

Smart cities, algorithmic technocracy and new urban technocrats

Rob Kitchin, Claudio Coletta, Leighton Evans, Liam Heaphy and Darach Mac Donncha

------ ¹⁵ Introduction

17 Over the past decade, many cities have adopted policies and rolled out
18 programmes and projects designed to transform them into a 'smart
19 city'. It is clear from the plethora of initiatives underway globally that
20 the idea and ideals of smart cities are quite broadly conceived, with
21 enterprises ranging from those: aimed at changing the nature of urban
22 regulation and governance through the use of data-driven systems that
23 make the city knowable and controllable in new, dynamic, reactive
24 ways; to digital systems that improve the efficiency and effectiveness
25 of city services, increase the economic productivity, competitiveness
26 and innovation of businesses, and drive economic growth and urban
27 development; to ICT-enabled schemes that enhance environmental
28 sustainability and urban resilience; to technology-led approaches
29 that improve quality of life and promotes a citizen-centric model of
30 development which fosters social innovation, civic engagement and
31 social justice (Townsend, 2013; Kitchin, 2014).

32 In all these cases, digital technologies are front-and-centre as a vital
33 ingredient for addressing the major issues facing city managers, urban
34 citizens and industry leaders. Digital technologies are seen as a key
35 means of providing solutions to urban problems (see Table 15.1), both
36 in terms of instrumental issues such making traffic flow more freely or
37 increasing the efficiency of service delivery, but also wider substantive
38 issues such as increasing resilience, sustainability, civic participation and
39 innovation. Indeed, whatever the challenge, technology is increasingly
40 being positioned and deployed as the optimum means to resolve that
41 challenge, rather than through specific or wider policy initiatives
42 and programmes, politics and deliberative democracy, or citizen

Table 15.1: Smart city technologies

Domain	Example technologies
Government	E-government systems; city operating systems; performance management systems; urban dashboards
Security and emergency services	Centralised control rooms; digital surveillance; predictive policing; coordinated emergency response
Transport	Intelligent transport systems; integrated ticketing; smart travel cards; bikeshare; real-time passenger information; smart parking; logistics management; transport apps
Energy	Smart grids; smart meters; energy usage apps; smart lighting
Waste	Compactor bins and dynamic routing/collection
Environment	Sensor networks (for example, pollution, noise, weather; land movement; flood management)
Buildings	Building management systems; sensor networks
Homes	Smart meters; app controlled smart appliances
Civic	Various apps; open data; volunteered data/hacks

Source: Kitchin, 2016 [[2016a 'The ethics...' or 2016b Reframing...?]]

interventions. In other words, a technocratic, 'solutionist' approach to running cities is widely being adopted (Greenfield, 2013; Kitchin, 2014). The adoption of smart city technologies, across a range of urban domains, are then, we argue in this chapter, at the vanguard of producing a new urban technocracy. Accompanying and facilitating the creation of smart cities and its technocratic ethos and approach is the rise of a new set of urban technocrats (for example, chief innovation/ technology/data officers, project managers, consultants, designers, engineers, change-management civil servants and academics), supported by a range of stakeholders (for example, private industry, lobby groups, philanthropists, politicians, civic tech bodies), and events (for example, various smart city expos, workshops, hackathons) and governance arrangements (for example, smart city advisory boards).

In this chapter, we examine the technocracy of smart cities and the set of urban technocrats that promote and implement their use. We first set out the new technocracy at work and the forms of technocratic governance and governmentality it enacts. We then detail how this technocracy is supported by a new smart city epistemic community of technocrats that is aligned with a wider set of smart city interest groups to form a powerful 'advocacy coalition' (Sabatier and Jenkins-Smith, 1993) that works at different scales. In the final section, we consider the translation of the ideas and practices of this advocacy coalition into the

6

5

7

¹ policies and work of city administrations. In particular, we consider the ² reasons why smart city initiatives and its associated technocracy are yet ³ to become fully mainstreamed and the smart city mission successfully _____4 realised in cities across the globe.

