
DOI reference number: 10.18293/SEKE2020-029

Reliable Compilation Optimization Selection Based

on Gate Graph Neural Network

Jiang Wu, Jianjun Xu, Xiankai Meng

College of Computer

National University of Defense Technology

wujiang_nudt@163.com, jjxu@nudt.edu.cn, mengxiankai12@nudt.edu.cn

Abstract—For different programs or applications, it is necessary

to select the appropriate compilation optimization pass or subse-

quence for the program. To solve this problem, machine learning

is widely used as an efficient technology. However, the most im-

portant problem in using machine learning is the extraction of pro-

gram features. How to ensure the integrity and effectiveness of

program information is the key to the problem. In addition, when

compiling and optimizing the selection problem, the measurement

indicators are often program performance, code size, etc. There is

not much research on program reliability which needs the longest

measurement time and the most complicated measurement meth-

ods. This paper proposes a GGNN-based compilation optimization

pass selection model. We extend the deep neural network based on

GGNN, and build a learning model which learns heuristics for pro-

gram reliability. The experiment was performed under the clang

compilation framework. The alternative compilation optimization

pass adopts the C language standard compilation optimization

passes. Compared with the traditional machine learning method,

our model improves the average accuracy by 5% ~ 11% in the op-

timization pass selection for program reliability. At the same time,

experiments show that our model has strong scalability.

Keywords- compilation optimization selection; AST; GGNN;

reliability; clang

I. INTRODUCTION

In the past few decades, compiler developers have designed
and implemented a large number of compilation optimization
options in response to compilation optimization needs in various
complex situations. In actual development, the standard compi-
lation optimization pass provided by the compiler is difficult to
adapt the requirements for the program to be compiled in com-
plex scenarios. On the one hand, the program to be compiled has
different semantics and compilation goals. It is difficult to obtain
the optimal optimization effect by using the standard compila-
tion optimization pass directly. If an inappropriate optimization
pass is used, it may even bring negative effects about program
performance, etc. On the other hand, with the continuous devel-
opment of the hardware architecture, the compilation environ-
ment becomes increasingly complex, and the compilation opti-
mization pass should be adjusted accordingly. Therefore, how to
choose the best compilation optimization pass for the program
to be compiled among the intricate optimization options. Be-
come a challenging scientific problem. The algorithms used in
this field mainly include heuristic search algorithms and ma-
chine learning algorithms. The heuristic search algorithm uses a
heuristic method to search the optimal compilation optimization

pass in the compilation optimization option combination space.
For example, the VISTA interactive compilation system [1] uses
a combination of genetic algorithms and human-assisted guid-
ance to search for optimal compilation optimization passes; the
open source framework “ OpenTuner ” [2] uses a variety of evo-
lutionary algorithms, including genetic algorithms, to get a
speedup of up to 2.8 times; Jantz et al. [3] use genetic algorithms
to select the optimal compilation optimization pass for the JIT
compiler. And some other selection schemes based on some
multi-objective optimization algorithms, for example, Lok et al.
[4] [5] use SPEA2, NSGA-II and IBEA to select the compilation
optimization pass for the program to be compiled that meets the
target code execution speed, scale and other goals.

However, the heuristic search algorithm can generate effi-
cient compilation optimization sequences, but it takes a lot of
time to run the entire iterative process. Gradually researchers be-
gan to use machine learning algorithms to select compilation op-
timization sequences. A large number of algorithms based on
SVM and LR are widely used. The work [6] used code runtime
characteristics to characterize the program to be compiled to
train the logistic regression model; Ashouri et al. [7] analyzed
the dependencies between optimization options in the compiler's
LLVM, using program dynamic characteristics to train the
Bayes network, then use this model to predict the optimization
options that should appear in the next stage until the prediction
is completed; the open source compiler "Milepost GCC" [8],
which is a modularized, modified form of GCC4.4 scalable com-
piler that supports static feature extraction of the program to be
compiled, trains machine learning models, and predicts the com-
pilation effect of the compiled optimization sequence. A large
number of machine learning algorithms perform feature extrac-
tion on programs, both dynamic and static features., it is difficult
to extract program information completely and efficiently. Most
work has tried to transfer natural language methods and does not
capitalize on the unique opportunities offered by code’s known
semantics. For example, long-range dependencies induced by
using the same variable or function in distant locations are often
not considered. Such models miss out on the opportunity to cap-
italize on the rich and well-defined semantics of source code.
Therefore, constructing a graph to represent complete program
information and training in conjunction with a graph neural net-
work is a more effective way to ensure the integrity of the pro-
gram information as much as possible.

