
sparsity of the underlying signal.

We note that, while CS methods and the IMATCS are
applicable in various domains such as sparse data acquisition
or signal compression [14], their application in this work
refers to the solution of an underdetermined system of linear
equations based on the measurement matrix at each iteration
of the DBIM algorithm. Contrary to CS applications which at-
tempt to design the measurement matrix to satisfy appropriate
conditions, the measurement matrix in this work is formed by
a conventional microwave tomography setup adopted in our
simulations.

The non-linearity and ill-posedness of the EM inverse scat-
tering problem can lead to unstable reconstructions in MWI
medical applications, which involve the presence of dense
or closely located scatterers in the reconstructed region. To
improve robustness, regularization techniques must be applied
at the expense of compromised resolution in the resulting
images [15]. We hereby propose a novel L2-regularized ver-
sion of IHT which can lead to stable signal recovery, and
present its convergence proof. In particular, we solve the L2-
regularized L0-minimization problem using the Majorization-
Minimization (MM) method as used in [9] for the derivation of
the IHT algorithm. Similar to IHT, the performance of the L2-
IHT relies on the proper selection of the threshold value based
on a priori knowledge of the underlying signal. To overcome
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this limitation, we propose an L2-IMATCS method, which is
a combination of the IMATCS and L2-IHT algorithms that
leads to stable signal recovery in scenarios where the original
IMATCS becomes unstable.

In order to demonstrate that the proposed method can im-
prove resolution in DBIM-based MWI, we examine simplified
homogeneous breast models with closely located tumor-like
scaterrers of different size. This choice is motivated by ongo-
ing research on microwave breast imaging and breast cancer
detection, which is arguably the most advanced MWI medical
application [16]. The IMATCS algorithm allows the DBIM
method to reconstruct these closely located targets, which
cannot be resolved with traditional L2 regularisation schemes.
We also test the ability of the regularized version of our
algorithm to image complex breast structures by considering a
highly heterogenous breast distribution, which is reconstructed
using multiple-frequency data.

The rest of the paper is organized as follows: A review
of EM inverse scattering using the DBIM and CS theory
together with the IMATCS approach is given in Section II.
The development of novel L2-IHT and L2-IMATCS methods
is presented in Section III. Simulation results for various
scenarios are given in Section IV, and Section V concludes
this work. Finally, we provide a mathematical proof for the
convergence of the algorithm in the Appendix. A preliminary
version of this work has been reported in [17].

II. COMPRESSED SENSING IN MICROWAVE IMAGING

A. EM Inverse Scattering with the DBIM

The DBIM algorithm is based on the distorted-wave Born
integral equation [18],

Esc(r) = Et(r)−Eb(r) = ω2µ

∫
V

dr′Ḡb(r, r′)∆ε(r′)Eb(r′)

(1)
where Esc is the scattered electric field, ∆ε(r′) = ε(r′)−εb(r′)
is the unknown contrast function over the volume of support
V , and Ḡb(r, r′) denotes the dyadic background Green’s
function, which represents propagation from the source located
at r to the point r′ inside V . The unknown total field Et is
approximated with the known background field Eb inside the
integral in (1). The resulting linear integral equation is solved
in the discrete domain at each iteration of the DBIM algorithm
for the contrast function ∆ε(r′).

This approach leads to a GN algorithm for non-linear least-
squares problems [19]. At iteration k, the algorithm solves a
linear least-squares problem described by

J̄Tk J̄kp
GN
k = J̄Tk rk (2)

where pk is the desired GN direction vector corresponding
to the unknown ∆ε(r′), rk is the residual vector and J̄k is
the Jacobian matrix of the least-squares problem. The forward
model is run at each iteration to compute Eb and Ḡb, which are
then used to calculate rk and the Jacobian J̄k, that is derived
by discretizing the right-hand side of (2). The resulting system
(2) is solved for pk the vectorized update ∆ε(r), and the new
value is added to the previous estimate of ε(r).

The choice of approach for solving the linear system in (2)
must consider two important factors. First, the matrix Jk is
typically ill-conditioned and requires a regularization method
to ensure stability. Second, the solution of this linear system
for large-scale problems is computationally very demanding;
therefore, a cost-efficient strategy is necessary. Previous 3-D
MWI algorithms have employed a Conjugate Gradient Least
Squares (CGLS) method with add-hoc stopping criteria to
regularize and solve (2) efficiently [5], [20]. This work uses
CS theory to solve the linear system of equations resulting
from the DBIM approximation in (1) as described below.