An algorithmic technocracy

⁸ As detailed in the opening chapter of this volume, technocracy is ⁹ government led and performed by 'competent', knowledgeable experts, ¹⁰ in contrast to democracy in which elected officials make decisions _____¹¹ based on experience and politics (Savini and Raco, 2018[[not in _____¹² references]]). In essence, technical experts gain power to control ¹³ how governance is organised and performed, replacing politicians and ¹⁴ directing the activities of generalist civil servants. In turn, governance _____¹⁵ becomes more technocratic in nature, underpinned by scientific ¹⁶ principles and expert knowledge and enacted through technical _____¹⁷ measures, methods and specialist technologies (Liu, 2015). Within ¹⁸ a technocracy there are moves to align competences and expert ¹⁹ experience with the management of society and the delivery of services, _____ ²⁰ and to develop and institutionalise technical and administrative systems _____ ²¹ that will successfully encapsulate expert knowledge to deliver desired _____²² outcomes. For Savini and Raco (2018[[not in references]]) the _____²³ creation and maintenance of a technocracy is achieved through three _____²⁴ analytic pillars: ways to tackle urban issues are abstracted and codified _____²⁵ into knowledge that become institutionalised within programmes of _____²⁶ action; particular technocratic logics for tackling specific issues are _____²⁷ positioned as the legitimate approach to be deployed by generalists; _____²⁸ instrumental knowledge and forms of action are imposed on the _____ ²⁹ normative processes of politics so that they define public interest with _____³⁰ a goal-orientated rationality that subverts democratic governance.

_____³¹ Smart city initiatives are all about introducing and embedding a _____ ³² particular form of urban technocracy designed to fundamentally 33 shift the nature of urban governance to a highly technocratic and _____³⁴ prescriptive approach – what Dodge and Kitchin (2007) term _____ ³⁵ 'automated management'. That is, governance is ceded to software _____³⁶ systems which administer governance in an 'automated, automatic, _____³⁷ autonomous' means, with systems directly regulating service delivery _____ ³⁸ and citizen behaviour. Here, following Savini and Raco's terms, ³⁹ expert knowledge is abstracted and codified into algorithms that are ⁴⁰ amalgamated to create smart city technologies (see Table 15.1); these 41 technologies can be slotted into the usual practices and programmes of 42 existing city departments and used by generalists; and the instrumental

_____ 4 _____ 5

_____ 33

_____ 34

35

_____ 36

_____ 37

_____ 38

_____ 39

_____ 40

_____ 41

____42

1

2

3

Planning and knowledge

rationality of the technologies are promoted and sold as the most effective means to tackle urban issues (such as congestion, crime, energy-use, public service delivery). In effect, the smart city is one underpinned by a form of *algorithmic technocracy* that implements new forms of algorithmic governance.

_____6 There are two key transitions at work. The first is the degree to _____7 which governance becomes automated and autonomous and the role of people in enacting technocratic systems. Technocracy has always been _____9 accompanied by technical and technological systems through which 10 governance is enacted, but these systems have consisted of human-_____ 11 in-the-loop enterprises; that is, people perform the key decision-12 making role. With new forms of automated management algorithms _____13 identify patterns and relationships and enact regulation, with systems _____14 becoming human-on[[in?]]-the-loop (the system is automated, but _____ 15 under the oversight of a human operator who can actively intervene) 16 or human-off-the-loop (algorithms work autonomously without _____ 17 human oversight) in nature. The second is the emergence of a new 18 form of governmentality – what Vanolo (2015)[[not in references, _____ 19 is 2014]] terms 'smartmentality'. As we have argued elsewhere, this _____20 form of governmentality seeks to use ubiquitous computing to shift _____ 21 the governmental logic of regulatory systems from surveillance and _____ 22 discipline to capture and control (Kitchin et al, 2017). In other words, _____23 through automated management urban governmentality is shifting _____24 from subjectification - moulding subjects and restricting action - to modulating affects, desires and opinions, and inducing action within _____25 _____ 26 prescribed comportments. Here, computational systems, such as automated traffic control, nudge behaviour implicitly and explicitly 27 _____ 28 through the sequencing of traffic lights, rather than inducing (self) _____ 29 discipline (Braun, 2014; Krivy, 2016). From this perspective, the _____ 30 city increasingly becomes a system of technologically-mediated and _____ 31 automated technocratic systems. _____ 32

This shift to algorithmic technocracy has also been accompanied by a shift from a social contract between the state and citizens to corporate contract wherein city services are delivered through public–private partnerships or private entities only (Kitchin, 2014; Sadowski and Pasquale, 2015). Smart city rhetoric and initiatives promote intensive collaborations between public sector bodies and other stakeholders, such as industry, NGOs and academia, and actively build on neoliberal arguments concerning the limitations of public sector competencies, inefficiencies in service delivery, and the need for marketisation of state services and infrastructures (Graham and Marvin, 2001; Greenfield, 2013; Kitchin, 2014).

