Unification in the Description Logic £L

Franz Baader and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,morawska} @tcs.inf.tu-dresden.de

Abstract. The Description Logic ££ has recently drawn considerable
attention since, on the one hand, important inference problems such as
the subsumption problem are polynomial. On the other hand, ££ is used
to define large biomedical ontologies. Unification in Description Logics
has been proposed as a novel inference service that can, for example, be
used to detect redundancies in ontologies. The main result of this paper
is that unification in £L is decidable. More precisely, £L-unification is
NP-complete, and thus has the same complexity as £L-matching. We
also show that, w.r.t. the unification type, £L is less well-behaved: it
is of type zero, which in particular implies that there are unification
problems that have no finite complete set of unifiers.

1 Introduction

Description logics (DLs) [5] are a family of logic-based knowledge representa-
tion formalisms, which can be used to represent the conceptual knowledge of
an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and biomedical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [15] as standard
ontology language for the semantic web.

In DLs, concepts are formally described by concept terms, i.e., expressions
that are built from concept names (unary predicates) and role names (binary
predicates) using concept constructors. The expressivity of a particular DL is
determined by which concept constructors are available in it. From a semantic
point of view, concept names and concept terms represent sets of individuals,
whereas roles represent binary relations between individuals. For example, using
the concept name Woman, and the role name child, the concept of all women
having a daughter can be represented by the concept term

Woman M dchild.Woman,
and the concept of all women having only daughters by
Woman M Ychild.Woman.

Knowledge representation systems based on DLs provide their users with various
inference services that allow them to deduce implicit knowledge from the explic-
itly represented knowledge. For instance, the subsumption algorithm allows one

to determine subconcept-superconcept relationships. For example, the concept
term Woman subsumes the concept term Woman M Jchild.Woman since all in-
stances of the second term are also instances of the first term, i.e., the second
term is always interpreted as a subset of the first term. With the help of the
subsumption algorithm, a newly introduced concept term can automatically be
placed at the correct position in the hierarchy of the already existing concept
terms.

Two concept terms C, D are equivalent (C' = D) if they subsume each other,
i.e., if they always represent the same set of individuals. For example, the terms
Vchild.Rich M Vchild. Woman and Vchild.(Rich M Woman) are equivalent since the
value restriction operator (Vr.C') distributes over the conjunction operator (M). If
we replaced the value restriction operator by the existential restriction operator
(Fr.C), then this equivalence would no longer hold. However, for this operator,
we still have the equivalence

dchild.Rich M 3child.(Woman M Rich) = Jchild.(Woman 11 Rich).

The equivalence test can, for example, be used to find out whether a concept
term representing a particular notion has already been introduced, thus avoid-
ing multiple introduction of the same concept into the concept hierarchy. This
inference capability is very important if the knowledge base containing the con-
cept terms is very large, evolves during a long time period, and is extended and
maintained by several knowledge engineers. However, testing for equivalence of
concepts is not always sufficient to find out whether, for a given concept term,
there already exists another concept term in the knowledge base describing the
same notion. For example, assume that one knowledge engineer has defined the
concept of all women having a daughter by the concept term

Woman M Jchild.Woman.

A second knowledge engineer might represent this notion in a somewhat more
fine-grained way, e.g., by using the term Female M Human in place of Woman.
The concept terms Woman M dchild.Woman and

Female M Human 11 3child.(Female 1 Human)

are not equivalent, but they are meant to represent the same concept. The
two terms can obviously be made equivalent by substituting the concept name
Woman in the first term by the concept term Female M Human. This leads us to
unification of concept terms, i.e., the question whether two concept terms can
be made equivalent by applying an appropriate substitution, where a substitu-
tion replaces (some of the) concept names by concept terms. Of course, it is
not necessarily the case that unifiable concept terms are meant to represent the
same notion. A unifiability test can, however, suggest to the knowledge engineer
possible candidate terms.