In addition, from the perspective of compiling optimization
goals, most researches focus on the execution speed of the target

mailto:wujiang_nudt@163.com
mailto:jjxu@nudt.edu.cn

DOI reference number: 10.18293/SEKE2020-029

machine code [9] [10]. Statistics shows that the target code is
used in machine learning algorithms. The acceleration ratio as
the optimization target accounted for the vast majority of the re-
search, accounting for more than 80% of this part of the research.
Another optimization goal that researchers are concerned about
is the size of the target code [11] [12]. It is a very important op-
timization goal, especially in the case of the current widespread
application of embedded programs, reducing the storage space
as much as possible can bring significant benefits. However,
there is not much research on the use of machine learning for
compilation optimization orienting program reliability research.

In order to extract the program information as completely as
possible, while taking advantage of the advantages of machine
learning, we combine GGNN, program reliability analysis and
compilation optimization selection problems. We abstract the C
raw code into a graph with data flow and type hierarchies, and
then build a program optimization oriented graph neural network
for program reliability. Our work replaces the need for compile-
time or static code features, merging feature and heuristic con-
struction into a graph and send it to a graph neural network. Then
learning to get which clang standard compilation optimization
can bring the highest reliability gain for a specific C code. By
using the PIN [13] tool for verification, our model has an average
accuracy improvement of 5% ~ 11% compared to traditional ma-
chine learning algorithms without our extended GGNN. At the
same time, our model is also highly scalable and can adjust the
size of the output layers to solve different problems.

II. PROGRAM AS GRAPH

A. Abstract Syntax Tree

As an intermediate representation of the source code for
parsing and semantic analysis, AST [14] is a tree-structured data
describing the syntax rules and execution order of the code,
which is obtained after the code is parsed using irrelevant con-
text rules. In the AST, leaf nodes represent identifiers in the
source code, while non-leaf nodes represent syntactic structures.
As the parse tree of the source code, the AST basically covers
the following syntax structures: Selecting structure (IF,
SWITCH, etc.); Loop structure (WHILE, FOR, etc.); Sequence
structure (expressions, assignment statements, etc.). Therefore,
AST, as an intermediate representation of the source code, can
effectively retain the syntactic context information related to the
programming language.

B. Function Call Graph

FCG [15] is used to characterize information related to con-
trol flow in source code. Each node in a function call graph rep-
resents a function, and the edges in it represent the calling rela-
tionship between functions. Understanding the calling relation-
ship between functions is of great help to understand the hierar-
chical structure of the program, and clarifying the function call-
ing relationship is a key part of program analysis.

C. Data Flow Graph

DFG [16] explicitly contains the data logic of the two aspects
of data transfer and data processing in the source code. Nodes in
DFG represent entities, such as variable declarations, operands,

operators, structures, etc., and the edges in them represent the
data relationships that exist between these entities. DFG can de-
scribe the data logic and program functions of the source code
and is used to analyze the dynamic runtime data flow infor-
mation of the program. From the perspective of data transmis-
sion, DFG describes the movement and transformation of data
streams from input to output. Because it can clearly reflect the
logic that the program must complete, it has become one of the
most commonly used methods of program analysis.

int add(int m1)

{

int x1 = Foo(m2);

int y1 = 2;

y2 = x2 + 1;

return y3;

}

int Foo(int m)

{

int n = Square(m);

int k = Mod(m);

return n*k;

}

(a)

TranslationUnit
Decl

FunctionDecl
[add]

FunctionDecl
[Foo]

CompoundStmt

DeclStmt DeclStmt ReturnStmt DeclStmt

VarDecl
[y]

VarDecl
[x]

DeclRefExpr
[y]

DeclRefExpr
[y]

IntegerLite
[2]

CallExpr

ImplicitCastExpr

ImplicitCastExpr

DeclRefExpr
[Foo]

DeclStmt

BinaryOperator
[+]

IntegerLite
[1]

DeclRefExpr
[x]

ImplicitCastExpr

(b)

Figure 1. Example of the co-AST.