B. Application of CS theory

We can express the linear problem resulting from (1) at each
iteration of the DBIM as

y = Φs (3)

where Φ is an M × N measurement matrix (M < N )
formed by Ḡb and Eb, s represents the N -dimensional vector
of unknown dielectric contrast function update ∆ε, and y
represents the residual measurement data vector Esc. Our aim
is to recover s from y, given that the number of measurements
M is much less than the number of unknowns N . In general,
CS theory solves this underdetermined problem by assuming
that s is sparse [12], [13]. If s is not sparse, a transformation
using appropriate basis functions which induce sparsity can be
used,

s = Ψx (4)

leading to a re-formulation of (3) as

y = ΦΨx = Ax (5)

where A = ΦΨ. To solve (5) under the constraint that x is
sparse, we search for the most sparse solution among all the
vectors satisfying the constraint y = Ax. We note here that
sparsity is defined as the number of non-zero entries of x, i.e.,
the L0 norm of x. Hence, the main CS problem becomes

min
x
‖x‖0 subject to y = Ax (6)

Eq (6) can be solved by an exhaustive search method which
is NP -hard. A tractable approach to solve the non-convex
problem (6) is to approximate it with the convex problem (7),

min
x
‖x‖1 subject to y = Ax (7)

The above problem (7) is linked to the Basis Pursuit (BP)
algorithm [21], or equivalently the Least Absolute Shrinkage
and Selection Operator (LASSO) [22] algorithm that can be
solved using convex optimization techniques. Different types
of CS recovery methods include the family of greedy algo-
rithms such as Matching Pursuit (MP), Orthogonal Matching
Pursuit (OMP), and gradient pursuit [23], [24]. These algo-
rithms are computationally more efficient than the L1-norm
minimization techniques at the expense of lower guaranteed
recovery performance. Thresholding techniques such as IHT
[8], [9] and our proposed IMATCS [7] come in between these
two groups in both recovery performance and simplicity.
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Most CS recovery techniques require that special conditions
are satisfied by the measurement matrix Φ in order to recover
the signal successfully; this leads to the design of measurement
matrices such as random Gaussian, Bernoulli, and Toeplitz
matrices. In EM inverse scattering, however, the measurement
matrix is imposed by the EM integral equation where straight-
forward manipulation of this matrix is not possible. Moreover,
these EM equations are inherently nonlinear and are only
approximated to a linear form shown in (1). These two factors
will inevitably affect the performance of CS recovery methods
in realistic EM inverse scattering applications.

In addition, the unknown vector of dielectric contrast update
s will not be sparse at every DBIM iteration in many realistic
EM inverse scattering problems, such as the imaging of
heterogeneous dense breasts without a priori information.
Finding a transformation matrix Ψ that can induce sparsity
in (4) is a challenging task in these cases. This work does
not address this topic but manages to reconstruct non-sparse s
vectors by introducing the L2-IMATCS approach presented in
Section III. Therefore, we consider in (4) that Ψ is the identity
matrix I, so that A = Φ is the measurement matrix defined
in the standard DBIM approach.

C. The IMATCS algorithm

As mentioned in the introduction, the IMATCS method
belongs to the family of thresholding techniques. The IHT
[8] solves the following optimization problem

min
x
‖y −Ax‖22 + λ‖x‖0 (8)

The solution of (8) can be written as

xk+1 = H (xk + λA∗(y −Axk)) (9)

where A∗ denotes the conjugate transpose of matrix A, λ is
the relaxation parameter which controls the convergence of
the algorithm, and H is a hard thresholding function which
discards all the coefficients with amplitudes smaller than a
predefined fixed threshold. The threshold value should be
finely tuned using a priori information of the underlying
signal. However, it is usually impossible to have a priori
knowledge of the signal before its recovery. In order to get
around this problem, IMATCS takes advantage of an adaptive
thresholding procedure with a threshold initial predefined
value that decreases exponentially at each iteration. This
adaptive property of the thresholding function relaxes the
theoretical requirement of knowing the exact value of the hard
threshold.