Unification in DLs was first considered in [9] for a DL called FL;, which
has the concept constructors conjunction (M), wvalue restriction (Vr.C), and

the top concept (T). It was shown that unification in FLy is decidable and
ExpTime-complete, i.e., given an FLp-unification problem, we can effectively
decide whether it has a solution or not, but in the worst-case, any such de-
cision procedure needs exponential time. This result was extended in [7] to a
more expressive DL, which additional has the role constructor transitive clo-
sure. Interestingly, the unification type of FLy had been determined almost a
decade earlier in [1]. In fact, as shown in [9], unification in FLy corresponds to
unification modulo the equational theory of idempotent Abelian monoids with
several homomorphisms. In [1] it was shown that, already for a single homomor-
phism, unification modulo this theory has unification type zero, i.e., there are
unification problems for this theory that do not have a minimal complete set of
unifiers. In particular, such unification problems cannot have a finite complete
set of unifiers.

In this paper, we consider unification in the DL £L£. The £L-family consists
of inexpressive DLs whose main distinguishing feature is that they provide their
users with ezistential restrictions (Ir.C') rather than value restrictions (Vr.C') as
the main concept constructor involving roles. The core language of this family is
EL, which has the top concept, conjunction, and existential restrictions as con-
cept constructors. This family has recently drawn considerable attention since,
on the one hand, the subsumption problem stays tractable (i.e., decidable in
polynomial time) in situations where FLg, the corresponding DL with value re-
strictions, becomes intractable: subsumption between concept terms is tractable
for both FLy and £L, but allowing the use of concept definitions or even more
expressive terminological formalisms makes F Ly intractable [2, 16, 4], whereas it
leaves £L tractable [3,13,4]. On the other hand, although of limited expressive
power, £L is nevertheless used in applications, e.g., to define biomedical ontolo-
gies. For example, both the large medical ontology SNOMED ¢T! and the Gene
Ontology? can be expressed in ££, and the same is true for large parts of the
medical ontology GALEN [18]. The importance of ££ can also be seen from the
fact that the new OWL 2 standard® contains a sub-profile OWL 2 EL, which is
based on (an extension of) L.

Unification in ££ has, to the best of our knowledge, not been investigated
before, but matching (where one side of the equation(s) to be solved does not
contain variables) has been considered in [6,17]. In particular, it was shown in
[17] that the decision problem, i.e., the problem of deciding whether a given ££-
matching problem has a matcher or not, is NP-complete. Interestingly, FLq be-
haves better w.r.t. matching than £L: for F Ly, the decision problem is tractable
[8]. In this paper, we show that, w.r.t. the unification type, Ly and £L be-
have the same: just as FLy, the DL £L has unification type zero. However,
w.r.t. the decision problem, ££ behaves much better than FLy: £L-unification
is NP-complete, and thus has the same complexity as £L-matching.

! http://www.ihtsdo.org/snomed-ct/
2 http://www.geneontology.org/
3 See http://www.w3.org/TR/owl2-profiles/

Name [Synt ax[Semantics

concept name A AL C Dz

role name r rr C Dz x Dz

top-concept T T =Ds

conjunction cnbD (cnbD)yf=c*np*
existential restriction| 3r.C' |(3r.C)t = {z | Jy: (z,y) € rF Ay € CT}
subsumption cCCD ctcp?

equivalence CcC=D ct =p*

Table 1. Syntax and semantics of £L£

In the next section, we define the DL ££ and unification in £L£ more formally.
In Section 3, we recall the characterisation of subsumption and equivalence in
EL from [17], and in Section 4 we use this to show that unification in ££ has
type zero. In Section 5, we show that unification in ££ is NP-complete, and in
Section 6 we point out that our results for £L-unification imply that unification
modulo the equational theory of semilattices with monotone operators [19] is
NP-complete and of unification type zero.

More information about Description Logics can be found in [5], and about
unification theory in [12].

2 Unification in £L

First, we define the syntax and semantics of £L-concept terms as well as the
subsumption and the equivalence relation on these terms.

Starting with a set N, of concept names and a set N,,. of role names,
EL-concept terms are built using the concept constructors top concept (T),
conjunction (M), and existential restriction (Ir.C’). The semantics of £L is defined
in the usual way, using the notion of an interpretation Z = (Dz,-Z), which
consists of a nonempty domain D7 and an interpretation function -Z that assigns
binary relations on Dz to role names and subsets of Dz to concept terms, as
shown in the semantics column of Table 1.

The concept term C' is subsumed by the concept term D (written C C D)
ifft CZ C D? holds for all interpretations Z. We say that C is equivalent to
D (written C = D) iff C C D and D C C, i.e., iff CZT = D? holds for all
interpretations Z. The concept term C' is strictly subsumed by the concept term
D (written C C D) iff CC D and C # D.