By comparing the characteristics of AST, FCG, and DFG, it
is clear that each different form of the intermediate expression
form only describes the program source code from a certain an-
gle. The AST only contains static information related to the
grammatical structure, and the latter two are used to describe the
runtime dynamic information related to the control flow and the
data flow. In particular, the angles of the latter two references
are different. FCG starts with a coarse-grained function, while
DFG starts with fine-grained variables, operators, and operands.
The source code is special executable text, and both static syntax
information and dynamic runtime information are important.
Therefore, the fusion of the code information carried in the AST,

Identify applicable sponsor/s here. (sponsors)

DOI reference number: 10.18293/SEKE2020-029

FCG, and DFG helps reduce the information loss caused by the
transformation of source code to intermediate expressions.

We have established a joint program analysis graph co-AST,
which combines the characteristics of AST, FCG, and DFG. As
shown in Figure 1, based on the source code of Fig. 1 (a), we
constructed the co-AST graph as Fig. 1 (b). The complete co-
AST graph has a total of seven types of edges. We introduce the
edges of FCG and DFG into the original AST structure. As
shown in Figure 1 (b), the solid arrow is the function call identi-
fier, and the dashed curve arrow is the identification of the data
stream This combination greatly enriches the information in the
program graph, thereby speeding up the spread of information in
GGNN and improving the effect of model training.

III. CONSTRUCTION OF EXTENDED GGNN

The graph model used in this paper involves a directed graph
𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of nodes of size |𝑉| and 𝐸
represents a set of size |𝐸|. The nodes in 𝑉 are represented by
node number 𝑖, the directed edges in 𝐸 are represented by eij,

and eij represents the edge pointed by node 𝑖 to node j. For dif-

ferent types of edges in the graph, use the edge type set LK = {l1 ,
l2, ..., lk} to represent. The connection relationship between the
nodes in the graph is represented by the connection matrix 𝐴.
There are two design schemes for the dimension of 𝐴. The first

design is 𝐴∈ R|V|×2|V|, directed edge eij in the figure is seen as

two different types of access edges, one is the outgoing edge of
node 𝑖 and the other is the incoming edge of node j. The second

design is 𝐴∈ R|V|×|V|, it only considers the directed edge eij as

the incoming edge of node j. The connection matrix in this paper
uses the second scheme.

The element 𝐴ij in the 𝑖 row and the j column is a 𝑑 × 𝑑

matrix (𝑑 represents the node state vector dimension). 𝐴ij is also

called the propagation matrix on edge eij, which represents the

information propagation rules from node 𝑖 to node j. For exam-
ple, Fig. 2 (c) shows the connection matrix corresponding to the
data flow graph shown in Fig. 2 (b), where the two rectangular-
framed matrices are the propagation matrices corresponding to
e3y and eyz respectively.

In the assignment statement shown in Fig. 2 (a), we are con-
cerned about whether the number 3 can be passed to the variable
z, as shown in Fig. 2 (b). To this end, nodes 3 and z can be re-
garded as the source node and the target node respectively, and
their feature vectors are initialized as ℎ3

0 = [1,0] and ℎ𝑧
0 = [0,1]

(the first dimension of the two-dimensional vector is 1, which
means that 3 can reach the node), and the feature vector table of
node 𝑦 is initialized as ℎ𝑦

0 = [0,0]. The propagation matrix 𝐴ij

determines how the information of each dimension of node 𝑖 is
propagated to the various dimensions of node j. "0" represents
no propagation and "1" represents complete propagation. For ex-
ample, 𝐴3y in Fig. 2 (c) indicates that node 3 only passes the in-

formation of its first dimension to the first dimension of node y.
In this way, the result of multiplying vector ℎ3 and 𝐴3y is still

ℎy = [1, 0], indicating that the data has not been passed to the

target node z. However, 𝐴yz in Fig. 2 (c) indicates that the

information of the first dimension of node 𝑦 is to be transferred
to the first dimension of node z. Therefore, the result of multi-
plying vector ℎy and 𝐴yz is ℎz = [1,0], indicating that data can

reach the target node z.

y = 3

z = y

(a) Sample code

3

y z

(b) DFG

i j

0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

3

y

z

3 y z

(c) Connection matrix

Figure 2. Example of connection matrix and propagation matrix.