As a result, the mathematical formulation of the IMATCS
method is the same as (9) with the difference that the
thresholding function H decreases with each iteration in an
exponential manner given as

Ti = T0e−αi (10)

where i is the iteration number, T0 is the initial threshold
value, and α indicates the threshold step. The algorithm given
in (9) starts from a zero initial value, x0 = 0. The coefficient
vector is recovered as xitermax, after an “itermax” number of
iterations. The adaptivity of the threshold enables us to recover

the embedding signal from its linear measurements without
any knowledge of the underlying signal. The block diagram of
the IMATCS method is depicted in Fig. 1, where G = A∗A.
The G operator in Fig. 1 captures the sampling (using A) and
crude reconstruction (using A∗) processes, which are applied
iteratively according to (9). At the end of each iteration, the
signal is sparsed using the thresholding function H .

Fig. 1: Block diagram of the IMATCS method.

While the IMATCS algorithm can be applied successfully to
recover the image from its compressive measurements, it must
be emphasized that the set of equations in (2) is not exactly
linear but approximated to be linear in MWI applications. This
linear approximation can result in instability which can cause
the IMATCS (or any other CS-based recovery algorithm) to
diverge after some iterations. In order to come around this
problem, an L2-regularized IMATCS algorithm is proposed
in the next section which incorporates the L2-regularization
strategy into the sparsity-based recovery algorithm in order to
stabilize the recovery procedure.

III. IMPLEMENTATION OF REGULARIZED ADAPTIVE
THRESHOLDING CS METHODS

A. Formulation

In order to deal with the ill-posedness of the EM inverse
scattering problem, we can reformulate (8) to solve the fol-
lowing minimization problem,

min
x
‖y −Ax‖22 + λ1‖x‖0 + λ2‖x‖22 (11)

The above cost function is an L2-regularized L0-minimization
approach, L0/L2. Previous CS algorithms applied to MWI
such as the elastic net [11] have minimized a cost function
based on an L2-regularized L1-minimization, which is solved
by reshaping the problem to a LASSO cost function in a larger
dimensional subspace. The complexity of LASSO increases
with the dimension of the underlying signal; hence, the elastic
net has a great complexity and computational burden. Here,
we propose an L2-IHT method which is much simpler and
more robust as a linear solver at each DBIM iteration in (2).

We propose to solve the L0/L2 regularized problem in (11)
using the following iterative method, called L2-IHT, given by

xk+1 =
1

1 + λ2
H (xk + λ1A

∗(y −Axk)) (12)

The mathematical derivation of this novel approach is given
in the Appendix. The performance of the L2-IHT algorithm is
extremely sensitive to a proper selection of the threshold value,
and therefore the method cannot guarantee convergence to an
acceptable solution. In order to deal with this problem, we
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have implemented an L2-IMATCS method which combines
the iterative thresholding approach of IMATCS with the L2-
IHT algorithm. The formulation of the L2-IMATCS is the
same as (12) with the difference that the H function is
adaptively decreased according to (10).

B. Parameters selection

The performance of the proposed L2-IMATCS method is
determined by the choice of the regularization parameters λ1
and λ2, and the thresholding function parameters T0, α, and
“itermax”. The parameter λ1 controls the convergence of the
algorithm and should satisfy the following condition

0 ≤ λ1 ≤
2

max eig(A∗A)
(13)

where eig denotes the matrix eigenvalues, and A is the
measurement matrix in (5), which is updated at each DBIM
iteration. In the simulations of the next section, we have set
λ1 as,

λ1 =
1.9

max eig(A∗A)
(14)

The introduction of λ2 controls the stability of the algorithm
by promoting L2-based solutions of the minimization problem
in (11). However, selecting a large value for this parameter
will reduce the impact of the other terms in (11) and can
therefore increase estimation errors in the recovered image.
Reconstructions with different values of λ2 have confirmed
this trade-off between the algorithm’s stability and imaging
accuracy.

