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ABSTRACT
Every day, huge volumes of sensory, transactional, and web data
are continuously generated as streams, which need to be analyzed
online as they arrive. Streaming data can be considered as one
of the main sources of what is called big data. While predictive
modeling for data streams and big data have received a lot of at-
tention over the last decade, many research approaches are typi-
cally designed for well-behaved controlled problem settings, over-
looking important challenges imposed by real-world applications.
This article presents a discussion on eight open challenges for data
stream mining. Our goal is to identify gaps between current re-
search and meaningful applications, highlight open problems, and
define new application-relevant research directions for data stream
mining. The identified challenges cover the full cycle of knowledge
discovery and involve such problems as: protecting data privacy,
dealing with legacy systems, handling incomplete and delayed in-
formation, analysis of complex data, and evaluation of stream min-
ing algorithms. The resulting analysis is illustrated by practical
applications and provides general suggestions concerning lines of
future research in data stream mining.

1. INTRODUCTION
The volumes of automatically generated data are constantly in-
creasing. According to the Digital Universe Study [18], over 2.8ZB
of data were created and processed in 2012, with a projected in-
crease of 15 times by 2020. This growth in the production of dig-
ital data results from our surrounding environment being equipped
with more and more sensors. People carrying smart phones produce
data, database transactions are being counted and stored, streams of
data are extracted from virtual environments in the form of logs or
user generated content. A significant part of such data is volatile,
which means it needs to be analyzed in real time as it arrives. Data
stream mining is a research field that studies methods and algo-
rithms for extracting knowledge from volatile streaming data [14;
5; 1]. Although data streams, online learning, big data, and adapta-
tion to concept drift have become important research topics during

the last decade, truly autonomous, self-maintaining, adaptive data
mining systems are rarely reported. This paper identifies real-world
challenges for data stream research that are important but yet un-
solved. Our objective is to present to the community a position
paper that could inspire and guide future research in data streams.
This article builds upon discussions at the International Workshop
on Real-World Challenges for Data Stream Mining (RealStream)1

in September 2013, in Prague, Czech Republic.
Several related position papers are available. Dietterich [10] presents
a discussion focused on predictive modeling techniques, that are
applicable to streaming and non-streaming data. Fan and Bifet [12]
concentrate on challenges presented by large volumes of data. Zlio-
baite et al. [48] focus on concept drift and adaptation of systems
during online operation. Gaber et al. [13] discuss ubiquitous data
mining with attention to collaborative data stream mining. In this
paper, we focus on research challenges for streaming data inspired
and required by real-world applications. In contrast to existing po-
sition papers, we raise issues connected not only with large vol-
umes of data and concept drift, but also such practical problems
as privacy constraints, availability of information, and dealing with
legacy systems.
The scope of this paper is not restricted to algorithmic challenges,
it aims at covering the full cycle of knowledge discovery from data
(CRISP [40]), from understanding the context of the task, to data
preparation, modeling, evaluation, and deployment. We discuss
eight challenges: making models simpler, protecting privacy and
confidentiality, dealing with legacy systems, stream preprocessing,
timing and availability of information, relational stream mining,
analyzing event data, and evaluation of stream mining algorithms.
Figure 1 illustrates the positioning of these challenges in the CRISP
cycle. Some of these apply to traditional (non-streaming) data min-
ing as well, but they are critical in streaming environments. Along
with further discussion of these challenges, we present our position
where the forthcoming focus of research and development efforts
should be directed to address these challenges.
In the remainder of the article, section 2 gives a brief introduction to
data stream mining, sections 3–7 discuss each identified challenge,
and section 8 highlights action points for future research.

1http://sites.google.com/site/realstream2013
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Figure 1: CRISP cycle with data stream research challenges.

2. DATA STREAM MINING
Mining big data streams faces three principal challenges: volume,
velocity, and volatility. Volume and velocity require a high volume
of data to be processed in limited time. Starting from the first arriv-
ing instance, the amount of available data constantly increases from
zero to potentially infinity. This requires incremental approaches
that incorporate information as it becomes available, and online
processing if not all data can be kept [15]. Volatility, on the other
hand, corresponds to a dynamic environment with ever-changing
patterns. Here, old data is of limited use, even if it could be saved
and processed again later. This is due to change, that can affect the
induced data mining models in multiple ways: change of the target
variable, change in the available feature information, and drift.
Changes of the target variable occur for example in credit scor-
ing, when the definition of the classification target “default” versus
“non-default” changes due to business or regulatory requirements.
Changes in the available feature information arise when new fea-
tures become available, e.g. due to a new sensor or instrument.
Similarly, existing features might need to be excluded due to regu-
latory requirements, or a feature might change in its scale, if data
from a more precise instrument becomes available. Finally, drift is
a phenomenon that occurs when the distributions of features x and
target variables y change in time. The challenge posed by drift has
been subject to extensive research, thus we provide here solely a
brief categorization and refer to recent surveys like [17].
In supervised learning, drift can affect the posterior P (y|x), the
conditional feature P (x|y), the feature P (x) and the class prior
P (y) distribution. The distinction based on which distribution is
assumed to be affected, and which is assumed to be static, serves to
assess the suitability of an approach for a particular task. It is worth
noting, that the problem of changing distributions is also present in
unsupervised learning from data streams.
A further categorization of drift can be made by:

• smoothness of concept transition: Transitions between con-
cepts can be sudden or gradual. The former is sometimes also
denoted in literature as shift or abrupt drift.

• singular or recurring contexts: In the former case, a model
becomes obsolete once and for all when its context is re-
placed by a novel context. In the latter case, a model’s con-
text might reoccur at a later moment in time, for example due
to a business cycle or seasonality, therefore, obsolete models
might still regain value.

• systematic or unsystematic: In the former case, there are
patterns in the way the distributions change that can be ex-
ploited to predict change and perform faster model adapta-
tion. Examples are subpopulations that can be identified and
show distinct, trackable evolutionary patterns. In the latter
case, no such patterns exist and drift occurs seemingly at ran-
dom. An example for the latter is fickle concept drift.

• real or virtual: While the former requires model adaptation,
the latter corresponds to observing outliers or noise, which
should not be incorporated into a model.

Stream mining approaches in general address the challenges posed
by volume, velocity and volatility of data. However, in real-world
applications these three challenges often coincide with other, to
date insufficiently considered ones.
The next sections discuss eight identified challenges for data stream
mining, providing illustrations with real world application exam-
ples, and formulating suggestions for forthcoming research.

3. PROTECTING PRIVACY AND CONFI-
DENTIALITY

Data streams present new challenges and opportunities with respect
to protecting privacy and confidentiality in data mining. Privacy
preserving data mining has been studied for over a decade (see.
e.g. [3]). The main objective is to develop such data mining tech-
niques that would not uncover information or patterns which com-
promise confidentiality and privacy obligations. Modeling can be
done on original or anonymized data, but when the model is re-
leased, it should not contain information that may violate privacy
or confidentiality. This is typically achieved by controlled distor-
tion of sensitive data by modifying the values or adding noise.
Ensuring privacy and confidentiality is important for gaining trust
of the users and the society in autonomous, stream data mining
systems. While in offline data mining a human analyst working
with the data can do a sanity check before releasing the model, in
data stream mining privacy preservation needs to be done online.
Several existing works relate to privacy preservation in publishing
streaming data (e.g. [46]), but no systematic research in relation to
broader data stream challenges exists.
We identify two main challenges for privacy preservation in mining
data streams. The first challenge is incompleteness of information.
Data arrives in portions and the model is updated online. There-
fore, the model is never final and it is difficult to judge privacy
preservation before seeing all the data. For example, suppose GPS
traces of individuals are being collected for modeling traffic situa-
tion. Suppose person A at current time travels from the campus to
the airport. The privacy of a person will be compromised, if there
are no similar trips by other persons in the very near future. How-
ever, near future trips are unknown at the current time, when the
model needs to be updated.
On the other hand, data stream mining algorithms may have some
inherent privacy preservation properties due to the fact that they do
not need to see all the modeling data at once, and can be incremen-
tally updated with portions of data. Investigating privacy preser-
vation properties of existing data stream algorithms makes another
interesting direction for future research.

SIGKDD Explorations Volume 16, Issue 1 Page 2



The second important challenge for privacy preservation is concept
drift. As data may evolve over time, fixed privacy preservation
rules may no longer hold. For example, suppose winter comes,
snow falls, and much less people commute by bike. By knowing
that a person comes to work by bike and having a set of GPS traces,
it may not be possible to identify this person uniquely in summer,
when there are many cyclists, but possible in winter. Hence, an im-
portant direction for future research is to develop adaptive privacy
preservation mechanisms, that would diagnose such a situation and
adapt themselves to preserve privacy in the new circumstances.

4. STREAMED DATA MANAGEMENT
Most of the data stream research concentrates on developing pre-
dictive models that address a simplified scenario, in which data is
already pre-processed, completely and immediately available for
free. However, successful business implementations depend strongly
on the alignment of the used machine learning algorithms with
both, the business objectives, and the available data. This section
discusses often omitted challenges connected with streaming data.

4.1 Streamed Preprocessing
Data preprocessing is an important step in all real world data anal-
ysis applications, since data comes from complex environments,
may be noisy, redundant, contain outliers and missing values. Many
standard procedures for preprocessing offline data are available and
well established, see e.g. [33]; however, the data stream setting in-
troduces new challenges that have not received sufficient research
attention yet.
While in traditional offline analysis data preprocessing is a once-off
procedure, usually done by a human expert prior to modeling, in the
streaming scenario manual processing is not feasible, as new data
continuously arrives. Streaming data needs fully automated pre-
processing methods, that can optimize the parameters and operate
autonomously. Moreover, preprocessing models need to be able to
update themselves automatically along with evolving data, in a sim-
ilar way as predictive models for streaming data do. Furthermore,
all updates of preprocessing procedures need to be synchronized
with the subsequent predictive models, otherwise after an update in
preprocessing the data representation may change and, as a result,
the previously used predictive model may become useless.
Except for some studies, mainly focusing on feature construction
over data streams, e.g. [49; 4], no systematic methodology for data
stream preprocessing is currently available.
As an illustrative example for challenges related to data preprocess-
ing, consider predicting traffic jams based on mobile sensing data.
People using navigation services on mobile devices can opt to send
anonymized data to the service provider. Service providers, such as
Google, Yandex or Nokia, provide estimations and predictions of
traffic jams based on this data. First, the data of each user is mapped
to the road network, the speed of each user on each road segment
of the trip is computed, data from multiple users is aggregated, and
finally the current speed of the traffic is estimated.
There are a lot of data preprocessing challenges associated with
this task. First, noisiness of GPS data might vary depending on
location and load of the telecommunication network. There may
be outliers, for instance, if somebody stopped in the middle of a
segment to wait for a passenger, or a car broke. The number of
pedestrians using mobile navigation may vary, and require adaptive
instance selection. Moreover, road networks may change over time,
leading to changes in average speeds, in the number of cars and
even car types (e.g. heavy trucks might be banned, new optimal
routes emerge). All these issues require automated preprocessing

actions before feeding the newest data to the predictive models.
The problem of preprocessing for data streams is challenging due to
the challenging nature of the data (continuously arriving and evolv-
ing). An analyst cannot know for sure, what kind of data to expect
in the future, and cannot deterministically enumerate possible ac-
tions. Therefore, not only models, but also the procedure itself
needs to be fully automated.
This research problem can be approached from several angles. One
way is to look at existing predictive models for data streams, and
try to integrate them with selected data preprocessing methods (e.g.
feature selection, outlier definition and removal).
Another way is to systematically characterize the existing offline
data preprocessing approaches, try to find a mapping between those
approaches and problem settings in data streams, and extend pre-
processing approaches for data streams in such a way as traditional
predictive models have been extended for data stream settings.
In either case, developing individual methods and methodology for
preprocessing of data streams would bridge an important gap in the
practical applications of data stream mining.

4.2 Timing and Availability of Information
Most algorithms developed for evolving data streams make simpli-
fying assumptions on the timing and availability of information. In
particular, they assume that information is complete, immediately
available, and received passively and for free. These assumptions
often do not hold in real-world applications, e.g., patient monitor-
ing, robot vision, or marketing [43]. This section is dedicated to the
discussion of these assumptions and the challenges resulting from
their absence. For some of these challenges, corresponding situ-
ations in offline, static data mining have already been addressed
in literature. We will briefly point out where a mapping of such
known solutions to the online, evolving stream setting is easily fea-
sible, for example by applying windowing techniques. However,
we will focus on problems for which no such simple mapping ex-
ists and which are therefore open challenges in stream mining.

4.2.1 Handling Incomplete Information
Completeness of information assumes that the true values of all
variables, that is of features and of the target, are revealed eventu-
ally to the mining algorithm.
The problem of missing values, which corresponds to incomplete-
ness of features, has been discussed extensively for the offline,
static settings. A recent survey is given in [45]. However, only few
works address data streams, and in particular evolving data streams.
Thus several open challenges remain, some are pointed out in the
review by [29]: how to address the problem that the frequency in
which missing values occur is unpredictable, but largely affects the
quality of imputations? How to (automatically) select the best im-
putation technique? How to proceed in the trade-off between speed
and statistical accuracy?
Another problem is that of missing values of the target variable. It
has been studied extensively in the static setting as semi-supervised
learning (SSL, see [11]). A requirement for applying SSL tech-
niques to streams is the availability of at least some labeled data
from the most recent distribution. While first attempts to this prob-
lem have been made, e.g. the online manifold regularization ap-
proach in [19] and the ensembles-based approach suggested by
[11], improvements in speed and the provision of performance guar-
antees remain open challenges. A special case of incomplete infor-
mation is “censored data” in Event History Analysis (EHA), which
is described in section 5.2. A related problem discussed below is
active learning (AL, see [38]).
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4.2.2 Dealing with Skewed Distributions
Class imbalance, where the class prior probability of the minor-
ity class is small compared to that of the majority class, is a fre-
quent problem in real-world applications like fraud detection or
credit scoring. This problem has been well studied in the offline
setting (see e.g. [22] for a recent book on that subject), and has
also been studied to some extent in the online, stream-based setting
(see [23] for a recent survey). However, among the few existing
stream-based approaches, most do not pay attention to drift of the
minority class, and as [23] pointed out, a more rigorous evaluation
of these algorithms on real-world data needs yet to be done.

4.2.3 Handling Delayed Information
Latency means information becomes available with significant de-
lay. For example, in the case of so-called verification latency, the
value of the preceding instance’s target variable is not available be-
fore the subsequent instance has to be predicted. On evolving data
streams, this is more than a mere problem of streaming data inte-
gration between feature and target streams, as due to concept drift
patterns show temporal locality [2]. It means that feedback on the
current prediction is not available to improve the subsequent pre-
dictions, but only eventually will become available for much later
predictions. Thus, there is no recent sample of labeled data at all
that would correspond to the most-recent unlabeled data, and semi-
supervised learning approaches are not directly applicable.
A related problem in static, offline data mining is that addressed
by unsupervised transductive transfer learning (or unsupervised do-
main adaptation): given labeled data from a source domain, a pre-
dictive model is sought for a related target domain in which no
labeled data is available. In principle, ideas from transfer learning
could be used to address latency in evolving data streams, for ex-
ample by employing them in a chunk-based approach, as suggested
in [43]. However, adapting them for use in evolving data streams
has not been tried yet and constitutes a non-trivial, open task, as
adaptation in streams must be fast and fully automated and thus
cannot rely on iterated careful tuning by human experts.
Furthermore, consecutive chunks constitute several domains, thus
the transitions between several subsequent chunks might provide
exploitable patterns of systematic drift. This idea has been in-
troduced in [27], and a few so-called drift-mining algorithms that
identify and exploit such patterns have been proposed since then.
However, the existing approaches cover only a very limited set of
possible drift patterns and scenarios.

4.2.4 Active Selection from Costly Information
The challenge of intelligently selecting among costly pieces of in-
formation is the subject of active learning research. Active stream-
based selective sampling [38] describes a scenario, in which in-
stances arrive one-by-one. While the instances’ feature vectors are
provided for free, obtaining their true target values is costly, and the
definitive decision whether or not to request this target value must
be taken before proceeding to the next instance. This corresponds
to a data stream, but not necessarily to an evolving one. As a result,
only a small subset of stream-based selective sampling algorithms
is suited for non-stationary environments. To make things worse,
many contributions do not state explicitly whether they were de-
signed for drift, neither do they provide experimental evaluations
on such evolving data streams, thus leaving the reader the ardu-
ous task to assess their suitability for evolving streams. A first, re-
cent attempt to provide an overview on the existing active learning
strategies for evolving data streams is given in [43]. The challenges
for active learning posed by evolving data streams are:

• uncertainty regarding convergence: in contrast to learning
in static contexts, due to drift there is no guarantee that with
additional labels the difference between model and reality
narrows down. This leaves the formulation of suitable stop
criteria a challenging open issue.

• necessity of perpetual validation: even if there has been
convergence due to some temporary stability, the learned hy-
potheses can get invalidated at any time by subsequent drift.
This can affect any part of the feature space and is not nec-
essarily detectable from unlabeled data. Thus, without per-
petual validation the mining algorithm might lock itself to a
wrong hypothesis without ever noticing.

• temporal budget allocation: the necessity of perpetual vali-
dation raises the question of optimally allocating the labeling
budget over time.

• performance bounds: in the case of drifting posteriors, no
theoretical work exists that provides bounds for errors and
label requests. However, deriving such bounds will also re-
quire assuming some type of systematic drift.

The task of active feature acquisition, where one has to actively
select among costly features, constitutes another open challenge on
evolving data streams: in contrast to the static, offline setting, the
value of a feature is likely to change with its drifting distribution.

5. MINING ENTITIES AND EVENTS
Conventional stream mining algorithms learn over a single stream
of arriving entities. In subsection 5.1, we introduce the paradigm
of entity stream mining, where the entities constituting the stream
are linked to instances (structured pieces of information) from fur-
ther streams. Model learning in this paradigm involves the incor-
poration of the streaming information into the stream of entities;
learning tasks include cluster evolution, migration of entities from
one state to another, classifier adaptation as entities re-appear with
another label than before.
Then, in subsection 5.2, we investigate the special case where en-
tities are associated with the occurrence of events. Model learning
then implies identifying the moment of occurrence of an event on
an entity. This scenario might be seen as a special case of entity
stream mining, since an event can be seen as a degenerate instance
consisting of a single value (the event’s occurrence).

5.1 Entity Stream Mining
Let T be a stream of entities, e.g. customers of a company or pa-
tients of a hospital. We observe entities over time, e.g. on a com-
pany’s website or at a hospital admission vicinity: an entity appears
and re-appears at discrete time points, new entities show up. At a
time point t, an entity e ∈ T is linked with different pieces of in-
formation - the purchases and ratings performed by a customer, the
anamnesis, the medical tests and the diagnosis recorded for the pa-
tient. Each of these information pieces ij(t) is a structured record
or an unstructured text from a stream Tj , linked to e via the foreign
key relation. Thus, the entities in T are in 1-to-1 or 1-to-n relation
with entities from further streams T1, . . . , Tm (stream of purchases,
stream of ratings, stream of complaints etc). The schema describ-
ing the streams T, T1, . . . , Tm can be perceived as a conventional
relational schema, except that it describes streams instead of static
sets.
In this relational setting, the entity stream mining task corresponds
to learning a model ζT over T , thereby incorporating information
from the adjoint streams T1, . . . , Tm that ”feed” the entities in T .
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Albeit the members of each stream are entities, we use the term
”entity” only for stream T – the target of learning, while we denote
the entities in the other streams as ”instances”. In the unsupervised
setting, entity stream clustering encompasses learning and adapting
clusters over T , taking account the other streams that arrive at dif-
ferent speeds. In the supervised setting, entity stream classification
involves learning and adapting a classifier, notwithstanding the fact
that an entity’s label may change from one time point to the next,
as new instances referencing it arrive.

5.1.1 Challenges of Aggregation
The first challenge of entity stream mining task concerns informa-
tion summarization: how to aggregate into each entity e at each
time point t the information available on it from the other streams?
What information should be stored for each entity? How to deal
with differences in the speeds of the individual streams? How to
learn over the streams efficiently? Answering these questions in a
seamless way would allow us to deploy conventional stream mining
methods for entity stream mining after aggregation.
The information referencing a relational entity cannot be held per-
petually for learning, hence aggregation of the arriving streams is
necessary. Information aggregation over time-stamped data is tra-
ditionally practiced in document stream mining, where the objec-
tive is to derive and adapt content summaries on learned topics.
Content summarization on entities, which are referenced in the doc-
ument stream, is studied by Kotov et al., who maintain for each
entity the number of times it is mentioned in the news [26].
In such studies, summarization is a task by itself. Aggregation of
information for subsequent learning is a bit more challenging, be-
cause summarization implies information loss - notably informa-
tion about the evolution of an entity. Hassani and Seidl monitor
health parameters of patients, modeling the stream of recordings
on a patient as a sequence of events [21]: the learning task is then
to predict forthcoming values. Aggregation with selective forget-
ting of past information is proposed in [25; 42] in the classification
context: the former method [25] slides a window over the stream,
while the latter [42] forgets entities that have not appeared for a
while, and summarizes the information in frequent itemsets, which
are then used as new features for learning.

5.1.2 Challenges of Learning
Even if information aggregation over the streams T1, . . . , Tm is
performed intelligently, entity stream mining still calls for more
than conventional stream mining methods. The reason is that enti-
ties of stream T re-appear in the stream and evolve. In particular,
in the unsupervised setting, an entity may be linked to conceptu-
ally different instances at each time point, e.g. reflecting a cus-
tomer’s change in preferences. In the supervised setting, an entity
may change its label; for example, a customer’s affinity to risk may
change in response to market changes or to changes in family sta-
tus. This corresponds to entity drift, i.e. a new type of drift beyond
the conventional concept drift pertaining to model ζT . Hence, how
should entity drift be traced, and how should the interplay between
entity drift and model drift be captured?
In the unsupervised setting, Oliveira and Gama learn and monitor
clusters as states of evolution [32], while [41] extend that work to
learn Markov chains that mark the entities’ evolution. As pointed
out in [32], these states are not necessarily predefined – they must
be subject of learning. In [43], we report on further solutions to
the entity evolution problem and to the problem of learning with
forgetting over multiple streams and over the entities referenced by
them.
Conventional concept drift also occurs when learning a model over

entities, thus the challenges pertinent to stream mining also apply
here. One of these challenges, and one much discussed in the con-
text of big data, is volatility. In relational stream mining, volatility
refers to the entity itself, not only to the stream of instances that
reference the entities. Finally, an entity is ultimately big data by
itself, since it is described by multiple streams. Hence, next to the
problem of dealing with new forms of learning and new aspects of
drift, the subject of efficient learning and adaption in the Big Data
context becomes paramount.

5.2 Analyzing Event Data
Events are an example for data that occurs often yet is rarely ana-
lyzed in the stream setting. In static environments, events are usu-
ally studied through event history analysis (EHA), a statistical me-
thod for modeling and analyzing the temporal distribution of events
related to specific objects in the course of their lifetime [9]. More
specifically, EHA is interested in the duration before the occurrence
of an event or, in the recurrent case (where the same event can oc-
cur repeatedly), the duration between two events. The notion of
an event is completely generic and may indicate, for example, the
failure of an electrical device. The method is perhaps even better
known as survival analysis, a term that originates from applications
in medicine, in which an event is the death of a patient and survival
time is the time period between the beginning of the study and the
occurrence of this event. EHA can also be considered as a special
case of entity stream mining described in section 5.1, because the
basic statistical entities in EHA are monitored objects (or subjects),
typically described in terms of feature vectors x ∈ R

n, together
with their survival time s. Then, the goal is to model the depen-
dence of s on x. A corresponding model provides hints at possible
cause-effect relationships (e.g., what properties tend to increase a
patient’s survival time) and, moreover, can be used for predictive
purposes (e.g., what is the expected survival time of a patient).
Although one might be tempted to approach this modeling task as
a standard regression problem with input (regressor) x and out-
put (response) s, it is important to notice that the survival time s
is normally not observed for all objects. Indeed, the problem of
censoring plays an important role in EHA and occurs in different
facets. In particular, it may happen that some of the objects sur-
vived till the end of the study at time tend (also called the cut-off
point). They are censored or, more specifically, right censored,
since tevent has not been observed for them; instead, it is only
known that tevent > tend. In snapshot monitoring [28], the data
stream may be sampled multiple times, resulting in a new cut-off
point for each snapshot. Unlike standard regression analysis, EHA
is specifically tailored for analyzing event data of that kind. It is
built upon the hazard function as a basic mathematical tool.

5.2.1 Survival function and hazard rate
Suppose the time of occurrence of the next event (since the start or
the last event) for an object x is modeled as a real-valued random
variable T with probability density function f(· |x). The hazard
function or hazard rate h(· |x) models the propensity of the occur-
rence of an event, that is, the marginal probability of an event to
occur at time t, given that no event has occurred so far:

h(t |x) = f(t |x)
S(t |x) =

f(t |x)
1− F (t |x) ,

where S(· |x) is the survival function and F (· |x) the cumulative
distribution of f(· |x). Thus,

F (t |x) = P(T ≤ t) =

∫ t

0

f(u |x) du
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is the probability of an event to occur before time t. Correspond-
ingly, S(t |x) = 1 − F (t |x) is the probability that the event did
not occur until time t (the survival probability). It can hence be
used to model the probability of the right-censoring of the time for
an event to occur.
A simple example is the Cox proportional hazard model [9], in
which the hazard rate is constant over time; thus, it does depend
on the feature vector x = (x1, . . . , xn) but not on time t. More
specifically, the hazard rate is modeled as a log-linear function of
the features xi:

h(t |x) = λ(x) = exp
(
x�β

)
The model is proportional in the sense that increasing xi by one
unit increases the hazard rate λ(x) by a factor of αi = exp(βi).
For this model, one easily derives the survival function S(t |x) =
1− exp(−λ(x) · t) and an expected survival time of 1/λ(x).

5.2.2 EHA on data streams
Although the temporal nature of event data naturally fits the data
stream model and, moreover, event data is naturally produced by
many data sources, EHA has been considered in the data stream
scenario only very recently. In [39], the authors propose a method
for analyzing earthquake and Twitter data, namely an extension of
the above Cox model based on a sliding window approach. The
authors of [28] modify standard classification algorithms, such as
decision trees, so that they can be trained on a snapshot stream of
both censored and non-censored data.
Like in the case of clustering [35], where one distinguishes between
clustering observations and clustering data sources, two different
settings can be envisioned for EHA on data streams:

1. In the first setting, events are generated by multiple data sources
(representing monitored objects), and the features pertain to
these sources; thus, each data source is characterized by a
feature vector x and produces a stream of (recurrent) events.
For example, data sources could be users in a computer net-
work, and an event occurs whenever a user sends an email.

2. In the second setting, events are produced by a single data
source, but now the events themselves are characterized by
features. For example, events might be emails sent by an
email server, and each email is represented by a certain set
of properties.

Statistical event models on data streams can be used in much the
same way as in the case of static data. For example, they can serve
predictive purposes, i.e., to answer questions such as “How much
time will elapse before the next email arrives?” or “What is the
probability to receive more than 100 emails within the next hour?”.
What is specifically interesting, however, and indeed distinguishes
the data stream setting from the static case, is the fact that the model
may change over time. This is a subtle aspect, because the hazard
model h(t |x) itself may already be time-dependent; here, how-
ever, t is not the absolute time but the duration time, i.e., the time
elapsed since the last event. A change of the model is compara-
ble to concept drift in classification, and means that the way in
which the hazard rate depends on time t and on the features xi

changes over time. For example, consider the event “increase of
a stock rate” and suppose that βi = log(2) for the binary feature
xi = energy sector in the above Cox model (which, as already
mentioned, does not depend on t). Thus, this feature doubles the
hazard rate and hence halves the expected duration between two
events. Needless to say, however, this influence may change over
time, depending on how well the energy sector is doing.

Dealing with model changes of that kind is clearly an important
challenge for event analysis on data streams. Although the problem
is to some extent addressed by the works mentioned above, there
is certainly scope for further improvement, and for using these ap-
proaches to derive predictive models from censored data. Besides,
there are many other directions for future work. For example, since
the detection of events is a main prerequisite for analyzing them,
the combination of EHA with methods for event detection [36] is
an important challenge. Indeed, this problem is often far from triv-
ial, and in many cases, events (such as frauds, for example) can only
be detected with a certain time delay; dealing with delayed events
is therefore another important topic, which was also discussed in
section 4.2.

6. EVALUATION OF DATA STREAM AL-
GORITHMS

All of the aforementioned challenges are milestones on the road to
better algorithms for real-world data stream mining systems. To
verify if these challenges are met, practitioners need tools capa-
ble of evaluating newly proposed solutions. Although in the field
of static classification such tools exist, they are insufficient in data
stream environments due to such problems as: concept drift, lim-
ited processing time, verification latency, multiple stream struc-
tures, evolving class skew, censored data, and changing misclassi-
fication costs. In fact, the myriad of additional complexities posed
by data streams makes algorithm evaluation a highly multi-criterial
task, in which optimal trade-offs may change over time.
Recent developments in applied machine learning [6] emphasize
the importance of understanding the data one is working with and
using evaluation metrics which reflect its difficulties. As men-
tioned before, data streams set new requirements compared to tra-
ditional data mining and researchers are beginning to acknowl-
edge the shortcomings of existing evaluation metrics. For exam-
ple, Gama et al. [16] proposed a way of calculating classification
accuracy using only the most recent stream examples, therefore al-
lowing for time-oriented evaluation and aiding concept drift detec-
tion. Methods which test the classifier’s robustness to drifts and
noise on a practical, experimental level are also starting to arise
[34; 47]. However, all these evaluation techniques focus on sin-
gle criteria such as prediction accuracy or robustness to drifts, even
though data streams make evaluation a constant trade-off between
several criteria [7]. Moreover, in data stream environments there is
a need for more advanced tools for visualizing changes in algorithm
predictions with time.
The problem of creating complex evaluation methods for stream
mining algorithms lies mainly in the size and evolving nature of
data streams. It is much more difficult to estimate and visualize,
for example, prediction accuracy if evaluation must be done on-
line, using limited resources, and the classification task changes
with time. In fact, the algorithm’s ability to adapt is another as-
pect which needs to be evaluated, although information needed to
perform such evaluation is not always available. Concept drifts are
known in advance mainly when using synthetic or benchmark data,
while in more practical scenarios occurrences and types of concepts
are not directly known and only the label of each arriving instance
is known. Moreover, in many cases the task is more complicated, as
labeling information is not instantly available. Other difficulties in
evaluation include processing complex relational streams and cop-
ing with class imbalance when class distributions evolve with time.
Finally, not only do we need measures for evaluating single aspects
of stream mining algorithms, but also ways of combining several of
these aspects into global evaluation models, which would take into
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account expert knowledge and user preferences.
Clearly, evaluation of data stream algorithms is a fertile ground
for novel theoretical and algorithmic solutions. In terms of pre-
diction measures, data stream mining still requires evaluation tools
that would be immune to class imbalance and robust to noise. In
our opinion, solutions to this problem should involve not only met-
rics based on relative performance to baseline (chance) classifiers,
but also graphical measures similar to PR-curves or cost curves.
Furthermore, there is a need for integrating information about con-
cept drifts in the evaluation process. As mentioned earlier, possible
ways of considering concept drifts will depend on the information
that is available. If true concepts are known, algorithms could be
evaluated based on: how often they detect drift, how early they de-
tect it, how they react to it, and how quickly they recover from it.
Moreover, in this scenario, evaluation of an algorithm should be
dependent on whether it takes place during drift or during times of
concept stability. A possible way of tackling this problem would be
the proposal of graphical methods, similar to ROC analysis, which
would work online and visualize concept drift measures alongside
prediction measures. Additionally, these graphical measures could
take into account the state of the stream, for example, its speed,
number of missing values, or class distribution. Similar methods
could be proposed for scenarios where concepts are not known in
advance, however, in these cases measures should be based on drift
detectors or label-independent stream statistics. Above all, due to
the number of aspects which need to be measured, we believe that
the evaluation of data stream algorithms requires a multi-criterial
view. This could be done by using inspirations from multiple crite-
ria decision analysis, where trade-offs between criteria are achieved
using user-feedback. In particular, a user could showcase his/her
criteria preferences (for example, between memory consumption,
accuracy, reactivity, self-tuning, and adaptability) by deciding be-
tween alternative algorithms for a given data stream. It is worth
noticing that such a multi-criterial view on evaluation is difficult to
encapsulate in a single number, as it is usually done in traditional
offline learning. This might suggest that researchers in this area
should turn towards semi-qualitative and semi-quantitative evalua-
tion, for which systematic methodologies should be developed.
Finally, a separate research direction involves rethinking the way
we test data stream mining algorithms. The traditional train, cross-
validate, test workflow in classification is not applicable for sequen-
tial data, which makes, for instance, parameter tuning much more
difficult. Similarly, ground truth verification in unsupervised learn-
ing is practically impossible in data stream environments. With
these problems in mind, it is worth stating that there is still a short-
age of real and synthetic benchmark datasets. Such a situation
might be a result of non-uniform standards for testing algorithms on
streaming data. As community, we should decide on such matters
as: What characteristics should benchmark datasets have? Should
they have prediction tasks attached? Should we move towards on-
line evaluation tools rather than datasets? These questions should
be answered in order to solve evaluation issues in controlled envi-
ronments before we create measures for real-world scenarios.

7. FROM ALGORITHMS TO DECISION
SUPPORT SYSTEMS

While a lot of algorithmic methods for data streams are already
available, their deployment in real applications with real streaming
data presents a new dimension of challenges. This section points
out two such challenges: making models simpler and dealing with
legacy systems.

7.1 Making models simpler, more reactive, and
more specialized

In this subsection, we discuss aspects like the simplicity of a model,
its proper combination of offline and online components, and its
customization to the requirements of the application domain. As
an application example, consider the French Orange Portal2, which
registers millions of visits daily. Most of these visitors are only
known through anonymous cookie IDs. For all of these visitors,
the portal has the ambition to provide specific and relevant contents
as well as printing ads for targeted audiences. Using information
about visits on the portal the questions are: what part of the portal
does each cookie visit, and when and which contents did it consult,
what advertisement was sent, when (if) was it clicked. All this in-
formation generates hundreds of gigabytes of data each week. A
user profiling system needs to have a back end part to preprocess
the information required at the input of a front end part, which will
compute appetency to advertising (for example) using stream min-
ing techniques (in this case a supervised classifier). Since the ads
to print change regularly, based on marketing campaigns, the ex-
tensive parameter tuning is infeasible as one has to react quickly to
change. Currently, these tasks are either solved using bandit meth-
ods from game theory [8], which impairs adaptation to drift, or
done offline in big data systems, resulting in slow reactivity.