In GGNN [17], the information propagation of nodes on dif-
ferent types of edges is achieved through different multilayer
perceptron, and the propagation matrix on the edges is repre-

sented by the trainable multilayer perceptron weights 𝑊e ∈

R𝑑×d. It should be noted that the connection matrix shown in Fig.
2 (c) only represents the weight of the multi-layer perceptron af-
ter the graph model has converged on the reachability task. The
GGNN model has an iterative t-round of node state information
propagation process, as follows: the state information of node 𝑖

is initialized to a vector ℎ𝑖
(1)

∈R𝑑. During the t-th round of iter-

ation, each central node 𝑖 gathers all neighbor node information

to get the node interaction context 𝑚𝑖
(𝑡)
∈R𝑑, as shown in (1)

(where 𝑁i represents the set of neighbor nodes of 𝑖). In response
to the current interaction context, the node 𝑖 updates its own state

information ℎ𝑖
(𝑡)

 after t round. The GRU unit is used in GGNN

different from GNN. The GRU unit considers the relationship
between node status information in different update rounds. That
is, when the node updates during the round t-th, the node hidden

layer vector expression ℎ𝑖
(𝑡)

 and the state information ℎ𝑖
(𝑡−1)

 of

the previous round have a time series relationship, as shown in
(2). GNN only uses edges as a means of propagation, but does
not distinguish the functions of different edges. And GNN does
not set independent learnable parameters for edges, which means
that some characteristics of edges cannot be learned through the
model. This is also the main reason we use GGNN as shown in
Fig. 3.

 𝑚𝑖
(𝑡)

 = 𝛴𝑗∈𝑁𝑖
 𝐴ij ∙ ℎ𝑗

(𝑡−1)
 ()

 ℎ𝑖
(𝑡)

 = GRU (ℎ𝑖
(𝑡−1)

, 𝑚𝑖
(𝑡)

) ()

Figure 3. Extended GGNN architecture

DOI reference number: 10.18293/SEKE2020-029

During the information propagation of the graph model,

𝑚𝑖
(𝑡)

 is the interaction context of node 𝑖 in the whole graph.

Whether it is GNN or GGNN, 𝑚𝑖
(𝑡)

 is obtained by directly ac-

cumulating the product of feature information ℎ𝑗
(𝑡−1)

 of the

neighbor node j and the propagation matrix 𝐴ij on the edge eij.

In the topology of the graph, different nodes have different prop-
erties in the topology. In the GNN and GGNN models, the top-
ological properties of the nodes are directly expressed as hidden
nodes. Based on this, in the substructure composed of the central
node 𝑖 and its neighbor nodes 𝑁i, our model abandons the way

of directly accumulating the product of ℎ𝑗
(𝑡−1)

 and 𝐴ij to calcu-

late 𝑚𝑖
(𝑡)

. We hope that the model automatically learns how to

calculate 𝑚𝑖
(𝑡)

 and that the central node could pay more atten-

tion to those neighbor nodes whose topology information is im-
portant, because these neighbor nodes determine the interaction
context of the node 𝑖 on the graph to a greater extent.

Therefore, we have extended GGNN. We assign different
weights to each neighbor node to characterize its importance to

the central node 𝛼ij，it gets function mapping through neural

network 𝑎 : R𝑑 × R𝑑 → R, 𝑎 calculates the correlation coeffi-
cient between the central node 𝑖 and its neighbor j, and uses the
𝑠oftmax function to normalize the correlation coefficients of all
neighboring nodes, such as (3) shown:

 𝛼ij = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑎 (ℎ𝑖
(𝑡−1)

, ℎ𝑗
(𝑡−1)

)) ()

The weight parameter of the neural network 𝑎 is only related
to the round of information propagation. The same round of in-
formation propagation, 𝑎 is shared by all nodes. Different prop-
agation rounds have different parameters for 𝑎. The uncertainty
of the number of neighbor nodes j of a node 𝑖 will result in a
variable number of 𝑎ij, and it is not possible to directly imple-

ment the 𝑠oftmax function provided by the framework Tennsor-
flow. This paper implements 𝑠oftmax to adapt to the changing
number of neighbor nodes:

 𝑎𝑖𝑗 = 𝑎𝑖𝑗 - max(𝑎𝑖1, 𝑎𝑖2, …, 𝑎𝑖𝑗) ()