_____15

¹ Public authorities, it is argued, lack the core skills, knowledges ² and capacities to address pressing urban issues and maintain critical ³ services and infrastructures, which are becoming more socially and _____ 4 technically complex and require multi-tiered specialist interventions _____⁵ (that is, technocratic solutions). Instead, they need to draw on the ______ ⁶ competencies held within industry in particular that possess sufficient _____7 expertise to guide city administrators and can deliver better city ⁸ services through public–private partnerships, leasing, deregulation and 9 market competition, or outright privatisation. The logic of a reliable, _____¹⁰ low-cost, universal government provision in the public interest is _____¹¹ supplemented or replaced by provision through the market, driven ¹² in part or substantively by private interests (Graham and Marvin, $_$ ¹³ 2001; Collier et al, 2016). 14

16 Smart city technocrats, an epistemic community and _____17

_____¹⁹ A decade ago, there were few professionals in any stakeholder group _____²⁰ (city administrations, industry, academia) who would prefix their title _____ ²¹ with the words 'smart city' (for example, 'smart city project manager'). _____²² Moreover, within city administrations there would have been hardly _____ ²³ any CIOs (Chief Information Officer – a senior executive officer _____²⁴ responsible for IT, including operations and strategy), CTOs (Chief _____²⁵ Technology Officer – a senior executive focused on technological _____²⁶ developments in an organisation, including research and development), _____ 27 or CDOs (Chief Data Officer – an executive position responsible for _____²⁸ the governance and use of data across an organisation); posts that are _____ ²⁹ presently strongly aligned to the smart city mission in those cities $\frac{30}{10}$ that have appointed them. Over the past ten years, the situation has _____³¹ changed in many cities, with city administrations employing new ³² technical, operational and policy staff aligned to a smart city agenda, ³³ including data coordinators/managers, data scientists, designers, policy _____³⁴ specialists, software engineers and IT project managers. Many of these _____³⁵ new technocrats are recruited from industry or academia, seeking to _____³⁶ bring specialist knowledge and skills into an organisation, and act as _____ ³⁷ new 'institutional entrepreneurs' (Wejs, 2014), driving internal change ³⁸ in how city administrations work. Beyond city administrations there has ³⁹ been a very large growth in consultancies offering specialist smart city 40 services, employing a raft of new smart city 'experts'. Similarly, tech _____ ⁴¹ companies have created new smart city units/divisions and universities _____ ⁴² have founded smart city research centres.

page 206

_____ 32

_____ 33

34

_____ 35 _____ 36

_____ 37

_____ 38

_____ 39

_____ 40

_____ 41

____42

Planning and knowledge

1 This rapidly growing set of smart city professionals within city 2 administrations, governments (local, national, supranational), NGOs, 3 industry and academia suggest that a new smart cities epistemic community has been formed over the past decade. In his seminal work, _____4 5 Peter Haas (1992: 2) defined an epistemic community as a 'network of professionals with recognised expertise and competence in a particular _____6 domain and an authoritative claim to policy relevant knowledge within _____7 that domain or issue-area'. Such a community of knowledge-based _____9 experts help decision-makers identify and define the problems they _____ 10 face along with possible policy solutions, and also to assess policy outcomes - in this sense, they are key to promoting and sustaining _____ 11 12 technocracies. Haas (1992) details that epistemic communities share _____ 13 a set of knowledge, normative and casual beliefs, and practices, and _____14 work in common action to forward a particular vision and policy _____15 response. They seek to provide contextual framing, advice and _____ 16 social learning to navigate a complex and uncertain social-economic _____ 17 political landscape (Dunlop, 2013), and exercise influence through 18 their claims to insightful and authoritative knowledge that has high _____ 19 utility for decision- and policymakers who maybe lacking sufficient 20 expertise to make informed choices (Haas, 2001). If successful, the _____ 21 community's ideas and practices become institutionalised over time, _____ 22 continuing to shape how problems and solutions are identified and _____23 tackled. What is important is that Haas (1992) argues that epistemic _____24 communities differ from interest groups or policy networks through _____25 their claim to authoritative expertise. That said, epistemic communities _____ 26 are not necessarily composed of technical and theoretical knowledge 27 experts: they can also emerge from communities of practice which _____ 28 connect experience and practical knowledge, such as in the case of _____ 29 'expert amateurs' and communities engaged in 'citizen sensing' and peer-to-peer collaboration (Gabrys, 2014; Tironi and Criado, 2015). _____ 30 _____ 31