7.1.1 Minimizing parameter dependence
Adaptive predictive systems are intrinsically parametrized. In most
of the cases, setting these parameters, or tuning them is a difficult
task, which in turn negatively affects the usability of these systems.
Therefore, it is strongly desired for the system to have as few user
adjustable parameters as possible. Unfortunately, the state of the
art does not produce methods with trustworthy or easily adjustable
parameters. Moreover, many predictive modeling methods use a
lot of parameters, rendering them particularly impractical for data
stream applications, where models are allowed to evolve over time,
and input parameters often need to evolve as well.
The process of predictive modeling encompasses fitting of parame-
ters on a training dataset and subsequently selecting the best model,
either by heuristics or principled methods. Recently, model selec-
tion methods have been proposed that do not require internal cross-
validation, but rather use the Bayesian machinery to design regu-
larizers with data dependent priors [20]. However, they are not yet
applicable in data streams, as their computational time complexity
is too high and they require all examples to be kept in memory.

7.1.2 Combining offline and online models
Online and offline learning are mostly considered as mutually ex-
clusive, but it is their combination that might enhance the value
of data the most. Online learning, which processes instances one-
by-one and builds models incrementally, has the virtue of being
fast, both in the processing of data and in the adaptation of mod-
els. Offline (or batch) learning has the advantage of allowing the
use of more sophisticated mining techniques, which might be more
time-consuming or require a human expert. While the first allows
the processing of “fast data” that requires real-time processing and
adaptivity, the second allows processing of “big data” that requires
longer processing time and larger abstraction.
Their combination can take place in many steps of the mining pro-
cess, such as the data preparation and the preprocessing steps. For
example, offline learning on big data could extract fundamental and
sustainable trends from data using batch processing and massive
parallelism. Online learning could then take real-time decisions

2www.orange.fr
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from online events to optimize an immediate pay-off. In the online
advertisement application mentioned above, the user-click predic-
tion is done within a context, defined for example by the currently
viewed page and the profile of the cookie. The decision which
banner to display is done online, but the context can be prepro-
cessed offline. By deriving meta-information such as “the profile is
a young male, the page is from the sport cluster”, the offline com-
ponent can ease the online decision task.

7.1.3 Solving the right problem
Domain knowledge may help to solve many issues raised in this
paper, by systematically exploiting particularities of application do-
mains. However, this is seldom considered, as typical data stream
methods are created to deal with a large variety of domains. For in-
stance, in some domains the learning algorithm receives only par-
tial feedback upon its prediction, i.e. a single bit of right-or-wrong,
rather than the true label. In the user-click prediction example, if a
user does not click on a banner, we do not know which one would
have been correct, but solely that the displayed one was wrong.
This is related to the issues on timing and availability of informa-
tion discussed in section 4.2.
However, building predictive models that systematically incorpo-
rate domain knowledge or domain specific information requires
to choose the right optimization criteria. As mentioned in sec-
tion 6, the data stream setting requires optimizing multiple criteria
simultaneously, as optimizing only predictive performance is not
sufficient. We need to develop learning algorithms, which mini-
mize an objective function including intrinsically and simultane-
ously: memory consumption, predictive performance, reactivity,
self monitoring and tuning, and (explainable) auto-adaptivity. Data
streams research is lacking methodologies for forming and opti-
mizing such criteria.
Therefore, models should be simple so that they do not depend on
a set of carefully tuned parameters. Additionally, they should com-
bine offline and online techniques to address challenges of big and
fast data, and they should solve the right problem, which might
consist in solving a multi-criteria optimization task. Finally, they
have to be able to learn from a small amount of data and with low
variance [37], to react quickly to drift.

7.2 Dealing with Legacy Systems
In many application environments, such as financial services or
health care systems, business critical applications are in operation
for decades. Since these applications produce massive amounts of
data, it becomes very promising to process these amounts of data
by real-time stream mining approaches. However, it is often impos-
sible to change existing infrastructures in order to introduce fully
fledged stream mining systems. Rather than changing existing in-
frastructures, approaches are required that integrate stream mining
techniques into legacy systems. In general, problems concerning
legacy systems are domain-specific and encompass both technical
and procedural issues. In this section, we analyze challenges posed
by a specific real-world application with legacy issues — the ISS
Columbus spacecraft module.

7.2.1 ISS Columbus
Spacecrafts are very complex systems, exposed to very different
physical environments (e.g. space), and associated to ground sta-
tions. These systems are under constant and remote monitoring
by means of telemetry and commands. The ISS Columbus mod-
ule has been in operation for more than 5 years. For some time,
it is pointed out that the monitoring process is not as efficient as
previously expected [30]. However, we assume that data stream

mining can make a decisive contribution to enhance and facilitate
the required monitoring tasks. Recently, we are planning to use the
ISS Columbus module as a technology demonstrator for integrat-
ing data stream processing and mining into the existing monitoring
processes [31]. Figure 2 exemplifies the failure management sys-
tem (FMS) of the ISS Columbus module. While it is impossible to
simply redesign the FMS from scratch, we can outline the follow-
ing challenges.

1. ISS Columbus module

4. Mission archiv

2. Ground control 
centre

5. Assembly, integration, 
and test facility

3. Engineering support 
centre

Figure 2: ISS Columbus FMS

7.2.2 Complexity
Even though spacecraft monitoring is very challenging by itself,
it becomes increasingly difficult and complex due to the integra-
tion of data stream mining into such legacy systems. However,
it was assumed to enhance and facilitate current monitoring pro-
cesses. Thus, appropriate mechanism are required to integrate data
stream mining into the current processes to decrease complexity.

7.2.3 Interlocking
As depicted in Figure 2, the ISS Columbus module is connected
to ground instances. Real-time monitoring must be applied aboard
where computational resources are restricted (e.g. processor speed
and memory or power consumption). Near real-time monitoring or
long-term analysis must be applied on-ground where the downlink
suffers from latencies because of a long transmission distance, is
subject to bandwidth limitations, and continuously interrupted due
to loss of signal. Consequently, new data stream mining mecha-
nisms are necessary which ensure a smooth interlocking function-
ality of aboard and ground instances.

7.2.4 Reliability and Balance
The reliability of spacecrafts is indispensable for astronauts’ health
and mission success. Accordingly, spacecrafts pass very long and
expensive planning and testing phases. Hence, potential data stream
mining algorithms must ensure reliability and the integration of
such algorithms into legacy systems must not cause critical side
effects. Furthermore, data stream mining is an automatic process
which neglects interactions with human experts, while spacecraft
monitoring is a semi-automatic process and human experts (e.g.
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the flight control team) are responsible for decisions and conse-
quent actions. This problem poses the following question: How to
integrate data stream mining into legacy systems when automation
needs to be increased but the human expert needs to be maintained
in the loop? Abstract discussions on this topic are provided by ex-
pert systems [44] and the MAPE-K reference model [24]. Expert
systems aim to combine human expertise with artificial expertise
and the MAPE-K reference model aims to provide an autonomic
control loop. A balance must be struck which considers both afore-
mentioned aspects appropriately.
Overall, the Columbus study has shown that extending legacy sys-
tems with real time data stream mining technologies is feasible and
it is an important area for further stream-mining research.

8. CONCLUDING REMARKS
In this paper, we discussed research challenges for data streams,
originating from real-world applications. We analyzed issues con-
cerning privacy, availability of information, relational and event
streams, preprocessing, model complexity, evaluation, and legacy
systems. The discussed issues were illustrated by practical applica-
tions including GPS systems, Twitter analysis, earthquake predic-
tions, customer profiling, and spacecraft monitoring. The study of
real-world problems highlighted shortcomings of existing method-
ologies and showcased previously unaddressed research issues.
Consequently, we call the data stream mining community to con-
sider the following action points for data stream research:

• developing methods for ensuring privacy with incomplete
information as data arrives, while taking into account the
evolving nature of data;

• considering the availability of information by developing mod-
els that handle incomplete, delayed and/or costly feedback;

• taking advantage of relations between streaming entities;

• developing event detection methods and predictive models
for censored data;

• developing a systematic methodology for streamed prepro-
cessing;

• creating simpler models through multi-objective optimiza-
tion criteria, which consider not only accuracy, but also com-
putational resources, diagnostics, reactivity, interpretability;

• establishing a multi-criteria view towards evaluation, dealing
with absence of the ground truth about how data changes;

• developing online monitoring systems, ensuring reliability of
any updates, and balancing the distribution of resources.

As our study shows, there are challenges in every step of the CRISP
data mining process. To date, modeling over data streams has
been viewed and approached as an extension of traditional meth-
ods. However, our discussion and application examples show that
in many cases it would be beneficial to step aside from building
upon existing offline approaches, and start blank considering what
is required in the stream setting.

Acknowledgments
We would like to thank the participants of the RealStream2013
workshop at ECMLPKDD2013 in Prague, and in particular Bern-
hard Pfahringer and George Forman, for suggestions and discus-
sions on the challenges in stream mining. Part of this work was

funded by the German Research Foundation, projects SP 572/11-1
(IMPRINT) and HU 1284/5-1, the Academy of Finland grant 118653
(ALGODAN), and the Polish National Science Center grants
DEC-2011/03/N/ST6/00360 and DEC-2013/11/B/ST6/00963.

9. REFERENCES

[1] C. Aggarwal, editor. Data Streams: Models and Algorithms.
Springer, 2007.

[2] C. Aggarwal and D. Turaga. Mining data streams: Systems
and algorithms. In Machine Learning and Knowledge Dis-
covery for Engineering Systems Health Management, pages
4–32. Chapman and Hall, 2012.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining.
SIGMOD Rec., 29(2):439–450, 2000.

[4] C. Anagnostopoulos, N. Adams, and D. Hand. Deciding what
to observe next: Adaptive variable selection for regression in
multivariate data streams. In Proc. of the 2008 ACM Symp. on
Applied Computing, SAC, pages 961–965, 2008.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS, pages 1–16, 2002.

[6] C. Brodley, U. Rebbapragada, K. Small, and B. Wallace.
Challenges and opportunities in applied machine learning. AI
Magazine, 33(1):11–24, 2012.

[7] D. Brzezinski and J. Stefanowski. Reacting to different types
of concept drift: The accuracy updated ensemble algorithm.
IEEE Trans. on Neural Networks and Learning Systems.,
25:81–94, 2014.

[8] D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal. Mortal
multi-armed bandits. In Proc. of the 22nd Conf. on Neural
Information Processing Systems, NIPS, pages 273–280, 2008.

[9] D. Cox and D. Oakes. Analysis of Survival Data. Chapman &
Hall, London, 1984.

[10] T. Dietterich. Machine-learning research. AI Magazine,
18(4):97–136, 1997.

[11] G. Ditzler and R. Polikar. Semi-supervised learning in non-
stationary environments. In Proc. of the 2011 Int. Joint Conf.
on Neural Networks, IJCNN, pages 2741 – 2748, 2011.

[12] W. Fan and A. Bifet. Mining big data: current status, and fore-
cast to the future. SIGKDD Explorations, 14(2):1–5, 2012.

[13] M. Gaber, J. Gama, S. Krishnaswamy, J. Gomes, and F. Stahl.
Data stream mining in ubiquitous environments: state-of-the-
art and current directions. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 4(2):116 – 138,
2014.

[14] M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data
streams: A review. SIGMOD Rec., 34(2):18–26, 2005.

[15] J. Gama. Knowledge Discovery from Data Streams. Chapman
& Hall/CRC, 2010.

[16] J. Gama, R. Sebastiao, and P. Rodrigues. On evaluating
stream learning algorithms. Machine Learning, 90(3):317–
346, 2013.

SIGKDD Explorations Volume 16, Issue 1 Page 9



[17] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept-drift adaptation. ACM
Computing Surveys, 46(4), 2014.

[18] J. Gantz and D. Reinsel. The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far
east, December 2012.

[19] A. Goldberg, M. Li, and X. Zhu. Online manifold regular-
ization: A new learning setting and empirical study. In Proc.
of the European Conf. on Machine Learning and Principles
of Knowledge Discovery in Databases, ECMLPKDD, pages
393–407, 2008.

[20] I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selec-
tion: Beyond the bayesian/frequentist divide. Journal of Ma-
chine Learning Research, 11:61–87, 2010.

[21] M. Hassani and T. Seidl. Towards a mobile health context
prediction: Sequential pattern mining in multiple streams.
In Proc. of , IEEE Int. Conf. on Mobile Data Management,
MDM, pages 55–57, 2011.

[22] H. He and Y. Ma, editors. Imbalanced Learning: Founda-
tions, Algorithms, and Applications. IEEE, 2013.

[23] T. Hoens, R. Polikar, and N. Chawla. Learning from stream-
ing data with concept drift and imbalance: an overview.
Progress in Artificial Intelligence, 1(1):89–101, 2012.

[24] IBM. An architectural blueprint for autonomic computing.
Technical report, IBM, 2003.

[25] E. Ikonomovska, K. Driessens, S. Dzeroski, and J. Gama.
Adaptive windowing for online learning from multiple inter-
related data streams. In Proc. of the 11th IEEE Int. Conf. on
Data Mining Workshops, ICDMW, pages 697–704, 2011.

[26] A. Kotov, C. Zhai, and R. Sproat. Mining named entities
with temporally correlated bursts from multilingual web news
streams. In Proc. of the 4th ACM Int. Conf. on Web Search and
Data Mining, WSDM, pages 237–246, 2011.

[27] G. Krempl. The algorithm APT to classify in concurrence of
latency and drift. In Proc. of the 10th Int. Conf. on Advances
in Intelligent Data Analysis, IDA, pages 222–233, 2011.

[28] M. Last and H. Halpert. Survival analysis meets data stream
mining. In Proc. of the 1st Worksh. on Real-World Challenges
for Data Stream Mining, RealStream, pages 26–29, 2013.

[29] F. Nelwamondo and T. Marwala. Key issues on computational
intelligence techniques for missing data imputation - a review.
In Proc. of World Multi Conf. on Systemics, Cybernetics and
Informatics, volume 4, pages 35–40, 2008.

[30] E. Noack, W. Belau, R. Wohlgemuth, R. Müller, S. Palumberi,
P. Parodi, and F. Burzagli. Efficiency of the columbus failure
management system. In Proc. of the AIAA 40th Int. Conf. on
Environmental Systems, 2010.

[31] E. Noack, A. Luedtke, I. Schmitt, T. Noack, E. Schaumlöffel,
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ABSTRACT
With the inception of the Twitter microblogging platform
in 2006, a myriad of research efforts have emerged studying
different aspects of the Twittersphere. Each study exploits
its own tools and mechanisms to capture, store, query and
analyze Twitter data. Inevitably, platforms have been de-
veloped to replace this ad-hoc exploration with a more struc-
tured and methodological form of analysis. Another body
of literature focuses on developing languages for querying
Tweets. This paper addresses issues around the big data na-
ture of Twitter and emphasizes the need for new data man-
agement and query language frameworks that address limi-
tations of existing systems. We review existing approaches
that were developed to facilitate twitter analytics followed
by a discussion on research issues and technical challenges
in developing integrated solutions.

1. INTRODUCTION
The massive growth of data generated from social media
sources have resulted in a growing interest on efficient and
effective means of collecting, analyzing and querying large
volumes of social data. The existing platforms exploit sev-
eral characteristics of big data, including large volumes of
data, velocity due to the streaming nature of data, and va-
riety due to the integration of data from the web and other
sources. Hence, social network data presents an excellent
testbed for research on big data.

In particular, online social networking and microblogging
platform Twitter has seen exponential growth in its user
base since its inception in 2006 with now over 200 million
monthly active users producing 500 million tweets (Twitter-
sphere, the postings made to Twitter) daily1. A wide re-
search community has been established since then with the
hope of understanding interactions on Twitter. For exam-
ple, studies have been conducted in many domains exploring
different perspectives of understanding human behavior.

Prior research focuses on a variety of topics including opin-
ion mining [12, 14, 38], event detection [46, 65, 76], spread of
pandemics [26,58,68], celebrity engagement [74] and analysis
of political discourse [28,40,70]. These types of efforts have
enabled researchers to understand interactions on Twitter
related to the fields of journalism, education, marketing, dis-
aster relief etc.

1http://tnw.to/s0n9u

The systems that perform analysis in the context of these
interactions typically involve the following major compo-
nents: focused crawling, data management and data ana-
lytics. Here, data management comprises of information ex-
traction, pre-processing, data modeling and query process-
ing components. Figure 1 shows a block diagram of such
a system and depicts interactions between various compo-
nents. Until now, there has been significant amount of prior
research around improving each of the components shown in
Figure 1, but to the best of our knowledge, there have been
no frameworks that propose a unified approach to Twitter
data management that seamlessly integrate all these com-
ponents. Following these observations, in this paper we ex-
tensively survey the techniques that have been proposed for
realising each of the components shown in Figure 1, and then
motivate the need and challenges of a unified framework for
managing Twitter data.

Figure 1: An abstraction of a Twitter data management
platform

In our survey of existing literature we observed ways in
which researchers have tried to develop general platforms
to provide a repeatable foundation for Twitter data analyt-
ics. We review the tweet analytics space primarily focusing
on the following key elements:

• Data Collection. Researchers have several options for
collecting a suitable data set from Twitter. In Section 2
we briefly describe mechanisms and tools that focus pri-
marily on facilitating the initial data acquisition phase.
These tools systematically capture the data using any of
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These tools systematically capture the data using any of
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the Twitter’s publicly accessible APIs.

• Data management frameworks. In addition to pro-
viding a module for crawling tweets, these frameworks
provide support for pre-processing, information extrac-
tion and/or visualization capabilities. Prepossessing deals
with preparing tweets for data analysis. Information ex-
traction aims to derive more insight from the tweets,
which is not directly reported by the Twitter API, e.g.
a sentiment for a given tweet. Several frameworks pro-
vide functionality to present the results in many output
forms of visualizations while others are built exclusively
to search over a large tweet collection. In Section 3 we
review existing data management frameworks.

• Languages for querying tweets. A growing body
of literature proposes declarative query languages as a
mechanism of extracting structured information from tweets.
Languages present end users with a set of primitives ben-
eficial in exploring the Twittersphere along different di-
mensions. In Section 4 we investigate declarative lan-
guages and similar systems developed for querying a va-
riety of tweet properties.

We have identified the essential ingredients for a unified
Twitter data management solution, with the intention that
an analyst will easily be able to extend its capabilities for
specific types of research. Such a solution will allow the
data analyst to focus on the use cases of the analytics task
by conveniently using the functionality provided by an in-
tegrated framework. In Section 5 we present our position
and emphasize the need for integrated solutions that address
limitations of existing systems. Section 6 outlines research
issues and challenges associated with the development of in-
tegrated platforms. Finally we conclude in Section 7.

2. OPTIONS FOR DATA COLLECTION
Researchers have several options when choosing an API for
data collection, i.e. the Search, Streaming and the REST
API. Each API has varying capabilities with respect to the
type and the amount of information that can be retrieved.
The Search API is dedicated for running searches against an
index of recent tweets. It takes keywords as queries with the
possibility of multiple queries combined as a comma sepa-
rated list. A request to the search API returns a collection
of relevant tweets matching a user query.

The Streaming API provides a stream to continuously cap-
ture the public tweets where parameters are provided to
filter the results of the stream by hashtags, keywords, twit-
ter user ids, usernames or geographic regions. The REST
API can be used to retrieve a fraction of the most recent
tweets published by a Twitter user. All three APIs limit the
number of requests within a time window and rate-limits are
posed at the user and the application level. Response ob-
tained from Twitter API is generally in the JSON format.
Third party libraries2 are available in many programming
languages for accessing the Twitter API. These libraries pro-
vide wrappers and provide methods for authentication and
other functions to conveniently access the API.

Publicly available APIs do not guarantee complete coverage
of the data for a given query as the feeds are not designed
for enterprise access. For example, the streaming API only
provides a random sample of 1% (known as the Spritzer

2https://dev.twitter.com/docs/twitter-libraries

stream) of the public Twitter stream in real-time. Applica-
tions where this rate limitation is too restrictive rely on third
party resellers like GNIP, DataSift or Topsy 3, who provides
access to the entire collection of the tweets known as the
Twitter FireHose. At a cost, resellers can provide unlim-
ited access to archives of historical data, real-time stream-
ing data or both. It is mostly the corporate businesses who
opt for such alternatives to gain insights into their consumer
and competitor patterns.

In order to obtain a dataset sufficient for an analysis task,
it is necessary to efficiently query the respective API meth-
ods, within the bounds of imposed rate limits. The requests
to the API may have to run continuously spanning across
several days or weeks. Creating the users social graph for
a community of interest requires additional modules that
crawl user accounts iteratively. Large crawls with more com-
plete coverage was made possible with the use of whitelisted
accounts [21, 45] and using the computation power of cloud
computing [55]. Due to Twitters current policy, whitelisted
accounts are discontinued and are no longer an option as
means of large data collection. Distributed systems have
been developed [16,45] to make continuously running, large
scale crawls feasible. There are other solutions that provide
extended features to process the incoming Twitter data as
discussed next.

3. DATA MANAGEMENT FRAMEWORKS

3.1 Focused Crawlers
The focus in studies like TwitterEcho [16] and Byun et
al. [19] is data collection, where the primary contributions
are driven by crawling strategies for effective retrieval and
better coverage. TwitterEcho describes an open source dis-
tributed crawler for Twitter. Data can be collected from
a focused community of interest and it adapts a central-
ized distributed architecture in which multiple thin clients
are deployed to create a scalable system. TwitterEcho de-
vises a user expansion strategy by which the user’s follower
lists are crawled iteratively using the REST API. The sys-
tem also includes modules responsible for controlling the ex-
pansion strategy. The user selection feature identifies user
accounts to be monitored by the system with modules for
user profile analysis and language identification. The user
selection feature is customized to crawl the focused com-
munity of Portuguese tweets but can be adapted to target
other communities. Byun et al. [19] in their work propose a
rule-based data collection tool for Twitter with the focus of
analysing sentiment of Twitter messages. It is a java-based
open source tool developed using the Drools4 rule engine.
They stress the importance of an automated data collector
that also filters out unnecessary data such as spam messages.

3.2 Pre-processing and Information Extrac-
tion

Apart from data collection, several frameworks implement
methods to perform extensive pre-processing and informa-
tion extraction of the tweets. Pre-processing tasks of Trend-
Miner [61] take into account the challenges posed by the
noisy genre of tweets. Tokenization, stemming and POS

3http://gnip.com/, http://datasift.com/, http:
//about.topsy.com/
4http://drools.jboss.org/
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accounts are discontinued and are no longer an option as
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been developed [16,45] to make continuously running, large
scale crawls feasible. There are other solutions that provide
extended features to process the incoming Twitter data as
discussed next.

3. DATA MANAGEMENT FRAMEWORKS

3.1 Focused Crawlers
The focus in studies like TwitterEcho [16] and Byun et
al. [19] is data collection, where the primary contributions
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rule-based data collection tool for Twitter with the focus of
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open source tool developed using the Drools4 rule engine.
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Miner [61] take into account the challenges posed by the
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3http://gnip.com/, http://datasift.com/, http:
//about.topsy.com/
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tagging are some of the text processing tasks that better
prepare tweets for the analysis task. The platform pro-
vides separate built-in modules to extract information such
as location, language, sentiment and named entities that
are deemed very useful in data analytics. The creation of a
pipeline of these tools allows the data analyst to extend and
reuse each component with relative ease.

TwitIE [17] is another open-source information extraction
NLP pipeline customized for microblog text. For the pur-
pose of information extraction (IE), the general purpose IE
pipeline ANNIE is used and it consists of components such
as sentence splitter, POS tagger and gazetteer lists (for loca-
tion prediction). Each step of the pipeline addresses draw-
backs in traditional NLP systems by addressing the inherent
challenges in microblog text. As a result, individual com-
ponents of ANNIE are customized. Language identification,
tokenisation, normalization, POS tagging and named entity
recognition is performed with each module reporting accu-
racy on tweets.

Baldwin [11] presents a system designed for event detection
on Twitter with functionality for pre-processing. JSON re-
sults returned by the Streaming API are parsed and piped
through language filtering and lexical normalisation compo-
nents. Messages that do not have location information are
geo-located, using probabilistic models since it’s a critical
issue in identifying where an event occurs. Information ex-
traction modules require knowledge from external sources
and are generally more expensive tasks than language pro-
cessing. Platforms that support real-time analysis [11, 76]
require processing tasks to be conducted on-the-fly where
the speed of the underlying algorithms is a crucial consider-
ation.

3.3 Generic Platforms
There are several proposals in which researchers have tried
to develop generic platforms to provide a repeatable foun-
dation for Twitter data analytics. Twitter Zombie [15] is a
platform to unify the data gathering and analysis methods
by presenting a candidate architecture and methodological
approach for examining specific parts of the Twittersphere.
It outlines architecture for standard capture, transforma-
tion and analysis of Twitter interactions using the Twitter’s
Search API. This tool is designed to gather data from Twit-
ter by executing a series of independent search jobs on a
continual basis and the collected tweets and their metadata
is kept in a relational DBMS. One of the interesting features
of TwitterZombie is its ability to capture hierarchical rela-
tionships in the data returned by Twitter. A network trans-
lator module performs post-processing on the tweets and
stores hashtags, mentions and retweets, separately from the
tweet text. Raw tweets are transformed into a representa-
tion of interactions to create networks of retweets, mentions
and users mentioning hashtags. This feature captured by
TwitterZombie, which other studies pay little attention to,
is helpful in answering different types of research questions
with relative ease. Social graphs are created in the form of
a retweet or mention network and they do not crawl for the
user graph with traditional following relationships. It also
draws discussion on how multi-byte tweets in languages like
Arabic or Chinese can be stored by performing translitera-
tion.

More recently, TwitHoard [69] suggests a framework of sup-
porting processors for data analytics on Twitter with em-

phasis on selection of a proper data set for the definition of
a campaign. The platform consists of three layers; campaign
crawling layer, integrated modeling layer and the data anal-
ysis layer. In the campaign crawling layer, a configuration
module follows an iterative approach to ensure the cam-
paign converges to a proper set of filters (keywords). Col-
lected tweets, metadata and the community data (relation-
ships among Twitter users) are stored in a graph database.
This study should be highlighted for its distinction to allow
for a flexible querying mechanism on top of a data model
built on raw data. The model is generated in the integrated
modeling layer and comprises a representation of associa-
tions between terms (e.g. hashtags) used in tweets and their
evolution in time. Their approach is interesting as it cap-
tures the often overlooked temporal dimension. In the third
data analysis layer, a query language is used to design a tar-
get view of the campaign data that corresponds to a set of
tweets that contain for example, the answer to an opinion
mining question.

While including components for capture and storage of tweets,
additional tools have been developed to search through the
collected tweets. The architecture of CoalMine [72] presents
a social network data mining system demonstrated on Twit-
ter, designed to process large amounts of streaming social
data. The ad-hoc query tool provides an end user with the
ability to access one or more data files through a Google-
like search interface. Appropriate support is provided for a
set of boolean and logical operators for ease of querying on
top of a standard Apache Lucene index. The data collection
and storage component is responsible for establishing con-
nections to the REST API and to store the JSON objects
returned in compressed formats.

In building support platforms it is necessary to make provi-
sions for practical considerations such as processing big data.
TrendMiner [61] facilitates real-time analysis of tweets and
takes into consideration scalability and efficiency of process-
ing large volumes of data. TrendMiner makes an effort to
unify some of the existing text processing tools for Online
Social Networking (OSN) data, with emphasis on adapting
to real-life scenarios that include processing batches of mil-
lions of data. They envision the system to be developed
for both batch-mode and online processing. TwitIE [17] as
discussed in the previous section is another open-source in-
formation extraction NLP pipeline customized for microblog
text.

3.4 Application-specific Platforms
Apart from the above mentioned general purpose platforms,
there are many frameworks targeted at conducting specific
types of analysis with Twitter data. Emergency Situation
Awareness (ESA) [76] is a platform developed to detect, as-
sess, summarise and report messages of interest published
on Twitter for crisis coordination tasks. The objective of
their work is to convert large streams of social media data
into useful situation awareness information in real-time. The
ESA platform consists of modules to detect incidents, con-
dense and summarise messages, classify messages of high
value, identify and track issues and finally to conduct foren-
sic analysis of historical events. The modules are enriched
by a suite of visualisation interfaces. Baldwin et al. [11] pro-
pose another support platform focused on detecting events
on Twitter. The Twitter stream is queried with a set of key-
words specified by the user with the objective of filtering the
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the speed of the underlying algorithms is a crucial consider-
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There are several proposals in which researchers have tried
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dation for Twitter data analytics. Twitter Zombie [15] is a
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by presenting a candidate architecture and methodological
approach for examining specific parts of the Twittersphere.
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unify some of the existing text processing tools for Online
Social Networking (OSN) data, with emphasis on adapting
to real-life scenarios that include processing batches of mil-
lions of data. They envision the system to be developed
for both batch-mode and online processing. TwitIE [17] as
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formation extraction NLP pipeline customized for microblog
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3.4 Application-specific Platforms
Apart from the above mentioned general purpose platforms,
there are many frameworks targeted at conducting specific
types of analysis with Twitter data. Emergency Situation
Awareness (ESA) [76] is a platform developed to detect, as-
sess, summarise and report messages of interest published
on Twitter for crisis coordination tasks. The objective of
their work is to convert large streams of social media data
into useful situation awareness information in real-time. The
ESA platform consists of modules to detect incidents, con-
dense and summarise messages, classify messages of high
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by a suite of visualisation interfaces. Baldwin et al. [11] pro-
pose another support platform focused on detecting events
on Twitter. The Twitter stream is queried with a set of key-
words specified by the user with the objective of filtering the
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stream on a topic of interest. The results are piped through
text processing components and the geo-located tweets are
visualised on a map for better interaction. Clearly, platforms
of this nature that deal with incident exploration need to
make provisions for real-time analysis of the incoming Twit-
ter stream and produce suitable visualizations of detected
incidents.

3.5 Data Model and Storage Mechanisms
Data models are not discussed in detail in most studies,
as a simple data model is sufficient to conduct basic form
of analysis. When standard tweets are collected, flat files
[11, 72] is the preferred choice. Several studies that cap-
ture the social relationships [15, 19] of the Twittersphere,
employs the relational data model but do not necessarily
store the relationships in a graph database. As a conse-
quence, many analyses that can be performed conveniently
on a graph are not captured by these platforms. Only
TwitHoard [69] in their paper models co-occurrence of terms
as a graph with temporally evolving properties. Twitter
Zombie [15] and TwitHoard [69] should be highlighted for
capturing interactions including the retweets and term as-
sociations apart from the traditional follower/friend social
relationships. TrendMiner [61] draws explicit discussion on
making provisions for processing millions of data and takes
advantage of Apache Hadoop MapReduce framework to per-
form distributed processing of the tweets stored as key-value
pairs. CoalMine [72] also has Apache Hadoop at the core
of their batch processing component responsible for efficient
processing of large amount of data.

3.6 Support for Visualization Interfaces
There are many platforms designed with integrated tools
predominantly for visualization, to analyse data in spatial,
temporal and topical perspectives. One tool is tweetTracker
[44], which is designed to aid monitoring of tweets for hu-
manitarian and disaster relief. TweetXplorer [54] also pro-
vides useful visualization tools to explore Twitter data. For
a particular campaign, visualizations in tweetXplorer help
analysts to view the data along different dimensions; most
interesting days in the campaign (when), important users
and their tweets (who/what) and important locations in the
dataset (where). Systems like TwitInfo [48], Twitcident [8]
and Torettor [65] also provide a suite of visualisation ca-
pabilities to explore tweets in different dimensions relating
to specific applications like fighting fire and detecting earth-
quakes. Web-mashups like Trendsmap [5] and Twitalyzer [6]
provide a web interface and enterprise business solutions to
gain real-time trend and insights of user groups.

Table 1 illustrates an overview of related approaches and
features of different platforms. Pre-processing in Table 1 in-
dicates if any form of language processing tasks such as POS
tagging or normalization are conducted. Information extrac-
tion refers to the types of post processing performed to infer
additional information, such as sentiment or named entities
(NEs). Multiple ticks (�) correspond to a task that is car-
ried out extensively. In addition to collecting tweets, some
studies also capture the user’s social graph while others pro-
pose the need to regard interactions of hashtags, retweets,
mentions as separate properties. Backend data models sup-
ported by the platform shape the types of analysis that can
be conveniently done on each framework. From the sum-
mary in Table 1, we can observe that each study on data

management frameworks concentrate on a set of challenges
more than others.

We aim to recognize the key ingredients of an integrated
framework that takes into account shortcomings of existing
systems.

4. LANGUAGES FOR QUERYING TWEETS
The goal of proposing declarative languages and systems
for querying tweets is to put forward a set of primitives
or an interface for analysts to conveniently query specific
interactions on Twitter exploring the user, time, space and
topical dimensions. High level languages for querying tweets
extend capabilities of existing languages such as SQL and
SPARQL. Queries are either executed on the Twitter stream
in real-time or on a stored collection of tweets.

4.1 Generic Languages
TweeQL [49] provides a streaming SQL-like interface to the
Twitter API and provides a set of user defined functions
(UDFs) to manipulate data. The objective is to introduce
a query language to extract structure and useful informa-
tion that is embedded in unstructured Twitter data. The
language exploits both relational and streaming semantics.
UDFs allow for operations such as location identification,
string processing, sentiment prediction, named entity ex-
traction and event detection. In the spirit of streaming se-
mantics, it provides SQL constructs to perform aggregations
over the incoming stream on a user-specified time window.
The result of a given query can be stored in a relational
fashion for subsequent querying.

Models for representing any social network in RDF have
been proposed by Martin and Gutierrez [50] allowing queries
in SPARQL. The work explores the feasibility of adoption
of this model by demonstrating their idea with an illustra-
tive prototype but does not focus on a single social network
like Twitter in particular. TwarQL [53] extracts content
from tweets and encodes it in RDF format using shared and
well known vocabularies (FOAF, MOAT, SIOC) enabling
querying in SPARQL. The extraction facility processes plain
tweets and expands its description by adding sentiment an-
notations, DBPedia entities, hashtag definitions and URLs.
The annotation of tweets using different vocabularies en-
ables querying and analysis in different dimensions such as
location, users, sentiment and related named entities. The
infrastructure of TwarQL enables subscription to a stream
that matches a given query and returns streaming annotated
data in real-time.