 𝛼ij =
ⅇ

𝑎ij

𝛴𝑘∈𝑁i
ⅇ𝑎ik

 ()

So the interaction context 𝑚𝑖
(𝑡)

 of node in of our expanded
GGNN is shown in (7):

 𝑚𝑖
(𝑡)

 =∑ 𝛼ij ∙ 𝐴ij ∙ ℎj𝑗∈𝑁i
 ()

Because the selection of program compilation optimization
pass is to analyze the program according to the embedded ex-
pression of the program algorithm graph co-AST, after obtain-

ing the final graph node embedding vector expression ℎ𝑖
(𝑇)

, the
embedding vector ℎG of the entire co-AST graph needs to be
calculated. This paper proposes a node vector probability fu-
sion method, which generates a graph embedding vector from

the node embedding vector. As shown in (7), the f (ℎ𝑖
(𝑇)

, ℎ𝑖
(1)

)
is a fully-connected neural network, which learns the probabil-

ity that node 𝑖 will be fused based on node attributes ℎ𝑖
(1)

 and

topology information ℎ𝑖
(𝑇)

. The activation function in f uses

𝑠igmoid, whose final output is a value of [0, 1]. The g is also
implemented by using a fully connected layer neural network,
which uses the tanh function to activate the output. The calcu-
lation of ℎG is similar to (6). In the end, the program compila-
tion optimization pass selection 𝑙G is derived from the function
𝑠ofmax:

 ℎG = ∑ 𝑓 (ℎ𝑖
(𝑇)

, ℎ𝑖
(1)

) ∙ 𝑔(ℎ𝑖
(𝑇)

)𝑖∈V  ()

 𝑙G = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎG) ()

In our extended GGNN, the computation of 𝛼ij of central

node and its neighbor nodes can be parallelized and computa-
tionally efficient. Moreover, it implements the calculation
method of the model automatically learning the interaction con-
text, without having to consider the number of neighbor nodes
that changes. If using neural networks to learn to calculate the
interaction context, it will definitely need to face the problem

Raw
Code

co-
AST

x1

x2
x3

x4
x7

x5 x6

z1

z2
z3

z4
z7

z5 z6

Message Propagation

Softmax

Embedding

Yg

DOI reference number: 10.18293/SEKE2020-029

that the neural network weight dimensions cannot be unified due
to the inconsistent number of neighbors in each node.

IV. EXPERIMENT AND ANALYSIS

In order to verify the effectiveness of the model proposed in
this paper in the selection of reliability-oriented program com-
pilation optimization pass, we not only evaluate the model from
the perspective of pass selection accuracy, but also analyze the
ability of the model to learn topology from the perspective of
co-AST graph node embedding expressions.

A. Configuration

In order to cover more program categories in our training set,
we have expanded on the standard C test suite MiBench [18].
We still adopt the program classification method of MiBench,
but we have made a lot of expansions in the number of programs.
We use the open source compilation tool clang to parse the raw
code to get the program's AST data set. We further add edges
representing data flow information and edges representing func-
tion call graphs to the AST tree for each program, and finally
obtain the final co-AST data set. In our experiments, the co-AST
data set is divided into a training set, a validation set, and a test
set according to a ratio of 8: 1: 1. We use the PIN tool to evaluate
the reliability of the program and generate the training set. Our
program reliability evaluation indicators refer to Sridhran [19].

The optimization algorithm used for model training is the
SGD of the ADAM optimizer [20]. The loss function uses cross
entropy. The weight parameter initialization in the model uses
Glorot [21] initialization method. In the experiment, the infor-
mation propagation layer (information iteration round) is set to
4 layers, and the number of neurons in each propagation layer,
that is the propagation matrix vector dimension 𝑑, is a hyperpa-
rameter. The choice of this hyper-parameter mainly considers
the speed of model convergence and the model's loss value. For
this reason, we determined after experiments that when the hid-
den layer vector dimension 𝑑 is 270, the model's convergence
loss value is relatively small, and the model training speed is
also relatively fast. Therefore, we set the hidden layer vector di-
mension 𝑑 to 270 to complete the subsequent experiments.