The thresholding parameters T0, α, and “itermax” are re-
sponsible for the quality and the resolution of the reconstructed
image. In order to determine the thresholding parameters, we
have followed the following “ad-hoc” process. Firstly, we set
a sufficiently large value for T0, say 50, a small value for
α, say 0.01, and a large integer number for “itermax”, say
300. These initial values generate a slowly decreasing thresh-
olding function which can capture almost all the significant
components of the signal, producing a reliable estimation of
the true signal. The method is simulated using these initial
parameters. The recovered signal at the end of each DBIM
iteration is investigated to detect the maximum signal entry.
Having detected the maximum value of the underlying signal
to be around 0.04 for all DBIM iterations, T0 is set to a slightly
larger value equal to 0.07. Then the optimal α is obtained by
decreasing its value without altering the result obtained by the
initial parameters. The resultant value for α is 0.2. Finally,
“itermax” is selected by observing the residual error curve
with respect to the iteration number. In particular, the optimal
value of “itermax” is where the residual error has reached its
minimum value (200) for the first time and does not change
after that. It is important to note that this process is only run
for one case and the resulting parameters are used in all other
cases.

IV. RESULTS

This section presents simulation results inspired by mi-
crowave breast imaging, which illustrates the advantages of the

proposed method. We first consider two closely located tumor-
like scatterers in simplified breast models, where the dielectric
distribution is sparse in the reconstruction domain. Then, we
demonstrate the robustness of our regularized IMATCS-DBIM
algorithm in reconstructing complex breast structures. The
presented breast models, simulations, and reconstructions are
two-dimensional (2-D), but they can be extended in three
dimensions (3-D) similar to previous work based on the same
setup and methods [5]. We consider ideal dipole antennas
as transceivers in our simulations, which correspond to point
sources for our 2-D geometry and are arranged cylindrically
to encircle the breast slice at a distance of 1-2 cm away from
the skin. These point sources illuminate the breast with a
wideband pulse (with a -20 dB bandwidth from 500 MHz
to 3.5 GHz) sequentially, and also record the data to be used
for the solution of the microwave tomographic problem. The
effect of the number of these data points on the reconstructions
in the presence of Gaussian noise is also considered below.

A. Simulation testbeds

We simulate measured data using the Finite-Difference-
Time-Domain (FDTD) method and a uniform grid cell size
of 2.0 mm, which is also used as the forward solver in the
inversion process. This “inverse crime” assumption allows us
to benchmark the performance of our approach. The algorithm
estimates the parameters ε∞, εs, and σs of the Debye model
for the complex relative permittivity,

εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

− j σs
ωε0

(15)

where τ is assumed constant for all tissues (with a value
of 17.1 ps). The background medium is assumed lossless
with εr = 2.6 in all our simulation testbeds, and the Debye
parameters for the various tissues are extracted from UW-
Madison’s repository data [25].

First, we have considered the testbeds depicted in Fig. 2.
The testbeds resemble a two-dimensional coronal slice of a
breast comprised of homogenous breast tissue characterized
by volumetric average Debye parameters (εr = 11.1 and
σ = 0.11 S/m at 1 GHz), a skin layer, and two identical
closely located tumor-like targets. The dielectric constant and
conductivity distributions calculated at 1 GHz are shown in
Fig. 2 for the two scenarios. The two cases differ only in the
size and shape of the two closely located tumors in order to
test the resolution capabilities of our proposed algorithm for
16, 8, and 4 transceivers with locations shown in Fig 2 (a).

The testbeds in Fig. 2 are useful in studying the resolution
abilities of our sparsity promoting algorithm in idealized
scenarios, but they do not correspond to a realistic microwave
breast imaging application, where the breast interior can be
highly heterogeneous leading to a severely ill-posed inverse
problem. To assess the feasibility of using the L2-IMATCS
algorithm for these more complicated scenarios, we have
applied the previous setup to a 2-D coronal slice from a
“heterogeneous breast” phantom taken from UW-Madison’s
online breast phantom repository [25]. The dielectric constant
and conductivity distributions of the considered coronal slice
are shown in Fig. 3.
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Fig. 2: Maps of (a), (c) the dielectric constant εr and (b), (d)
the conductivity σ calculated at 1 GHz for the two simulation
scenarios, which differ only in the size and shape of the
targets. The locations of data points for a sixteen-, eight-, and
four-antenna configuration are also shown in (a) with crosses,
diamonds and squares, respectively.