Temporal and topical features are of paramount importance
in an evolving microblogging stream like Twitter. In the lan-
guages above, time and topic of a tweet (topic can be repre-
sented simply by a hashtag) are considered meta-data of the
tweet and is not treated any different from other metadata
reported. Topics are regarded as part of the tweet content
or what drives the data filtering task from the Twitter API.
There have been efforts to exploit features that go well be-
yond a simple filter based on time and topic. Plachouras
and Stavrakas [59] stress the need for temporal modelling
of terms in Twitter to effectively capture changing trends.
A term refers to any word or short phrase of interest in a
tweet, including hashtags or output of an entity recogni-
tion process. Their proposed query operators can express
complex queries for associations between terms over vary-
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Table 1: Overview of related approaches in data management frameworks.
Prepossessing Examples of Social and/or other Data Store

extracted information interactions captured?
TwitterEcho [16] � Language Yes Not given
Byun et al. [19] Location Yes Relational
Twitter Zombie [15] � Yes Relational
TwitHoard [69] � Yes Graph DB
CoalMine [72] No Files
TrendMiner [61] �� Location, Sentiment, NEs No Key-value pairs
TwitIE [17] �� Language, Location, NEs No Not given
ESA [76] � Location, NEs No Not given
Baldwin et al. [11] �� Language, Location No Flat files

ing time granularities, to discover context of collected data.
Operators also allow retrieving a subset of tweets satisfying
these complex conditions on term associations. This enables
the end user to select a good set of terms (hashtags) that
drive the data collection which has a direct impact on the
quality of the results generated from the analysis.

Spatial features are another property of tweets often over-
looked in complex analysis. Previously discussed work uses
the location attribute as a mechanism to filter tweets in
space. To complete our discussion we briefly outline two
studies that use geo-spatial properties to perform complex
analysis using the location attribute. Doytsher et al. [31] in-
troduced a model and query language suited for integrated
data connecting a social network of users with a spatial net-
work to identify places visited frequently. Edges named life-
patterns are used to associate the social and spatial net-
works. Different time granularities can be expressed for
each visited location represented by the life-pattern edge.
Even though the implementation employs a partially syn-
thetic dataset, it will be interesting to investigate how the
socio-spatial networks and the life-pattern edges that are
used to associate the spatial and social networks can be rep-
resented in a real social network dataset with location infor-
mation, such as Twitter. GeoScope [18] finds information
trends by detecting significant correlations among trending
location-topic pairs in a sliding window. This gives rise to
the importance of capturing the notion of spatial informa-
tion trends in social networks in analysis tasks. Real-time
detection of crisis events from a location in space, exhibits
the possible value of Geoscope. In one of the experiments
Twitter is used as a case study to demonstrate its useful-
ness, where a hashtag is chosen to represent the topic and
city from which the tweet originates chosen to capture the
location.

4.2 Data Model for the Languages
Relational, RDF and Graphs are the most common choices
of data representation. There is a close affiliation in these
data models observing that, for instance, a graph can easily
correspond to a set of RDF triples or vice versa. In fact,
some studies like Plachouras and Stavrakas [59] have put
forward their data model as a labeled multi digraph and have
chosen a relational database for its implementation. None
of these query systems models Twitter social network with
following or retweet relationships among users. Doytsher et
al. [31] implement their algebraic query operators with the
use of both graph and a relational database as the underlying
data storage. They experimentally compare relational and

graph database to demonstrate the feasibility of the model.
languages that operate on the twitter stream like TweeQL
and TwarQL generates the output in real-time; TweeQL
[49] allows the resulting tweets to be collected in batches
then stores them in a relational database, while TwarQL [53]
at the end of the information extraction phase, annotated
tweets are encoded in RDF.

4.3 Query Languages for Social Networks
To the best of our knowledge, there is no existing work
focusing on high level languages operating on the Twit-
ter’s social graph. However it is important to note pro-
posals for declarative query languages tailored for querying
social networks in general [10, 30, 32, 50, 51, 64]. One of the
queries supported are path queries satisfying a set of con-
ditions on the path, and the languages in general take ad-
vantage of inherent properties of social networks. Semantics
of the languages are based on Datalog [51], SQL [32, 64]
or RDF/SPARQL [50]. Implementations are conducted on
bibliographical networks [32], Facebook and evolving social
content sites like Yahoo! Travel [10] and are not tested on
Twitter networks taking Twitter specific affordances into
consideration.

4.4 Information Retrieval - Tweet Search
Another class of systems presents textual queries to effi-
ciently search over a corpus of tweets. The challenges in this
area are similar to that of information retrieval in addition
with having to deal with peculiarities of tweets. The short
length of tweets in particular creates added complexity to
text-based search tasks as it is difficult to identify relevant
tweets matching a user query [13,35]. Expanding tweet con-
tent is suggested as a way to enhance the meaning. The goal
of such systems is to express a user’s information need in the
form of a simple text query, much like in search engines, and
return a tweet list in real-time with effective strategies for
ranking and relevance measurements [33, 34, 71]. Indexing
mechanisms are discussed in [23] as they directly impact ef-
ficient retrieval of tweets. The TREC micro-blogging track5

is dedicated to calling participants to conduct real-time ad-
hoc search tasks over a given tweet collection. Publications
of TREC [56], documents the findings of all systems in the
task of ranking the most relevant tweets matching a pre-
defined set of user queries.

Table 2 illustrates an overview of related approaches in sys-
tems for querying tweets. Data models and dimensions in-

5http://trec.nist.gov/
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Table 2: Overview of approaches in systems for querying tweets.
Data Model Explored dimensions

Relational RDF Graph Text Time Space Social Network Real-Time
TweeQL [49] � � � � Yes
TwarQL [53] � � � � Yes
Plachouras et al. [60] � � �� No
Doytsher et al. [31]∗ � � � �� � No
GeoScope et al. [18]∗ � � � � Yes
Languages on social networks∗ � � � � �� No
Tweet search systems � �� � � Yes

vestigated in each system are depicted in the Table 2. Sys-
tems that have made provision for the real-time streaming
nature of the tweets are indicated in the Real-time column.
Multiple ticks (�) correspond to a dimension explored in de-
tail. Note that the systems marked with an asterisk (*) are
not implemented specifically targeting tweets, though their
application is meaningful and can be extended to the Twit-
tersphere. We observe potential for developing languages for
querying tweets that include querying by dimensions that
are not captured by existing systems, especially the social
graph.

5. THE NEED FOR INTEGRATED SOLU-
TIONS

There is a need to assimilate individual efforts with the goal
of providing a unified framework that can be used by re-
searchers and practitioners across many disciplines. Inte-
grated solutions should ideally handle the entire workflow
of the data analysis life cycle from collecting the tweets to
presenting the results to the user. The literature we have
reviewed in previous sections outlines efforts that support
different parts of the workflow. In this section, we present
our position with the aim of outlining significant compo-
nents of an integrated solution addressing the limitations of
existing systems.

According to a review of literature conducted on the mi-
croblogging platform [25], the majority of published work
on Twitter concentrates on the user domain and the mes-
sage domain. The user domain explores properties of Twit-
ter users in the microblogging environment while the mes-
sage domain deals with properties exhibited by the tweets
themselves. In comparison to the extent of work done on
the microblogging platform, only a few investigates the de-
velopment of data management frameworks and query lan-
guages that describe and facilitate processing of online so-
cial networking data. In consequence, there is opportunity
for improvement in this area for future research addressing
the challenges in data management. We elicit the following
high-level components and envisage a platform for Twitter
that encompasses such capabilities:

Focused crawler: Responsible for retrieval and collection
of Twitter data by crawling the publicly accessible Twit-
ter APIs. A focused crawler should allow the user to de-
fine a campaign with suitable filters, monitor output and
iteratively crawl Twitter for large volumes of data until its
coverage of relevant tweets is satisfactory.

Pre-processor: As highlighted in Section 3.2, this stage
usually comprises of modules for pre-processing and infor-

mation extraction considering the inherent peculiarities of
tweets and not all frameworks we discussed provided this
functionality. Pre- processing components for example, nor-
malization and tokenization should be implemented, with
the option for the end users to customize the modules to suit
their requirements. Information extraction modules such as
location prediction, sentiment classification and named en-
tity recognition are useful in conducting analysis on tweets
and attempt to derive more information from plain tweet
text and their metadata. Ideally, a user should be able to
integrate any combination of the components into their own
applications.

Data model: Much of the literature presented (Section 3.5
and 4.2) does not emphasize or draw explicit discussions
on the data model in use. The logical data model greatly
influences the types of analysis that can be done with rela-
tive ease on collected data. A physical representation of the
model involving suitable indexing and storage mechanisms
of large volumes of data is an important consideration for
efficient retrieval. We notice that current research pays lit-
tle attention to queries on Twitter interactions, the social
graph in particular. A graph view of the Twittersphere is
consistently overlooked and we recognize great potential in
this area. The graph construction on Twitter is not lim-
ited to considering the users as nodes and links as follow-
ing relationships; embracing useful characteristics such as
retweet, mention and hashtag (co-occurrence) networks in
the data model will create opportunity to conduct complex
analysis on these structural properties of tweets. We envi-
sion a new data model that proactively captures structural
relationships taking into consideration efficient retrieval of
relevant data to perform the queries.

Query language: Languages described in Section 4, de-
fines both simple operators to be applied on tweets and ad-
vanced operators that extract complex patterns, which can
be manipulated in different types of applications. Some lan-
guages provide support for continuous queries on the stream
or queries on a stored collection, while others offer flexibility
for both. The advent of a graph view makes crucial contri-
butions in analyzing the Twittersphere allowing us to query
twitter data in novel and varying forms. It will be inter-
esting to investigate how typical functionality [73] provided
by graph query languages can be adapted to Twitter net-
works. In developing query languages, one could investigate
the distinction between real-time and batch mode process-
ing. Visualizing the data retrieved as a result of a query
in a suitable manner is also an important concern. A set of
pre-defined output formats will be useful in order to provide
an informative visualization over a map for a query that re-
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be manipulated in different types of applications. Some lan-
guages provide support for continuous queries on the stream
or queries on a stored collection, while others offer flexibility
for both. The advent of a graph view makes crucial contri-
butions in analyzing the Twittersphere allowing us to query
twitter data in novel and varying forms. It will be inter-
esting to investigate how typical functionality [73] provided
by graph query languages can be adapted to Twitter net-
works. In developing query languages, one could investigate
the distinction between real-time and batch mode process-
ing. Visualizing the data retrieved as a result of a query
in a suitable manner is also an important concern. A set of
pre-defined output formats will be useful in order to provide
an informative visualization over a map for a query that re-
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turns an array of locations. Another interesting avenue to
explore is the introduction of a ranking mechanism on
the query result. Ranking criteria may involve relevance,
timeliness or network attributes like the reputation of users
in the case of a social graph. Ranking functions are a stan-
dard requirement in the field of information retrieval [23,39]
and studies like SociQL [30] report the use of visibility and
reputations metrics to rank results generated from a social
graph. A query language with a graph view of the Twitter-
sphere along with capabilities for visualizations and ranking
will certainly benefit the upcoming data analysis efforts of
Twitter.

Here, we focused on the key ingredients required for a fully
developed solution and discussed improvements we can make
on existing literature. In the next section, we identify chal-
lenges and research issues involved.

6. CHALLENGES AND RESEARCH ISSUES
To complete our discussion, in this section we summarize
key research issues in data management and present tech-
nical challenges that need to be addressed in the context of
building a data analytics platform for Twitter.

6.1 Data Collection Challenges
Once a suitable Twitter API has been identified, we can
define a campaign with a set of parameters. The focused
crawler can be programmed to retrieve all tweets matching
the query of the campaign. If a social graph is necessary,
separate modules would be responsible to create this net-
work iteratively. Exhaustively crawling all the relationships
between Twitter users is prohibitive given the restrictions
set by the Twitter API. Hence it is required for the focused
crawler to prioritize the relationships to crawl based on the
impact and importance of specific Twitter accounts. In the
case that the platform handles multiple campaigns in par-
allel, there is a need to optimize the access to the API.
Typically, the implementation of a crawler should aim to
minimize the number of API requests, considering the re-
strictions, while fetching data for many campaigns in paral-
lel. Hence building an effective crawling strategy is a chal-
lenging task, in order to optimize the use of API requests
available.

Appropriate coverage of the campaign is another significant
concern and denotes whether all the relevant information has
been collected. When specifying the parameters to define
the campaign, a user needs a very good knowledge on the
relevant keywords. Depending on the specified keywords,
a collection may miss relevant tweets in addition to the
tweets removed due to restrictions by APIs. Plachouras and
Stavrakas work [60] is an initial step in this direction as it in-
vestigates this notion of coverage and proposes mechanisms
to automatically adapt the campaign to evolving hashtags.

6.2 Pre-processing Challenges
Many problems associated with summarization, topic de-
tection and part-of-speech (POS) tagging, in the case of
well-formed documents, e.g. news articles, have been ex-
tensively studied in the literature. Traditional named entity
recognizers (NERs) heavily depend on local linguistic fea-
tures [62] of well-formed documents like capitalization and
POS tagging of previous words. None of the characteristics
hold for tweets with short utterances of tweets limited to 140

characters, which make use of informal language, undoubt-
edly making a simple task of POS tagging more challeng-
ing. Besides the length limit, heavy and inconsistent usage
of abbreviations, capitalizations and uncommon grammar
constructions pose additional challenges to text processing.
With the volume of tweets being orders of magnitude more
than news articles, most of the conventional methods cannot
be directly applied to the noisy genre of Twitter data. Any
effort that uses Twitter data needs to make use of appropri-
ate twitter-specific strategies to pre-process text addressing
the challenges associated with intrinsic properties of tweets.

Similarly, information extraction from tweets is not straight-
forward as it is difficult to derive context and topics from a
tweet that is a scattered part of a conversation. There is sep-
arate literature on identifying entities (references to organi-
zations, places, products, persons) [47,63], languages [20,36],
sentiment [57] present in the tweet text for a richer source of
information. Location is another vital property represent-
ing spatial features either of the tweet or of the user. The
location of each tweet may be optionally recorded if using
a GPS-enabled device. A user can also specify his or her
location as a part of the user profile and is often reported
in varying granularities. The drawback is that only a small
portion of about 1% of the tweets are geo-located [24]. Since
analysis almost always requires the location property, when
absent, studies conduct their own mechanisms to infer lo-
cation of the user, a tweet, or both. There are two major
approaches for location prediction: content analysis with
probabilistic language models [24, 27, 37] or inference from
social and other relations [22,29, 67].

6.3 Data Management Challenges
In Section 3.5 and Section 4.2 we outlined several alterna-
tive approaches in literature for a data model to charac-
terise the Twittersphere. The relational and RDF models
are frequently chosen while graph-based models are acknowl-
edged, however not realized concretely at the implementa-
tion phase. Ways in which we can apply graph data man-
agement in Twitter are extremely diverse and interesting;
different types of networks can be constructed apart from
the traditional social graph as outlined in Section 5. With
the advent of a graph view to model the Twittersphere, gives
rise to a range of queries that can be performed on the struc-
ture of the tweets essentially capturing a wider range of use
case scenarios used in typical data analytics tasks.

As discussed in Section 4.3, there are already languages sim-
ilar to SQL adapted to social networks. Many of the tech-
niques in literature are for the case of generic social net-
works under a number of specific assumptions. For example
the social networks satisfy properties such as the power law
distribution, sparsity and small diameters [52]. We envision
queries that take another step further and executes on Twit-
ter graphs. Simple query languages FQL [1] and YQL [7]
provide features to explore properties of Facebook and Ya-
hoo APIs but are limited to querying only part(usually a sin-
gle user’s connections) of the large social graph. As pointed
out in the report on the Databases and Web 2.0 Panel at
VLDB 2007 [9], understanding and analyzing trust, author-
ity, authenticity, and other quality measures in social net-
works pose major research challenges. While there are in-
vestigations on these quality measures in Twitter, it’s about
time that we enable declarative querying of networks using
such measurements.
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One of the predominant challenges is the management of
large graphs that inevitably results from modeling users,
tweets and their properties as graphs. With the large volume
of data involved in any practical task, a data model should
be information rich, yet a concise representation that en-
ables expression of useful queries. Queries on graphs should
be optimized for large networks and should ideally run in-
dependent of the size of the graph. There arealready ap-
proaches that investigate efficient algorithms on very large
graphs [41–43, 66]. Efficient encoding and indexing mecha-
nisms should be in place taking into account variations of in-
dexing systems already proposed for tweets [23] and indexing
of graphs [75] in general. We need to consider maintaining
indexes for tweets, keywords, users, hashtags for efficient ac-
cess of data in advance queries. In certain situations it may
be impractical to store the entire raw tweet and the com-
plete user graph and it may be desirable to either compress
or drop portions of the data. It is important to investigate
which properties of tweets and the graph should be com-
pressed.

Besides the above challenges, tweets impose general research
issues related to big data. Challenges should be addressed
in the same spirit as any other big data analytics task. In
the face of challenges posed by large volumes of data being
collected, the NoSQL paradigm should be considered as an
obvious choice of dealing with them. Developed solutions
should be extensible for upcoming requirements and should
indeed scale well. When collecting data, a user need to con-
sider scalable crawling as there are large volumes of tweets
received, processed and indexed per second. With respect
to implementation, it is necessary to investigate paradigms
that scale well, like MapReduce which is optimized for offline
analytics on large data partitioned on hundreds of machines.
Depending on the complexity of the queries supported, it
might be difficult to express graph algorithms intuitively in
MapReduce graph models, consequently databases such as
Titan [4], DEX [3], and Neo4j [2] should be compared for
graph implementations.

7. CONCLUSION
In this paper we addressed issues around the big data nature
of Twitter analytics and the need for new data management
and query language frameworks. By conducting a careful
and extensive review of the existing literature we observed
ways in which researchers have tried to develop general plat-
forms to provide a repeatable foundation for Twitter data
analytics. We reviewed the tweet analytics space by explor-
ing mechanisms primarily for data collection, data manage-
ment and languages for querying and analyzing tweets. We
have identified the essential ingredients required for a unified
framework that address the limitations of existing systems.
The paper outlines research issues and identifies some of
the challenges associated with the development of such in-
tegrated platforms.
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ABSTRACT

Tumblr, as one of the most popular microblogging platforms, has
gained momentum recently. It is reported to have 166.4 millions of
users and 73.4 billions of posts by January 2014. While many arti-
cles about Tumblr have been published in major press, there is not
much scholar work so far. In this paper, we provide some pioneer
analysis on Tumblr from a variety of aspects. We study the social
network structure among Tumblr users, analyze its user generated
content, and describe reblogging patterns to analyze its user be-
havior. We aim to provide a comprehensive statistical overview of
Tumblr and compare it with other popular social services, including
blogosphere, Twitter and Facebook, in answering a couple of key
questions: What is Tumblr? How is Tumblr different from other
social media networks? In short, we find Tumblr has more rich
content than other microblogging platforms, and it contains hybrid
characteristics of social networking, traditional blogosphere, and
social media. This work serves as an early snapshot of Tumblr that
later work can leverage.

1. INTRODUCTION
Tumblr, as one of the most prevalent microblogging sites, has be-
come phenomenal in recent years, and it is acquired by Yahoo! in
2013. By mid-January 2014, Tumblr has 166.4 millions of users
and 73.4 billions of posts1. It is reported to be the most popular
social site among young generation, as half of Tumblr’s visitor are
under 25 years old2. Tumblr is ranked as the 16th most popular
sites in United States, which is the 2nd most dominant blogging
site, the 2nd largest microblogging service, and the 5th most preva-
lent social site3. In contrast to the momentum Tumblr gained in
recent press, little academic research has been conducted over this
burgeoning social service. Naturally questions arise: What is Tum-
blr? What is the difference between Tumblr and other blogging or
social media sites?

Traditional blogging sites, such as Blogspot4 and Live Journal5,
have high quality content but little social interactions. Nardi et
al. [17] investigated blogging as a form of personal communica-
tion and expression, and showed that the vast majority of blog posts
are written by ordinary people with a small audience. On the con-

1http://www.tumblr.com/about
2http://www.webcitation.org/64UXrbl8H
3http://www.alexa.com/topsites/countries/US
4http://blogspot.com
5http://livejournal.com

trary, popular social networking sites like Facebook6, have richer
social interactions, but lower quality content comparing with blo-
gosphere. Since most social interactions are either unpublished or
less meaningful for the majority of public audience, it is natural for
Facebook users to form different communities or social circles. Mi-
croblogging services, in between of traditional blogging and online
social networking services, have intermediate quality content and
intermediate social interactions. Twitter7, which is the largest mi-
croblogging site, has the limitation of 140 characters in each post,
and the Twitter following relationship is not reciprocal: a Twitter
user does not need to follow back if the user is followed by another.
As a result, Twitter is considered as a new social media [11], and
short messages can be broadcasted to a Twitter user’s followers in
real time.

Tumblr is also posed as a microblogging platform. Tumblr users
can follow another user without following back, which forms a non-
reciprocal social network; a Tumblr post can be re-broadcasted by
a user to its own followers via reblogging. But unlike Twitter, Tum-
blr has no length limitation for each post, and Tumblr also supports
multimedia post, such as images, audios or videos. With these dif-
ferences in mind, are the social network, user generated content, or
user behavior on Tumblr dramatically different from other social
media sites?

In this paper, we provide a statistical overview over Tumblr from
assorted aspects. We study the social network structure among
Tumblr users and compare its network properties with other com-
monly used ones. Meanwhile, we study content generated in Tum-
blr and examine the content generation patterns. One step further,
we also analyze how a blog post is being reblogged and propagated
through a network, both topologically and temporally. Our study
shows that Tumblr provides hybrid microblogging services: it con-
tains dual characteristics of both social media and traditional blog-
ging. Meanwhile, surprising patterns surface. We describe these
intriguing findings and provide insights, which hopefully can be
leveraged by other researchers to understand more about this new
form of social media.

2. TUMBLR AT FIRST SIGHT
Tumblr is ranked the second largest microblogging service, right
after Twitter, with over 166.4 million users and 73.4 billion posts
by January 2014. Tumblr is easy to register, and one can sign up
for Tumblr service with a valid email address within 30 seconds.
Once sign in Tumblr, a user can follow other users. Different from
Facebook, the connections in Tumblr do not require mutual confir-
mation. Hence the social network in Tumblr is unidirectional.

6http://facebook.com
7http://twitter.com
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Both Twitter and Tumblr are considered as microblogging plat-
forms. Comparing with Twitter, Tumblr exposes several differ-
ences:

• There is no length limitation for each post;

• Tumblr supports multimedia posts, such as images, audios
and videos;

• Similar to hashtags in Twitter, bloggers can also tag their
blog post, which is commonplace in traditional blogging.
But tags in Tumblr are seperate from blog content, while in
Twitter the hashtag can appear anywhere within a tweet.

• Tumblr recently (Jan. 2014) allowed users to mention and
link to specific users inside posts. This @user mechanism
needs more time to be adopted by the community;

• Tumblr does not differentiate verified account.

Figure 1: Post Types in Tumblr

Specifically, Tumblr defines 8 types of posts: photo, text, quote,
audio, video, chat, link and answer. As shown in Figure 1, one
has the flexibility to start a post in any type except answer. Text,
photo, audio, video and link allow one to post, share and comment
any multimedia content. Quote and chat, which are not available
in most other social networking platforms, let Tumblr users share
quote or chat history from ichat or msn. Answer occurs only when
one tries to interact with other users: when one user posts a ques-
tion, in particular, writes a post with text box ending with a question
mark, the user can enable the option for others to answer the ques-
tion, which will be disabled automatically after 7 days. A post can
also be reblogged by another user to broadcast to his own follow-
ers. The reblogged post will quote the original post by default and
allow the reblogger to add additional comments.

Figure 2 demonstrates the distribution of Tumblr post types, based
on 586.4 million posts we collected. As seen in the figure, even
though all kinds of content are supported, photo and text dominate
the distribution, accounting for more than 92% of the posts. There-
fore, we will concentrate on these two types of posts for our content
analysis later.

Since Tumblr has a strong presence of photos, it is natural to com-
pare it to other photo or image based social networks like Flickr8

and Pinterest9. Flickr is mainly an image hosting website, and
Flicker users can add contact, comment or like others’ photos. Yet,
different from Tumblr, one cannot reblog another’s photo in Flickr.
Pinterest is designed for curators, allowing one to share photos or
videos of her taste with the public. Pinterest links a pin to the
commercial website where the product presented in the pin can
be purchased, which accounts for a stronger e-commerce behavior.
Therefore, the target audience of Tumblr and Pinterest are quite
different: the majority of users in Tumblr are under age 25, while
Pinterest is heavily used by women within age from 25 to 44 [16].

We directly sample a sub-graph snapshot of social network from
Tumblr on August 2013, which contains 62.8 million nodes and

8http://flickr.com
9http://pinterest.com
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3.1 billion edges. Though this graph is not yet up-to-date, we be-
lieve that many network properties should be well preserved given
the scale of this graph. Meanwhile, we sample about 586.4 million
of Tumblr posts from August 10 to September 6, 2013. Unfortu-
nately, Tumblr does not require users to fill in basic profile infor-
mation, such as gender or location. Therefore, it is impossible for
us to conduct user profile analysis as done in other works. In or-
der to handle such large volume of data, most statistical patterns
are computed through a MapReduce cluster, with some algorithms
being tricky. We will skip the involved implementation details but
concentrate solely on the derived patterns.

Most statistical patterns can be presented in three different forms:
probability density function (PDF), cumulative distribution func-
tion (CDF) or complementary cumulative distribution function (CCDF),
describing Pr(X = x), Pr(X ≤ x) and Pr(X ≥ x) respec-
tively, where X is a random variable and x is certain value. Due
to the space limit, it is impossible to include all of them. Hence,
we decide which form(s) to include depending on presentation and
comparison convenience with other relevant papers. That is, if
CCDF is reported in a relevant paper, we try to also report CCDF
here so that rigorous comparison is possible.

Next, we study properties of Tumblr through different lenses, in
particular, as a social network, a content generation website, and
an information propagation platform, respectively.

3. TUMBLR AS SOCIAL NETWORK
We begin our analysis of Tumblr by examining its social network
topology structure. Numerous social networks have been analyzed
in the past, such as traditional blogosphere [21], Twitter [10; 11],
Facebook [22], and instant messenger communication network [13].
Here we run an array of standard network analysis to compare with
other networks, with results summarized in Table 110.

Degree Distribution. Since Tumblr does not require mutual con-
firmation when one follows another user, we represent the follower-
followee network in Tumblr as a directed graph: in-degree of a user
represents how many followers the user has attracted, while out-
degree indicates howmany other users one user has been following.
Our sampled sub-graph contains 62.8 million nodes and 3.1 billion

10Even though we wish to include results over other popular social
media networks like Pinterest, Sina Weibo and Instagram, analysis
over those websites not available or just small-scale case studies
that are difficult to generalize to a comprehensive scale for a fair
comparison. Actually in the Table, we observe quite a discrepancy
between numbers reported over a small twitter data set and another
comprehensive snapshot.
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Table 1: Comparison of Tumblr with other popular social networks. The numbers of Blogosphere, Twitter-small, Twitter-huge, Facebook,
and MSN are obtained from [21; 10; 11; 22; 13], respectively. In the table, – implies the corresponding statistic is not available or not
applicable; GCC denotes the giant connected component; the symbols in parenthesis m, d, e, r respectively represent mean, median, the
90% effective diameter, and diameter (the maximum shortest path in the network).

Metric Tumblr Blogosphere Twitter-small Twitter-huge Facebook MSN
#nodes 62.8M 143,736 87,897 41.7M 721M 180M
#links 3.1B 707,761 829,467 1.47B 68.7B 1.3B

in-degree distr ∝ k−2.19 ∝ k−2.38 ∝ k−2.4 ∝ k−2.276 – –
degree distr in r-graph �= power-law – – – �= power-law ∝ k0.8e−0.03k

direction directed directed directed directed undirected undirected
reciprocity 29.03% 3% 58% 22.1% – –

degree correlation 0.106 – – > 0 0.226 –
avg distance 4.7(m), 5(d) 9.3(m) – 4.1(m), 4(d) 4.7(m), 5(d) 6.6(m), 6(d)
diameter 5.4(e), ≥ 29(r) 12(r) 6(r) 4.8(e), ≥ 18(r) < 5(e) 7.8(e), ≥ 29(r)

GCC coverage 99.61% 75.08% 93.03% – 99.91% 99.90%

edges. Within this social graph, 41.40% of nodes have 0 in-degree,
and the maximum in-degree of a node is 4.06 million. By con-
trast, 12.74% of nodes have 0 out-degree, the maximum out-degree
of a node is 155.5k. Top popular Tumblr users include equipo11,
instagram12, and woodendreams13. This indicates the media char-
acteristic of Tumblr: the most popular user has more than 4 million
audience, while more than 40% of users are purely audience since
they don’t have any followers.

Figure 3(a) demonstrates the distribution of in-degrees in the blue
curve and that of out-degrees in the red curve, where y-axis refers
to the cumulated density distribution function (CCDF): the proba-
bility that accounts have at least k in-degrees or out-degrees, i.e.,
P (K >= k). It is observed that Tumblr users’ in-degree follows
a power-law distribution with exponent −2.19, which is quite sim-
ilar from the power law exponent of Twitter at −2.28 [11] or that
of traditional blogs at −2.38 [21]. This also confirms with earlier
empirical observation that most social network have a power-law
exponent between −2 and −3 [6].

In regard to out-degree distribution, we notice the red curve has a
big drop when out-degree is around 5000, since there was a limit
that ordinary Tumblr users can follow at most 5000 other users.
Tumblr users’ out-degree does not follow a power-law distribution,
which is similar to blogosphere of traditional blogging [21].

If we explore user’s in-degree and out-degree together, we could
generate normalized 3-D histogram in Figure 3(b). As both in-
degree and out-degree follow the heavy-tail distribution, we only
zoom in those user who have less than 210 in-degrees and out-
degrees. Apparently, there is a positive correlation between in-
degree and out-degree because of the dominance of diagonal bars.
In aggregation, a user with low in-degree tends to have low out-
degree as well, even though some nodes, especially those top pop-
ular ones, have very imbalanced in-degree and out-degree.

Reciprocity. Since Tumblr is a directed network, we would like to
examine the reciprocity of the graph. We derive the backbone of the
Tumblr network by keeping those reciprocal connections only, i.e.,
user a follows b and vice versa. Let r-graph denote the correspond-
ing reciprocal graph. We found 29.03% of Tumblr user pairs have
reciprocity relationship, which is higher than 22.1% of reciprocity
on Twitter [11] and 3% of reciprocity on Blogosphere [21], indicat-
ing a stronger interaction between users in the network. Figure 3(c)
shows the distribution of degrees in the r-graph. There is a turning

11http://equipo.tumblr.com
12http://instagram.tumblr.com
13http://woodendreams.tumblr.com

point due to the Tumblr limit of 5000 followees for ordinary users.
The reciprocity relationship on Tumblr does not follow the power
law distribution, since the curve mostly is convex, similar to the
pattern reported over Facebook[22].

Meanwhile, it has been observed that one’s degree is correlated
with the degree of his friends. This is also called degree correlation
or degree assortativity [18; 19]. Over the derived r-graph, we obtain
a correlation of 0.106 between terminal nodes of reciprocate con-
nections, reconfirming the positive degree assortativity as reported
in Twitter [11]. Nevertheless, compared with the strong social net-
work Facebook, Tumblr’s degree assortativity is weaker (0.106 vs.
0.226).

Degree of Separation. Small world phenomenon is almost uni-
versal among social networks. With this huge Tumblr network,
we are able to validate the well-known “six degrees of separation”
as well. Figure 4 displays the distribution of the shortest paths in
the network. To approximate the distribution, we randomly sample
60,000 nodes as seed and calculate for each node the shortest paths
to other nodes. It is observed that the distribution of paths length
reaches its mode with the highest probability at 4 hops, and has a
median of 5 hops. On average, the distance between two connected
nodes is 4.7. Even though the longest shortest path in the approxi-
mation has 29 hops, 90% of shortest paths are within 5.4 hops. All
these numbers are close to those reported on Facebook and Twitter,
yet significantly smaller than that obtained over blogosphere and
instant messenger network [13].

Component Size. The previous result shows that those users who
are connected have a small average distance. It relies on the as-
sumption that most users are connected to each other, which we
shall confirm immediately. Because the Tumblr graph is directed,
we compute out all weakly-connected components by ignoring the
direction of edges. It turns out the giant connected component
(GCC) encompasses 99.61% of nodes in the graph. Over the de-
rived r-graph, 97.55% are residing in the corresponding GCC. This
finding suggests the whole graph is almost just one connected com-
ponent, and almost all users can reach others through just few hops.

To give a palpable understanding, we summarize commonly used
network statistics in Table 1. Those numbers from other popular
social networks (blogosphere, Twitter, Facebook, and MSN) are
also included for comparison. From this compact view, it is obvi-
ous traditional blogs yield a significantly different network struc-
ture. Tumblr, even though originally proposed for blogging, yields
a network structure that is more similar to Twitter and Facebook.
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Figure 3: Degree Distribution of Tumblr Network
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Figure 4: Shortest Path Distribution

4. TUMBLR AS BLOGOSPHERE FOR
CONTENT GENERATION

As Tumblr is initially proposed for the purpose of blogging, here
we analyze its user generated contents. As described earlier, photo
and text posts account for more than 92% of total posts. Hence, we
concentrate only on these two types of posts. One text post may
contain URL, quote or raw message. In this study, we are mainly
interested in the authentic contents generated by users. Hence, we
extract raw messages as the content information of each text post,
by removing quotes and URLs. Similarly, photo posts contains 3
categories of information: photo URL, quote photo caption, raw
photo caption. While the photo URL might contain lots of addi-
tional meta information, it would require tremendous effort to ana-
lyze all images in Tumblr. Hence, we focus on raw photo captions
as the content of each photo post. We end up with two datasets of
content: one is text post, and the other is photo caption.

What’s the effect of no length limit for post? Both Tumblr and
Twitter are considered microblogging platforms, yet there is one

Text Post Photo Caption
Dataset Dataset

# Posts 21.5 M 26.3 M
Mean Post Length 426.7 Bytes 64.3 Bytes
Median Post Length 87 Bytes 29 Bytes
Max Post Length 446.0 K Bytes 485.5 K Bytes

Table 2: Statistics of User Generated Contents

key difference: Tumblr has no length limit while Twitter enforces
the strict limitation of 140 bytes for each tweet. How does this key
difference affect user post behavior?