B. Result and analysis

In the experiment, we construct the classification task of 4.
The main content of this task is to judge, for a specific C raw
code, when using the clang standard compilation optimization
passes -O1, -O2, -O3, and -OS, which one is more reliable for
the program. This is different from many others that focus on
the impact of compilation optimization passes on program speed
and code size. The benchmark comparison experiment selected
in this experiment is TreeBased Convolution Neural Network
(TBCNN). To our knowledge, TBCNN is by far the best per-
forming work on source code classification tasks. In addition,
LSTM [22] is widely used in text classification tasks and our
model is aimed at the improvement of the GGNN model. We
also test the LSTM and GGNN models. The experimental re-
sults are shown in TABLE I, where exGGNN is our extended
GGNN. Therefore, there are four models in the controlled trial,
LSTM, TBCNN, GGNN and exGGNN.

TABLE I. ACCURACY OF OPTIMIZATION PASS SELECTION

Different

Model

Accuracy

Minimum Maximum Average

LSTM 82.2% 84.3% 83.9%

TBCNN 84.5% 88.6% 86.7%

GGNN 87.3% 93.5% 89.2%

exGGNN 87.9% 98.1% 94.1%

The experimental results in Table 1 show that the accuracy
of exGGNN in the code optimization pass selection problem has
improved significantly, indicating that our model has achieved
the expected results for this problem. Better than LSTM and
TBCNN shows that choosing GGNN to deal with such prob-
lems is a better choice, and better than GGNN shows that our
extension has played a important role. Then, in order to evaluate
whether the data flow edge and function call graph edge are use-
ful, we remove one of the 7 types of edges and use the exGGNN
model to learn the co-AST graph after deleting a certain edge to
implement the optimization pass selection. Observe the effect of
each edge on the selection accuracy of the program. The exper-
imental results are shown in TABLE II. The double underline
indicates the co-AST graph with this type of edge removed.

TABLE II. TABLE TYPE STYLES

Different

Edge

Program Category (MiBench)

auto-

mo-

tive

con-

sume

r

net-

work

of-

fice

secu-

rity

tele-

com

m

AST 0.99 0.02 0.09 0.95 0.06 0.09

Operand 0.92 0.07 0.07 0.92 0.02 0.05

LastUse 0.92 0.07 0.07 0.12 0.02 0.05

Compute 0.92 0.07 0.07 0.92 0.02 0.05

Return 0.94 0.07 0.07 0.92 0.02 0.09

Formal 0.99 0.08 0.08 0.05 0.02 0.05

Call 0.92 0.07 0.07 0.92 0.03 0.05

The experimental results show that for most program tasks
in MiBench, deleting a certain type of edge has little effect on
the accuracy of program optimization pass selection accyracy.
There may be information redundancy in the seven types of
edges, so any type of edge deletion will not have a significant
impact on the accuracy of program classification. But for some
programs, deleting these types of edges can significantly reduce
or improve the accuracy of program classification. Therefore,
the construction of co-EAST is effective and can further im-
prove the extracted program information.

We also compare the convergence trend of exGGNN /
GGNN / TBCNN loss values in the co-AST / AST intermediate
expression form. As shown in Fig.4, the graph model not only
has a smaller final convergence loss value, but also has a faster
convergence rate than TBCNN. The reason why the graph net-
work model converges faster is that the graph model has

DOI reference number: 10.18293/SEKE2020-029

stronger constraints on AST nodes than TBCNN. More specifi-
cally, in the TBCNN model, the convolution operation forces
one-way propagation of information from child nodes to the par-
ent node. While the graph model involves, for each node, it is
two-way information propagation between all neighboring
nodes. This information dissemination can gradually spread to
the entire graph structure.

Figure 4. Variation of loss values for the four models.

In order to select a highly reliable compilation and optimi-
zation pass, we propose a learning strategy through GGNN. The
experimental results show that our model achieves a higher ac-
curacy on the pass selection problem and is better than similar
neural networks models. As the first attempt to combine graph
neural networks with program reliability, we obviously
achieved our experimental goals. Although the program's run-
ning time and code size are important indicators of program
evaluation, the reliability of the program can not be ignored, es-
pecially in the booming aerospace field, the reliability of the
program is always the first consideration. We are working on
combining optimization sequence generation and graph neural
networks, hoping to find a better solution to the phase ordering
problem.

ACKNOWLEDGMENT

Thanks to my team for their help during the thesis comple-
tion process. Sincere thanks to Associate Professor Xu Jianjun
for his guidance on the ideas and theoretical basis of the thesis,
and to Dr. Meng Xiankai for his help in the experimental work.