Fig. 3: Maps of the dielectric constant εr (left) and the
conductivity σ (right) calculated at 1 GHz for the full-breast
simulation testbed. The spatial resolution is 2 mm.

B. Reconstructions of two closely located targets in a homo-
geneous numerical breast phantom

Fig. 4 presents reconstructions of the dielectric constant
and conductivity distributions for the two simulation scenarios
of Fig. 2. These images were obtained by the L2-IMATCS
algorithm using data from six equally spaced frequencies in
the range 1.2−2.7 GHz. We used λ2 = 0.005 in (11) for these
reconstructions, as higher values resulted in lower resolution.
Only the two tumor-like targets were unknown in the breast
model used as the “initial guess” for the DBIM algorithm. The
results in Fig. 4 demonstrate that the L2-IMATCS approach
manages to resolve the two targets and is sensitive to their
size and shape. The conductivity images are less accurate than
those of the dielectric constant, which agrees with previous
results related to microwave tomography [4].

Importantly, traditional L2-based methods based on CGLS
or LSQR linear solvers could not resolve the two targets in
the above cases. Furthermore, our simulation attempts with
some other popular CS-based methods were not successful in

Fig. 4: (a), (c) Reconstructed dielectric constant εr and (b),
(d) conductivity σ distributions calculated at 1 GHz for the
L2-IMATCS algorithm and the cases depicted in Fig. 2 with
all sixteen antennas depicted in Fig. 2(a) .

Fig. 5: Same as in Fig. 4 for the elastic net algorithm [11].

imaging these scenarios; for example, the LASSO and OMP
methods diverged after the first iteration, while the imaging
performance of the IHT algorithm depended strongly on the
sparsity number of the dielectric contrast vector, which is not
known a priori.

We have also tested the elastic net approach of [11] for
the cases in Fig. 2, and the resulting reconstructions are
comparable to our proposed method as shown in Fig. 5. The
similar convergence performance of the two algorithms is
confirmed by Fig. 6, where the norm of the residual vector rk
in (2) vs. the iteration k of the DBIM algorithm are plotted.
Although the reconstructions of the two algorithms in Figs. 4
and 5 are of comparable quality, the computational cost of the
elastic net implementation is considerably higher than that of
the L2-IMATCS algorithm. Tested on a standard PC Matlab
environment, the elastic net solver took almost ten minutes
while the L2-IMATCS algorithm took about 30 seconds for
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each DBIM iteration. This order-of-magnitude difference in
computation times becomes a crucial factor in 3-D problems.
In addition, the L2-IMATCS algorithm proved to be more
robust when the ill-posedness of the inverse problem was
increased, as in the second set of simulations described in
Section IV-C where the elastic net approach failed to lead to
meaningful reconstructions.

Fig. 6: Norm of the residual data vector b in (2) vs. DBIM
iteration number for the reconstructions of Figs. 4 and 5.

We have also studied the robustness of our algorithm with
respect to the number of antennas available for data acquisition
and the signal to noise ratio (SNR) relative to the total recorded
signal. To this end, we have first repeated the reconstruction
process (keeping the same value for λ2) for the top case of
Fig. 4 using eight and four antennas shown in Fig. 2 (a). The
resulting permittivity and conductivity images are shown in
Fig. 7. It is evident that good images can be obtained with
eight antennas, but data from four antennas is not sufficient
to resolve the two targets well, particularly in the estimation
of their conductivity. For limited data setups, the use of more
frequencies within a wider bandwidth could be used to obtain
more data and improve reconstructions.

Similarly, good results are obtained when Gaussian noise
is added to the simulated data even for a very low SNR of
30 dB relative to the total received signal (which includes
direct antenna contributions and skin reflections). The resulting
reconstructions are shown in Fig. 8 and confirm that the
regularized L2-IMATCS algorithm is robust in the presence
of additive noise, allowing a flexible formulation of the
L0/L2 minimization problem by adjusting the regularization
parameter λ2 (which for example was increased from 0.005
to 0.01 to handle the SNR=30 dB case).