It has been reported that the average length of posts on Twitter is
67.9 bytes and the median is 60 bytes14. Corresponding statistics
of Tumblr are shown in Table 2. For the text post dataset, the aver-
age length is 426.7 bytes and the median is 87 bytes, which both,
as expected, are longer than that of Twitter. Keep in mind Tum-
blr’s numbers are obtained after removing all quotes, photos and
URLs, which further discounts the discrepancy between Tumblr
and Twitter. The big gap between mean and median is due to a
small percentage of extremely long posts. For instance, the longest
text post is 446K bytes in our sampled dataset. As for photo cap-
tions, naturally we expect it to be much shorter than text posts.
The average length is around 64.3 bytes, but the median is only 29
bytes. Although photo posts are dominant in Tumblr, the number
of text posts and photo captions in Table 2 are comparable, because
majority of photo posts don’t contain any raw photo captions.

A further related question: is the 140-byte limit sensible? We plot
post length distribution of the text post dataset, and zoom into less
than 280 bytes in Figure 5. About 24.48% of posts are beyond
140 bytes, which indicates that at least around one quarter of posts
will have to be rewritten in a more compact version if the limit was
enforced in Tumblr.

Blending all numbers above together, we can see at least two types
of posts: one is more like posting a reference (URL or photo) with
added information or short comments, the other is authentic user
generated content like in traditional blogging. In other words, Tum-
blr is a mix of both types of posts, and its no-length-limit policy
encourages its users to post longer high-quality content directly.

What are people talking about? Because there is no length limit
on Tumblr, the blog post tends to be more meaningful, which al-

14http://www.quora.com/Twitter-1/What-is-the-average-length-of-
a-tweet
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Figure 5: Post Length Distribution

Topic Topical Keywords
Pop music song listen iframe band album lyrics
Music video guitar
Sports game play team win video cookie

ball football top sims fun beat league
Internet internet computer laptop google search online

site facebook drop website app mobile iphone
Pets big dog cat animal pet animals bear tiny

small deal puppy
Medical anxiety pain hospital mental panic cancer

depression brain stress medical
Finance money pay store loan online interest buying

bank apply card credit

Table 3: Topical Keywords from Text Post Dataset

lows us to run topic analysis over the two datasets to have an overview
of the content. We run LDA [4] with 100 topics on both datasets,
and showcase several topics and their corresponding keywords on
Tables 3 and 4, which also show the high quality of textual content
on Tumblr clearly. Medical, Pets, Pop Music, Sports are shared in-
terests across 2 different datasets, although representative topical
keywords might be different even for the same topic. Finance, In-
ternet only attracts enough attentions from text posts, while only
significant amount of photo posts show interest to Photography,
Scenery topics. We want to emphasize that most of these keywords
are semantically meaningful and representative of the topics.

Who are the major contributors of contents? There are two po-
tential hypotheses. 1) One supposes those socially popular users
post more. This is derived from the result that those popular users
are followed by many users, therefore blogging is one way to at-
tract more audience as followers. Meanwhile, it might be true that
blogging is an incentive for celebrities to interact or reward their
followers. 2) The other assumes that long-term users (in terms of
registration time) post more, since they are accustomed to this ser-
vice, and they are more likely to have their own focused commu-
nities or social circles. These peer interactions encourage them to
generate more authentic content to share with others.

Do socially popular users or long-term users generate more con-
tents? In order to answer this question, we choose a fixed time
window of two weeks in August 2013 and examine how frequent
each user blogs on Tumblr. We sort all users based on their in-
degree (or duration time since registration) and then partition them
into 10 equi-width bins. For each bin, we calculate the average
blogging frequency. For easy comparison, we consider the maxi-
mal value of all bins as 1, and normalize the relative ratio for other
bins. The results are displayed in Figure 6, where x-axis from left to
right indicates increasing in-degree (or decreasing duration time).

Topic Topical Keywords
Pets cat dog cute upload kitty batch puppy

pet animal kitten adorable
Scenery summer beach sun sky sunset sea nature

ocean island clouds lake pool beautiful
Pop music song rock band album listen lyrics
Music punk guitar dj pop sound hip
Photography photo instagram pic picture check

daily shoot tbt photography
Sports team world ball win football club

round false soccer league baseball
Medical body pain skin brain depression hospital

teeth drugs problems sick cancer blood

Table 4: Topical Keywords from Photo Caption Dataset

For brevity, we just show the result for text post dataset as similar
patterns were observed over photo captions.

The patterns are strong in both figures. Those users who have
higher in-degree tend to post more, in terms of both mean and me-
dian. One caveat is that what we observe and report here is merely
correlation, and it does not derive causality. Here we draw a con-
servative conclusion that the social popularity is highly positively
correlated with user blog frequency. A similar positive correlation
is also observed in Twitter[11].

In contrast, the pattern in terms of user registration time is beyond
our imagination until we draw the figure. Surprisingly, those users
who either register earliest or register latest tend to post less fre-
quently. Those who are in between are inclined to post more fre-
quently. Obviously, our initial hypothesis about the incentive for
new users to blog more is invalid. There could be different expla-
nations in hindsight. Rather than guessing the underlying explana-
tion, we decide to leave this phenomenon as an open question to
future researchers.

As for reference, we also look at average post-length of users, be-
cause it has been adopted as a simple metric to approximate quality
of blog posts [1]. The corresponding correlations are plot in Fig-
ure 7. In terms of post length, the tail users in social networks are
the winner. Meanwhile, long-term or recently-joined users tend to
post longer blogs. Apparently, this pattern is exactly opposite to
post frequency. That is, the more frequent one blogs, the shorter
the blog post is. And less frequent bloggers tend to have longer
posts. That is totally valid considering each individual has limited
time and resources. We even changed the post length to the max-
imum for each individual user rather than average, but the pattern
remains still.

In summary, without the post length limitation, Tumblr users are
inclined to write longer blogs, and thus leading to higher-quality
user generated content, which can be leveraged for topic analysis.
The social celebrities (those with large number of followers) are
the main contributors of contents, which is similar to Twitter [24].
Surprisingly, long-term users and recently-registered users tend to
blog less frequently. The post-length in general has a negative cor-
relation with post frequency. The more frequently one posts, the
shorter those posts tend to be.

5. TUMBLR FOR INFORMATION PROPA-
GATION

Tumblr offers one feature which is missing in traditional blog ser-
vices: reblog. Once a user posts a blog, other users in Tumblr can
reblog to comment or broadcast to their own followers. This en-
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Figure 6: Correlation of Post Frequency with User In-degree or
Duration Time since Registration

ables information to be propagated through the network. In this
section, we examine the reblogging patterns in Tumblr. We exam-
ine all blog posts uploaded within the first 2 weeks, and count re-
blog events in the subsequent 2 weeks right after the blog is posted,
so that there would be no bias because of the time window selection
in our blog data.

Who are reblogging? Firstly, we would like to understand which
users tend to reblog more? Those people who reblog frequently
serves as the information transmitter. Similar to the previous sec-
tion, we examine the correlation of reblogging behavior with users’
in-degree. As shown in the Figure 8, social celebrities, who are the
major source of contents, reblog a lot more compared with other
users. This reblogging is propagated further through their huge
number of followers. Hence, they serve as both content contrib-
utor and information transmitter. On the other hand, users who
registered earlier reblog more as well. The socially popular and
long-term users are the backbone of Tumblr network to make it a
vibrant community for information propagation and sharing.

Reblog size distribution. Once a blog is posted, it can be re-
blogged by others. Those reblogs can be reblogged even further,
which leads to a tree structure, which is called reblog cascade, with
the first author being the root node. The reblog cascade size indi-
cates the number of reblog actions that have been involved in the
cascade. Figure 9 plots the distribution of reblog cascade sizes.
Not surprisingly, it follows a power-law distribution, with majority
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Figure 7: Correlation of Post Length with User In-degree or Dura-
tion Time since Registration

of reblog cascade involving few reblog events. Yet, within a time
window of two weeks, the maximum cascade could reach 116.6K.
In order to have a detailed understanding of reblog cascades, we
zoom into the short head and plot the CCDF up to reblog cascade
size equivalent to 20 in Figure 9. It is observed that only about
19.32% of reblog cascades have size greater than 10. By contrast,
only 1% of retweet cascades have size larger than 10 [11]. The re-
blog cascades in Tumblr tend to be larger than retweet cascades in
Twitter.

Reblog depth distribution. As shown in previous sections, almost
any pair of users are connected through few hops. How many hops
does one blog to propagate to another user in reality? Hence, we
look at the reblog cascade depth, the maximum number of nodes to
pass in order to reach one leaf node from the root node in the reblog
cascade structure. Note that reblog depth and size are different. A
cascade of depth 2 can involve hundreds of nodes if every other
node in the cascade reblogs the same root node.

Figure 10 plots the distribution of number of hops: again, the reblog
cascade depth distribution follows a power law as well according
to the PDF; when zooming into the CCDF, we observe that only
9.21% of reblog cascades have depth larger than 6. That is, major-
ity of cascades can reach just few hops, which is consistent with the
findings reported over Twitter [3]. Actually, 53.31% of cascades in
Tumblr have depth 2. Nevertheless, the maximum depth among all
cascades can reach 241 based on two week data. This looks un-

SIGKDD Explorations Volume 16, Issue 1 Page 26



In−Degree from Low to High along x−Axis
0

0.2

0.4

0.6

0.8

1

1.2
N

o
rm

a
liz

e
d

 R
e

b
lo

g
 F

re
q

u
e

n
c
y

 

 

Mean of Reblog Frequency
Median of Reblog Frequency

Registration Time from Early to Late along x−Axis
0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 R

e
b

lo
g

 F
re

q
u

e
n

cy

 

 

Mean of Reblog Frequency
Median of Reblog Frequency

Figure 8: Correlation of Reblog Frequency with User In-degree or
Duration Time since Registration

likely at first glimpse, considering any two users are just few hops
away. Indeed, this is because users can add comment while reblog-
ging, and thus one user is likely to involve in one reblog cascade
multiple times. We notice that some Tumblr users adopt reblog as
one way for conversation or chat.

Reblog Structure Distribution. Since most reblog cascades are
few hops, here we show the cascade tree structure distribution up
to size 5 in Figure 11. The structures are sorted based on their cov-
erage. Apparently, a substantial percentage of cascades (36.05%)
are of size 2, i.e., a post being reblogged merely once. Generally
speaking, a reblog cascade of a flat structure tends to have a higher
probability than a reblog cascade of the same size but with a deep
structure. For instance, a reblog cascade of size 3 have two vari-
ants, of which the flat one covers 9.42% cascade while the deep
one drops to 5.85%. The same patten applies to reblog cascades
of size 4 and 5. In other words, it is easier to spread a message
widely rather than deeply in general. This implies that it might be
acceptable to consider only the cascade effect under few hops and
focus those nodes with larger audience when one tries to maximize
influence or information propagation.

Temporal patten of reblog. We have investigated the information
propagation spatially in terms of network topology, now we study
how fast for one blog to be reblogged? Figure 12 displays the dis-
tribution of time gap between a post and its first reblog. There is
a strong bias toward recency. The larger the time gap since a blog
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Figure 9: Distribution of Reblog Cascade Size

is posted, the less likely it would be reblogged. 75.03% of first re-
blog arrive within the first hour since a blog is posted, and 95.84%
of first reblog appears within one day. Comparatively, It has been
reported that “half of retweeting occurs within an hour and 75%
under a day” [11] on Twitter. In short, Tumblr reblog has a strong
bias toward recency, and information propagation on Tumblr is fast.

6. RELATEDWORK
There are rich literatures on both existing and emerging online so-
cial network services. Statistical patterns across different types of
social networks are reported, including traditional blogosphere [21],
user-generated content platforms like Flickr, Youtube and Live-
Journal [15], Twitter [10; 11], instant messenger network [13],
Facebook [22], and Pinterest [7; 20]. Majority of them observe
shared patterns such as long tail distribution for user degrees (power
law or power law with exponential cut-off), small (90% quantile ef-
fective) diameter, positive degree association, homophily effect in
terms of user profiles (age or location), but not with respect to gen-
der. Indeed, people are more likely to talk to the opposite sex [13].
The recent study of Pinterest observed that ladies tend to be more
active and engaged than men [20], and women and men have differ-
ent interests [5]. We have compared Tumblr’s patterns with other
social networks in Table 1 and observed that most of those trend
hold in Tumblr except for some number difference.

Lampe et al. [12] did a set of survey studies on Facebook users,
and shown that people use Facebook to maintain existing offline
connections. Java et al. [10] presented one of the earliest re-
search paper for Twitter, and found that users leverage Twitter to
talk their daily activities and to seek or share information. In ad-
dition, Schwartz [7] is one of the early studies on Pinterest, and
from a statistical point of view that female users repin more but
with fewer followers than male users. While Hochman and Raz [8]
published an early paper using Instagram data, and indicated differ-
ences in local color usage, cultural production rate, for the analysis
of location-based visual information flows.

Existing studies on user influence are based on social networks or
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Figure 10: Distribution of Reblog Cascade Depth

content analysis. McGlohon et al. [14] found topology features
can help us distinguish blogs, the temporal activity of blogs is very
non-uniform and bursty, but it is self-similar. Bakshy et al. [3]
investigated the attributes and relative influence based on Twitter
follower graph, and concluded that word-of-mouth diffusion can
only be harnessed reliably by targeting large numbers of potential
influencers, thereby capturing average effects. Hopcroft et al. [9]
studied the Twitter user influence based on two-way reciprocal rela-
tionship prediction. Weng et al. [23] extended PageRank algorithm
to measure the influence of Twitter users, and took both the topi-
cal similarity between users and link structure into account. Kwak
et al. [11] study the topological and geographical properties on
the entire Twittersphere and they observe some notable properties
of Twitter, such as a non-power-law follower distribution, a short
effective diameter, and low reciprocity, marking a deviation from
known characteristics of human social networks.

However, due to data access limitation, majority of the existing
scholar papers are based on either Twitter data or traditional blog-
ging data. This work closes the gap by providing the first overview
of Tumblr so that others can leverage as a stepstone to investigate
more over this evolving social service or compare with other related
services.
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Figure 12: Distribution of Time Lag between a Blog and its first
Reblog

7. CONCLUSIONS AND FUTUREWORK
In this paper, we provide a statistical overview of Tumblr in terms
of social network structure, content generation and information prop-
agation. We show that Tumblr serves as a social network, a blo-
gosphere and social media simultaneously. It provides high qual-
ity content with rich multimedia information, which offers unique
characteristics to attract youngsters. Meanwhile, we also summa-
rize and offer as rigorous comparison as possible with other social
services based on numbers reported in other papers. Below we
highlight some key findings:

• With multimedia support in Tumblr, photos and text account
for majority of blog posts, while audios and videos are still
rare.

• Tumblr, though initially proposed for blogging, yields a sig-
nificantly different network structure from traditional blogo-
sphere. Tumblr’s network is much denser and better con-
nected. Close to 29.03% of connections on Tumblr are re-
ciprocate, while blogosphere has only 3%. The average dis-
tance between two users in Tumblr is 4.7, which is roughly
half of that in blogosphere. The giant connected component
covers 99.61% of nodes as compared to 75% in blogosphere.

• Tumblr network is highly similar to Twitter and Facebook,
with power-law distribution for in-degree distribution, non-
power law out-degree distribution, positive degree associa-
tivity for reciprocate connections, small distance between
connected nodes, and a dominant giant connected compo-
nent.

• Without post length limitation, Tumblr users tend to post
longer. Approximately 1/4 of text posts have authentic con-
tents beyond 140 bytes, implying a substantial portion of
high quality blog posts for other tasks like topic
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• Those social celebrities tend to be more active. They post
analysis and text mining. and reblog more frequently, serv-
ing as both content generators and information transmitters.
Moreover, frequent bloggers like to write short, while infre-
quent bloggers spend more effort in writing longer posts.

• In terms of duration since registration, those long-term users
and recently registered users post less frequently. Yet, long-
term users reblog more.

• Majority of reblog cascades are tiny in terms of both size
and depth, though extreme ones are not uncommon. It is rel-
atively easier to propagate a message wide but shallow rather
than deep, suggesting the priority for influence maximization
or information propagation.

• Compared with Twitter, Tumblr is more vibrant and faster in
terms of reblog and interactions. Tumblr reblog has a strong
bias toward recency. Approximately 3/4 of the first reblogs
occur within the first hour and 95.84% appear within one
day.

This snapshot research is by no means to be complete. There are
several directions to extend this work. First, some patterns de-
scribed here are correlations. They do not illustrate the underlying
mechanism. It is imperative to differentiate correlation and causal-
ity [2] so that we can better understand the user behavior. Secondly,
it is observed that Tumblr is very popular among young users, as
half of Tumblr’s visitor base being under 25 years old. Why is it
so? We need to combine content analysis, social network analysis,
together with user profiles to figure out. In addition, since more
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ABSTRACT
Big Data is identified by its three Vs, namely velocity, volume,
and variety. The area of data stream processing has long dealt
with the former two Vs velocity and volume. Over a decade of
intensive research, the community has provided many important
research discoveries in the area. The third V of Big Data has
been the result of social media and the large unstructured data
it generates. Streaming techniques have also been proposed re-
cently addressing this emerging need. However, a hidden factor
can represent an important fourth V, that is variability or change.
Our world is changing rapidly, and accounting to variability is
a crucial success factor. This paper provides a survey of change
detection techniques as applied to streaming data. The review is
timely with the rise of Big Data technologies, and the need to
have this important aspect highlighted and its techniques catego-
rized and detailed.

1. INTRODUCTION
Today’s world is changing very fast. The changes occur in every
aspects of life. Therefore, the ability to detect, adapt, and react
to the change play an important role in all aspects of life. The
physical world is often represented in some model or some infor-
mation system. The changes in the physical world are reflected in
terms of the changes in data or model built from data. Therefore,
the nature of data is changing.
The advance of technology results in the data deluge. The data
volume is increasing with an estimated rate of 50% per year [39].
Data flood makes traditional methods including traditional dis-
tributed framework and parallel models inappropriate for pro-
cessing, analyzing, storing, and understanding these massive data
sets. Data deluge needs a new generation of computing tools that
Jim Gray calls the 4th paradigm in scientific computing [25]. Re-
cently, there have been some emerging computing paradigms that
meet the requirements of Big Data as follows. Parallel batch pro-
cessing model only deals with the stationary massive data [17].
However, evolving data continuously arrives with high speed. In
fact, online data stream processing is the main approach to deal-
ing with the problem of three characteristics of Big Data includ-
ing big volume, big velocity, and big variety. Streaming data pro-
cessing is a model of Big Data processing. Streaming data is tem-
poral data in nature. In addition to the temporal nature, streaming
data may include spatial characteristics. For example, geographic
information systems can produce spatial-temporal data stream.
Streaming data processing and mining have been deploying in

real-world systems such as InforSphere Streams (IBM)1, Rapid-
miner Streams Plugin 2, StreamBase 3, MOA 4, AnduIN 5. In
order to deal with the high-speed data streams, a hybrid model
that combines the advantages of both parallel batch processing
model and streaming data processing model is proposed. Some
projects for such hybrid model include S4 6, Storm 7, and Grok 8

.
One of these challenges facing data stream processing and min-
ing is the changing nature of streaming data. Therefore, the abil-
ity to identify trends, patterns, and changes in the underlying pro-
cesses generating data contributes to the success of processing
and mining massive high-speed data streams.
A model of continuous distributed monitoring has been recently
proposed to deal with streaming data coming from multiple
sources. This model has many observers where each observer
monitors a single data stream. The goal of continuous distributed
monitoring is to perform some tasks that need to aggregate the in-
coming data from the observers. The continuous distributed mon-
itoring is applied to monitor networks such as sensor networks,
social networks, networks of ISP [11].
Change detection is the process of identifying differences in the
state of an object or phenomenon by observing it at different
times or different locations in space. In the streaming context,
change detection is the process of segmenting a data stream into
different segments by identifying the points where the stream
dynamics change [53]. A change detection method consists of
the following tasks: change detection and localization of change.
Change detection identifies whether a change occurs, and re-
sponds to the presence of such change. Besides change detec-
tion, localization of changes determines the location of change.
The problem of locating the change has been studied in statistics
in the problems of change point detection.
This paper presents the background issues and notation relevant
to the problem of change detection in data streams.

2. CHANGE DETECTION IN STREAM-
ING DATA

1http://www-01.ibm.com/software/data/infosphere/
streams/
2http://www-ai.cs.uni-dortmund.de/auto?self=
$eit184kc
3http://www.streambase.com/
4http://moa.cs.waikato.ac.nz/
5http://www.tu-ilmenau.de/dbis/research/anduin/
6http://incubator.apache.org/s4/
7https://github.com/nathanmarz/storm/wiki/Tutorial
8https://www.numenta.com/grok_info.html
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Streaming computational model is considered one of the widely-
used models for processing and analyzing massive data. Stream-
ing data processing helps the decision-making process in real-
time. A data stream is defined as follows.

DEFINITION 1. A data stream is an infinite sequence of ele-
ments

S =
{
(X1,T1) , ..,

(
Xj,Tj

)
, ...

}
(1)

Each element is a pair
(
Xj, Tj

)
where Xj is a d-dimensional vec-

tor Xj = (x1, x2, ..., xd) arriving at the time stamp Tj. Time-stamp
is defined over discrete domain with a total order. There are two
types of time-stamps: explicit time-stamp is generated when data
arrive; implicit time-stamp is assigned by some data stream pro-
cessing system.

Streaming data includes the fundamental characteristics as fol-
lows. First, data arrives continuously. Second, streaming data
evolves overtime. Third, streaming data is noisy, corrupted.
Forth, timely interfering is important. From the characteristics
of streaming data and data stream model, data stream process-
ing and mining pose the following challenges. First, as streaming
data arrives rapidly, the techniques of streaming data process and
analysis must keep up with the data rate to prevent from the loss
of important information as well as avoid data redundancy. Sec-
ond, as the speed of streaming data is very high, the data volume
overcomes the processing capacity of the existing systems. Third,
the value of data decreases over time, the recent streaming data is
sufficient for many applications. Therefore, one can only capture
and process the data as soon as it is generated.

2.1 Change Detection: Definitions and Nota-
tion

This section presents concepts and classification of changes
and change detection methods. To develop a change detection
method, we should understand what a change is.

DEFINITION 2. Change is defined as the difference in the
state of an object or phenomenon over time and/or space [52;
1].

In the view of system, change is the process of transition from a
state of a system to another. In other words, a change can be de-
fined as the difference between an earlier state and a later state.
An important distinction between change and difference is that
a change refers to a transition in the state of an object or a phe-
nomenon overtime while the difference means the dissimilarity in
the characteristics of two objects. A change can reflect the short-
term trend or long-term trend. For example, a stock analyst may
be interested in the short-term change of the stock price.
Change detection is defined as the process of identifying differ-
ences in the state of an object or phenomenon by observing it at
different times [54]. In the above definition, a change is detected
on the basis of differences of an object at different times without
considering the differences of an object in locations in space. In
many real world applications, changes can occur both in terms of
both time and space. For example, multiple spatial-temporal data
streams representing triple (latitude, longitude, time) are created
in traffic information systems using GPS [23]. Hence, change de-
tection can be defined as follows.

DEFINITION 3. Change detection is the process of identify-
ing differences in the state of an object or phenomenon by ob-
serving it at different times and/or different locations in space.

A distinction between concept drift detection and change detec-
tion is that concept drift detection focuses on the labeled data
while change detection can deal with both labeled and unlabeled

data. Change analysis both detects and explains the change. Hido
et al. [26] proposed a method for change analysis by using super-
vised learning.

DEFINITION 4. Change point detection is identifying time
points at which properties of time series data change[32]

Depending on specific application, change detection can be
called in different terms such as burst detection, outlier detection,
or anomaly detection. Burst detection a special kind of change
detection. Burst is a period on stream with aggregated sum ex-
ceeding a threshold [31]. Outlier detection is a special kind of
change detection. Anomaly detection can be seen as a special
type of change detection in streaming data.
To find a solution to the problem of change detection, we should
consider the aspects of change of the system in which we want to
detect. As shown in [52], the following aspects of change, which
must be considered, include subject of change, type of change,
cause of change, effect of change, response of change, temporal
issues, and spatial issues. In particular, to design an algorithm
for detecting changes in sensor streaming data, the major ques-
tions we need to answer include: What is the system in which
the changes need to be detected? What are the principles used to
model the problem? What is data type? What are the constraints
of the problem? What is the physical subject of change? What is
the meaning of change to the user? How to respond and react to
this change? How to visualize this change?
A change detection method can fall into one of two types: batch
change detection and sequential change detection. Given a se-
quence of N observations x1, ..,xN , where N is invariant, the task
of a batch change detection method is deciding whether a change
occurs at some point in the sequence by using all N available ob-
servations. When the arriving speed of data is too high, batch
change detection is suitable. In other words, change detection
method using two adjacent windows model will be used. How-
ever, the drawback of batch change detection method is that its
running time is very large when detecting changes in a large
amount of data. In contrast, the sequential change detection prob-
lem is based on the observations so far. If no change is detected,
the next observation is processed. Whenever a change is detected,
the change detector is reset.
Change detection methods can be classified into the following ap-
proaches: threshold-based change detection method; state-based
change detection method; trend-based change detection method.
A change detection algorithm should meet three main require-
ments [37]: accuracy, promptness, and online. The algorithm
should detect as many as possible actual change points and gen-
erate as few as possible false alarms. The algorithm should detect
change point as early as possible. The algorithm should be effi-
cient sufficient for a real time environment.
Change detection in data stream allows us to identify the time-
evolving trends, and time-evolving patterns. Research issues on
mining changes in data streams include modeling and representa-
tion of changes, change-adaptive mining method, and interactive
exploration of changes [19]. Change detection plays an important
role in the field of data stream analysis. Since change in model
may convey interesting time-dependent information and knowl-
edge, the change of the data stream can be used for understanding
the nature of several applications. Basically, interesting research
problems on mining changes in data streams can be classified
into three categories: modeling and representation of changes,
mining methods, and interactive exploration of changes. Change
detection algorithm can be used as a sub-procedure in many other
data stream mining algorithms in order to deal with the changing
data in data streams [28; 4]. A definition of change detection for
streaming data is given as follows

DEFINITION 5. Change detection is the process of segment-
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Figure 1: A general diagram for detecting changes in data stream

ing a data stream into different segments by identifying the points
where the stream dynamics changes [53].

As data streams evolve overtime in nature, there is growing em-
phasis on detecting changes not only in the underlying data dis-
tribution, but also in the models generated by data stream process
and data stream mining. As can be seen in Figure 1, a change
can occur in the data stream, or the streaming model. There-
fore, there are two types of the problems of change detection:
change detection in the data generating process and change detec-
tion in the model generated by a data stream processing, or min-
ing. The fundamental issues of detecting changes in data streams
includes characterizing and quantifying of changes and detect-
ing changes. A change detection method in streaming data needs
a trade-off among space-efficiency, detection performance, and
time-efficiency.

2.2 Change Detection Methods in Streaming
Data

Over the last 50 years, change detection has been widely studied
and applied in both academic research and industry. For exam-
ple, it has been studied for a long time in the following fields:
statistics, signal processing, and control theory. In recent years
many change detection methods have been proposed for stream-
ing data. The approaches to detecting changes in data stream can
be classified as follows.

• Data stream model: A data stream can fall into one of the
following models: time series model, cash register model,
and turnstile model [41]. On the basis of the data stream
model, there are change detection algorithms developed for
the corresponding data stream model. Krishnamurthy et al
presented a sketch-based change detection method for the
most general streaming model Turnstile model [35].

• Data characteristics: Change detection methods can be
classified on the basis of the data characteristics of stream-
ing data such as data dimensionality, data label, and data
type. A data item coming from the data stream can be uni-
variate or multi-dimensional. It would be great if we could
develop a general algorithm able to detect changes in both
univariate and multidimensional data streams. Change de-
tection algorithms in streaming multivariate data have been
presented [14; 34; 36]. Data streams can be classified into
categorial data stream and numerical data stream. We can
develop the change detection algorithm for categorial data
stream or numerical data stream. In real world applications,
each data item in data stream may include multiple at-
tributes of both numerical and categorial data. In such situ-
ations, these data streams can be projected by each attribute
or group of attributes. Change detection methods can be
applied to the corresponding projected data streams after-
wards. Data streams are classified into labeled data stream
and unlabeled data streams. A labeled data stream is one

whose individual example is associated with a given class
label, otherwise, it is unlabeled data stream. A change de-
tection algorithm that identifies changes in the labeled data
stream is supervised change detection [34; 5], while one
detecting changes in the unlabeled data stream is called
unsupervised change detection algorithm [7]. The advan-
tage of the supervised approach is that the detection accu-
racy is high. However, the ground truth data must be gen-
erated. Thus a unsupervised change detection approach is
preferred to the supervised one in case the ground truth
data is unavailable.

• Completeness of statistical information: On the basis of
the completeness of statistical information, a change de-
tection algorithm can fall into one of three following cat-
egories. Parametric change detection schemes are based
on knowing the full prior information before and after
change. For example, in the distributional change detection
methods, the data distributions before and after change are
known [41; 42]. A recently introduced method to detecting
changes in order stock streams is a parametric method in
which the distribution of stream of stock orders confide to
the Poisson distribution [37]. The advantage of paramet-
ric change detection approaches is that they can produce a
higher accurate result than semi-parametric and nonpara-
metric methods. However, in many real-time applications,
data may not confine to any standard distribution, thus
parametric approaches are inapplicable. Semi-parametric
methods are based on the assumption that the distribution
of observations belongs to some class of distribution func-
tion, and parameters of the distribution function change
in disorder moments. Recently, Kuncheva [36] has pro-
posed a semi-parametric method using a semi-parametric
log-likelihood for testing a change. Nonparametric meth-
ods make no distribution assumptions on the data. Non-
parametric methods for detecting changes in the underly-
ing data distribution includes Wilcoxon, kernel method,
Kullback-Leiber distance, and Kolmogorov-Smirnov test.
Nonparametric methods can be classified into two cate-
gories: nonparametric methods using window [33]; non-
parametric methods without using window [27]. We have
paid particular attention to the nonparametric change de-
tection methods using window because in many real-world
applications, the distributions of both null hypothesis and
alternative hypothesis are unknown in advance. Further-
more, we are only interested in recent data. A common
approach to identifying the change is to comparing two
samples in order to find out the difference between them,
which is called two-sample change detection, or window-
based change detection. As data stream is infinite, a slid-
ing window is often used to detect changes. Window based
change detection incurs the high delay [37]. Window-based
change detection scheme is based on the dissimilarity mea-
sure between two distributions or synopses extracted from
the reference window and the current window.

• Velocity of data change: Aggarwal proposes a framework
that can deal with the changes in both spatial velocity pro-
file and temporal velocity profile [1; 2]. In this approach,
the changes in data density occurring at each location are
estimated by estimating velocity density in some user-
defined temporal window. An important advantage of this
approach is that it visualizes the changes. This visualiza-
tion of changes helps user understand the changes intu-
itively.

• Speed of response: If a change detection method needs
to react to the detected changes as fast as possible, the
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Figure 1: A general diagram for detecting changes in data stream

ing a data stream into different segments by identifying the points
where the stream dynamics changes [53].

As data streams evolve overtime in nature, there is growing em-
phasis on detecting changes not only in the underlying data dis-
tribution, but also in the models generated by data stream process
and data stream mining. As can be seen in Figure 1, a change
can occur in the data stream, or the streaming model. There-
fore, there are two types of the problems of change detection:
change detection in the data generating process and change detec-
tion in the model generated by a data stream processing, or min-
ing. The fundamental issues of detecting changes in data streams
includes characterizing and quantifying of changes and detect-
ing changes. A change detection method in streaming data needs
a trade-off among space-efficiency, detection performance, and
time-efficiency.

2.2 Change Detection Methods in Streaming
Data

Over the last 50 years, change detection has been widely studied
and applied in both academic research and industry. For exam-
ple, it has been studied for a long time in the following fields:
statistics, signal processing, and control theory. In recent years
many change detection methods have been proposed for stream-
ing data. The approaches to detecting changes in data stream can
be classified as follows.

• Data stream model: A data stream can fall into one of the
following models: time series model, cash register model,
and turnstile model [41]. On the basis of the data stream
model, there are change detection algorithms developed for
the corresponding data stream model. Krishnamurthy et al
presented a sketch-based change detection method for the
most general streaming model Turnstile model [35].

• Data characteristics: Change detection methods can be
classified on the basis of the data characteristics of stream-
ing data such as data dimensionality, data label, and data
type. A data item coming from the data stream can be uni-
variate or multi-dimensional. It would be great if we could
develop a general algorithm able to detect changes in both
univariate and multidimensional data streams. Change de-
tection algorithms in streaming multivariate data have been
presented [14; 34; 36]. Data streams can be classified into
categorial data stream and numerical data stream. We can
develop the change detection algorithm for categorial data
stream or numerical data stream. In real world applications,
each data item in data stream may include multiple at-
tributes of both numerical and categorial data. In such situ-
ations, these data streams can be projected by each attribute
or group of attributes. Change detection methods can be
applied to the corresponding projected data streams after-
wards. Data streams are classified into labeled data stream
and unlabeled data streams. A labeled data stream is one

whose individual example is associated with a given class
label, otherwise, it is unlabeled data stream. A change de-
tection algorithm that identifies changes in the labeled data
stream is supervised change detection [34; 5], while one
detecting changes in the unlabeled data stream is called
unsupervised change detection algorithm [7]. The advan-
tage of the supervised approach is that the detection accu-
racy is high. However, the ground truth data must be gen-
erated. Thus a unsupervised change detection approach is
preferred to the supervised one in case the ground truth
data is unavailable.

• Completeness of statistical information: On the basis of
the completeness of statistical information, a change de-
tection algorithm can fall into one of three following cat-
egories. Parametric change detection schemes are based
on knowing the full prior information before and after
change. For example, in the distributional change detection
methods, the data distributions before and after change are
known [41; 42]. A recently introduced method to detecting
changes in order stock streams is a parametric method in
which the distribution of stream of stock orders confide to
the Poisson distribution [37]. The advantage of paramet-
ric change detection approaches is that they can produce a
higher accurate result than semi-parametric and nonpara-
metric methods. However, in many real-time applications,
data may not confine to any standard distribution, thus
parametric approaches are inapplicable. Semi-parametric
methods are based on the assumption that the distribution
of observations belongs to some class of distribution func-
tion, and parameters of the distribution function change
in disorder moments. Recently, Kuncheva [36] has pro-
posed a semi-parametric method using a semi-parametric
log-likelihood for testing a change. Nonparametric meth-
ods make no distribution assumptions on the data. Non-
parametric methods for detecting changes in the underly-
ing data distribution includes Wilcoxon, kernel method,
Kullback-Leiber distance, and Kolmogorov-Smirnov test.
Nonparametric methods can be classified into two cate-
gories: nonparametric methods using window [33]; non-
parametric methods without using window [27]. We have
paid particular attention to the nonparametric change de-
tection methods using window because in many real-world
applications, the distributions of both null hypothesis and
alternative hypothesis are unknown in advance. Further-
more, we are only interested in recent data. A common
approach to identifying the change is to comparing two
samples in order to find out the difference between them,
which is called two-sample change detection, or window-
based change detection. As data stream is infinite, a slid-
ing window is often used to detect changes. Window based
change detection incurs the high delay [37]. Window-based
change detection scheme is based on the dissimilarity mea-
sure between two distributions or synopses extracted from
the reference window and the current window.