Given that in general terms smart city professionals claim and are often given authoritative voice, share a set of knowledge, beliefs, practices and aim to craft a particular vision and policy response to urban issues, it thus seems fair to conclude that they constitute an epistemic community. That said, it is also the case that there is a blurred line between a smart city epistemic community and smart city vested interest groups. The two overlap with respect to how they think urban issues should be addressed through technocratic technological solutions, and they work in concert to form an 'advocacy coalition' - that is, a coalition of 'people from a variety of positions (elected and agency officials, interest group leaders, researchers) who share a particular belief system' and 'who show a non-trivial degree of

¹ coordinated activity over time' (Sabatier and Jenkins-Smith, 1993: 25). ² However, while theoretically an epistemic community does not have _____ ³ direct pecuniary incentives to seek to shape the policy landscape, being _____ 4 driven by normative beliefs, some elements of advocacy coalitions are ⁵ also motivated by a desire to provide solutions and generate profit. ⁶ In the latter case, not only are substantive policy advice (means) ⁷ and policy proposals (ends) being proffered (usually for a hefty fee), ⁸ but a pathway to a particular solution is usually provided by private ⁹ enterprise (Dunlop, 2013). As such, the kinds of advice given by a _____¹⁰ tech/consultancy company such as IBM is far from impartial and _____¹¹ not simply rooted in authoritative knowledge expertise, a particular _____¹² technical approach, and a belief in the power of technology as the most _____¹³ effective way to run cities and fix urban problems. With respect to the _____¹⁴ smart city, an epistemic community and advocacy coalition is evident ¹⁵ at four scales: global, supra-national, national and local.

_____¹⁶ In just a handful of years, a number of sizable global smart city _____¹⁷ consortia have been formed consisting of aligned actors who share a _____¹⁸ common vision with regards to how cities should be managed and _____¹⁹ urban issues addressed. Each consortia makes claims to provide city _____ ²⁰ administrations with authoritative, neutral, expert advice, resources _____²¹ and partnerships that can cut through the complexities of managing _____²² cities to provide guidance on how to use digital technologies to solve ²³ difficult issues/problems. For example, the 'Smart City Council' (SCC) _____ ²⁴ is a coalition of partners strongly advocating for the adoption of smart _____ ²⁵ city policy and interventions. The SCC consists of 21 'Lead Partners' _____ ²⁶ (including IBM, Cisco, SAS, Schneider Electric, Deloitte, Oracle; _____²⁷ Microsoft), 21 'Associate Partners' (including Intel, Huawei, Siemens, _____ ²⁸ Panasonic), and 70 'Advisors' (including the Institute of Electrical and _____ ²⁹ Electronics Engineers (IEEE), International Finance Corporation (part _____³⁰ of the World Bank), International Organization for Standardization _____ ³¹ (ISO), International Telecommunication Union (ITU), World Bank _____ ³² Urban Advisory Unit, and a number of university research centres). ³³ Collectively, the SCC provides a number of resources, events and task _____³⁴ forces designed to promote smart city ideas and create social learning. _____³⁵ Working somewhat in parallel with the global networks/coalitions, _____ ³⁶ which are primarily driven by business interests, are supra-national, _____³⁷ governmental-led policy and programmatic initiatives. This is _____³⁸ particularly the case in the European Union where a number of ³⁹ institutional networks and high-level programmes have been driving the 40 smart cities agenda through a set of institutional arrangements, funding 41 schemes, networking events, and conferences and workshops. These 42 networks and programmes, and their strategies and mechanisms, are

4 5

_____6

_____7

9

35

_____ 36 _____ 37

_____ 38

_____ 39

_____ 40

_____ 41

____42

1

2

3

Planning and knowledge

overseen through management boards and scientific advisory boards primarily staffed by a mix of academic and public sector actors who act as an epistemic community. For example, 'The European Innovation Partnership on Smart Cities and Communities' (EIP-SCC) seeks to bring together 'together cities, industry, SMEs, banks, research and other smart city actors'¹ in order 'to improve urban life through more sustainable integrated solutions'.² By 2015 the EIP-SCC documented 370 commitments (which it defines as measurable and concrete smart city engagements/actions) with 4,000 public and private partners _____ 10 from 31 countries. These commitments have received hundreds of _____ 11 millions of euros in investment to embed smart city doctrine in city 12 administrations and implement on-the-ground smart city initiatives.