C. Reconstructions of a heterogeneous numerical breast phan-
tom

Similar to the previous results, full breast reconstructions
were obtained by using the L2-IMATCS algorithm with data
from six equally spaced frequencies in the range 1.2 − 2.7
GHz. This more complex imaging scenario, however, required
an initial low-frequency reconstruction at 1 GHz prior to
using multiple-frequency data, and a higher value of the
regularization parameter λ2 = 0.2 was used. As in [5], the

Fig. 7: (a), (c) Reconstructed dielectric constant εr and (b),
(d) conductivity σ distributions calculated at 1 GHz for the
L2-IMATCS algorithm and the top case in Fig. 2, for eight
(top) and four (bottom) antennas.

Fig. 8: (a), (c) Reconstructed dielectric constant εr and (b), (d)
conductivity σ distributions calculated at 1 GHz for the L2-
IMATCS algorithm and the top case in Fig. 2, for SNR=60
dB (top) and SNR=30 dB (bottom), and sixteen antennas. The
SNR is relative to the total received signal, which includes
direct antenna contributions and skin reflections.

algorithm used a priori knowledge of the breast surface and
its volumetric average Debye parameters as “initial guess” for
the homogeneous breast interior, but did not include any a
priori info on the skin layer thickness or properties. As in
Section IV-B, we have tested the algorithm for sixteen or eight
antennas and 60 or 30 dB SNR. Comparing the images in
Fig. 9 to the true distributions in Fig. 5 suggests that good
reconstructions can be obtained for eight antennas and low
SNRs. As previously, the conductivity images are slightly less
accurate than those of the dielectric constant; nonetheless,
these results suggest that the proposed algorithm can recon-
struct complex dielectric profiles by suppressing its sparsity-
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promoting minimization term and using monochromatic low-
frequency data in the first iterations of the DBIM algorithm.

This latter strategy is also important to ensure that the L2-
IMATCS algorithm is robust to the choice of initial guess,
which can be critical to the imaging performance of GN
optimization methods. For example, using low adipose tissue
Debye parameters for the initial homogenous breast interior
instead of its true volumetric average parameters required a
lower frequency of 700 MHz (instead of 1GHz) as initial step
in the first iterations of the DBIM algorithm. While the true
volumetric average Debye parameters will not be known a
priori, various methods can be used to estimate these average
values or provide a coarse heterogeneous initial guess [3].

Fig. 9: (a), (c) Reconstructed dielectric constant εr and (b), (d)
conductivity σ distributions calculated at 1 GHz for the L2-
IMATCS algorithm and the full breast model of Fig. 3 for eight
antennas, and SNR=60 dB (top) and 30 dB (bottom). The SNR
is relative to the total received signal, which includes direct
antenna contributions and skin reflections.

V. CONCLUSION

We have proposed a novel MWI approach based on the
DBIM algorithm and an iterative technique based on sparsity
and the IMAT algorithm. Our simulation results have demon-
strated the advantages and potential of this method to enhance
resolution in microwave medical imaging. In particular, the
proposed L2-IMATCS algorithm can be adjusted to promote
sparsity as the number of DBIM iterations increases in order
to reconstruct fine details in the image. We have also presented
a theoretical study of the convergence properties of this
algorithm in the Appendix.

Our future work will focus on studying this approach for 3-
D microwave medical imaging. This will involve computation-
ally efficient implementations of the product A∗A in blocks
[5], and possibly the use of basis functions [3], [26] in (4)
that can reduce computational complexity. These techniques
can ensure that inversion is not prohibitively time consuming,
while recently proposed analytic approaches [27] could replace
the 3-D FDTD forward solvers thereby reducing dramatically
the overall computational cost of the 3-D algorithm.

Beyond the 3-D extension, future work will focus on
developing adaptive and robust strategies for the optimal
choice of parameters in the L2-IMATCS algorithm described
in Section III-B, taking into account our multiple-frequency
reconstruction strategy. For example, using our pre-selected
values for the IMATCS parameters to reconstruct the two
targets in Fig. 2 (a) with low (10%) dielectric contrast relative
to the homogeneous background resulted in less accurate
reconstructions. This is due to the fact that the choice of the
IMATCS parameters depends on the scattered signal and thus
on the unknown contrast. Therefore, an automated and sound
process for the selection of these parameters relative to the
choice of λ2 would increase the algorithm’s robustness.