• Velocity of data change: Aggarwal proposes a framework
that can deal with the changes in both spatial velocity pro-
file and temporal velocity profile [1; 2]. In this approach,
the changes in data density occurring at each location are
estimated by estimating velocity density in some user-
defined temporal window. An important advantage of this
approach is that it visualizes the changes. This visualiza-
tion of changes helps user understand the changes intu-
itively.

• Speed of response: If a change detection method needs
to react to the detected changes as fast as possible, the
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quickest detection of change should be proposed. Quickest
change detection can help a system make a timely alarm.
Timely alarm warning is benefit for economical. In some
cases, it may save the human life such as in fire-fighting
system. Change detection methods using two overlapping
windows can quickly react to the changes in streaming data
while methods using adjacent windows model may incur
the high delay. As change can be abrupt change or gradual
change, there exists the abrupt change detection algorithm
and gradual change detection algorithm [46; 40].

• Decision making methodology: Based on the decision
making methodology, a change detection method can fall
into one of the following categories: rank-based method
[33], density-based method [55], information-theoretic
method [15]. A change detection problem can be also clas-
sified into batch change detection and sequential change
detection. Based on detection delay that a change detector
suffers from, a change detection methods can fall into one
of two following types: real-time change detection, and ret-
rospective change detection. Based on the spatial or tempo-
ral characteristics of data, change detection algorithm can
fall into one of three kinds: spatial change detection; tem-
poral change detection; or spatio-temporal change detec-
tion [6].

• Application: On the basis of applications that generate data
streams, data streams can be classified as into transactional
data stream, sensor data stream, network data stream,
stock order data stream, astronomy data stream, video data
stream, etc. Based on the specific applications, there are the
change detection methods for the corresponding applica-
tions such as change detection methods for sensor stream-
ing data [56], change detection methods for transactional
streaming data [45; 57; 8]. For example, van Leeuwen and
Siebes [57] have presented a change detection method for
transactional streaming data based on the principle of Min-
imum Description Length.

• Stream processing methodology: Based on methodology
for processing data stream, a data stream can be classified
into online data stream and off-line data stream [38]. In
some work, an online data stream is called a live stream
while an off-line data stream is called archived data stream
[18]. Online data stream needs to be processed online be-
cause of its high speed. Such online data streams include
streams of stock ticker, streams of network measurements,
and streams of sensor data,etc. Off-line stream is a se-
quence of updates to warehouses or backup devices. The
queries over the off-line streams can be processed off-
line. However, as it is insufficient time to process off-line
streams, techniques for summarizing data are necessary.
In off-line change detection method, the entire data set is
available for the analysis process to detect the change. The
online method detects the change incrementally based on
the recently incoming data item. An important distinction
between off-line method and online one is that the online
method is constrained by the detection and reaction time
due to the requirement of real-time applications while the
off-line is free from the detection time, and reaction time.
Methods for detecting changes can be useful for stream-
ing data warehouses where both live streams of data and
archived data streams are available [24; 29]. In this work,
we focus on developing the methods for detecting changes
in online data streams, in particular, sensor data streams.

The first work on model-based change detection proposed by [21;
22] is FOCUS. The central idea behind FOCUS is that the models

can be divided into structural and measurement components. To
detect deviation between two models, they compare specific parts
of these corresponding models. The models obtained by data
mining algorithms includes frequent item sets, decision trees, and
clusters. The change in model may convey interesting informa-
tion or knowledge of an event or phenomenon. Model change is
defined in terms of the difference between two set of parameters
of two models and the quantitative characteristics of two mod-
els. As such, model change detection is finding the difference
between two set of parameters of two models and the quantita-
tive characteristics of these two models. We should distinguish
between detection of changes in data distribution by using mod-
els and detection of changes in model built from streaming data.
While model change detection aims to identify the difference be-
tween two models, change detection in the underlying data distri-
bution by using models is inferring the changes in two data sets
from the difference between two models constructed from two
data sets. The changes in the underlying data distribution can in-
duce the corresponding changes in the model produced from the
data generating process.
As models can be generated by statistics method or data mining
methods, change detection in models can be classified into data
mining model and statistical model. Two kinds of models we are
interested in detecting changes are predictive model and explana-
tory model. Predictive model is used to predict the changes in
the future. Detecting changes in the pattern can be beneficial for
many applications. In explanatory model, a change that occurred
is both detected and explained. There are some approaches to
change detection: one-model approach, two-model approach, or
multiple-model approach.
A model-based change detection algorithm consists of two
phases as follows: model construction and change detection.
First, a model is built by using some stream mining method such
as decision tree, clustering, frequent pattern. Second, a difference
measure between two models is computed based the characteris-
tics of the model, this step is also called the quantification of
model difference. Therefore, one fundamental issue here is to
quantify the changes between two models and to determine crite-
ria for making decision whether and when a change in the model
occurs. Recently, some change detection methods in streaming
data by clustering have been proposed [10; 3]. Based on the data
stream mining model, we may have the corresponding problems
of detecting changes in model as follows. Ikonomovska et al. [30]
have presented an algorithm for learning regression trees from
streaming data in the presence of concept drifts. Their change
detection method is based on sequential statistical tests that mon-
itoring the changes of the local error, at each node of tree, and
inform the learning process of the local changes.
Detecting changes of stream cluster model has been received in-
creasing attention. Zhou et al. [59] have presented a method for
tracking the evolution of clusters over sliding windows by using
temporal cluster features and the exponential histogram, which
called exponential histogram of cluster features. Chen and Liu [9]
have presented a framework for detecting the changes in cluster-
ing structures constructed from categorial data streams by using
hierarchial entropy trees to capture the entropy characteristics of
clusters, and then detecting changes in clustering structures based
on these entropy characteristics.
Based on the data stream mining model, we may have the cor-
responding problems of detecting changes in model as follows
[14]. Recently Ng and Dash [44] have introduced an algorithm
for mining frequent patterns from evolving data streams. Their
algorithm is capable of updating the frequent patterns based on
the algorithms for detecting changes in the underlying data dis-
tributions. Two windows are used for change detection: the ref-
erence window and the current window. At the initial stage, the
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quickest detection of change should be proposed. Quickest
change detection can help a system make a timely alarm.
Timely alarm warning is benefit for economical. In some
cases, it may save the human life such as in fire-fighting
system. Change detection methods using two overlapping
windows can quickly react to the changes in streaming data
while methods using adjacent windows model may incur
the high delay. As change can be abrupt change or gradual
change, there exists the abrupt change detection algorithm
and gradual change detection algorithm [46; 40].

• Decision making methodology: Based on the decision
making methodology, a change detection method can fall
into one of the following categories: rank-based method
[33], density-based method [55], information-theoretic
method [15]. A change detection problem can be also clas-
sified into batch change detection and sequential change
detection. Based on detection delay that a change detector
suffers from, a change detection methods can fall into one
of two following types: real-time change detection, and ret-
rospective change detection. Based on the spatial or tempo-
ral characteristics of data, change detection algorithm can
fall into one of three kinds: spatial change detection; tem-
poral change detection; or spatio-temporal change detec-
tion [6].

• Application: On the basis of applications that generate data
streams, data streams can be classified as into transactional
data stream, sensor data stream, network data stream,
stock order data stream, astronomy data stream, video data
stream, etc. Based on the specific applications, there are the
change detection methods for the corresponding applica-
tions such as change detection methods for sensor stream-
ing data [56], change detection methods for transactional
streaming data [45; 57; 8]. For example, van Leeuwen and
Siebes [57] have presented a change detection method for
transactional streaming data based on the principle of Min-
imum Description Length.

• Stream processing methodology: Based on methodology
for processing data stream, a data stream can be classified
into online data stream and off-line data stream [38]. In
some work, an online data stream is called a live stream
while an off-line data stream is called archived data stream
[18]. Online data stream needs to be processed online be-
cause of its high speed. Such online data streams include
streams of stock ticker, streams of network measurements,
and streams of sensor data,etc. Off-line stream is a se-
quence of updates to warehouses or backup devices. The
queries over the off-line streams can be processed off-
line. However, as it is insufficient time to process off-line
streams, techniques for summarizing data are necessary.
In off-line change detection method, the entire data set is
available for the analysis process to detect the change. The
online method detects the change incrementally based on
the recently incoming data item. An important distinction
between off-line method and online one is that the online
method is constrained by the detection and reaction time
due to the requirement of real-time applications while the
off-line is free from the detection time, and reaction time.
Methods for detecting changes can be useful for stream-
ing data warehouses where both live streams of data and
archived data streams are available [24; 29]. In this work,
we focus on developing the methods for detecting changes
in online data streams, in particular, sensor data streams.

The first work on model-based change detection proposed by [21;
22] is FOCUS. The central idea behind FOCUS is that the models

can be divided into structural and measurement components. To
detect deviation between two models, they compare specific parts
of these corresponding models. The models obtained by data
mining algorithms includes frequent item sets, decision trees, and
clusters. The change in model may convey interesting informa-
tion or knowledge of an event or phenomenon. Model change is
defined in terms of the difference between two set of parameters
of two models and the quantitative characteristics of two mod-
els. As such, model change detection is finding the difference
between two set of parameters of two models and the quantita-
tive characteristics of these two models. We should distinguish
between detection of changes in data distribution by using mod-
els and detection of changes in model built from streaming data.
While model change detection aims to identify the difference be-
tween two models, change detection in the underlying data distri-
bution by using models is inferring the changes in two data sets
from the difference between two models constructed from two
data sets. The changes in the underlying data distribution can in-
duce the corresponding changes in the model produced from the
data generating process.
As models can be generated by statistics method or data mining
methods, change detection in models can be classified into data
mining model and statistical model. Two kinds of models we are
interested in detecting changes are predictive model and explana-
tory model. Predictive model is used to predict the changes in
the future. Detecting changes in the pattern can be beneficial for
many applications. In explanatory model, a change that occurred
is both detected and explained. There are some approaches to
change detection: one-model approach, two-model approach, or
multiple-model approach.
A model-based change detection algorithm consists of two
phases as follows: model construction and change detection.
First, a model is built by using some stream mining method such
as decision tree, clustering, frequent pattern. Second, a difference
measure between two models is computed based the characteris-
tics of the model, this step is also called the quantification of
model difference. Therefore, one fundamental issue here is to
quantify the changes between two models and to determine crite-
ria for making decision whether and when a change in the model
occurs. Recently, some change detection methods in streaming
data by clustering have been proposed [10; 3]. Based on the data
stream mining model, we may have the corresponding problems
of detecting changes in model as follows. Ikonomovska et al. [30]
have presented an algorithm for learning regression trees from
streaming data in the presence of concept drifts. Their change
detection method is based on sequential statistical tests that mon-
itoring the changes of the local error, at each node of tree, and
inform the learning process of the local changes.
Detecting changes of stream cluster model has been received in-
creasing attention. Zhou et al. [59] have presented a method for
tracking the evolution of clusters over sliding windows by using
temporal cluster features and the exponential histogram, which
called exponential histogram of cluster features. Chen and Liu [9]
have presented a framework for detecting the changes in cluster-
ing structures constructed from categorial data streams by using
hierarchial entropy trees to capture the entropy characteristics of
clusters, and then detecting changes in clustering structures based
on these entropy characteristics.
Based on the data stream mining model, we may have the cor-
responding problems of detecting changes in model as follows
[14]. Recently Ng and Dash [44] have introduced an algorithm
for mining frequent patterns from evolving data streams. Their
algorithm is capable of updating the frequent patterns based on
the algorithms for detecting changes in the underlying data dis-
tributions. Two windows are used for change detection: the ref-
erence window and the current window. At the initial stage, the
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reference is initialized with the first batch of transactions from
data stream. The current window moves on the data stream and
captures the next batch of transactions. Two frequent item sets
are constructed from two corresponding windows by using the
Apriori algorithm. A statistical test is performed on two absolute
support values that are computed by the Apriori from the refer-
ence window and current window. Based on the statistical test,
the deviation can be significant or insignificant. If the deviation
is significant then a change in the data stream is reported. Chang
and Lee [8] have presented a method for monitoring the recent
change of frequent item sets from data stream by using sliding
window.

2.3 Design Methodology
There are two design methodologies for developing the change
detection algorithms in streaming data. The first methodology
is to adapt the existing change detection methods for streaming
data. However, many traditional change detection methods can-
not be extended for streaming data because of the high compu-
tational complexity such as some kernel-based change detection
methods, and density-based change detection methods. The sec-
ond methodology is to develop new change detection methods for
streaming data.
There are two common approaches to the problem of change de-
tection in streaming data distributions: distance-based change de-
tectors and predictive model-based change detectors. In the for-
mer, two windows are used to extract two data segments from the
data stream. The change is quantified by using some dissimilar-
ity measure. If the dissimilarity measure is greater than a given
threshold then a change is detected. Similar to distance-based
change detectors, two windows are used for detecting changes.
Instead of comparing the dissimilarity measure between two win-
dows with a given threshold, a change is detected by using the
prediction error of the model built from the current window and
the predictive model constructed from the reference window.

3. DISTRIBUTED CHANGE DETECTION
IN STREAMING DATA

Knowledge discovery from massive amount of streaming data
can be achieved only when we could develop the change detec-
tion frameworks that monitor streaming data created by multiple
sources such as sensor networks, WWW [13]. The objectives of
designing a distributed change detection scheme are maximizing
the lifetime of the network, maximizing the detection capability,
and minimizing the communication cost [58].
There are two approaches to the problem of change detection in
streaming data that is created from multiple sources. In the cen-
tralized approach: all remote sites send raw data to the coordi-
nator. The coordinator aggregates all the raw streaming data that
is received from the remote sites. Detection of changes is per-
formed on the aggregated streaming data. In most cases, com-
munication consumes the largest amount of energy. The lifetime
of sensors therefore drastically reduces when they communicate
raw measurements to a centralized server for analysis. Central-
ized approaches suffer from the following problems: communi-
cation constraint, power consumption, robustness, and privacy.
Distributed detection of changes in streaming data addresses the
challenges that come from the problem of change detection, data
stream processing, and the problem of distributed computing.
The challenges coming from the distributed computing environ-
ment are as follows

• Distributed change detection in streaming data is a problem
of distributed computing in nature. Therefore, a distributed
framework for detecting changes should meet the proper-
ties of distributed computing such scalability, and fault tol-

erance. The scalability refers to the ability to extend the
size of the network without significantly reducing the per-
formance of the framework. As faults may occur due to
the transmission error and the effects of noisy channels be-
tween local sensors and fusion center, a distributed change
detection method should be able to tolerate these faults in
order to assure the function of the system.

• Distributed change detection using the local approach is di-
rectly relevant to the problem of multiple hypotheses test-
ing and data fusion because each local change detector
needs to perform a hypothesis test to determine whether
a change occurs. Therefore, besides considering the de-
tection performance of local change detection algorithms
including probability of detection and probability of false
alarm at the node level, the detection performance of a dis-
tributed change detection method at the fusion center must
be taken into account.

Distributed detection and data fusion have been widely studied
for many decades. However, only recently, distributed detection
in streaming data has received attention.

3.1 Distributed Detection: One-shot versus
Continuous

Distributed detection of changes can be classified into two types
of models as follows.

• One-shot distributed detection of changes: Figure 2 shows
two models of one-shot distributed change detection. One-
shot change detection method means a change detector de-
tects and reacts to the detected change once a change is
detected. One-shot distributed change detection have re-
ceived great deal of attention for a long time. One-shot dis-
tributed change detection include two models: distributed
detection with decision with decision fusion as shown in
Figure 2(a); distributed detection without decision fusion
as illustrated in Figure 2(b). What are the differences be-
tween one-shot detection and continuous detection.

• Continuous distributed detection of changes: In this chap-
ter, we propose two continuous distributed detection mod-
els as shown in Figure 3. An important distinction between
continuous distributed detection of changes and one-shot
distributed detection of changes is that the inputs to the
one-shot distributed change detection are batches of data
while the inputs to the continuous distributed detection of
changes are the data streams in which data items continu-
ously arrive.

Distributed detection model without fusion is a truly distributed
detection model in which The decision-making process occurs at
each sensor.

3.2 Locality in Distributed Computing
As one of the properties of distributed computational systems
is locality [43], a distributed algorithm for detecting changes in
streaming data should meet the locality. A local algorithm is de-
fined as one whose resource consumption is independent of the
system size. The scalability of distributed stream mining algo-
rithms can be achieved by using the local change detection algo-
rithms
Local algorithms can fall into one of two categories [16]:Exact
local algorithms are defined as ones that produce the same results
as a centralized algorithm; Approximate local algorithms are al-
gorithms that produce approximations of the results that central-
ized algorithms would produce. Two attractive properties of lo-
cal algorithms are scalability and fault tolerance. A distributed
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reference is initialized with the first batch of transactions from
data stream. The current window moves on the data stream and
captures the next batch of transactions. Two frequent item sets
are constructed from two corresponding windows by using the
Apriori algorithm. A statistical test is performed on two absolute
support values that are computed by the Apriori from the refer-
ence window and current window. Based on the statistical test,
the deviation can be significant or insignificant. If the deviation
is significant then a change in the data stream is reported. Chang
and Lee [8] have presented a method for monitoring the recent
change of frequent item sets from data stream by using sliding
window.

2.3 Design Methodology
There are two design methodologies for developing the change
detection algorithms in streaming data. The first methodology
is to adapt the existing change detection methods for streaming
data. However, many traditional change detection methods can-
not be extended for streaming data because of the high compu-
tational complexity such as some kernel-based change detection
methods, and density-based change detection methods. The sec-
ond methodology is to develop new change detection methods for
streaming data.
There are two common approaches to the problem of change de-
tection in streaming data distributions: distance-based change de-
tectors and predictive model-based change detectors. In the for-
mer, two windows are used to extract two data segments from the
data stream. The change is quantified by using some dissimilar-
ity measure. If the dissimilarity measure is greater than a given
threshold then a change is detected. Similar to distance-based
change detectors, two windows are used for detecting changes.
Instead of comparing the dissimilarity measure between two win-
dows with a given threshold, a change is detected by using the
prediction error of the model built from the current window and
the predictive model constructed from the reference window.

3. DISTRIBUTED CHANGE DETECTION
IN STREAMING DATA

Knowledge discovery from massive amount of streaming data
can be achieved only when we could develop the change detec-
tion frameworks that monitor streaming data created by multiple
sources such as sensor networks, WWW [13]. The objectives of
designing a distributed change detection scheme are maximizing
the lifetime of the network, maximizing the detection capability,
and minimizing the communication cost [58].
There are two approaches to the problem of change detection in
streaming data that is created from multiple sources. In the cen-
tralized approach: all remote sites send raw data to the coordi-
nator. The coordinator aggregates all the raw streaming data that
is received from the remote sites. Detection of changes is per-
formed on the aggregated streaming data. In most cases, com-
munication consumes the largest amount of energy. The lifetime
of sensors therefore drastically reduces when they communicate
raw measurements to a centralized server for analysis. Central-
ized approaches suffer from the following problems: communi-
cation constraint, power consumption, robustness, and privacy.
Distributed detection of changes in streaming data addresses the
challenges that come from the problem of change detection, data
stream processing, and the problem of distributed computing.
The challenges coming from the distributed computing environ-
ment are as follows

• Distributed change detection in streaming data is a problem
of distributed computing in nature. Therefore, a distributed
framework for detecting changes should meet the proper-
ties of distributed computing such scalability, and fault tol-

erance. The scalability refers to the ability to extend the
size of the network without significantly reducing the per-
formance of the framework. As faults may occur due to
the transmission error and the effects of noisy channels be-
tween local sensors and fusion center, a distributed change
detection method should be able to tolerate these faults in
order to assure the function of the system.

• Distributed change detection using the local approach is di-
rectly relevant to the problem of multiple hypotheses test-
ing and data fusion because each local change detector
needs to perform a hypothesis test to determine whether
a change occurs. Therefore, besides considering the de-
tection performance of local change detection algorithms
including probability of detection and probability of false
alarm at the node level, the detection performance of a dis-
tributed change detection method at the fusion center must
be taken into account.

Distributed detection and data fusion have been widely studied
for many decades. However, only recently, distributed detection
in streaming data has received attention.

3.1 Distributed Detection: One-shot versus
Continuous

Distributed detection of changes can be classified into two types
of models as follows.

• One-shot distributed detection of changes: Figure 2 shows
two models of one-shot distributed change detection. One-
shot change detection method means a change detector de-
tects and reacts to the detected change once a change is
detected. One-shot distributed change detection have re-
ceived great deal of attention for a long time. One-shot dis-
tributed change detection include two models: distributed
detection with decision with decision fusion as shown in
Figure 2(a); distributed detection without decision fusion
as illustrated in Figure 2(b). What are the differences be-
tween one-shot detection and continuous detection.

• Continuous distributed detection of changes: In this chap-
ter, we propose two continuous distributed detection mod-
els as shown in Figure 3. An important distinction between
continuous distributed detection of changes and one-shot
distributed detection of changes is that the inputs to the
one-shot distributed change detection are batches of data
while the inputs to the continuous distributed detection of
changes are the data streams in which data items continu-
ously arrive.

Distributed detection model without fusion is a truly distributed
detection model in which The decision-making process occurs at
each sensor.

3.2 Locality in Distributed Computing
As one of the properties of distributed computational systems
is locality [43], a distributed algorithm for detecting changes in
streaming data should meet the locality. A local algorithm is de-
fined as one whose resource consumption is independent of the
system size. The scalability of distributed stream mining algo-
rithms can be achieved by using the local change detection algo-
rithms
Local algorithms can fall into one of two categories [16]:Exact
local algorithms are defined as ones that produce the same results
as a centralized algorithm; Approximate local algorithms are al-
gorithms that produce approximations of the results that central-
ized algorithms would produce. Two attractive properties of lo-
cal algorithms are scalability and fault tolerance. A distributed
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framework for mining streaming data should be robust to net-
work partitions, and node failures.
The advantage of local approaches is the ability to preserve pri-
vacy [20]. A drawback of the local approach to the problem of
distributed change detection is the synchronization problem. For
example, the local change approach can meet the principle of lo-
calized algorithms in wireless sensor networks in which data pro-
cessing is performed at node-level as much as possible in order
to reduce the amount of information to be sent in the network.

3.3 Distributed Detection of Changes in
Streaming Data

Over the last decades, the problem of decentralized detection has
received much attention. There are two directions of research
on decentralized detection. The first approach focuses on aggre-
gating measurements from multiple sensors to test a single hy-
pothesis. The second focuses on dealing with multiple dependent
testing/estimation tasks from multiple sensors [51]. Distributed
change detection usually involves a set of sensors that receive
observations from the environment and then transmit those obser-
vations back to fusion center in order to reach the final consensus
of detection. Decentralized detection and data fusion are there-
fore two closely related tasks that arise in the context of sensor
networks [48; 47]. Two traditional approaches to the decentral-
ized change detection are data fusion, and decision fusion. In data
fusion, each node detects change and sends quantized version of
its observation to a fusion center responsible for making deci-
sion on the detected changes, and further relaying information.
In contrast, in decision fusion, each node performs local change
detection by using some local change algorithm and updates its
decision based on the received information and broadcasts again
its new decision. This process repeats until consensus among
the nodes are reached. Compared to data fusion, decision fusion
can reduce the communication cost because sensors need only to
transmit the local decisions represented by small data structures.
Although there is great deal of work on distributed detection and
data fusion, most of work focuses on the one-time change detec-
tion solutions. One-time query is defined as a query that needs to
proceed data once in order to provide the answer [12]. Likewise,
one-time change detection method is a change detection that re-
quires to proceed data once in response to the change occurred. In
real-world applications, we need the approaches capable of con-
tinuously monitoring the changes of the events occurring in the
environment. Recently, work on continuous detection and mon-
itoring of changes has been started receiving attention such as
[49; 13; 50]. Das et al. [13] have presented a scalable distributed
framework for detecting changes in astronomy data streams us-
ing local, asynchronous eigen monitoring algorithms. Palpanas
et al. [49] proposed a distributed framework for outlier detection
in real-time data streams. In their framework, each sensor esti-
mates and maintains a model for its underlying distribution by
using kernel density estimators. However, they did not show how
to reach the global detection decision.

4. CONCLUDING REMARKS
We argued in this paper that variability, or simply change, is cru-
cial in a world full of affecting factors that alter the behavior of
the data, and consequently the underlying model. The ability to
detect such changes in centralized as well as distributed system
plays an important role in identifying validity of data models.
The paper presented the state-of-the-art in this area of paramount
importance. Techniques, in some cases, are tightly coupled with
application domains. However, most of the techniques reviewed
in this paper are generic and could be adapted to different do-
mains of applications.
With Big Data technologies reaching a mature stage, the future

work in change detection is expected to exploit such scalable data
processing tools in efficiently detect, localize and classify occur-
ring changes. For example, distributed change detection models
can make use of the MapReduce framework to accelerate their
respective processes.
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plays an important role in identifying validity of data models.
The paper presented the state-of-the-art in this area of paramount
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application domains. However, most of the techniques reviewed
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mains of applications.
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processing tools in efficiently detect, localize and classify occur-
ring changes. For example, distributed change detection models
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ABSTRACT
Most data analytics applications are industry/domain specific, e.g.,
predicting patients at high risk of being admitted to intensive care
unit in the healthcare sector or predicting malicious SMSs in the
telecommunication sector. Existing solutions are based on “best
practices”, i.e., the systems’ decisions are knowledge-driven
and/or data-driven. However, there are rules and exceptional cases
that can only be precisely formulated and identified by
subject-matter experts (SMEs) who have accumulated many years
of experience. This paper envisions a more intelligent database
management system (DBMS) that captures such knowledge to
effectively address the industry/domain specific applications. At
the core, the system is a hybrid human-machine database engine
where the machine interacts with the SMEs as part of a feedback
loop to gather, infer, ascertain and enhance the database
knowledge and processing. We discuss the challenges towards
building such a system through examples in healthcare predictive
analysis – a popular area for big data analytics.

1. INTRODUCTION
Most data analytics applications are industry or domain specific.
For example, many prediction tasks in healthcare require prior
medical knowledge, such as, identifying patients at high risk of
being admitted to the intensive care unit, or predicting the
probability of the patients being readmitted into the hospital
within 30 days after discharge. Another example from the
telecommunication sector is the identification of malicious SMSs
requiring inputs from security experts. Building competent tools
to effectively address these problems are important, as industrial
organizations face increasing pressures to improve outcomes while
reducing costs [3].
Existing solutions to industry or domain specific tasks are based
on “best practices”. These solutions are knowledge-driven (i.e.,
utilizing general guidelines such existing clinical guidelines or
literature from medical journals) and/or data-driven (i.e., deriving
rules from observational data) [31]. Let us consider the task of
identifying the risk factors related to heart failure. The
knowledge-driven solution uses risk factors identified from
existing clinical knowledge or literature, such as, age,
hypertension and diabetes status. However, it may miss out other
unknown risk factors specific to the population of interest. The
reason is that the guidelines are generic and based on existing
knowledge, which results in models that may not adequately
represent the underlying complex disease processes in the
population with a comprehensive list of risk factors [31]. The

data-driven solution employs machine learning algorithms to
derive risk factors solely from observational data. An alternative
approach combines the knowledge-driven and data-driven
approaches in the data analytics applications [31]. However, there
are exceptional situations where it is not easy to capture or
formalize, and where neither general guidelines are available nor
rules can be derived from data (e.g., in rare conditions). Instead, it
is only through many years of experience can subject-matter
experts (SMEs) formulate and identify these situations. The
challenge then is to be able to capture and utilize such knowledge
to effectively support industry/domain specific applications, e.g.,
improving the accuracy of the prediction tasks.
This paper proposes building the next generation of intelligent
database management systems (DBMSs) that exploit contextual
crowd intelligence. The crowd intelligence here refers to the
knowledge and experience of subject-matter experts (SMEs).
Although such knowledge is an important component in
transforming data into information, it is currently not captured by
a structured system. The participants in an intelligent crowd are
domain experts rather than “unknown” lay-persons in existing
systems that use crowdsourcing as part of database query
processing (e.g., CrowdDB [13], Deco [24], Qurk [23],
CDAS [12; 22]) and information extraction or knowledge
acquisition (e.g., HIGGINS [21] and CASTLE [28]). For
applications where data confidentiality and privacy are important
(e.g., healthcare analytics), the intelligent crowd may consist of
only experts from within the organization, since the tasks cannot
be outsourced to external parties. Given that the crowd is known
apriori, there is an assurance of user accountability, which
translates to an assurance in the quality of the answers. A recent
system, called Data Tamer [30], also proposed to leverage on
expert crowdsourcing system to enhance machine computation but
in the context of data curation. Our proposition differs from Data
Tamer in several aspects. First, the target applications of our work
(i.e., data analytics) are different from those in Data Tamer (i.e.,
data curation). Thus, each system needs to address a unique,
different set of challenges. Second, the domain experts in our
context are also users/reviewers of the system. Thus, the experts
are likely to take ownership and hence are motivated to improve
the accuracy of the analytics and the usability of the applications.
This would reduce the need to localize/customize the system since
the experts/users are continuously interacting with the system;
these experts define the “best practices” for the system. For
example, doctors in a particular department may use a different
convention or notation from another department, e.g., when
doctors write “PID” in the orthopedic department, the acronym
refers to the “Prolapsed Intervertebral Disc” only and not the
“Pelvic Inflammatory Disease”. Clearly, such knowledge can only
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be provided by internal domain experts. In contrast, experts in
Data Tamer are not the users of the system and hence there is a
need to customize/localize the system for different use-cases.
In order to entrench the crowd intelligence into the DBMS, the
system needs to keep SMEs as part of the feedback loop. The
system can then further utilize feedback provided from the SMEs
to infer, ascertain and enhance its processing, thus continuously
improving the effectiveness of the system. For example, when
predicting the risk of unplanned patient readmissions, the system
asks the doctors to label patients who the system has low
confidence in predicting their readmissions, and the
rules/hypotheses that the doctors used to do the labeling. One
example of such an expert rule is that an elderly patient who lives
alone and have had several severe diseases is likely to be
readmitted into the hospital frequently. The system would then
verify or adjust these rules/hypotheses and revert back to the
doctors with evidence to support or reject their rules/hypotheses.
Such interactions are beneficial to both the system and the doctors.
Eventually, the application system evolves over time. SMEs
become part of this evolving process by sharing their domain
knowledge and rich experience, thereby contributing to the
improvement and development of the system. Hence, the experts
are more willing and comfortable to use the system to alleviate the
burden of their duties.
This work is part of our CIIDAA project on building large scale,
Comprehensive IT Infrastructure for Data-intensive Applications
and Analysis [2]. Our collaborators are clinicians in the National
University Health System (NUHS) [5]. The project aims to harness
the power of cloud computing to solve big data problems in the real
world, with healthcare predictive analytics being a popular area for
big data analytics [26].

Organization. The remainder of this paper is organized as
follows. Section 2 presents motivating examples in healthcare
predictive analytics. Section 3 discusses the architecture of an
intelligent DBMS that aims to embed contextual crowd
intelligence. Section 4 elaborates on research problems that we
need to address in order to build an intelligent DBMS. Section 5
presents our preliminary results on the problem of predicting the
risk of unplanned patient readmissions. Section 6 presents the
related work. Finally, Section 7 concludes our work.

2. MOTIVATING EXAMPLES
Let us consider a hospital that has an integrated view of the medical
care records of patients as shown in Table 1. The table contains two
types of information:

• Structured information, including the case identifier,
patient’s name, age, gender, race, the number of days that
the patient stayed at the hospital during a particular visit
(LengthO f Stay), and the number of days before the patient
was readmitted into the hospital after discharge
(Readmission) ; and

• Unstructured information, i.e., free-text from a doctor’s note
that contains additional and useful information of a patient
healthcare profile such as his past medical history, social
factors, previous medications, complaints of patients based
on a doctor’s investigations, major lab results, issues and
progress, etc.

The tuples in this table are extracted from real cases of patients
admitted to the National University Hospital (NUH) in Singapore.
Healthcare professionals often have queries relating to predicting
the severity of patients’ condition, such as, identifying patients at

high risk of being admitted to intensive care unit, or predicting the
probability of the patients being readmitted into the hospital soon
after discharge. There are also queries that monitor real-time data
of patients in critical conditions for unusual conditions, such as,
whether patients are at high risk of collapsing. With correct
predictions, doctors can intervene early to alleviate the
deterioration of patient’s health outcome. This can potentially
reduce the burden of limited healthcare resources in the primary
and acute care facilities. For instance, if a patient is at high-risk
for unplanned post discharge readmission, he can potentially
benefit from close followed-up after discharge, e.g., the hospital
sends a case manager or nurse to examine him once every three
days. In addition, important queries related to public health
surveillance can be answered in a timely fashion. For example, it
is critical to provide real-time, early information to alert
decision-makers of emerging threats that need to be addressed in a
particular population. The ultimate goal of these predictive queries
is to predict, pre-empt and prevent for better healthcare outcome.

3. AN INTELLIGENT DBMS FOR BIG DA­
TA ANALYTICS

In this section, we discuss the challenges of addressing big data
analytics and present an overview of a hybrid human-machine
system for these tasks.

3.1 Challenges of Big Data Analytics
Essentially, many tasks of big data analytics can be viewed as
conventional data mining problems, such as, classifying patients
into different class labels (high or low risk of being admitted to
intensive care units). There are, however, three important aspects
that differentiate big data analytics from traditional machine
learning problems.

• First, many valuable features for the analytics tasks are
stored in unstructured data, for example, doctor’s notes [25].
We cannot simply treat these notes as traditional
“bag-of-words” documents. Instead, we need powerful tools
to extract from these documents the right entities (such as,
diseases, medications, laboratory tests) and domain-specific
relationships (such as, the relationship between a disease
and a laboratory test). The text in unstructured data has to
be contextualized to each organization’s practice, e.g.,
doctors in a particular department may use a different
convention or notation from another department.