_____ 13 While the global and supra-national scales provide a transnational _____ 14 means for the knowledge of epistemic communities and advocacy _____ 15 coalitions to circulate and propagate, it is at the national and local 16 level that the grounding of their ideas takes place through their _____ 17 embedding in institutional structures, appointment of personnel at _____ 18 different scales of government (for example, national-level departments _____ 19 and agencies, and regional and local/municipal authorities), and 20 the development of specific policies and deployments. In the Irish _____ 21 context, there are a number of well-funded interdisciplinary research _____ 22 institutes and centres that specialise in smart cities research that actively 23 partner with numerous industry collaborators and work with Irish _____24 cities, including extensive testbedding and trialling. In addition, the _____25 recently launched (Dec 2016) 'All Ireland Smart Cities Forum' brings _____ 26 together representatives from seven Irish cities, five from the South 27 (Cork, Dublin, Limerick, Galway, Waterford) and two from the North (Belfast and Derry) to share insights, support collaborative research, _____ 28 _____ 29 and work with stakeholders on collective city priorities. More locally, _____ 30 Smart Dublin and Cork Smart Gateway are LA initiatives that seek to _____ 31 guide smart city projects within LA departments and work with 'smart _____ 32 technology providers, researchers and citizens to solve city challenges _____ 33 and improve city life'.3 34

Bridging the 'last mile' problem

Over the past decade the drive to create smart cities has emerged as a potent agenda, with many cities adopting smart city initiatives and rolling out smart city programmes. The smart cities movement is explicitly an exercise in technocracy: of transforming urban governance and governmentality into an algorithmically mediated enterprise, underpinned and supported by expert knowledge, an associated

¹ epistemic community, and advocacy coalition that operates across ² scales to produce policy mobility and a global enterprise. However, ³ while smart city policy and programmes are being implemented in _____ 4 many cities, it is clear that they are fragmented in nature and the smart ⁵ city vision is only partially embedded within city administrations at ⁶ present. Consequently, the ideas, policies and technologies of the smart _____ ⁷ city movement have so far only gained partial traction in driving how ⁸ city bureaucracies manage and govern their jurisdictions and approach 9 tackling urban issues. Moreover, they are being greeted with apathy or _____¹⁰ resistance by some staff. In other words, it seems that promoters and _____¹¹ technocrats of the smart city vision are having difficulty 'bridging the _____¹² last mile' from theory and vision to fully mainstreamed policies and ¹³ adoption across organisations. Here, we want to consider the reasons _____¹⁴ for these 'last mile' difficulties in ameliorating the work of epistemic _____¹⁵ communities and advocacy coalitions.

16 City administrations are to a large degree like an oil tanker. They _____¹⁷ are large, complex organisations consisting of many departments, _____¹⁸ with entrenched structures, ways of working and established legacy _____¹⁹ systems that create a high degree of embedded path dependency. They _____ ²⁰ are also full of internal politics, fiefdoms and competing interests. _____²¹ As such, they are not easy to reorientate with respect to shifting _____ ²² how units and staff think about and undertake their work, especially _____²³ when they directly challenge the paradigmatic training and ideals of _____²⁴ professionals schooled to think and act in certain ways (for example, _____²⁵ planners, engineers, architects, educators, social workers, community _____²⁶ development workers). A smart city approach promises to create a _____²⁷ more nimble, flexible, data-driven, efficient, horizontal organisation, _____²⁸ cutting across departmental silos and enabling joined-up responses to _____ ²⁹ urban issues. They thus promise to disrupt the status quo and radically _____³⁰ change working conditions, including leading to redundancies.