REFERENCES

[1] Kulkarni P, Zhao W, Moon H, et al. Finding effective optimization phase
sequences[J]. ACM SIGPLAN Notices, 2003, 38(7): 12-23.

[2] Ansel J, Kamil S, Veeramachaneni K, et al. Opentuner: An extensible
framework for program autotuning[C]//Proceedings of the 23rd
international conference on Parallel architectures and compilation. 2014:
303-316.

[3] Jantz M R, Kulkarni P A. Performance potential of optimization phase
selection during dynamic JIT compilation[C]//Proceedings of the 9th
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. 2013: 131-142.

[4] Lokuciejewski P, Plazar S, Falk H, et al. Multi-objective exploration of
compiler optimizations for real-time systems[C]//2010 13th IEEE

International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing. IEEE, 2010: 115-122.

[5] Lokuciejewski P, Plazar S, Falk H, et al. Approximating Pareto optimal
compiler optimization sequences—a trade‐off between WCET, ACET
and code size[J]. Software: Practice and Experience, 2011, 41(12): 1437-
1458.

[6] Cavazos J, Fursin G, Agakov F, et al. Rapidly selecting good compiler
optimizations using performance counters[C]//International Symposium
on Code Generation and Optimization (CGO'07). IEEE, 2007: 185-197.

[7] Ashouri A H, Bignoli A, Palermo G, et al. Micomp: Mitigating the
compiler phase-ordering problem using optimization sub-sequences and
machine learning[J]. ACM Transactions on Architecture and Code
Optimization (TACO), 2017, 14(3): 1-28.

[8] Fursin G, Kashnikov Y, Memon A W, et al. Milepost gcc: Machine
learning enabled self-tuning compiler[J]. International journal of parallel
programming, 2011, 39(3): 296-327.

[9] Martins L G A, Nobre R, Cardoso J M P, et al. Clustering-based selection
for the exploration of compiler optimization sequences[J]. ACM
Transactions on Architecture and Code Optimization (TACO), 2016,
13(1): 1-28.

[10] Ashouri A H, Mariani G, Palermo G, et al. Cobayn: Compiler autotuning
framework using bayesian networks[J]. ACM Transactions on
Architecture and Code Optimization (TACO), 2016, 13(2): 1-25.

[11] Foleiss J H, da Silva A F, Ruiz L B. The effect of combining compiler
optimizations on code size[C]//2011 30th International Conference of the
Chilean Computer Science Society. IEEE, 2011: 187-194.

[12] Plotnikov D, Melnik D, Vardanyan M, et al. An Automatic tool for tuning
compiler optimizations[C]//Ninth International Conference on Computer
Science and Information Technologies Revised Selected Papers. IEEE,
2013: 1-7.

[13] Luk C K, Cohn R, Muth R, et al. Pin: building customized program
analysis tools with dynamic instrumentation[J]. Acm sigplan notices,
2005, 40(6): 190-200.

[14] Shen V R L. Novel Code Plagiarism Detection Based on Abstract Syntax
Tree and Fuzzy Petri Nets[J]. International Journal of Engineering
Education, 2019, 1(1).

[15] Hassen M, Chan P K. Scalable function call graph-based malware
classification[C]//Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. 2017: 239-248.

[16] Weyerhaeuser C, Mindnich T, Baeumges D, et al. Augmented query
optimization by data flow graph model optimizer: U.S. Patent
10,241,961[P]. 2019-3-26.

[17] Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, et al. Gated Graph
Sequence Neural Networks[J]. Computer Science, 2015.

[18] Guthaus M R , Ringenberg J S , Ernst D , et al. MiBench: A free,
commercially representative embedded benchmark suite[C]// Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on.
IEEE, 2002.

[19] Sridharan V, Kaeli D R. Eliminating microarchitectural dependency from
architectural vulnerability[C]//2009 IEEE 15th International Symposium
on High Performance Computer Architecture. IEEE, 2009: 117-128.

[20] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv
preprint arXiv:1412.6980, 2014.

[21] Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks[C]//Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010:
249-256.

[22] Dyer C, Ballesteros M, Ling W, et al. Transition-based dependency
parsing with stack long short-term memory[J]. arXiv preprint
arXiv:1505.08075, 2015.