• Second, there is usually a lack of training samples with
well-defined class labels. For instance, when predicting the
risk of committing suicide for each patient, the total number
patients known to have committed suicide (i.e., class 1) is
very small. However, it does not mean that all the remaining
patients did not commit suicide (i.e., class 0). Hence we
need to infer the correct class labels for these patients. This
problem also occurs in other domains such as home security
and banking. For example, one important task that many
national security agencies need to perform is identifying
persons or groups of people who will likely commit a
crime [4]. In this setting, the agency maintains a very small
set of people who have committed crime. However, we
cannot simply assume that the remaining people are not
likely to commit crime. As before, we need to infer the
correct class labels for these people. Another example is in
telecommunication, where a service provider wants to
predict whether an SMS is malicious. In this case, we do not
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CaseID Name Age Gender Race LengthOfStay Readmission Doctor’s note

Case 1 Patient 1 71 Female Chinese 5 20

PMH:
1 IHD
- on GTN 0.5mg prn
2 DM
- on Metformin 750mg
- HbA1c 7.5% 09/12
3 HL
Stays with son · · ·

Case 2 Patient 2 60 Male Malaysian 10 20

Social issues: Single, no child
Used to live with friend in a shophouse
Now at sheltered home since Sept 2011.
No next-of-skin or visitor.
· · ·

Table 1: Medical care table

have any predefined class labels and might need to ask
security experts to provide the class labels for some sample
cases.

• Lastly, data in different domains (e.g., healthcare,
telecommunication, home security) is expected to grow
dramatically in the years ahead [26]. For instance, patients
in intensive care units are constantly being monitored, and
their historical records have to be retained. This can easily
result in hundreds of millions of (historical) records of
patients. As another example, during a mass casualty
disaster (e.g., SARS, H5N1), there is an overwhelming
number of patients who have to be monitored and tracked,
and information about each patient is huge by itself.
Furthermore, streaming data arrive continuously, e.g., new
data from the real-time data feed are constantly being
inserted. Hence, the system in healthcare setting must
provide the real-time predictions, e.g., predicting the
survival of patients in the next 6 hours.

The three above mentioned aspects call for a new generation of
intelligent DBMSs that can provide effective solutions for big data
analytics. Our proposition of exploiting contextual crowd
intelligence is, we believe, a big step towards this goal.

3.2 Contextual Data Management
The central theme of crowd intelligence is to get domain experts
engaged as both the participants to fine tune the system and the
end-users of the system. Figure 1 presents an intelligent system
that exploits contextual crowd intelligence for big data analytics.
The system first builds a knowledge base that will be subsequently
used for the analytics tasks based on historical data, domain
knowledge from SMEs (e.g., doctors), and other sources such as
general clinical guidelines. Each source contributes to build some
“weak classifiers”. The system needs to combine these classifiers
to derive a final classifier that achieves a high level of accuracy for
prediction purposes. The system also needs to go through several
iterations of interaction with the experts to refine, for example, the
final classifier. As such, the experts participate in the entire
process in fine tuning the system and decide on the “best
practices”. When real-time data or feed arrives, the system
performs the prediction on-the-fly and alerts the experts
immediately. Hence, the experts become the end-users of the
system.
We have developed the epiC system [1; 10; 19] to support large
scale data processing, and are extending it to support healthcare
analytics. Figure 2 shows the software stack of epiC. At the
bottom, the storage layer supports different storage systems (e.g.,

Hadoop Distributed File System (HDFS) and a key-value storage
system, ES2 [8]) for both unstructured and structured data. The
next layer (which is the security layer) enables users to protect
data privacy by encryption. The third layer (which is the
distributed processing layer) provides a distributed processing
infrastructure called E3 [9] that supports different parallel
processing logics such as MapReduce [11], Directed Acyclic
Graph (DAG) and SQL. The top layer (which is the analytics
layer) exploits the contextual crowd intelligence for big data
analytics. The details of this layer are shown in Figure 1. In
Figure 2, KB is the knowledge base and iCrowd is the component
that interacts with the domain experts. Different components of
the analytics layer (e.g., scalable machine learning algorithms) can
process their data with the most appropriate data processing model
and their computations will be automatically executed in parallel
by the lower layers.
In the remaining of this paper, we focus only on the analytics layer.
For more details of the other layers of the epiC system, please refer
to [1; 10; 19].

4. RESEARCH PROBLEMS
In this section, we elaborate on the research problems that we need
to address in order to build an intelligent system for big data
analytics.

4.1 Asking Experts The Right Questions
Given a large volume of data and a limited amount of time that
domain experts can participate in building the systems, we need
to ask the experts the right questions. In the context of healthcare
analytics, we plan to ask the following domain knowledge from
doctors.

• Labelings. The system asks doctors to label tuples that the
system has low confidence in performing the prediction
task. There are two important issues here. First, doctors
have different levels of confidence when answering different
questions, i.e., doctors are reluctant to assess patient profiles
that they do not have specialties. Second, since there is so
much information about patients, selecting the relevant
feature of each patient to present to the doctors in order not
to overwhelm them is also a major issue.

In essence, what we need is a diverse set of labeled patients
that covers the whole data space as much as possible. One
possible solution is to group similar patient profiles together
and show these groups to doctors. The purpose is to let the
doctors select the groups of patients that they are
comfortable in providing the labels. In addition, for each
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Figure 1: Contextual crowd intelligence for big data analytics. Figure 2: The software stack of epiC for big data analyt-
ics.

group, we present only the features which the patients in the
group have similar values. In this way, we can avoid
overwhelming the doctors with information. Note that, in
some cases, we need to perform hierarchical clustering to
reduce the number of patients shown to the doctors each
time. Selecting the right clustering algorithms and
developing effective visualization tools to present patient’s
profiles are important here.

• Rules/Hypotheses. The system collects expert
rules/hypotheses that the doctors used to do the labeling.
For example, to predict the risk of unplanned patient
readmissions, the doctors suggested a hypothesis that social
factors and the status of the diseases are important risk
indicators for readmission. The system would then verify or
adjust these hypotheses and revert back to the doctors with
evidence to support or reject their hypotheses. Such
interactions are beneficial to both the system and the
doctors.

• Inferred implicit knowledge. The system can also infer
implicit and valuable knowledge based on the
answers/reactions of the domain experts. For instance, if the
doctors label two patients who belong to a given cluster
differently, then the system can adjust the distance function
used to compute the similarity between two patients, and
thus infer which features are more important. Such
knowledge is implicit as the doctors themselves may not be
aware of.

We can also ask the same kind of questions for the analytics tasks
in other domains. For instance, to predict malicious SMSs, we
need to select a small set of messages (by utilizing some clustering
algorithms) and ask the experts to provide labels for these
samples. We also collect rules and heuristics that the experts
utilize to label the SMSs.

4.2 Extracting Domain Entities From
Unstructured Data

Feature selection is very important for any machine learning task
and can greatly affect the algorithm’s quality. Processing doctor’s
notes for extracting important features is an inevitably important
step for healthcare analytics problems. There are several
state-of-the-art Natural Language Processing (NLP) engines for
processing clinical documents, such as, MedLEE [14] and
cTAKES [27]. These engines process clinical notes, identifying
types of clinical entities (e.g., medications, diseases, procedures,

lab tests) from various medical dictionaries (a.k.a. knowledge
base), such as, the Unified Medical Language System (UMLS) [6].
We now discuss several problems raised due to the nature of the
unstructured data and the incompleteness of the knowledge base,
and subsequently discuss a hybrid human-machine approach to
solve these problems. The discussion uses the following running
example. We run cTAKES on the doctor’s note of patient 1 (in
Table 1), and obtain the following clinical entities: (1) diseases:
IHD (Ischemic Heart Disease) and DM; (2) medications: GTN
and Metformin; and (3) laboratory test: HbA1c.

Ambiguous mentions. In many cases, a mention in the free text
may refer to different domain entities. For instance, in the running
example, “DM” refers to two different diseases “Dystrophy
Myotonic” and “Diabetes Mellitus”. We note that this problem is
not uncommon as doctors tend to use abbreviations in their notes.
For example, “CCF” refers to either “Congestive heart failure” or
“Carotid-Cavernous Fistula” diseases; “PID” refers to either
“Prolapsed Intervertebral Disc” or “Pelvic Inflammatory Disease”.
There are also cases where only human but not the machine can
understand the meaning of some mentions in the text. For
example, assuming that we are extracting the social factor of
patients in Table 1. It is rather easy to extract the social factor for
patient 1, since the text contains the phraze “stays with son”.
However, it is challenging, if not possible, for the machine to
extract the social factor for patient 2. The reason is that the
paragraph contains several different keywords relating to the
social factor such as “single”, “no child”, “live with friend”,
“sheltered home”, “next-of-kin”.

Incomplete knowledge base. The knowledge base is incomplete
for the following reasons. First, the terms used in the doctor’s
notes could be specific within a country or a particular hospital,
whereas the existing knowledge bases may only cover the
universal ones. Thus, these terms do not exist in the dictionary.
One example is the term “HL” in our running example, which
refers to the “Hyperlipidemia” disease but is not captured in
UMLS. Second, the relationships between entities covered in
existing medical knowledge bases (like ULMS) are far from
complete. In the running example, the fact that the medication
Metformin is used to treat Diabetes Mellitus (DM) is also missing
in UMLS. The relationships that exist between domain entities can
be used to derive implicit and useful information. For instance,
from the laboratory result of the lab test HbA1c, we can infer
whether the DM condition is well-controlled (i.e., the relationship
between a disease and a lab test).
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A hybrid human-machine approach. To infer the correct
entities from unstructured data, a hybrid human-machine solution
should be employed. The system can leverage the information
from the knowledge base (e.g., UMLS) together with the implicit
information (signals) inherent in the unstructured data (e.g.,
doctor’s notes) to improve the accuracy of its inference process
and enhance the knowledge base as well. The system will pose
questions to the healthcare professionals for verification. Based on
the answers from the experts, the system adjusts its inference
results. The inference process gets more accurate and complete as
the system runs more iterations. Meanwhile, the knowledge base
becomes more comprehensive and customized to each
organization’s practice. More specifically, in our running example:

• Since “DM” is attached with the laboratory test “HbA1c”
in the paragraph, the machine conjectures that “DM” would
refer to the “Diabetes Mellitus” disease only. The reason is
that HbA1c is a laboratory test that monitors the control of
diabetes and HbA1c does not have any relationship with the
other disease related to “DM” (i.e., “Dystrophy Myotonic”).

• To correctly infer the disease “Hyperlipidemia” for “HL”,
the machine infers a pattern of “num d” where num is a
fraction annotation and d is a disease. (“1 IHD” and “2
DM” are two examples.) The machine then infers that “HL”
may refer to a disease since the phrase “3 HL” follows the
pattern. The machine then poses a question to a doctor:
which disease “HL” represents for? In this case, the doctor
confirms that “HL” represents for the “Hyperlipidemia”
disease. Based on the answer, the machine adds the
mapping between the mention “HL” and the disease
“Hyperlipidemia” to the knowledge base. Hence, the
knowledge base becomes more comprehensive and
customized to NUH’s practice.

• To identify the missing relationship between the medication
Metformin and the disease DM, the machine infers a pattern
of “d on med”, where d is a disease, med is a medication
and med is used to treat d. (“IHD on GTN” is an example.)
The machine conjectures that there should have a
relationship between DM and Metformin, since the phraze
“DM on Metformin” follows the pattern. The machine then
verifies this inference with the doctors. The doctors confirm
that they typically write the medications that are used to
treat a disease right next to the disease, and connect these
relationships by the preposition “on”. Clearly, such rule is
very useful – the machine will then infer other missing
relationships using this expert rule with fewer questions
being posed to the doctors.

• To derive the social factor for patient 2, the machine can first
attempt to derive the information using a simple strategy
such as analyzing the NLP structure of sentences containing
patterns like “stay with”, “live with”. For complicated cases
when the machine cannot find out the information, we need
to tap on the knowledge of the experts.

4.3 Combining Multiple Weak Classifiers
We can obtain different classifiers from multiple sources such as
classifiers built based on the observational data, rules used by the
doctors and general clinical guidelines. Each source of knowledge
can be considered as a “weak classifier” and the task is to combine
these classifiers to derive a final classifier that achieves a very high
accuracy in prediction.
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Figure 3: An example of several rounds of learning for healthcare
predictive analytics

There are many ways to achieve the goal. Figure 3 shows an
example of a process consisting of three rounds of learning for the
task of predicting the severity of patients. In the first round, the
system computes four classifiers: C1 and C2 are the classifiers
derived from rules provided by SMEs (i.e., doctors); C3 is the
classifier derived from historical data; and C4 is the classifier
derived from clinical guidelines. It is essential to resolve
disagreeing opinions from various sources. There are several ways
to combine different classifiers, such as, using majority-voting for
the outputs of different rules/classifiers or combining features
being used in different input classifiers.
It is likely that all the classifiers built after the first round do not
agree with each other for the prediction tasks. Thus, in this
example, the system performs two additional rounds of learning to
improve the accuracy of the classifier. It is also possible that there
is no way to reconcile the classifiers, i.e., there will be multiple
different classifiers. In such situations, it may be necessary to
“rank” the results of the different classifiers, and pick the answer
that is ranked highest. How to do this is an open question.

4.4 Scalable Processing
Big data analytics is characterized by the so-called 3V features:
Volume - a huge amount of data, Velocity - a high data ingestion
rate, and Variety - a mixed of structured, semi-structured and
unstructured data. These requirements force us to rethink the
whole software stack to address big data analytics efficiently and
effectively, ranging from the storage layer that should manipulate
both structured and unstructured data to application layer that
should support scalable machine learning algorithms. To illustrate
the points, let us reconsider the problem of predicting the
malicious SMSs. The collection of SMSs is huge, e.g., in the order
of hundreds of tera-bytes. As discussed in Section 4.1, we need to
pick a set of SMSs for domain experts to label. Conventional
clustering algorithms may not work well here as we need to
handle such a large amount of data. The problem is even more
challenging in our context, as we need to frequently get the
domain experts involved in building the system. The delay from
human beings’ reaction may be a large factor affecting the low
latency of the system.
The scalability of the problems is also in terms of
high-dimensional data space. Our data set inherently contains a
large number of features. For instance, there are different
information about patients such as thousands of different diseases
and lab tests. One solution to reduce the dimensions is to group
these attributes semantically, e.g., grouping together different
diseases that share a same “root”. For instance, the Hypertension
disease, Hypotension disease and Ischaemic Heart disease can be
grouped together under the category of Cardiovascular disease.
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Clearly, to perform such tasks, we need to consult the domain
experts as different hospitals/doctors may have different
opinions/reasoning in performing this task. This is, again, an
example of getting the domain experts involved in building the
systems.

4.5 Engaging Expert Users
As the system needs to interact with SMEs frequently, it is
important to engage the experts along the process of building and
using the system. The system should provide several
functionalities for this purpose:

• A user-friendly interface for the experts to provide their
inputs such as rules, hypothesis, labels, etc.

• The system should provide not only the final outcome (e.g.,
whether the patient is at high/low risk of being sent to ICU)
but also the reasons that drive its decision. Therefore,
keeping track of the provenance of the knowledge is
important. For instance, when the system makes a decision
that differs from experts’ opinions, the system should be
able to trace back whether the mismatch is mainly due to the
use of some general guidelines, or due to other experts’
opinions.

• Presenting feedback to the experts. For instance, the system
can explain how well an expert performs compared to other
colleagues. As another example, the system can reveal
comments and annotations by other experts to see whether
an expert would change her decision. It is also interesting to
present new patterns of knowledge that an expert may lack
and potentially educate her.

5. PRELIMINARY RESULTS
We are studying the problem of predicting the probability of
patients being readmitted into the hospital within 30 days after
discharge. We refer to the task as readmission prediction for short.
We use the clinical data drawn from the National University
Hospital’s Computerized Clinical Data Repository (CCDR) and
focus only on the elderly patients (i.e., patients with age older than
60) admitted to the hospital in 2012. The table used for the
prediction task is the medical care table1 that has similar schema
as the one presented in Table 1. There are in total 29049 elderly
patients admitted to NUH in 2012, where 5658 patients readmitted
within 30 days, i.e., the proportion of patients who were
readmitted (i.e. class label 1) is 0.188.

5.1 Interacting with Domain Experts
We have been getting the doctors involved in the following tasks.

Hypothesis/Rules. Our clinician collaborators have suggested a
hypothesis that the following features (indicators) might be
important for the readmission prediction:

• Social-economic factors, e.g., who are the care-givers and
the patient’s economic status.

• Lab findings. We should extract the lab findings that the
doctors mentioned in their notes instead of using the labs
recorded in the structured data in CCDR. The reason is that
patients typically have hundreds of lab tests but only a small

1To derive the medical care table, we joined information from var-
ious relations in CCDR, including: Discharge Summary, Patient
Demographics, Visit and Encounter, Lab Results and Emergency
Department.

# actual class 1 # actual class 0
#predicted class 1 1071 1321
#predicted class 0 4587 22070

(a) Using only structured features

# actual class 1 # actual class 0
#predicted class 1 2679 4250
#predicted class 0 2979 19141

(b) Using both structured and derived features

Table 2: The accuracy of our classifier.

number of them is important and is captured in the doctor’s
notes. As a result, selecting lab findings mentioned by
doctors naturally reduces the dimensions of the data set.

• Comorbidity influence, i.e., we should take into account the
past medical history of the patient together with the disease
status (whether the disease has been well-controlled).

Participants in a crowd-sourcing system. We adopted a hybrid
human-machine approach to extract the social factors and lab
findings from doctor’s free-text notes.
To extract the social factors, we use an NLP technique to analyze
sentences containing phrases related to the social factor such as
“live (with)”, “stay (with)”, “main care-giver” to pinpoint some
keywords such as “daughter”, “family”, “spouse”, etc. The system
then asks the doctors to handpick a set of predefined categories of
social factors. For instance, living with family and taking care by
professional helpers (e.g., maid, domestic helpers) are in a same
group. As another example, living alone and living in a
community nursing home are in a same group. The system also
performs a postprocessing step to pull out cases that can be
assigned more than one category of social factors. The system
then asks the doctors to label these cases manually. (There are
about 200 cases that need to be manually labeled.)
To extract the lab findings, the system first uses a simple pattern
matching technique to extract all possible lab tests mentioned in
the note. For instance, if the note contains a pattern of the form
“word num” where word is some word and num is a number, then
word is a candidate lab test. A word is a correct lab test if it exists
in the medical dictionary with the category of lab tests. For the
“false” lab tests that are currently not present in the dictionary and
appear frequently in the notes, the system asks the doctors to verify
them. As a result, there are some actual lab tests that are missing
in the dictionary such as “TW”, which is a local convention used
inside NUH.

Extracting medical concepts. We run the cTAKES NLP engine
over the UMLS dictionary to extract the past medical history of a
patient. We are in the process of developing algorithms to improve
the accuracy of extraction (to resolve problems mentioned in
Section 4.2). Thus, we use the number of diseases that the patient
has as an indicator instead of the actual diseases.

5.2 Results
After interacting with the doctors to extract relevant features, we
obtained two sets of features for the prediction task:

• Structured features: patients’ demographics (age, gender,
race), the number of days that the patient stayed at the
hospital, the number of previous hospitalizations, and the
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number of prior emergency visits in the last six month
before admission.

• Derived features from free-texts (We refer to these features
as derived features for short): social factors, lab findings, and
past medical history (i.e., diseases).

We used WEKA [15] to run a 10-fold cross-validation and the
Bayesian Network classifier to construct a readmission classifier2.
Table 2 reports the accuracy of the prediction across all the 10
validation data. If only structured features are used to build the
classifier (Table 2(a)), the resulting classifier can correctly predict
1071 cases that are readmitted (within 30 days). The precision and
recall in this case are 0.448 and 0.189, respectively. Meanwhile, if
both structured and derived features are used to build the classifier
(Table 2(b)), the resulting classifier can correctly predict 2679
cases that are readmitted. The precision and recall are 0.387 and
0.473 respectively. Clearly, the recall has been improved
significantly with the usage of the derived features from the
free-text doctor’s notes. The result is also very promising when we
compared it to the result handled manually by domain experts
such as physicians, case managers, and nurses [7]. The recall
reported in [7] is in the range [0.149, 0.306]. The conclusion in [7]
is that care-providers were not able to accurately predict which
patients were at highest risk of readmission. However, we believe
that a hybrid machine-human solution would greatly alleviate the
problem.
We would like to emphasize that there are many rooms to further
improve the accuracy of the prediction such as enhancing the
feature extraction process, employing additional features, such as,
disease status, specific diagnoses, medications, and using special
classifiers for highly-imbalanced data set.

6. RELATED WORK
Related works to our proposition can be broadly classified into the
following three categories.

Existing solutions for industry/domain specific applications.
Existing solutions are currently built based on “best practices”.
One direction is knowledge-driven approach that is based on
general guidelines such as clinical guidelines, e.g., IBM
Watson [3]. Another direction is data-driven approach that is
based on “rules” extracted from the observational data, e.g., [16;
18; 20]. Recently, IBM proposes to combine the strengths of the
two directions [31]. However, these solutions have not explored
the exceptionally complicated rules/patterns that can only be
provided by internal domain experts with years of working
experience. Our research aims to fill this gap: we seek to engage
the experts as users of the system, and tap on their expertise to
enhance the database knowledge and processing. There are several
benefits of employing internal domain experts. First, we do not
need to customize/localize the system for different use-cases; they
themselves define the “best practices” for the system. Second, in
terms of the data used to build the knowledge base, our system
mainly bases on observational data and knowledge provided by
domain experts; whereas others (e.g., IBM Watson) need to
process a much larger amount of inputs such as medical journals,
white papers, medical policies and practices, information in the
web, etc. Third, the system should become more “intelligent” over
times when the expert users continuously enhance the system with
their expert knowledge.
2We also used other classifiers such as decision tree, rule-based
classifier, SVM, etc and observe that the Bayesian Network classi-
fier provides the best result.

Crowdsourcing in database. There has been a lot of recent
interest in the database community in using crowdsourcing as part
of database query processing (e.g., CrowdDB [13], Deco [24],
Qurk [23], CDAS [12; 22]). As discussed, the intelligent crowds
in our context are domain experts (rather than lay-persons in the
existing crowds) who are also users/reviewers of the system.
Furthermore, exploiting intelligent crowd can be much more
collaborative in nature. In typical crowdsourcing, the crowds are
not aware of each other’s answers. But in our context, we can
actually go through several iterations and see whether the experts
will change their decisions when they are provided with comments
and annotations by other experts.
A recent system, called Data Tamer [30], also leveraged expert
crowdsourcing system to enhance machine computation but in the
context of data curation. As discussed in Section 1, the key
difference between our proposition and Data Tamer lies in the fact
that the domain experts in our context are also users/reviewers of
the system. Thus, the experts are likely to take ownership and
hence are motivated to improve the accuracy of the analytics and
the usability of the applications. This would reduce the need to
localize/customize the system. Also, each system needs to address
a different set of challenges, since the targeted applications are
different.

Active learning. In the active learning model, the data come
unlabeled but the goal is to ultimately learn a classifier (e.g., [17;
29; 32]). The idea is to query the labels of just a few points that are
especially informative in order to obtain an accurate classifier. The
labels are obtained from highly-trained experts (e.g., doctors). The
scope of our proposition is much more general than active learning
in the following points. First, we would like to exploit as much
domain knowledge from experts as possible, not restricting to only
the class labels as in active learning. For instance, rules and
hypotheses provided by experts with many years of experience
must be exploited in several cases. Second, active learning focuses
on getting a better classifier so the query points presented to the
crowd are usually those data points that are at the boundary of the
separating plane. However, these are also the data points that the
experts are usually not very clear about. As such, we need to be
able to identify additional information that should be provided for
the experts to be able to make an informed decision. Lastly, we
need to handle a large amount of data whereas existing solutions
on active learning usually deal with small data set.

7. CONCLUSION
Each of us is a subject-matter expert (SME) of our profession, and
we carry with us a vast amount of knowledge and insights not
captured by a structured system. This might have explained the
emergence of Knowledge Management systems. However, there
are many rules and exceptional cases that can only be formulated
by experts with many years of experience. Such rules, when
properly coded, can help in facilitating contextual decision
making. This paper envisions a more intelligent DBMS that
captures such information or knowledge. At the core, the system is
a hybrid human-machine database processing engine where the
machine keeps the SMEs as part of the feedback loop to gather,
infer, ascertain and enhance the database knowledge and
processing. This paper discussed many open challenges that we
need to tackle in order to build such a system.
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ABSTRACT
In many of the large-scale physical and social complex sys-
tems phenomena fat-tailed distributions occur, for which dif-
ferent generating mechanisms have been proposed. In this
paper, we study models of generating power law distribu-
tions in the evolution of large-scale taxonomies such as Open
Directory Project, which consist of websites assigned to one
of tens of thousands of categories. The categories in such
taxonomies are arranged in tree or DAG structured con-
figurations having parent-child relations among them. We
first quantitatively analyse the formation process of such
taxonomies, which leads to power law distribution as the
stationary distributions. In the context of designing classi-
fiers for large-scale taxonomies, which automatically assign
unseen documents to leaf-level categories, we highlight how
the fat-tailed nature of these distributions can be leveraged
to analytically study the space complexity of such classi-
fiers. Empirical evaluation of the space complexity on pub-
licly available datasets demonstrates the applicability of our
approach.

1. INTRODUCTION
With the tremendous growth of data on the web from var-
ious sources such as social networks, online business ser-
vices and news networks, structuring the data into concep-
tual taxonomies leads to better scalability, interpretability
and visualization. Yahoo! directory, the open directory
project (ODP) and Wikipedia are prominent examples of
such web-scale taxonomies. The Medical Subject Heading
hierarchy of the National Library of Medicine is another
instance of a large-scale taxonomy in the domain of life
sciences. These taxonomies consist of classes arranged in
a hierarchical structure with parent-child relations among
them and can be in the form of a rooted tree or a directed
acyclic graph. ODP for instance, which is in the form of a
rooted tree, lists over 5 million websites distributed among
close to 1 million categories and is maintained by close to
100,000 human editors. Wikipedia, on the other hand, rep-
resents a more complicated directed graph taxonomy struc-
ture consisting of over a million categories. In this context,
large-scale hierarchical classification deals with the task of
automatically assigning labels to unseen documents from a
set of target classes which are represented by the leaf level
nodes in the hierarchy.

In this work, we study the distribution of data and the hi-

erarchy tree in large-scale taxonomies with the goal of mod-
elling the process of their evolution. This is undertaken
by a quantitative study of the evolution of large-scale tax-
onomy using models of preferential attachment, based on
the famous model proposed by Yule [33] and showing that
throughout the growth process, the taxonomy exhibits a fat-
tailed distribution. We apply this reasoning to both cate-
gory sizes and tree connectivity in a simple joint model.
Formally, a random variable X is defined to follow a power
law distribution if for some positive constant a, the comple-
mentary cumulative distribution is given as follows:

P (X > x) ∝ x−a

Power law distributions, or more generally fat-tailed dis-
tributions that decay slower than Gaussians, are found in a
wide variety of physical and social complex systems, ranging
from city population, distribution of wealth to citations of
scientific articles [23]. It is also found in network connectiv-
ity, where the internet and Wikipedia are prominent exam-
ples [27; 7]. Our analysis in the context of large-scale web-
taxonomies leads to a better understanding of such large-
scale data, and also leveraged in order to present a concrete
analysis of space complexity for hierarchical classification
schemes. Due to the ever increasing scale of training data
size in terms of the number of documents, feature set size
and number of target classes, the space complexity of the
trained classifiers plays a crucial role in the applicability of
classification systems in many applications of practical im-
portance.

The space complexity analysis presented in this paper pro-
vides an analytical comparison of the trained model for hi-
erarchical and flat classification, which can be used to select
the appropriate model a-priori for the classification prob-
lem at hand, without actually having to train any mod-
els. Exploiting the power law nature of taxonomies to study
the training time complexity for hierarchical Support Vec-
tor Machines has been performed in [32; 19]. The authors
therein justify the power law assumption only empirically,
unlike our analysis in Section 3 wherein we describe the
generative process of large-scale web taxonomies more con-
cretely, in the context of similar processes studied in other
models. Despite the important insights of [32; 19], space
complexity has not been treated formally so far.

The remainder of this paper is as follows. Related work on
reporting power law distributions and on large scale hierar-
chical classification is presented in Section 2. In Section 3,
we recall important growth models and quantitatively jus-
tify the formation of power laws as they are found in hi-
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elling the process of their evolution. This is undertaken
by a quantitative study of the evolution of large-scale tax-
onomy using models of preferential attachment, based on
the famous model proposed by Yule [33] and showing that
throughout the growth process, the taxonomy exhibits a fat-
tailed distribution. We apply this reasoning to both cate-
gory sizes and tree connectivity in a simple joint model.
Formally, a random variable X is defined to follow a power
law distribution if for some positive constant a, the comple-
mentary cumulative distribution is given as follows:

P (X > x) ∝ x−a

Power law distributions, or more generally fat-tailed dis-
tributions that decay slower than Gaussians, are found in a
wide variety of physical and social complex systems, ranging
from city population, distribution of wealth to citations of
scientific articles [23]. It is also found in network connectiv-
ity, where the internet and Wikipedia are prominent exam-
ples [27; 7]. Our analysis in the context of large-scale web-
taxonomies leads to a better understanding of such large-
scale data, and also leveraged in order to present a concrete
analysis of space complexity for hierarchical classification
schemes. Due to the ever increasing scale of training data
size in terms of the number of documents, feature set size
and number of target classes, the space complexity of the
trained classifiers plays a crucial role in the applicability of
classification systems in many applications of practical im-
portance.

The space complexity analysis presented in this paper pro-
vides an analytical comparison of the trained model for hi-
erarchical and flat classification, which can be used to select
the appropriate model a-priori for the classification prob-
lem at hand, without actually having to train any mod-
els. Exploiting the power law nature of taxonomies to study
the training time complexity for hierarchical Support Vec-
tor Machines has been performed in [32; 19]. The authors
therein justify the power law assumption only empirically,
unlike our analysis in Section 3 wherein we describe the
generative process of large-scale web taxonomies more con-
cretely, in the context of similar processes studied in other
models. Despite the important insights of [32; 19], space
complexity has not been treated formally so far.

The remainder of this paper is as follows. Related work on
reporting power law distributions and on large scale hierar-
chical classification is presented in Section 2. In Section 3,
we recall important growth models and quantitatively jus-
tify the formation of power laws as they are found in hi-

SIGKDD Explorations Volume 16, Issue 1 Page 47



erarchical large-scale web taxonomies by studying the evo-
lution dynamics that generate them. More specifically, we
present a process that jointly models the growth in the size
of categories, as well as the growth of the hierarchical tree
structure. We derive from this growth model why the class
size distribution at a given level of the hierarchy also ex-
hibits power law decay. Building on this, we then appeal
to Heaps’ law in Section 4, to explain the distribution of
features among categories which is then exploited in Sec-
tion 5 for analysing the space complexity for hierarchical
classification schemes. The analysis is empirically validated
on publicly available DMOZ datasets from the Large Scale
Hierarchical Text Classification Challenge (LSHTC)1 and
patent data (IPC) 2 from World Intellectual Property Or-
ganization. Finally, Section 6 concludes this work.

2. RELATED WORK
Power law distributions are reported in a wide variety of
physical and social complex systems [22], such as in inter-
net topologies. For instance [11; 7] showed that internet
topologies exhibit power laws with respect to the in-degree
of the nodes. Also the size distribution of website cate-
gories, measured in terms of number of websites, exhibits a
fat-tailed distribution, as empirically demonstrated in [32;
19] for the Open Directory Project (ODP). Various mod-
els have been proposed for the generation power law distri-
butions, a phenomenon that may be seen as fundamental
in complex systems as the normal distribution in statistics
[25]. However, in contrast to the straight-forward derivation
of normal distribution via the central limit theorem, models
explaining power law formation all rely on an approxima-
tion. Some explanations are based on multiplicative noise
or on the renormalization group formalism [28; 30; 16]. For
the growth process of large-scale taxonomies, models based
on preferential attachment are most appropriate, which are
used in this paper. These models are based on the seminal
model by Yule [33], originally formulated for the taxonomy
of biological species, detailed in section 3. It applies to sys-
tems where elements of the system are grouped into classes,
and the system grows both in the number of classes, and
in the total number of elements (which are here documents
or websites). In its original form, Yule’s model serves as
explanation for power law formation in any taxonomy, irre-
spective of an eventual hierarchy among categories. Similar
dynamics have been applied to explain scaling in the connec-
tivity of a network, which grows in terms of nodes and edges
via preferential attachment [2]. Recent further generaliza-
tions apply the same growth process to trees [17; 14; 29].
In this paper, describe the approximate power-law in the
child-to-parent category relations by the model by Klemm
et al. [17]. Furthermore, we combine this formation process
in a simple manner with the original Yule model in order to
explain also a power law in category sizes, i.e. we provide
a comprehensive explanation for the formation process of
large-scale web taxonomies such as DMOZ. From the sec-
ond, we infer a third scaling distribution for the number of
features per category. This is done via the empirical Heaps’s
law [10], which describes the scaling relationship between
text length and the size of its vocabulary.

Some of the earlier works on exploiting hierarchy among tar-

1http://lshtc.iit.demokritos.gr/
2http://web2.wipo.int/ipcpub/

get classes for the purpose of text classification have been
studied in [18; 6] and [8] wherein the number of target classes
were limited to a few hundreds. However, the work by [19]
is among the pioneering studies in hierarchical classification
towards addressing web-scale directories such as Yahoo! di-
rectory consisting of over 100,000 target classes. The au-
thors analyse the performance with respect to accuracy and
training time complexity for flat and hierarchical classifica-
tion. More recently, other techniques for large-scale hierar-
chical text classification have been proposed. Prevention of
error propagation by applying Refined Experts trained on a
validation set was proposed in [4]. In this approach, bottom-
up information propagation is performed by utilizing the
output of the lower level classifiers in order to improve clas-
sification at top level. The deep classification method pro-
posed in [31] first applies hierarchy pruning to identify a
much smaller subset of target classes. Prediction of a test
instance is then performed by re-training Naive Bayes clas-
sifier on the subset of target classes identified from the first
step. More recently, Bayesian modelling of large-scale hier-
archical classification has been proposed in [15] in which hi-
erarchical dependencies between the parent-child nodes are
modelled by centring the prior of the child node at the pa-
rameter values of its parent.