31 Smart city ideas and policy thus run into internal inertia and resistance
32 by both managers and workers. In addition, they can run into external
33 critique from academics, NGOs, community groups and politicians
34 (especially on the Left), who hold different views as to the supposed
35 benefits and underlying ideology of the smart city agenda. Part of the
36 critique of the smart city epistemic community is that while they claim
37 to be able to tackle perceived problems, they have a limited perspective
38 shaped by their disciplinary expertise and lack sufficient grounded
39 domain knowledge of an issue (Cullen, 2016; Kitchin, 2016b), often
40 treating the city as a technical system as opposed to a multifaceted
41 place. The result is a form of technological solutionism in which digital
42 technologies are positioned as the answer to all issues, regardless of

page 210

_____7

_____9

_____ 10

_____ 11

12

_____13

_____ 14

_____ 15

_____ 16

_____ 17

18

_____ 19

_____ 20

_____ 21

Planning and knowledge

1 context and history. Consequently, there has been a marked push-back 2 against the ideas and ideals of the smart city in recent years, especially 3 concerning the role of citizens, the technocratic nature of governance and its instrumental rationality, and the marketisation of public services _____4 5 (Greenfield, 2013: Kitchin, 2014: Datta, 2015). _____6

Fuelling resistance and doubts is a sense that the majority of smart city technology is not yet mature and unsuitable for mainstreaming. Technologies are still being developed and tested. This is borne out by the large number of pilot projects and what has been termed 'experimental' or 'testbed' urbanism or 'living labs'. Practically all EUfunded smart city projects have this status, being initiatives to scope out, produce and implement proof-of-concepts, and share knowledge about efforts, rather than being market-ready and proven to work in practice. As such, while there is a general consensus on the utility of digital technologies for tackling urban issues, there is no universal agreement on the form of technical solution or related factors such as the role of citizens in shaping how issues are tackled (Townsend, 2013). In other words, smart city ideas and technology are still very much in development phase and investing in them poses a risk for city administrations charged with providing stability, certainty and reliability in the delivery of city services.

_____22 Fostering scepticism is a lack of trust among many city administrators _____23 as to whether a smart city approach will work in practice. Cities have a long history of purchasing technologies that are costly and do _____24 _____25 not always deliver on their promises. This includes the first wave of _____ 26 smart city products sold to them that bound them into unfavourable 27 contracts and supplied technical solutions that did not deliver on their _____28 promises. An additional concern relates to financing and the amount of _____ 29 perceived value for money spent and the return on investment. Many _____ 30 smart city solutions are expensive to procure and service, yet it is not _____ 31 always clear what the return on investment will be beyond promises _____ 32 that a service will improve or an issue be ameliorated in some way. _____ 33 Moreover, it is clear that the same technology will be cheaper and _____ 34 better – in terms of spec, functionality, performance – in a few years, so it is difficult to know when to make the initial investment. Many _____ 35 _____ 36 cities are currently operating in a condition of austerity, so finances for _____ 37 new investments are constrained. As such, although some technologies _____ 38 could save the city money over the long term, the city still must find _____ 39 the initial investment capital. This is why so much effort is now being _____ 40 expended on new business models for smart city investments. Another _____ 41 issue is competing demands for finance with a limited budget. Many ____42 services are statutory obligations and unless the smart city technology

¹ can address these critical issues, they will have trouble competing for
 ² attention and resources.

In addition, the epistemic communities and advocacy coalitions 3 ⁴ coalescing around the field of smart cities, in true technocratic fashion. _____ ⁵ seem to little appreciate the need for democracy, openness and public ______6 consultation in city management: mostly, executive decisions are 7 made outside of democratic process and city managers green-light 8 smart city projects with little political, media or public oversight or 9 feedback. In the case of Dublin, local politicians and the public have ¹⁰ been ignored almost entirely in the formulation of Smart Dublin and _____¹¹ the development and rollout of smart city initiatives. Indeed, nearly ¹² all decisions for selecting and implementing smart city initiatives seem _____¹³ to have bypassed public consultation and political debate. As such, the _____¹⁴ focus of the epistemic community and advocacy has been exclusively at _____¹⁵ the city bureaucracy. This is perhaps no surprise given that the city has _____¹⁶ no mayor and is largely run by the CEOs of the four local authorities. 17