This preliminary study suggests that this novel algorithm
can offer an advantageous sparsity-based approach to enhance
resolution in microwave medical imaging. Our ultimate goal
is to apply this algorithm to experimental systems and test
whether it can lead to superior reconstructions relative to
conventional L2-based strategies.

VI. APPENDIX: THE L2-IHT ALGORITHM DERIVATION

The cost function to be minimized in the L2-IHT algorithm
is as follows:

f(x) = ‖y −Ax‖22 + λ1‖x‖0 + λ2‖x‖22 (16)

We solve this optimization problem using the Majorization
Minimization scheme [8] which minimizes the surrogate of the
cost function instead of its direct optimization. The surrogate
function can be defined as (17) with the aid of an auxiliary
variable z:

C(x, z) =‖y −Ax‖22 + λ1‖x‖0 + λ2‖x‖22 − ‖Ax−Az‖22
+‖x− z‖22 (17)

Neglecting the terms independent of x and decomposing the
surrogate function in terms of its vecotor entries, we have:

C(x, z) =
∑
i

x2
i − 2xizi − 2xiA

∗
iy + 2xiA

∗
iAz (18)

+λ1|xi|0 + λ2x
2
i (19)

If xi = 0, the component C(xi, zi) would be zero. For xi 6=
0, the component C(xi, zi) can be minimized by taking its
derivative with respect to the entries, xi. Thus, we have:{

xi = 0→ C(xi, zi) = 0

xi 6= 0→ C(xi, zi) = λ1 − 1
1+λ2

(zi + A∗i (y −Az))
2

(20)
The crossing of the two curves occur in:

|xi| =
√
λ1/(1 + λ2) (21)

Therefore, the iterative relation of L2-IHT can be obtained as
follows:

xn+1 =
1

1 + λ2
H√

λ1/(1+λ2)
(xn + A∗(y −Axn)) (22)

where H is the hard thresholding operator defined as:

Hθ(x) =

{
0 if|x| ≤ θ
x if|x| ≥ θ

(23)
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Lemma 1 (non-increasing): Assume ‖A‖2 ≤ 1 and let
xn+1 = 1

1+λ2
H√

λ1/(1+λ2)
(xn + A∗(y −Axn)), then the

sequences f(xn) and C(xn+1,xn) are non-increasing.
Proof 1:

f(xn+1) ≤f(xn+1) + ‖xn+1 − xn‖22 − ‖A(xn+1 − xn)‖22
=C(xn+1,xn) ≤ C(xn,xn) = f(xn)

≤f(xn) + ‖xn − xn−1‖22 − ‖A(xn − xn−1)‖22
=C(xn,xn−1)

where the first inequality results from the condition ‖A‖2 < 1
and the first equality is due to the definition of the surrogate
function. The second inequality is a consequence of the fact
that xn+1 is a minimizer of C(x,xn) [8].
The iterative algorithm may be entrapped in the fixed points.
Therefore, we investigate the fixed points of the recursive
relation here. Let x∗ be the fixed point of (22); in other words,

x∗i =
1

1 + λ2
H√

λ1/(1+λ2)
(x∗i + A∗i (y −Ax∗)) (24)

According to (23), the fixed points of the relation can be
zero or non-zero depending on the absolute value of x∗i . We
investigate the fixed points for both cases. If x∗i = 0, we would
have:

|A∗i (y −Ax∗)| ≤
√
λ1/(1 + λ2) (25)

For the case of x∗i 6= 0, we would have:

x∗i = (x∗i + A∗i (y −Ax∗))
1

1 + λ2
(26)

which results in:

A∗i (y −Ax∗) = x∗i λ2 (27)

According to (23), x∗i 6= 0 implies that:

| (x∗i + A∗i (y −Ax∗)) | ≥
√
λ1/(1 + λ2) (28)

Combining (27) and (28), we have:

|x∗i | ≥
√
λ1/(1 + λ2)

1 + λ2
(29)

and

|A∗i (y −Ax∗)| ≥
√
λ1/(1 + λ2)

1 + λ2
(30)

Thus, the fixed points of (22) satisfy the following:
x∗i = 0→ |A∗i (y −Ax∗)| ≤

√
λ1/(1 + λ2)

|x∗i | ≥
√
λ1/(1 + λ2)

1 + λ2

→ |A∗i (y −Ax∗)| ≥
λ2
√
λ1/(1 + λ2)

1 + λ2

(31)

It should be proved that the fixed points of (22) are its local
minima. Thus, being entrapped in a fixed point implies being
in a local minimum. The corresponding proof is given in the
following lemma.