In addition to prediction accuracy, other metrics of perfor-
mance such as prediction and training speed as well as space
complexity of the model have become increasingly impor-
tant. This is especially true in the context of challenges
posed by problems in the space of Big Data, wherein an opti-
mal trade-off among such metrics is desired. The significance
of prediction speed in such scenarios has been highlighted in
recent studies such as [3; 13; 24; 5]. The prediction speed is
directly related to space complexity of the trained model, as
it may not be possible to load a large trained model in the
main memory due to sheer size. Despite its direct impact
on prediction speed, no earlier work has focused on space
complexity of hierarchical classifiers.

Additionally, while the existence of power law distributions
has been used for analysis purposes in [32; 19] no thorough
justification is given on the existence of such phenomenon.
Our analysis in Section 3, attempts to address this issue in
a quantitative manner. Finally, power law semantics have
been used for model selection and evaluation of large-scale
hierarchical classification systems [1]. Unlike problems stud-
ied in classical machine learning sense which deal with a
limited number of target classes, this application forms a
blue-print on extracting hidden information in big data.

3. POWER LAW IN LARGE-SCALE WEB
TAXONOMIES

We begin by introducing the complementary cumulative size
distribution for category sizes. Let Ni denote the size of cat-
egory i (in terms of number of documents), then the proba-
bility that Ni > N is given by

P (Ni > N) ∝ N−β (1)

where β > 0 denotes the exponent of the power law dis-
tribution.3 Empirically, it can be assessed by plotting the
rank of a category’s size against its size (see Figure 1) The
derivative of this distribution, the category size probability

3To avoid confusion, we denote the power law exponents for
in-degree distribution and feature size distribution γ and δ.
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in the total number of elements (which are here documents
or websites). In its original form, Yule’s model serves as
explanation for power law formation in any taxonomy, irre-
spective of an eventual hierarchy among categories. Similar
dynamics have been applied to explain scaling in the connec-
tivity of a network, which grows in terms of nodes and edges
via preferential attachment [2]. Recent further generaliza-
tions apply the same growth process to trees [17; 14; 29].
In this paper, describe the approximate power-law in the
child-to-parent category relations by the model by Klemm
et al. [17]. Furthermore, we combine this formation process
in a simple manner with the original Yule model in order to
explain also a power law in category sizes, i.e. we provide
a comprehensive explanation for the formation process of
large-scale web taxonomies such as DMOZ. From the sec-
ond, we infer a third scaling distribution for the number of
features per category. This is done via the empirical Heaps’s
law [10], which describes the scaling relationship between
text length and the size of its vocabulary.

Some of the earlier works on exploiting hierarchy among tar-

1http://lshtc.iit.demokritos.gr/
2http://web2.wipo.int/ipcpub/

get classes for the purpose of text classification have been
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thors analyse the performance with respect to accuracy and
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tion. More recently, other techniques for large-scale hierar-
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error propagation by applying Refined Experts trained on a
validation set was proposed in [4]. In this approach, bottom-
up information propagation is performed by utilizing the
output of the lower level classifiers in order to improve clas-
sification at top level. The deep classification method pro-
posed in [31] first applies hierarchy pruning to identify a
much smaller subset of target classes. Prediction of a test
instance is then performed by re-training Naive Bayes clas-
sifier on the subset of target classes identified from the first
step. More recently, Bayesian modelling of large-scale hier-
archical classification has been proposed in [15] in which hi-
erarchical dependencies between the parent-child nodes are
modelled by centring the prior of the child node at the pa-
rameter values of its parent.

In addition to prediction accuracy, other metrics of perfor-
mance such as prediction and training speed as well as space
complexity of the model have become increasingly impor-
tant. This is especially true in the context of challenges
posed by problems in the space of Big Data, wherein an opti-
mal trade-off among such metrics is desired. The significance
of prediction speed in such scenarios has been highlighted in
recent studies such as [3; 13; 24; 5]. The prediction speed is
directly related to space complexity of the trained model, as
it may not be possible to load a large trained model in the
main memory due to sheer size. Despite its direct impact
on prediction speed, no earlier work has focused on space
complexity of hierarchical classifiers.

Additionally, while the existence of power law distributions
has been used for analysis purposes in [32; 19] no thorough
justification is given on the existence of such phenomenon.
Our analysis in Section 3, attempts to address this issue in
a quantitative manner. Finally, power law semantics have
been used for model selection and evaluation of large-scale
hierarchical classification systems [1]. Unlike problems stud-
ied in classical machine learning sense which deal with a
limited number of target classes, this application forms a
blue-print on extracting hidden information in big data.

3. POWER LAW IN LARGE-SCALE WEB
TAXONOMIES

We begin by introducing the complementary cumulative size
distribution for category sizes. Let Ni denote the size of cat-
egory i (in terms of number of documents), then the proba-
bility that Ni > N is given by

P (Ni > N) ∝ N−β (1)

where β > 0 denotes the exponent of the power law dis-
tribution.3 Empirically, it can be assessed by plotting the
rank of a category’s size against its size (see Figure 1) The
derivative of this distribution, the category size probability

3To avoid confusion, we denote the power law exponents for
in-degree distribution and feature size distribution γ and δ.
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density p(Ni), then also follows a power law with exponent

(β + 1), i.e. p(Ni) ∝ N
−(β+1)
i .

Two of our empirical findings are a power law for both the
complementary cumulative category size distribution and
the counter-cumulative in-degree distribution, shown in Fig-
ures 1 and 2, for LSHTC2-DMOZ dataset which is a subset
of ODP. The dataset4 contains 394, 000 websites and 27, 785
categories. The number of categories at each level of the hi-
erarchy is shown in Figure 3.
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Figure 1: Category size vs rank distribution for the
LSHTC2-DMOZ dataset.
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Figure 2: Indegree vs rank distribution for the LSHTC2-
DMOZ dataset.

We explain the formation of these two laws via models by
Yule [33] and a related model by Klemm [17], detailed in
sections 3.1 and 3.2, which are then related in section 3.3.

3.1 Yule’s model
Yule’s model describes a system that grows in two quantities,
in elements and in classes in which the elements are assigned.
It assumes that for a system having κ classes, the probability
that a new element will be assigned to a certain class is
proportional to its current size,

p(i) =
Ni∑κ

i′=1 Ni′
(2)

4http://lshtc.iit.demokritos.gr/LSHTC2 datasets
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Figure 3: Number of categories at each level in the hierarchy
of the LSHTC2-DMOZ database.

It further assumes that for every m elements that are added
to the pre-existing classes in the system, a new class of size
1 is created5.

The described system is constantly growing in terms of el-
ements and classes, so strictly speaking, a stationary state
does not exist [20]. However, a stationary distribution, the
so-called Yule distribution, has been derived using the ap-
proach of the master equation with similar approximations
by [26; 23; 17]. Here, we follow Newman [23], who con-
siders as one time-step the duration between creation of two
consecutive classes. From this follows that the average num-
ber of elements per class is always m + 1, and the system
contains κ(m + 1) elements at a moment where the num-
ber of classes is κ. Let pN,κ denote the fraction of classes
having N elements when the total number of classes is κ.
Between two successive time instances, the probability for a
given pre-existing class i of size Ni to gain a new element is
mNi/(κ(m + 1)). Since there are κ pN,κ classes of size N ,
the expected number such classes which gain a new element
(and grow to size (N + 1)) is given by :

mN

κ(m+ 1)
κ pN,κ =

m

(m+ 1)
N pN,κ (3)

The number of classes with N websites are thus fewer by the
above quantity, but some which had (N−1) websites prior to
the addition of a new class have now one more website. This
step depicting the change of the state of the system from κ
classes to (κ + 1) classes is shown in Figure 4. Therefore,
the expected number of classes with N documents when the
number of classes is (κ+1) is given by the following equation:

(κ+ 1)pN,(κ+1) = κ pN,κ +
m

m+ 1
[(N − 1)(p(N−1),κ)

−NpN,κ]
(4)

The first term in the right hand side of Equation 4 corre-
sponds to classes with N documents when the number of
classes is κ. The second term corresponds to the contribu-
tion from classes of size (N−1) which have grown to size N ,
this is shown by the left arrow (pointing rightwards) in Fig-
ure 4. The last term corresponds to the decrease resulting

5The initial size may be generalized to other small sizes; for
instance Tessone et al. consider entrant classes with size
drawn from a truncated power law [29] .
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It further assumes that for every m elements that are added
to the pre-existing classes in the system, a new class of size
1 is created5.

The described system is constantly growing in terms of el-
ements and classes, so strictly speaking, a stationary state
does not exist [20]. However, a stationary distribution, the
so-called Yule distribution, has been derived using the ap-
proach of the master equation with similar approximations
by [26; 23; 17]. Here, we follow Newman [23], who con-
siders as one time-step the duration between creation of two
consecutive classes. From this follows that the average num-
ber of elements per class is always m + 1, and the system
contains κ(m + 1) elements at a moment where the num-
ber of classes is κ. Let pN,κ denote the fraction of classes
having N elements when the total number of classes is κ.
Between two successive time instances, the probability for a
given pre-existing class i of size Ni to gain a new element is
mNi/(κ(m + 1)). Since there are κ pN,κ classes of size N ,
the expected number such classes which gain a new element
(and grow to size (N + 1)) is given by :

mN

κ(m+ 1)
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(m+ 1)
N pN,κ (3)

The number of classes with N websites are thus fewer by the
above quantity, but some which had (N−1) websites prior to
the addition of a new class have now one more website. This
step depicting the change of the state of the system from κ
classes to (κ + 1) classes is shown in Figure 4. Therefore,
the expected number of classes with N documents when the
number of classes is (κ+1) is given by the following equation:

(κ+ 1)pN,(κ+1) = κ pN,κ +
m

m+ 1
[(N − 1)(p(N−1),κ)

−NpN,κ]
(4)

The first term in the right hand side of Equation 4 corre-
sponds to classes with N documents when the number of
classes is κ. The second term corresponds to the contribu-
tion from classes of size (N−1) which have grown to size N ,
this is shown by the left arrow (pointing rightwards) in Fig-
ure 4. The last term corresponds to the decrease resulting
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Variables

Ni Number of elements in class i
dgi Number of subclasses of class i
di Number of features of class i
κ Total number of classes
DG Total number of in-degrees (=subcategories)
pN,κ Fraction of classes having N elements

when the total number of classes is κ

Constants

m Number of elements added to the system af-
ter which a new class is added

w ∈ [0, 1] Probability that attachment of sub-
categories is preferential

Indices

i Index for the class

Table 1: Summary of notation used in Section 3

from classes which have gained an element and have become
of size (N + 1), this is shown by the right arrow (pointing
rightwards) in Figure 4. The equation for the class of size 1
is given by:

(κ+ 1)p1,(κ+1) = κ p1,κ + 1− m

m+ 1
p1,κ (5)

As the number κ of classes (and therefore the number of
elements κ(m+ 1)) in the system increases, the probability
that a new element is classified into a class of sizeN , given by
Equation 3, is assumed to remain constant and independent
of κ. Under this hypothesis, the stationary distribution for
class sizes can be determined by solving Equation 4 and
using Equation 5 as the initial condition. This is given by

pN = (1 + 1/m)B(N, 2 + 1/m) (6)

where B(., .) is the beta distribution. Equation 6 has been
termed Yule distribution [26]. Written for a continuous vari-
able N , it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density func-
tion is between 2 and 3. Its cumulative size distribution
P (Nk > N), as given by Equation 1, has an exponent given
by

β = (1 + (1/m)) (7)

which is between 1 and 2. The higher the frequency 1/m
at which new classes are introduced, the bigger β becomes,
and the lower the average class size. This exponent is stable
over time although the taxonomy is constantly growing.

3.2 Preferential attachment models for net-
works and trees

A similar model has been formulated for network growth by
Barabási and Albert [2], which explains the formation of a
power law distribution in connectivity degree of nodes. It
assumes that the networks grow in terms of nodes and edges,
and that every newly added node to the system connects
with a fixed number of edges to existing nodes. Attachment
is again preferential, i.e. the probability for a newly added
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Figure 4: Illustration of Equation 4. Individual classes grow
constantly i.e., move to the right over time, as indicated by
arrows. A stationary distribution means that the height of
each bar remains constant.

node i to connect to a certain existing node j is proportional
to its number of existing edges of node j.

A node in the Barabási-Albert (BA) model corresponds a
class in Yule’s model, and a new edge to two newly assigned
element. Every added edge counts both to the degree of an
existing node j, as well as to the newly added node i. For
this reason the existing nodes j and the newly added node i
grow always by the same number of edges, implying m = 1
and consequently β = 2 in the BA-model, independently of
the number of edges that each new node creates.

The seminal BA-model has been extended in many ways.
For hierarchical taxonomies, we use a preferential attach-
ment model for trees by [17]. The authors considered growth
via directed edges, and explain power law formation in the
in-degree, i.e. the edges directed from children to parent in
a tree structure. In contrast to the BA-model, newly added
nodes and existing nodes do not increase their in-degree by
the same amount, since new nodes start with an in-degree
of 0. Leaf nodes thus cannot attract attachment of nodes,
and preferential attachment alone cannot lead to a power-
law. A small random term ensures that some nodes attach
to existing ones independently of their degree, which is the
analogous to the start of a new class in the Yule model.
The probability v that a new node attaches as a child to the
existing node i of with indegree dgi becomes

v(i) = w
di − 1

DG
+ (1− w)

1

DG
, (8)

where DG is the size of the system measured in the total
number of in-degrees. w ∈ [0, 1] denotes the probability that
the attachment is preferential, (1− w) the probability that
it is random to any node, independently of their numbers
of indegrees. As it has been done for the Yule process [26;
23; 14; 29], the stationary distribution is again derived via
the master Equation 4. The exponent of the asymptotic
power law in the in-degree distribution is β = 1 + 1/w.This
model is suitable to explain scaling properties of the tree or
network structure of large-scale web taxonomies, which have
also been analysed empirically, for instance for subcategories
of Wikipedia [7]. It has also been applied to directory trees
in [14].

3.3 Model for hierarchical web taxonomies
We now apply these models to large-scale web taxonomies
like DMOZ. Empirically, we uncovered two scaling laws: (a)
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Equation 3, is assumed to remain constant and independent
of κ. Under this hypothesis, the stationary distribution for
class sizes can be determined by solving Equation 4 and
using Equation 5 as the initial condition. This is given by
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where B(., .) is the beta distribution. Equation 6 has been
termed Yule distribution [26]. Written for a continuous vari-
able N , it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density func-
tion is between 2 and 3. Its cumulative size distribution
P (Nk > N), as given by Equation 1, has an exponent given
by

β = (1 + (1/m)) (7)

which is between 1 and 2. The higher the frequency 1/m
at which new classes are introduced, the bigger β becomes,
and the lower the average class size. This exponent is stable
over time although the taxonomy is constantly growing.

3.2 Preferential attachment models for net-
works and trees

A similar model has been formulated for network growth by
Barabási and Albert [2], which explains the formation of a
power law distribution in connectivity degree of nodes. It
assumes that the networks grow in terms of nodes and edges,
and that every newly added node to the system connects
with a fixed number of edges to existing nodes. Attachment
is again preferential, i.e. the probability for a newly added
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Figure 4: Illustration of Equation 4. Individual classes grow
constantly i.e., move to the right over time, as indicated by
arrows. A stationary distribution means that the height of
each bar remains constant.

node i to connect to a certain existing node j is proportional
to its number of existing edges of node j.

A node in the Barabási-Albert (BA) model corresponds a
class in Yule’s model, and a new edge to two newly assigned
element. Every added edge counts both to the degree of an
existing node j, as well as to the newly added node i. For
this reason the existing nodes j and the newly added node i
grow always by the same number of edges, implying m = 1
and consequently β = 2 in the BA-model, independently of
the number of edges that each new node creates.

The seminal BA-model has been extended in many ways.
For hierarchical taxonomies, we use a preferential attach-
ment model for trees by [17]. The authors considered growth
via directed edges, and explain power law formation in the
in-degree, i.e. the edges directed from children to parent in
a tree structure. In contrast to the BA-model, newly added
nodes and existing nodes do not increase their in-degree by
the same amount, since new nodes start with an in-degree
of 0. Leaf nodes thus cannot attract attachment of nodes,
and preferential attachment alone cannot lead to a power-
law. A small random term ensures that some nodes attach
to existing ones independently of their degree, which is the
analogous to the start of a new class in the Yule model.
The probability v that a new node attaches as a child to the
existing node i of with indegree dgi becomes

v(i) = w
di − 1

DG
+ (1− w)

1

DG
, (8)

where DG is the size of the system measured in the total
number of in-degrees. w ∈ [0, 1] denotes the probability that
the attachment is preferential, (1− w) the probability that
it is random to any node, independently of their numbers
of indegrees. As it has been done for the Yule process [26;
23; 14; 29], the stationary distribution is again derived via
the master Equation 4. The exponent of the asymptotic
power law in the in-degree distribution is β = 1 + 1/w.This
model is suitable to explain scaling properties of the tree or
network structure of large-scale web taxonomies, which have
also been analysed empirically, for instance for subcategories
of Wikipedia [7]. It has also been applied to directory trees
in [14].

3.3 Model for hierarchical web taxonomies
We now apply these models to large-scale web taxonomies
like DMOZ. Empirically, we uncovered two scaling laws: (a)
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one for the size distribution of leaf categories and (b) one for
the indegree (child-to-parent link) distribution of categories
(shown in Figure 2). These two scaling laws are linked in a
non-trivial manner: a category may be very small or even
not contain any websites, but nevertheless be highly con-
nected. Since on the other hand (a) and (b) arise jointly,
we propose here a model generating the two scaling laws
in a simple generic manner. We suggest a combination of
the two processes detailed in subsections 3.1 and 3.2 to de-
scribe the growth process: websites are continuously added
to the system, and classified into categories by human ref-
erees. At the same time, the categories are not a mere set,
but form a tree structure, which grows itself in two quanti-
ties: in the number nodes (categories) and in the number of
in-degrees of nodes (child-to-parent links, i.e. subcategory-
to-category links). Based on the rules for voluntary referees
of the DMOZ how to classify websites, we propose a sim-
ple combined description of the process. Altogether, the
database grows in three quantities:

(i) Growth in websites. New websites are assigned into
categories i, with probability p(i) ∝ Ni (Figure 5).
This assignment happens independently of the hier-
archy level of category. However, only leaf categories
may receive documents.

Figure 5: (i): A website is assigned to existing categories
with p(i) ∝ Ni.

(ii) Growth in categories. With probability 1/m, the ref-
erees assign a website into a newly created category,
at any level of the hierarchy (Figure 6).

This assumption would suffice to create a power law in
the category size distribution, but since a tree-structure
among categories exists, we also assume that the event
of category creation is also attaching at particular places
to the tree structure. The probability v(i) that a cate-
gory is created as the child of a certain parent category
i can depend in addition on the in-degree di of that
category (see Equation 9).
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Figure 6: (ii): Growth in categories is equivalent to growth
of the tree structure in terms of in-degrees.

(iii) Growth in children categories. Finally, the hierarchy
may also grow in terms of levels, since with a certain
probability (1 − w), new children categories are as-
signed independently of the number of children, i.e.

its in-degree di of the category i. (Figure 7). Like in
[17], the attachment probability to a parent i is

v(i) = w
dgi − 1

DG
+ (1− w)

εi
DG

. (9)
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Figure 7: (iii): Growth in children categories.

Equation 8, where εi = 1, would suffice to explain
power law in-degrees dgi and in category sizes Ni.

To link the two processes more plausibly, it can be
assumed that the second term in Equation 9 denoting
assignment of new ‘first children’ depends on the size
Ni of parent categories,

εi =
Ni

N
, (10)

since this is closer to the rules by which the referees
create new categories, but is not essential for the ex-
planation of the power laws. It reflects that the bigger
a leaf category, the higher the probability that referees
create a child category when assigning a new website
to it.

To summarize, the central idea of this joint model is to con-
sider two measures for the size of a category: the number of
its websites Ni (which governs the preferential attachment
of new websites), and its in-degree, i.e. the number of its
children dgi, which governs the preferential attachment of
new categories. To explain the power law in the category
sizes, assumptions (i) and (ii) are the requirements. For the
power law in the number of indegrees, assumptions (ii) and
(iii) are the requirements. The empirically found exponents
β = 1.1 and γ = 1.9 yield a frequency of new categories
1/m=0.1 and a frequency of new indegrees (1− w) = 0.9.

3.4 Other interpretations
Instead of assuming in Equations 9 and 10 that referees de-
cide to open a single child category, it is more realistic to
assume that an existing category is restructured, i.e. one or
several child categories are created, and websites are moved
into these new categories such that the parent category con-
tains less websites or even none at all. If one of the new
children categories inherits all websites of the parent cat-
egory (see Figure 8), the Yule model applies directly. If
the websites are partitioned differently, the model contains
effective shrinking of categories. This is not described by
the Yule model, and the master Equation 4 considers only
growing categories. However, it has been shown [29; 21]
that models including shrinking categories also lead to the
formation of power laws. Further generalizations compati-
ble with power law formation are that new categories do not
necessarily start with one document, and that the frequency
of new categories does not need to be constant.
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Equation 8, where εi = 1, would suffice to explain
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To link the two processes more plausibly, it can be
assumed that the second term in Equation 9 denoting
assignment of new ‘first children’ depends on the size
Ni of parent categories,

εi =
Ni

N
, (10)

since this is closer to the rules by which the referees
create new categories, but is not essential for the ex-
planation of the power laws. It reflects that the bigger
a leaf category, the higher the probability that referees
create a child category when assigning a new website
to it.

To summarize, the central idea of this joint model is to con-
sider two measures for the size of a category: the number of
its websites Ni (which governs the preferential attachment
of new websites), and its in-degree, i.e. the number of its
children dgi, which governs the preferential attachment of
new categories. To explain the power law in the category
sizes, assumptions (i) and (ii) are the requirements. For the
power law in the number of indegrees, assumptions (ii) and
(iii) are the requirements. The empirically found exponents
β = 1.1 and γ = 1.9 yield a frequency of new categories
1/m=0.1 and a frequency of new indegrees (1− w) = 0.9.

3.4 Other interpretations
Instead of assuming in Equations 9 and 10 that referees de-
cide to open a single child category, it is more realistic to
assume that an existing category is restructured, i.e. one or
several child categories are created, and websites are moved
into these new categories such that the parent category con-
tains less websites or even none at all. If one of the new
children categories inherits all websites of the parent cat-
egory (see Figure 8), the Yule model applies directly. If
the websites are partitioned differently, the model contains
effective shrinking of categories. This is not described by
the Yule model, and the master Equation 4 considers only
growing categories. However, it has been shown [29; 21]
that models including shrinking categories also lead to the
formation of power laws. Further generalizations compati-
ble with power law formation are that new categories do not
necessarily start with one document, and that the frequency
of new categories does not need to be constant.
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Figure 8: Model without and with shrinking categories. In
the left figure, a child category inherits all the elements of
its parent and takes its place in the size distribution.
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Figure 9: Category size distribution for each level of the
LSHTC2-DMOZ dataset.

3.5 Limitations
However, Figures 1 and 2 do not exhibit perfect power law
decay for several reasons. Firstly, the dataset is limited.
Secondly, the hypothesis that the assignment probability
(Equation 2) depends uniquely on the size of a category
might be too strong for web directories, neglecting the change
in importance of topics. In reality, big categories can exist
which receive only few new documents or none at all. Doro-
govtsev and Mendes [9] have studied this problem by intro-
ducing an assignment probability that decays exponentially
with age. For a low decay parameter they show that the
stronger this decay, the steeper the power law; for strong
decay, no power law forms. A last reason might be that ref-
erees re-structure categories in ways strongly deviating from
the rules (i) - (iii).

3.6 Statistics per hierarchy level
The tree-structure of a database allows also to study the
sizes of class belonging to a given level of the hierarchy. As
shown in Figure 3 the DMOZ database contains 5 levels of
different size. If only classes on a given level l of the hier-
archy are considered, we equally found a power law in cate-
gory size distribution as shown in Figure 9. Per-level power
law decay has also been found for the in-degree distribu-
tion. This result may equally be explained by the model
introduced above: Equations 2 and 9 respectively, are valid
also if instead of p(k) one considers the conditional proba-

bility p(l)p(i|l), where p(l) =
∑κ

i′=1,l
Ni′,l∑κ

i′=1
Ni′

is the probability

of assignment to a given level, and p(i|l) = Ni,l∑κ
i′=1,l

Ni′,l
the

probability of being assigned to a given class within that
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Figure 11: Number of features vs rank distribution.

level. The formation process may be seen as a Yule process
within a level if

∑κ
i′=1,l Ni′,l is used for the normalization

in Equation 2, and this formation happens with probabil-
ity p(l) that a website gets assigned into level l. Thereby,
the rate at ml at which new classes are created need not
be the same for every level, and therefore the exponent of
the power law fit may vary from level to level. Power law
decay for the per-level class size distribution is a straight-
forward corollary of the described formation process, and
will be used in Section 5 to analyse the space complexity of
hierarchical classifiers.

4. RELATION BETWEEN CATEGORY SIZE
AND NUMBER OF FEATURES

Having explained the formation of two scaling laws in the
database, a third one has been found for the number of
features di in each category, G(d) (see Figures 11 and 12).
This is a consequence of both the category size distribution,
shown (in Figure 1) in combination with another power law,
termed Heaps’ law [10]. This empirical law states that the
number of distinct words R in a document is related to the
length n of a document as follows

R(n) = Knα , (11)

where the empirical α is typically between 0.4 and 0.6. For
the LSHTC2-DMOZ dataset, Figure 10 shows that for the
collection of words and the collection of websites, similar ex-
ponents are found. An interpretation of this result is that
the total number words in a category can be measured ap-
proximately by the number of websites in a category, al-
though not all websites have the same length.

Figure 10 shows that bigger categories contain also more fea-
tures, but this increase is weaker than the increase in web-
sites. This implies that less very ‘feature-rich’ categories ex-
ist, which is also reflected in the high decay exponent δ = 1.9
of a power-law fit in Figure 11, (compared to the slower de-
cay of the category size distribution shown in figure 1 where
β = 1.1). Catenation of the size distribution measured in
features and Heaps’ law yields again size distribution mea-
sured in websites: P (i) = R(G(di)), i.e. multiplication of
the exponents yields that δ · α = 1.1 which confirms our
empirically found value β = 1.1.
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Figure 10: Heaps’ law: number of distinct words vs. number of words, and vs number of documents.

5. SPACE COMPLEXITY OF LARGE-SCALE
HIERARCHICAL CLASSIFICATION

Fat-tailed distributions in large-scale web taxonomies high-
light the underlying structure and semantics which are use-
ful to visualize important properties of the data especially in
big data scenarios. In this section we focus on the applica-
tions in the context of large-scale hierarchical classification,
wherein the fit of power law distribution to such taxonomies
can be leveraged to concretely analyse the space complex-
ity of large-scale hierarchical classifiers in the context of a
generic linear classifier deployed in top-down hierarchical
cascade.

In the following sections we first present formally the task of
hierarchical classification and then we proceed to the space
complexity analysis for large-scale systems. Finally, we em-
pirically validate the derived bounds.

5.1 Hierarchical Classification
In single-label multi-class hierarchical classification, the train-
ing set can be represented by S = {(x(i), y(i))}Ni=1. In the

context of text classification, x(i) ∈ X denotes the vector
representation of document i in an input space X ⊆ Rd.

The hierarchy in the form of rooted tree is given by G =
(V, E) where V ⊇ Y denotes the set of nodes of G, and
E denotes the set of edges with parent-to-child orientation.
The leaves of the tree which usually form the set of target
classes is given by Y = {u ∈ V : �v ∈ V, (u, v) ∈ E}. Assum-

ing that there are K classes, the label y(i) ∈ Y represents
the class associated with the instance x(i). The hierarchical
relationship among categories implies a transition from gen-
eralization to specialization as one traverses any path from
root towards the leaves. This implies that the documents
which are assigned to a particular leaf also belong to the
inner nodes on the path from the root to that leaf node.

5.2 Space Complexity
The prediction speed for large-scale classification is crucial
for its application in many scenarios of practical importance.
It has been shown in [32; 3] that hierarchical classifiers are
usually faster to train and test time as compared to flat
classifiers. However, given the large physical memory of
modern systems, what also matters in practice is the size
of the trained model with respect to the available physical

memory. We, therefore, compare the space complexity of
hierarchical and flat methods which governs the size of the
trained model in large scale classification. The goal of this
analysis is to determine the conditions under which the size
of the hierarchically trained linear model is lower than that
of flat model.

As a prototypical classifier, we use a linear classifier of the
form wTx which can be obtained using standard algorithms
such as Support Vector Machine or Logistic Regression. In
this work, we apply one-vs-all L2-regularized L2-loss sup-
port vector classification as it has been shown to yield state-
of-the-art performance in the context of large scale text clas-
sification [12]. For flat classification one stores weight vec-
tors wy, ∀y and hence in a K class problem in d dimensional
feature space, the space complexity for flat classification is:

SizeFlat = d×K (12)

which represents the size of the matrix consisting ofK weight
vectors, one for each class, spanning the entire input space.

We need a more sophisticated analysis for computing the
space complexity for hierarchical classification. In this case,
even though the total number of weight vectors is much more
since these are computed for all the nodes in the tree and not
only for the leaves as in flat classification. Inspite of this, the
size of hierarchical model can be much smaller as compared
to flat model in the large scale classification. Intuitively,
when the feature set size is high (top levels in the hierarchy),
the number of classes is less, and on the contrary, when the
number of classes is high (at the bottom), the feature set
size is low.

In order to analytically compare the relative sizes of hierar-
chical and flat models in the context of large scale classifi-
cation, we assume power law behaviour with respect to the
number of features, across levels in the hierarchy. More pre-
cisely, if the categories at a level in the hierarchy are ordered
with respect to the number of features, we observe a power
law behaviour. This has also been verified empirically as il-
lustrated in Figure 12 for various levels in the hierarchy, for
one of the datasets used in our experiments. More formally,
the feature size dl,r of the r-th ranked category, according
to the number of features, for level l, 1 ≤ l ≤ L− 1, is given
by:

dl,r ≈ dl,1r
−βl (13)
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It has been shown in [32; 3] that hierarchical classifiers are
usually faster to train and test time as compared to flat
classifiers. However, given the large physical memory of
modern systems, what also matters in practice is the size
of the trained model with respect to the available physical

memory. We, therefore, compare the space complexity of
hierarchical and flat methods which governs the size of the
trained model in large scale classification. The goal of this
analysis is to determine the conditions under which the size
of the hierarchically trained linear model is lower than that
of flat model.

As a prototypical classifier, we use a linear classifier of the
form wTx which can be obtained using standard algorithms
such as Support Vector Machine or Logistic Regression. In
this work, we apply one-vs-all L2-regularized L2-loss sup-
port vector classification as it has been shown to yield state-
of-the-art performance in the context of large scale text clas-
sification [12]. For flat classification one stores weight vec-
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feature space, the space complexity for flat classification is:
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which represents the size of the matrix consisting ofK weight
vectors, one for each class, spanning the entire input space.

We need a more sophisticated analysis for computing the
space complexity for hierarchical classification. In this case,
even though the total number of weight vectors is much more
since these are computed for all the nodes in the tree and not
only for the leaves as in flat classification. Inspite of this, the
size of hierarchical model can be much smaller as compared
to flat model in the large scale classification. Intuitively,
when the feature set size is high (top levels in the hierarchy),
the number of classes is less, and on the contrary, when the
number of classes is high (at the bottom), the feature set
size is low.

In order to analytically compare the relative sizes of hierar-
chical and flat models in the context of large scale classifi-
cation, we assume power law behaviour with respect to the
number of features, across levels in the hierarchy. More pre-
cisely, if the categories at a level in the hierarchy are ordered
with respect to the number of features, we observe a power
law behaviour. This has also been verified empirically as il-
lustrated in Figure 12 for various levels in the hierarchy, for
one of the datasets used in our experiments. More formally,
the feature size dl,r of the r-th ranked category, according
to the number of features, for level l, 1 ≤ l ≤ L− 1, is given
by:

dl,r ≈ dl,1r
−βl (13)
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where dl,1 represents the feature size of the category ranked
1 at level l and β > 0 is the parameter of the power law.
Using this ranking as above, let bl,r represent the number
of children of the r-th ranked category at level l (bl,r is the
branching factor for this category), and let Bl represents the
total number of categories at level l. Then the size of the
entire hierarchical classification model is given by:

SizeHier =

L−1∑
l=1

Bl∑
r=1

bl,rdl,r ≈
L−1∑
l=1

Bl∑
r=1

bl,rdl,1r
−βl (14)

Here level l = 1 corresponds to the root node, with B1 = 1.
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Figure 12: Power-law variation for features in different levels
for LSHTC2-a dataset, Y-axis represents the feature set size
plotted against rank of the categories on X-axis

We now state a proposition that shows that, under some con-
ditions on the depth of the hierarchy, its number of leaves,
its branching factors and power law parameters, the size of
a hierarchical classifier is below that of its flat version.

Proposition 1. For a hierarchy of categories of depth L
and K leaves, let β = min1≤l≤L βl and b = maxl,r bl,r. De-
noting the space complexity of a hierarchical classification
model by Sizehier and the one of its corresponding flat ver-
sion by Sizeflat, one has:

For β > 1, if β >
K

K − b(L− 1)
(> 1), then

Sizehier < Sizeflat

(15)

For 0 < β < 1, if
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then

Sizehier < Sizeflat

(16)

Proof. As dl,1 ≤ d1 and Bl ≤ b(l−1) for 1 ≤ l ≤ L, one
has, from Equation 14 and the definitions of β and b:

Sizehier ≤ bd1

L−1∑
l=1

b(l−1)∑
r=1

r−β

One can then bound
∑b(l−1)

r=1 r−β using ([32]):

b(l−1)∑
r=1

r−β <

[
b(l−1)(1−β) − β

1− β

]
for β �= 0, 1 (17)

leading to, for β �= 0, 1:

Sizehier < bd1

L−1∑
l=1

[
b(l−1)(1−β) − β

1− β

]

= bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)
− (L− 1)

β

(1− β)

]

(18)

where the last equality is based on the sum of the first terms
of the geometric series (b(1−β))l.

If β > 1, since b > 1, it implies that b(L−1)(1−β)−1

(b(1−β)−1)(1−β)
< 0.

Therefore, Inequality 18 can be re-written as:

Sizehier < bd1(L− 1)
β

(β − 1)

Using our notation, the size of the corresponding flat clas-
sifier is: Sizeflat = Kd1, where K denotes the number of
leaves. Thus:

If β >
K

K − b(L− 1)
(> 1), then Sizehier < Sizeflat

which proves Condition 15.

The proof for Condition 16 is similar: assuming 0 < β < 1, it
is this time the second term in Equation 18 (−(L−1) β

(1−β)
)

which is negative, so that one obtains:

Sizehier < bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)

]

and then:

If
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then Sizehier < Sizeflat

which concludes the proof of the proposition.