18 Conclusion

_____ ²⁰ We have argued in this chapter that over the past decade there has been _____²¹ a turn to smart city initiatives by city administrations. These initiatives _____ ²² strengthen technocratic approaches to governing city life and delivering _____²³ urban services by tasking their implementation to technical systems _____²⁴ designed by knowledgeable experts and run by a new suite of urban _____²⁵ technocrats. These systems appear to operate beyond policymaking _____ ²⁶ processes. They have an autonomous position built through automated _____ ²⁷ mechanisms of information processing that end up having an impact on _____²⁸ democratic processes. These systems heavily input public policymaking _____²⁹ through the production and transmission of information, processed _____³⁰ through unknown and unaccountable algorithms that policymakers ³¹ actively mobilise as legitimate knowledge in order to build political _____ ³² justifications of their policies. Moreover, the reliance of smart city ³³ systems on ubiquitous computing and the generation and processing of ³⁴ urban big data has produced a new form algorithmic technocracy that _____³⁵ enables a shift in governmentality from regimes focused on discipline _____³⁶ to that of control. Algorithmic technocracy is highly prescriptive and _____³⁷ technocratic, exercising forms of automated management in which _____³⁸ people are increasingly removed from mediating the practices of ³⁹ governance and delivery of services with power ceded to algorithms 40 to control domains and make decisions. The creation, and often the _____⁴¹ operation of smart city initiatives, is predominately undertaken by 42 private enterprises, meaning that algorithmic technocracy is market-led

_____ _____4

5

_____6 _____7

_____9

23

_____24 _____25

_____ 26

27

_____28

_____ 29

_____ 30

_____ 31

_____ 32

_____ 33

_____ 34

_____ 35

_____ 36

_____ 37

_____ 38

_____ 39

_____ 40

_____ 41

____42

1 and there is a creeping corporatisation and privatisation of urban 2 governance. 3

The rollout of algorithmic technocracy has been accompanied and facilitated by a new wave of urban technocrats and a powerful new advocacy coalition that works across scales to promote adoption. In a short space of time a new cadre of smart city technocrats - CIOs, CTOs, CDOs, data scientists, designers, policy specialists, software engineers and project managers - have been appointed to roles in city administrations, and organisational structures have been re-jigged _____ 10 to accommodate them. These technocrats are working with, and _____ 11 supported by, a panoply of external professionals within institutional 12 bodies, academia and companies, who provide a range of services and _____13 enact social learning through consultancy, professional development _____ 14 training, conferences and workshops, cooperation in project work, _____ 15 and hackathons. While there are communities of scholars and 'expert _____ 16 amateurs' who forward an alternative vision of smart cities, particularly _____ 17 a version that is more citizen-focused, -engaged or -run, the dominant 18 paradigm of smart cities is still rooted in a technocratic formulation, albeit one that now acknowledges the need for citizen participation, _____ 19 _____20 though very much from a civic paternalist or stewardship perspective _____ 21 (Shelton and Lodato, 2016). _____ 22

Collectively the smart city epistemic community and advocacy coalition is starting to reshape urban policy, how funding is distributed and spent, and how city government works. However, due to a number of issues - not least of which is the relative immaturity of the policy and technical solutions being offered, along with institutional inertia smart city ideas and ideals have only become partially embedded in city administrations. In effect, while the smart city movement has captured some of the bureaucratic and political terrain at local, national and supra-national scales (for example, some mayors, government departments, EU bodies) it has a 'last mile' problem in many cities.

The challenge then for smart city advocates is to bridge this 'last mile', persuading key decision-makers that the smart city approach to managing cities and tackling urban issues through algorithmic technocracy will radically improve the lives of citizens and help businesses thrive. Such a drive seems likely to continue for the foreseeable future as the smart city epistemic community and advocacy coalition show few signs of abating. Rather, they are continuing to grow as ever more technical and scientific academics and companies turn their attention to urban issues and cities further embrace technological solutions to urban management and governance. Nonetheless, the last mile issues we detail will not dissipate in the short term. How this will

ultimately play out is difficult to pre-determine, but it is fair to say that the new technocrats are unlikely to be leaving city government any time soon, many ICT solutions already deployed are embedded in city governance (for example, intelligent transport systems) and unlikely to be decommissioned, and large investment is being ploughed into developing and trialling new technology for deployment across domains _____ (for example, transport, energy, economy, environment, homes). As _____7 such, algorithmic technocracy and its associated governmentality is set to be a growing feature of our everyday urban lives.

¹³ This chapter draws upon a paper 'Smart cities, epistemic communities,
 ¹⁴ advocacy coalitions and the 'last mile' problem' published in the journal
 ¹⁵ 'it - Information Technology'. The research funding for this paper
 ¹⁶ was provided by a European Research Council Advanced Investigator
 ¹⁷ Award, 'The Programmable City' (ERC-2012-AdG-323636).
 ¹⁸

_____ ¹⁹ Notes

20 ¹ https://eu-smartcities.eu/about

- 21² http://ec.europa.eu/eip/smartcities/
- 22 ³ http://smartdublin.ie/about/