Theorem 2 (fixed points-local minima): The fixed points of
(22) are the local minima of (16).

Proof 3: we should prove that

f(x∗ + ∂h)− f(x∗) ≥ 0 ∀|∂h| ≤ ε (32)

According to (16), we have:

f(x∗ + ∂h)− f(x∗) ≥ (33)∑
i

λ1(|x∗i + ∂hi|0 − |x∗i |0) + λ2(∂hi)
2 + 2λ2x

∗
i ∂hi

+ 2∂hiA
∗
i (Ax∗ − y)

We prove (32) for the two cases of (31), separately. Firstly,
we investigate the case where x∗i = 0. Then, if ∂hi = 0, the
term is non-negative. When ∂hi becomes non-zero, we would
have:

λ1(|∂hi|0) + λ2(∂hi)
2 + 2∂hiA

∗
i (Ax∗ − y) (34)

≥ λ1(|∂hi|0) + λ2(∂hi)
2

+ ∂hi(−2
√
λ1/(1 + λ2))

= (λ1 − 2
√
λ1/(1 + λ2)∂hi) + λ2(∂hi)

2

Selecting |∂hi| as follows, we can have the above term greater
than zero.

|∂hi| ≤
√
λ1(1 + λ2)

2
(35)

The second case is where

|x∗i | ≥
√
λ1/(1 + λ2)

1 + λ2
(36)

If

|∂hi| ≤
√
λ1/(1 + λ2)

1 + λ2
, (37)

we can have |∂hi| ≤ |xi| which results in |x∗i + ∂hi|0 = 1.
Thus, (34) translates to:

λ1(|x∗i + ∂hi|0 − 1) + λ2(∂hi)
2 + 2λ2x

∗
i ∂hi+ (38)

2∂hiA
∗
i (Ax∗ − y)

= λ2(∂hi)
2 ≥ 0

where the equality is due to (27). Taking ε as

min

(√
λ1(1 + λ2)

2
,

√
λ1/(1 + λ2)

1 + λ2

)
, both (35) and

(37) would be satisfied. The lemma is thus proved.
The next step is to prove the convergence of the L2-IHT
algorithm:

Theorem 4 (convergence): If f(x0) <∞ and if ‖A‖2 < 1,
then the sequence xn defined by the iterative procedure in (22)
converges to a local minimum of (16).
Before proving the theorem, we present the following lemma:

Lemma 5: ∀ε > 0, ∃N such that

∀n > N, ‖xn+1 − xn‖2 ≤ ε.
Proof 6: We that should prove that

∑N
n=0 ‖xn+1 − xn‖22

converges by proving that it is bounded and monotonically
non-increasing. The monotinicity is proved trivially and the
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boundedness results from:
N∑
n=0

‖xn+1 − xn‖22 (39)

≤ 1

C

N∑
n=0

(
‖xn+1 − xn‖22 − ‖A

(
xn+1 − xn

)
‖22
)

(40)

≤ 1

C

N∑
n=0

(
f(xn)− f(xn+1)

)
(41)

=
1

C

(
f(x0)− f(xn+1)

)
≤ 1

C

(
f(x0)

)
(42)

where C is a lower bound on the spectrum of (I−A∗A) and
the second inequality results from the proof of Lemma 1 [8].

Proof 7 (Proof of convergence Theorem): In lemma 5, take

ε <

√
λ1/(1 + λ2)

1 + λ2
. If |xni | ≥

√
λ1/(1 + λ2)

1 + λ2
and |xn+1

i | =

0, then, ‖xn+1 − xn‖ ≥
√
λ1/(1 + λ2)

1 + λ2
which contradicts

lemma 5. Thus, |xmi | ≥
√
λ1/(1 + λ2)

1 + λ2
∀m > n and

the sequence xni reduces to the Landweber algorithm with
guaranteed convergence [28]. Similarly if xni = 0, then xmi =
0 ∀m > n and the similar convergence guarantee can be
given for this sequence. Therefore, the convergence of the
algorithm in (22) is proved.
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