It can be shown, but this is beyond the scope of this paper,
that Condition 16 is satisfied for a range of values of β ∈
]0, 1[. However, as is shown in the experimental part, it is
Condition 15 of Proposition 1 that holds in practice.

The previous proposition complements the analysis presented
in [32] in which it is shown that the training and test time of
hierarchical classifiers is importantly decreased with respect
to the ones of their flat counterpart. In this work we show
that the space complexity of hierarchical classifiers is also
better, under a condition that holds in practice, than the
one of their flat counterparts. Therefore, for large scale tax-
onomies whose feature size distribution exhibit power law
decay, hierarchical classifiers should be better in terms of
speed than flat ones, due to the following reasons:

1. As shown above, the space complexity of hierarchical
classifier is lower than flat classifiers.

2. ForK classes, only O(logK) classifiers need to be eval-
uated per test document as against O(K) classifiers in
flat classification.

In order to empirically validate the claim of Proposition 1,
we measured the trained model sizes of a standard top-down
hierarchical scheme (TD), which uses a linear classifier at
each parent of the hierarchy, and the flat one.

We use the publicly available DMOZ data of the LSHTC
challenge which is a subset of Directory Mozilla. More
specifically, we used the large dataset of the LSHTC-2010
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its branching factors and power law parameters, the size of
a hierarchical classifier is below that of its flat version.
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has, from Equation 14 and the definitions of β and b:
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of the geometric series (b(1−β))l.

If β > 1, since b > 1, it implies that b(L−1)(1−β)−1

(b(1−β)−1)(1−β)
< 0.

Therefore, Inequality 18 can be re-written as:

Sizehier < bd1(L− 1)
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Using our notation, the size of the corresponding flat clas-
sifier is: Sizeflat = Kd1, where K denotes the number of
leaves. Thus:

If β >
K

K − b(L− 1)
(> 1), then Sizehier < Sizeflat

which proves Condition 15.

The proof for Condition 16 is similar: assuming 0 < β < 1, it
is this time the second term in Equation 18 (−(L−1) β
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)

which is negative, so that one obtains:
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]

and then:

If
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then Sizehier < Sizeflat

which concludes the proof of the proposition.

It can be shown, but this is beyond the scope of this paper,
that Condition 16 is satisfied for a range of values of β ∈
]0, 1[. However, as is shown in the experimental part, it is
Condition 15 of Proposition 1 that holds in practice.

The previous proposition complements the analysis presented
in [32] in which it is shown that the training and test time of
hierarchical classifiers is importantly decreased with respect
to the ones of their flat counterpart. In this work we show
that the space complexity of hierarchical classifiers is also
better, under a condition that holds in practice, than the
one of their flat counterparts. Therefore, for large scale tax-
onomies whose feature size distribution exhibit power law
decay, hierarchical classifiers should be better in terms of
speed than flat ones, due to the following reasons:

1. As shown above, the space complexity of hierarchical
classifier is lower than flat classifiers.

2. ForK classes, only O(logK) classifiers need to be eval-
uated per test document as against O(K) classifiers in
flat classification.

In order to empirically validate the claim of Proposition 1,
we measured the trained model sizes of a standard top-down
hierarchical scheme (TD), which uses a linear classifier at
each parent of the hierarchy, and the flat one.

We use the publicly available DMOZ data of the LSHTC
challenge which is a subset of Directory Mozilla. More
specifically, we used the large dataset of the LSHTC-2010
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edition and two datasets were extracted from the LSHTC-
2011 edition. These are referred to as LSHTC1-large, LSHTC2-
a and LSHTC2-b respectively in Table 2. The fourth dataset
(IPC) comes from the patent collection released by World
Intellectual Property Organization. The datasets are in the
LibSVM format, which have been preprocessed by stemming
and stopword removal. Various properties of interest for the
datasets are shown in Table 2.

Dataset #Tr./#Test #Classes #Feat.

LSHTC1-large 93,805/34,880 12,294 347,255
LSHTC2-a 25,310/6,441 1,789 145,859
LSHTC2-b 36,834/9,605 3,672 145,354
IPC 46,324/28,926 451 1,123,497

Table 2: Datasets for hierarchical classification with the
properties: Number of training/test examples, target classes
and size of the feature space. The depth of the hierarchy tree
for LSHTC datasets is 6 and for the IPC dataset is 4.

Table 3 shows the difference in trained model size (actual
value of the model size on the hard drive) between the two
classification schemes for the four datasets, along with the
values defined in Proposition 1. The symbol � refers to the
quantity K

K−b(L−1)
of condition 15.

Dataset TD Flat β b �
LSHTC1-large 2.8 90.0 1.62 344 1.12
LSHTC2-a 0.46 5.4 1.35 55 1.14
LSHTC2-b 1.1 11.9 1.53 77 1.09
IPC 3.6 10.5 2.03 34 1.17

Table 3: Model size (in GB) for flat and hierarchical models
along with the corresponding values defined in Proposition
1. The symbol � refers to the quantity K

K−b(L−1)

As shown for the three DMOZ datasets, the trained model
for flat classifiers can be an order of magnitude larger than
for hierarchical classification. This results from the sparse
and high-dimensional nature of the problem which is quite
typical in text classification. For flat classifiers, the entire
feature set participates for all the classes, but for top-down
classification, the number of classes and features participat-
ing in classifier training are inversely related, when travers-
ing the tree from the root towards the leaves. As shown in
Proposition 1, the power law exponent β plays a crucial role
in reducing the model size of hierarchical classifier.

6. CONCLUSIONS
In this work we presented a model in order to explain the
dynamics that exist in the creation and evolution of large-
scale taxonomies such as the DMOZ directory, where the
categories are organized in a hierarchical form. More specif-
ically, the presented process models jointly the growth in
the size of the categories (in terms of documents) as well as
the growth of the taxonomy in terms of categories, which
to our knowledge have not been addressed in a joint frame-
work. From one of them, the power law in category size
distribution, we derived power laws at each level of the hier-
archy, and with the help of Heaps’s law a third scaling law
in the features size distribution of categories which we then

exploit for performing an analysis of the space complexity
of linear classifiers in large-scale taxonomies. We provided
a grounded analysis of the space complexity for hierarchical
and flat classifiers and proved that the complexity of the
former is always lower than that of the latter. The analysis
has been empirically validated in several large-scale datasets
showing that the size of the hierarchical models can be sig-
nificantly smaller that the ones created by a flat classifier.

The space complexity analysis can be used in order to es-
timate beforehand the size of trained models for large-scale
data. This is of importance in large-scale systems where the
size of the trained models may impact the inference time.
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[17] K. Klemm, V. M. Egúıluz, and M. San Miguel. Scaling
in the structure of directory trees in a computer cluster.
Physical review letters, 95(12):128701, 2005.

[18] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. In Proceedings of
the Fourteenth International Conference on Machine
Learning, ICML ’97, 1997.

[19] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and
W.-Y. Ma. Support vector machines classification with
a very large-scale taxonomy. SIGKDD, 2005.

[20] B. Mandelbrot. A note on a class of skew distribution
functions: Analysis and critique of a paper by ha simon.
Information and Control, 2(1):90–99, 1959.

[21] C. Metzig and M. B. Gordon. A model for scaling in
firms’ size and growth rate distribution. Physica A,
2014.

[22] M. Newman. Power laws, pareto distributions and zipf’s
law. Contemporary Physics, 46(5):323–351, 2005.

[23] M. E. J. Newman. Power laws, Pareto distributions and
Zipf’s law. Contemporary Physics, 2005.

[24] I. Partalas, R. Babbar, É. Gaussier, and C. Amblard.
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1. INTRODUCTION 
I had a pleasure of working with Michael Brodie when we were 
both at GTE Laboratories in 1990s, where he was already a world-
famous researcher and a department manager. I recently met him 
at another conference, and our discussion led to this interview. 
Michael is still very sharp, very active, and busy - he answered 
these questions while flying from Boston to Doha, Qatar where he 
is advising Qatar Computing Research Institute.  
Parts of this interview were published in KDnuggets [1-3]. 

2. BACKGROUND 
Dr. Michael L. Brodie [4] has served as 
Chief Scientist of a Fortune 20 company, an 
Advisory Board member of leading 
national and international research 
organizations, and an invited speaker and 
lecturer. In his role as Chief Scientist Dr. 
Brodie has researched and analyzed 
challenges and opportunities in advanced 
technology, architecture, and 
methodologies for Information Technology 
strategies. He has guided advanced 
deployments of emergent technologies at 
industrial scale, most recently Cloud 
Computing and Big Data.  

 
Throughout his career Dr. Brodie has been active in both 
advanced, academic research and large-scale industrial practice 
attempting to obtain mutual benefits from the industrial 
deployment of innovative technologies while helping research to 
understand industrial requirements and constraints. He has 
contributed to multi-disciplinary problem solving at scale in 
contexts such as Terrorism and Individual Privacy, and 
Information Technology Challenges in Healthcare Reform.   
 

3. INTERVIEW 
 
Gregory Piatetsky:  You have started as a researcher in 
Databases (PhD from Toronto) and had a very distinguished 
and varied career spanning academia, industry, and 
government, in US, Europe, Australia, and Latin America 
over the last 25+ years. From your unique vantage point, what 
were 3 most important database research advances? 
 
Michael Brodie: Three most important database research 
advances:  

1. Ted Codd’s Relational model of data (1970) is the most 
important database research advance as it launched what 
is now a $28 BN/year market still growing at 11% 
CAGR with over 215 RDBMSs on the market. More 
important to me it launched four decades of amazing 
research advances starting with query optimization 
(Selinger) and transactions (Gray) and innovation that 
has probably grown at 20% CAGR. 

2. The next most important research advance or stage was 
a change in perspective that specific domains require 
their own DBMS such as graph databases, array stores, 
document stores, key-value stores, NoSQL, NewSQL, 
and many more to come. DB-Engines.com lists twelve 
DBMS categories thus bumping the database world 
from managing 8% of the world’s data to about 12% but 
due to the growth of non-database data back to 10%. 
Soon, due to the role of data in our digitized world there 
will be data management systems for many more 
domains. While this is amazingly cool, how do we solve 
multi-disciplinary (multi-data domain) problems in a 
consistent rather that disjoint way? 

3. The next most important research advance is just 
emerging and is mind blowing. I call it Computing 
Reality, acknowledging that every datum (every real 
world observation) is not definitive but probabilistic. 
Unlike conventional databases and more like reality, 
Computing Reality has no single version of truth. How 
do we model such worlds, more realistic worlds and 
compute over them? The simple answer is that it is 
already in Big Data sources. There are many related 
attempts to address Computing Reality including social 
computing, probabilistic computing, probabilistic 
databases, Open Worlds in AI, Web Science, 
Approximate Computing, Crowd Computing, and more. 
Perhaps this will be the next generation of computing. 

 

SIGKDD Explorations Volume 16, Issue 1 Page 57



 

 
GP: What about the most important database industry 
developments?  
 
MB: Alas the database industry, like all industries, has a legacy 
problem that stifles innovation. It has taken over 30 years to 
emerge from the relational era. The most important recent 
database industry development came from outside the database 
industry, it is Big Data and its marketing arm called MapReduce 
and its data sidekicks, Hadoop and NoSQL. Frankly, the 
database industry has been insular and protected its relational 
turf for FAR too long. Smart folks at Yahoo!, Google and other 
places saw value in data, non-database data, and thus emerged 
MapReduce, Hadoop, and NoSQL- generally crappy database 
ideas but it woke up the database industry1. Hadoop and NoSQL 
are growing in demand. In time it will be seen that they are 
amazing for a very specific problem domain, embarrassingly 
parallel problems, but it is a money pit for everything else. The 
importance of MapReduce is that it forced the database industry to 
get out of their hammocks. 
 
GP: What is the role of Relational Databases, NoSQL 
databases, Graph databases, and other databases today?  
 
Relational Databases have two extremely well established roles. 
Conventional row stores serve the OLTP community as the 
backbone of enterprise operations. These blindingly fast 
transaction processors are moving in-memory. OLTP stores are 
modest in number and size (< 1 TB) growing and declining in 
lock step with business growth and decline. Column stores, 
OLAP, are the backbone of data warehouses and until recently 
business intelligence. In general there are huge numbers of these, 
often of very large size in the Petabyte and Exabyte range. This is 
where Big Data battle lines are being drawn. What fun!!  
 
This is also where we turn from polishing the relational round ball 
[5] and focus on the other dozen or so other DBMS categories. 
Taking over is relative; none of the 12 other categories has more 
than 3% of the database market. Graph databases serve graph 
applications like networking in communications, telecom, social 
networks, and of course NSA applications! But what is wonderful 
about these emerging classes of data-domain specific DBMSs is 
that we are only now discovering the rich use cases that they 
serve.  
 
The use cases define the DBMSs and the DBMSs help formulate 
the use cases. SciDB is a superb example of managing scientific 
data and computation at scale. It is awkward for both communities 
– database folks who don’t speak linear algebra or matrices, and 
scientists who only speak R. Exciting times. For a little fun look at 
the database-engines list [6]. 

Database Engines  
 
DB-Engines lists 216 different database management systems, 
which are classified according to their database model (e.g. 

                                                             
1 On June 25, 2014 Google launched Cloud Dataflow replacing 

MapReduce and marking the decline of MR and Hadoop as 
predicted at launch in 2010 by Mike Stonebraker in 2010. 

relational DBMS, key-value stores etc.). This pie-chart shows the 
number of systems in each category. Some of the systems belong 
to more than one category.  
 

 
 
Popularity changes per category, April 2014, over 1 year  

 Graph DBMS – growing dramatically 3.5X 

 Wide column stores – 2X 

 Document stores 2X 

 Native XML DBMS – 1.5X 

 Key-value stores – 1.5X 

Search engines – 1.5X

 RDF stores – 1.5X 

 Object oriented DBMS - flat 

 Multivalue DBMS - flat 

 Relational DBMS - flat 

 
GP: You have held an amazing variety of positions in 
academy, industry, government organization, VC firms, and 
start-ups, in US, Brazil, Canada, Australia, and Europe. 
Which 3 positions were most satisfying to you and why?  
 
MB: What a great question. Thank you for asking because it 
caused me to think about what I have really enjoyed over 40 
years. Somehow CSAIL at MIT and the Faculty of Computing 
and Communications at EPFL jump to mind. 
  
There are scary smart people at those places. Like climbing 
mountains it both scares and exhilarates me. To be frank my jobs 
at big enterprises in hindsight are confusing. I guess I was window 
dressing because my role did not feel like it had impact. So 
getting motivated and scared at MIT and EPFL are probably top, 
so there’s number one. Why? Just look down 5,000 feet and ask 
why am I here? 
 
Second is a combination of Advisory roles at US Academy of 
Science, DERI, STI, ERCIM, Web Science Trust, and others 
because they gave me a sense of collaborating, challenging, and 
contributing. How cool is that?_________________________  
 
Third would be working at startups like Tamr and Jisto. Imagine 
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waking up in the morning and thinking you might change the 
world. That requires that I conceive the world not just differently, 
but so that it solves someone’s REAL problem. Even more cool. 
 
Gregory Piatetsky: Currently you are an adviser at a startup 
called Tamr [7], co-founded by another leading DB researcher 
and serial entrepreneur Michael Stonebraker. What can you 
tell us about Tamr and its product? 
 
Michael Brodie: Consider the data universe. Since the 1980’s I 
have said in keynotes that the database and business worlds deal 
with less than 10% of the world’s data most of which is 
structured, discrete, and conforms to some schema. With the Web 
and Internet of Things in the 1990s massive amounts of 
unstructured data began to emerge with a growth rate that was 
inconceivable while shrinking database data to less than 8%. 
EMC/IDC claims [14] that our Digital Universe is 4.4 zettabytes 
and will double every two years until 2020 when it will be 44 
zettabytes.  
 
[If you are constantly amazed at the growth of the Digital 
World, you don’t understand it yet – A profound, casual 
comment of my departed friend, Gerard Berry, Academie 
Francais.]  
 
In 1988 or so you, Gregory, and a few others saw the potential of 
data with your knowledge discovery in databases – then a radical 
idea. Little did others, including me, realize the potential of this, 
now named Big Data. Even though Big Data is hot in 2014, 
almost 30 years later, it’s application, tools, and technologies are 
in their infancy, analogous to the emergence of the Web in the 
early 1990s. Just as the Web has and is changing the world, so too 
will Big Data. 
________________________________________   
 
Compared with database data, Big Data is crazy. It’s largely 
not understood hence it is schema-less or model-less. Big Data is 
inconceivably massive, dirty, imprecise, incomplete, and 
heterogeneous beyond anything we’ve seen before. Yet it 
trumps finite, precise, database data in many ways hence is a 
treasure trove of value. Big Data is qualitatively different from 
database data that is a small subset of Big Data - EMC/IDC claims 
1% as of 2013. It offers far greater potential thus value and 
requires different thinking, tools, and techniques. Database data is 
approached top-down. Telco billing folks know billing inside out 
so they create models that they impose, top-down on data. Data 
that does not comply is erroneous. Database data, like Telco bills 
must be precise with a single version of truth, so that the billing 
amount is justifiable. Due in part to scale, Big Data must be 
approached bottom up. More fundamentally, we should let data 
speak; see what models or correlations emerge from the data, e.g., 
to discover if adding strawberry to the popsicle line-up makes 
sense (a known unknown) or to discover something we never 
thought of (unknown unknowns). Rather than impose a 
preconceived, possibly biased, model on data we should 
investigate what possible models, interpretations, or correlations 
are in the data (possibly in the phenomena) that might help us 
understand it. 
  
 

Hence, the new paradigm is to approach Big Data bottom-up 
due to the scale of the data and to let the data speak. Big Data 
is a different, larger world than the database world. The database 
world (small data) is a small corner of the Big Data world. 
Correspondingly Big Data requires new tools, e.g., Big Data 
Analytics, Machine Learning (the current red haired child), 
Fourier transforms, statistics, visualizations, in short any model 
that might help elucidate the wisdom in the data. But how do you 
get Big Data, e.g., 100 data sources, 1,000, 100,000 or even 
500,000, into these tools? How do you identify the 5,000 data 
sources that include Sally Blogs and consolidate them into a 
coherent, rationale, consistent view of dear Sally? When questions 
arise in consolidating Sally’s data, how do you bring the relevant 
human expertise, if needed, to bear – at scale on 1 million people? 
Many successful Big Data projects report that this data curation 
process takes 80% of the project resources leaving 20% for the 
problem at hand. Data curation is so costly because it is largely 
manual hence it is error prone. That’s where Tamr comes to the 
rescue. It is a solution to curate data at scale.  
 
We call it collaborative data curation because it optimizes the use 
of indispensable human experts. Data Curation is for Big Data 
what Data Integration is for small data. 

 
 
Data Curation is bottom up and Data Integration is top down. 
It took me about a year to understand that fundamental difference. 
I have spent over 20 years of my professional life dealing with 
those amazing Data Integration platforms and some of the world’s 
largest data integration applications. Those technologies and 
platforms apply beautifully to database data – small data; they 
simply do not apply to Big Data.  
 
To emphasize what is ahead, here is a prediction. Data Integration 
is increasingly crucial to combining top-down data into 
meaningful views. Data Integration is a huge challenge and huge 
market that will not go away. Big Data is orders of magnitude 
larger than small or database data. Correspondingly Data Curation 
will be orders of magnitude larger than Data Integration.  The 
world will need Data Curation solutions like Tamr to let data 
scientists focus on analytics, the essential use and value of big 
data, while containing the costs of data preparation. In addition to 
Tamr there are over 65 very cool data curation products 
contributing to addressing the growing need and creating a new 
software market. What is also cool about data curation is that it 
can be used to enrich the existing information assets that are the 
core of most enterprise’s applications and operations. Of course, 
the really cool potential of data curation is that it makes Big Data 
analytics more efficiently available to allow users to discover 
things that they never knew! How cool is 
that?__________________________  
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For more on Data Curation at scale, see Stonebraker [8]. 
 
GP: You also advise another startup Jisto. What can you tell 
us about your role there?  
 
MB: I am having a blast with Jisto [9]– some amazingly talented 
young engineers [PhDs actually] with lots of energy and a killer 
idea. Jisto is an exceptional example of the quality you ask about 
in the next question.  
 
Cloud computing enabled by virtualization is radically changing 
the world by reducing the cost and increasing the availability of 
computing resources. Can you imagine that only 50% of the 
world’s servers are virtualized?  
 
Pop quiz [do not cheat and read ahead].  
 
What is the average CPU utilization of physical servers, 
worldwide? Of virtual servers? 
  
 Answer: Virtual machine CPU utilization is typically in the 30-
50% range while physical servers are 10-20%, due to risk and 
scheduling ,but mostly cultural challenges.  
 
Jisto enables enterprises to transparently run more compute-
intensive workloads on these paid-for but unused resources 
whether on premises or in public or private clouds, thus reducing 
costs by 75–90% over acquiring more hardware or cloud 
resources.  
 
Jisto provides a high-performance, virtualized, elastic cloud-
computing environment from underutilized enterprise or cloud 
computing resources (servers, laptops, etc.) without impacting the 
primary task on those resources. Organizations that will benefit 
most from Jisto are those that run parallelized compute-intensive 
applications in the data center or in private and public clouds (e.g., 
Amazon Web Services, Windows Azure, Google Cloud Platform, 
IBM SmartCloud). 
_  
Jisto is currently looking for early adopters for its beta program 
who will gain significant reduction in the cost of their computing 
possibly avoiding costly data center expansion.  
 
GP: You are also a Principal at First Founders Limited. What 
do you look for in young business ventures - how do you 
determine quality?--------------------------------------------  
 
MB: There are armies of people who evaluate the potential of 
startups. The professional ones are called "Venture Capitalists 
(VCs). The retired ones are called Angels. Like any serious 
problem there is due diligence to determine and evaluate the 
factors relevant to the business opportunity, the technology, the 
business plan, etc. as the many books [10] and formulas suggest.--
-------------------------------------------------------  
 
If you are reading a book, then you don’t know. Ultimately it 
comes down to good taste developed over years of successful 
experience. Andy Palmer, a serial entrepreneur, good friend, and 
very smart guy said “Do it once really well then repeat.” Andy 
ought to know, Tamr is about his 25th startup.  
 

At First Founders I can do some technology, Jim can do finance, 
Howard can do business plans. Collectively we make a judgment. 
But good VC’s are the wizards. They have Rolodexes. When their 
taste says maybe they refer the startup to the relevant folks in their 
network who essentially do the due diligence for them. Like at 
First Founders, the judgment is crowd sourced, actually what we 
call at Tamr, it is expert sourced. I have a growing trust of the 
crowd and especially of the expert crowd.  
 
GP: You were a Chief Scientist at Verizon for over 10 years 
(and before that at GTE Labs which became part of Verizon). 
What were some of the most interesting projects you were 
involved in at GTE and Verizon?  
 
MB: The technical challenge that stays with me is that addressed 
by the Verizon Portal, Verizon’s solution for Enterprise 
Telecommunications – providing Telecommunication services to 
enterprise customers, such as Microsoft. Verizon, like all large 
Telcos, is the result of the merger & acquisition of 300+ smaller 
Telcos. Each had at least 3 billing systems; hence Verizon 
acquired over 1,000 billing systems. Billing is only one of over a 
dozen systems categories, including sales, marketing, ordering, 
and provisioning. Providing a customer like Microsoft with a 
telephone bill for each Microsoft organization requires integrating 
data potentially from over 1,000 databases. As is the case for most 
enterprises, Verizon and Microsoft reorganize constantly 
complicating the sources to be integrated, like Microsoft, and the 
targets, Verizon’s changing businesses, e.g., wireline and FiOS. 
Every service company faces this little-discussed massive 
challenge. 
 
 
Integrating 1,000s of operational systems is a backward looking 
problem. The cool forward-looking problem was Verizon IT’s 
Standard Operating Environment (SOE). Prior to cloud platforms 
and cloud providers, Verizon IT (actually one team) sought to 
develop an SOE onto which Verizon’s major applications (0ver 
6,000) could be migrated to be managed virtually on an internal 
cloud. What a fun challenge. When the team left Verizon as a 
group over 60 major corporate applications, including SAP, had 
been migrated. Smart folks, good solution that failed in Verizon. 
In industry, challenges are 80-20; 80% political, 20% 
technical. The SOE is being reborn in the infrastructure of 
another major infrastructure corporation. 
  
Finally, the next most interesting and yet unsolved industry 
challenge was getting over the legacy that Mike Stonebraker and I 
addressed in [11].  
How do you keep a massive system up to date in terms of the 
application requirements and the underlying technology or 
migrate it to a modern, efficient, more cost effective platform?  
 
Enterprises tend to invest only in new revenue generating 
opportunities often leaving the legacy problem to grow and grow. 
So existing systems like billing languish and accumulate. It’s like 
a teenager never tidying their room for 60 years. Now where 
are my blue shoes? I suggested to Mike Stonebraker that we 
rewrite our 1995 book. He did not even respond to the email, 
suggesting that it is largely a political problem and not technical, 
no matter the brilliant technical solution provided. 
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Lesson: If you are a CIO, clean up your goddamn room; you’re 
not going out until you do! 

 
GP: Around 1989 when you were a manager at GTE Labs and 
I was a member of technical staff there, you were somewhat 
skeptical of the idea I proposed for research into Knowledge 
Discovery in Databases (then called KDD or Data Mining, and 
more recently Predictive Analytics, and Data Science). The 
field has progressed significantly since then. From your point 
of view, what are the main successes and disappointments of 
KDD/Data Mining/Predictive Analytics and can Data Science 
become an actual science?  
 
MB: My current research concerns the scientific and 
philosophical underpinnings of Big Data and Data Science. With 
Big Data we are undergoing a fundamental shift in thinking and in 
computing. Big Data is a marvelous tool to investigate What – 
correlations or patterns that suggest that things might have or will 
occur. 

 
Big Data’s weakness is that it says nothing about Why – 
causation or why a phenomenon occurred or will occur.  
 
A pernicious aspect of What are the biases that we bring to it. On 
a personal note, my biased recall of 1989 was how marvelous 
your ideas were and the amazing potential of data mining. I accept 
your view that I was skeptical rather than enthusiastic as I recall. 
You see I modified reality to fit my desire to be on the winning 
side, which I was not then. Hence, what we think that we thought 
may bear little resemblance to reality or, more precisely other 
people’s reality. As Richard Feynman said,  

“The first principle is that you must not fool yourself - and you 
are the easiest person to fool.”  
 
That said, I see the main successes of this trend as a nascent 
trajectory along the lines of Big Data, Data Analytics, Business 
Intelligence, Data Science, and whatever the current trendy term 
is. The World of What is phenomenal – machines proposing 
potential correlations that are beyond our ability to identify. 
Humans consider seven plus or minus 2 variables at a time, a 
rather simple model, while models, such as Machine Learning, 
can consider millions or billions of variables at a time. Yet 95% 
(or even 99.99999%) of the resulting correlations may be 
meaningless. For example, ~99% of credit card transactions are 
legitimate with less than 1% that are fraudulent, yet the 1% can 
kill the profits of a bank. So precision and outlier cases, called 
anomalies in science can matter. So it pays to search for 
apparently anomalous behavior – as it is happening!  
 
We have already seen massive benefits of Big Data in the stock 
market, electoral predictions, marketing success, and many more 
that underlie the Big Data explosion. Yet there is a potential Big 
Data Winter ahead if people blindly apply Big Data and more 
specifically Machine Learning. The failures concern limited 
models of phenomena and the human tendency of bias. People can 
and do use What (Big Data, etc.) to support their biases and 
limited models, e.g., used to support the claim of the absence of 
climate change or lack of human impact on climate change, rather 

than letting the data speak to suggest directions and models that 
we may never have thought of. As it has always been, it takes 
courage to change from a discrete world of top-down models [I 
know how this works!] to an ambiguous, probabilistic world 
[What possible ways does this work?].  
 
Those are natural successes and limitations of an emerging field. 
The direction, opportunities, and changes are profound. I 
experience a mix of fear and tingles thinking of asking the data to 
speak. Hoping that I can be open to what it says and 
distinguishing s..t from Shinola. 
 
 
I call the vision Computing Reality. It may be the Next 
Generation of Computing.  
 
GP: In your very insightful report of the White House-MIT 
Big Data Privacy Workshop [12] you have a quote “Big data 
has rendered obsolete the current approach to protecting 
privacy and civil liberties". Will people get used to much less 
privacy (as the digitally-savvy younger people seem to be) or 
will government regulation and/or technology be able to 
protect privacy? How will this play in US vs. Europe vs. other 
regions of the world? 
 
MB: As an undergraduate at the University of Toronto, I was 
extremely fortunate to have had Kelly Gotlieb, the Father of 
Computing in Canada, as a mentor. I was a student in his 1971 
course, Computers and Society, later to become the first book on 
the topic. Kelly and the issues, including privacy, have resonated 
with me throughout my career. Kelly observed that privacy, like 
many other cultural norms, varies over time. So yes, privacy will 
fluctuate from Alan Westin’s notion of determining how your 
personal information is communicated to the Facebook-esk "Get 
over it". 
  
While personal privacy is undergoing significant change, 
disclosure of information assets that are part of the digital 
economy or of government or corporate strategy may have very 
significant impacts on our economy and democracy. Hence, this 
raises issues of security, protection, and cultural and social issues 
too complex to be treated here. 
  
However, there are a number of very smart people looking at 
various aspects. The quote you cite is from Craig Mundy [13] who 
explores changes that Big Data brings debating the balancing of 
economic versus privacy issues. 
  
Very smart folks, like Butler Lampson and Mike Stonebraker, are 
commenting on practical solutions to this age-old problem. Their 
arguments are along the following lines. Due to the massive scale 
of Big Data, and what I call Computing Reality, previously top-
down solutions for security, such as anticipating and preventing 
security breaches, will simply not scale to Big Data. They must be 
augmented with new approaches including bottom-up solutions 
such as Stonebraker’s logging to detect and stem previously 
unanticipated security breaches and Weitzner’s accountable 
systems. 
  
To beat the Heartbleed bug and others like it, “Organizations need 
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to be able to detect attackers and issues well after they have made 
it through their gates, find them, and stop them before damage can 
occur,” Gazit, a leading cyber security expert said recently. “The 
only way to achieve such a laser-precision level of detection is 
through the use of hyper-dimensional big data analytics, 
deploying it as part of the very core of the defense mechanisms.  
 
Big Data has rendered obsolete the current approach to 
protecting privacy and civil liberties.” 
  
Hence, Big Data requires a shift from a focus on top-down 
methods of controlling data generation and collection to a focus 
on data usage. Not only do top-down methods not scale, “Tightly 
restricting data collection and retention could rob society of a 
hugely valuable resource [13]”. Adequate let alone complete 
solutions will take years to develop. 
  
GP: What interesting technical developments you expect in 
Database and Cloud Technology in the next 5 years?  
 
MB: I call the Big Picture Computing Reality in which we model 
the world from whatever reasonable perspectives emerge from the 
data and are appropriate, e.g., have veracity, and make decisions 
symbiotically with machines and people collaborating to optimize 
resources while achieving measures of veracity for each result. 
  
One subspace of this world is what we currently know with high 
levels of confidence, the type of information that we store in 
relational databases. Another encompassing space is what we 
know but forgot or don’t want to remember (unknown knowns) 
and a third is what we speculate but do not know (known 
unknowns), these are all the hypotheses that we make but do not 
know in science, business, and life. 
  
The rest of the data space – unknown unknowns - is infinite; 
otherwise learning would be at an end. That is the space of 
discovery.  
 
I am investigating Computing Reality to investigate the entire 
space with the objective of accelerating Scientific Discovery. 
This is practically interesting because very little of our world is 
discrete, bounded, finite, or involves a single version of truth, yet 
that is the world of most computing. With Computing Reality we 
hope to be far more pragmatic and realistic. This is technically 
and theoretically interesting because we have almost no 
mathematical or computing models in these areas. Those that exist 
are just emerging or are massively complex. How cool is that? 
You see what old retired guys get to do?   
 
GP: What do you like to do in your free time? What recent 
book you liked? 
 
 
MB: Free time – what a concept! My yoga teacher, Lynne 
recommended that I should try to do nothing one day, and I will. I 
will. Soon. Really. Life is such a blast; it’s hard to keep still.  
 

 
(Michael Brodie and his son on a peak in New Hampshire) 

 
My activities include the gym (4 times a week); hiking/climbing 
~75 mountains USA, Nepal, Greece, Italy, France, Switzerland, 
and even Australia; 42 of the 48 4,000 footers in NH (most with 
Mike Stonebraker); cooking (daily and special occasions with my 
son Justin, an amazing chef and brewer, when he’s not doing his 
PhD), travel, and my garden; all of these – except the gym and 
garden - with family and close friends. 
 
 
 
Very cool Big Data Books:  
Big Data: A Revolution That Will Transform How We Live, Work, 
and Think by Viktor Mayer-Schonberger, Kenneth Cukier, 
Houghton Mifflin Harcourt confused and inspired me, then 
The Signal and the Noise: Why So Many Predictions Fail-but 
Some Don't, by Nate Silver, Penguin Press, inspired me. 
 
Real books 

 Ken Follett’s The Pillars of the Earth; Century Trilogy 
(Fall of Giants, Winter     of the World and Edge of 
Eternity)  

 Henning Mankell’s The Fifth Woman (A Kurt 
Wallander Mystery) 

 
GP: You just returned from Doha, Qatar where you were 
advising the Qatar Computing Research Institute (QCRI) - 
quite far from Silicon Valley, New York, or Boston. What is 
happening there and what computing research are they 
doing?  
 
MB: This was my first visit to Qatar that was remarkable 
culturally an intellectually. Culturally I saw spectacular result of 
hydrocarbon wealth and vision, e.g., amazing architecture 
emerging from the dessert. Intellectually I saw the beginnings of 
Qatar’s National Vision 2030 to transform Qatar’s economy from 
hydrocarbon-based to knowledge-based. 
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 One step in this direction by the Qatar Foundation was to create 
the Qatar Computing Research Institute (QCRI). In less than three 
years QCRI has established the beginnings of a world-class 
computer science research group seeded with world-class 
researchers in strategically important areas such as Social 
Computing, Data Analysis, Cyber Security, and Arabic Language 
Technologies (e.g., Machine Learning and Translation) amongst 
others. Each group already has multiple publications over several 
years in the leading conferences in their areas, e.g., SIGMOD and 
VLDB for Data Analysis. I spent my time reviewing with them 
what I consider to be some of the most challenging issues in Big 
Data. 
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