A concept definition is of the form A = C where A is a concept name and
C is a concept term. A TBox 7T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a concept
definition in 7. The TBox 7 is called acyclic if there are no cyclic dependencies
between its concept definitions. The interpretation Z is a model of the TBox
T iff AT = C7 holds for all concept definitions A = C in 7. Subsumption

and equivalence w.r.t. a TBox are defined as follows: C Ty D (C =7 D) iff
CT C D (CT = D?) holds for all models Z of 7. Subsumption and equivalence
w.r.t. an acyclic TBox can be reduced to subsumption and equivalence of concept
terms (without TBox) by ezpanding the concept terms w.r.t. the TBox, i.e., by
replacing defined concepts (i.e., concept names occurring on the left-hand side of
a definition) by their definitions (i.e., the corresponding right-hand sides) until
all defined concepts have been replaced. This expansion process may, however,
result in an exponential blow-up [10].

In order to define unification of concept terms, we first introduce the notion
of a substitution operating on concept terms. To this purpose, we partition
the set of concepts names into a set N, of concept variables (which may be
replaced by substitutions) and a set N, of concept constants (which must not
be replaced by substitutions). Intuitively, N, are the concept names that have
possibly been given another name or been specified in more detail in another
concept term describing the same notion. The elements of N, are the ones of
which it is assumed that the same name is used by all knowledge engineers (e.g.,
standardised names in a certain domain).

A substitution o is a mapping from N, into the set of all £L£-concept terms.
This mapping is extended to concept terms in the obvious way, i.e.,

o(A) = A for all A € N,
—o(T) =

—o(CnN D) o(C)No(D), and
— o(3Ir.C) :=3Ir.o(C).

Deﬁnition 1. An EL-unification problem is of the form I' = {Cy =" Dy, ...,
C, =" D,}, where Cy,D1,...Cy, D, are EL-concept terms. The substitution o
is a unifier (or solution) of I iff o(C;) = o(D;) fori=1,...,n. In this case, I
is called solvable or unifiable.

When we say that £L-unification is decidable (NP-complete), then we mean
that the following decision problem is decidable (NP-complete): given an £L£-
unification problem I, decide whether I" is solvable or not.

As usual, unifiers can be compared using the instantiation preorder <¢. Let
I' be an £L-unification problem, V' the set of variables occurring in I, and o, 6
two unifiers of this problem. We define

o < iff there is a substitution A such that 6(X) = A(o(X)) for all X € V.
If 0 < 0, then we say that 0 is an instance of o.

Definition 2. Let I' be an £L-unification problem. The set of substitutions M is
called a complete set of unifiers for I' iff it satisfies the following two properties:

1. every element of M is a unifier of I';
2. if 0 is a unifier of I', then there exists a unifier o € M such that o < 0.

The set M is called a minimal complete set of unifiers for I' iff it additionally
satisfies

3. if 0,0 € M, then o < 0 implies 0 = 6.

The unification type of a given unification problem is determined by the
existence and cardinality of such a minimal complete set.

Definition 3. Let I' be an £ L-unification problem. This problem has type uni-
tary (finitary, infinitary) iff it has a minimal complete set of unifiers of cardi-
nality 1 (finite cardinality, infinite cardinality). If I' does not have a minimal
complete set of unifiers, then it is of type zero.

Note that the set of all unifiers of a given £L-unification problem is always a
complete set of unifiers. However, this set is usually infinite and redundant (in
the sense that some unifiers are instances of others). For a unitary or finitary
& L-unification problem, all unifiers can be represented by a finite complete set of
unifiers, whereas for problems of type infinitary or zero this is no longer possible.
In fact, if a problem has a finite complete set of unifiers M, then it also has a
finite minimal complete set of unifiers, which can be obtained by iteratively
removing redundant elements from M. For an infinite complete set of unifiers,
this approach of removing redundant unifiers may be infinite, and the set reached
in the limit need no longer be complete. This is what happens for problems of
type zero. The difference between infinitary and type zero is that a unification
problem of type zero cannot even have a non-redundant complete set of unifiers,
i.e., every complete set of unifiers must contain different unifiers o, such that
o <.

When we say that £L has unification type zero, we mean that there exists
an &£L-unification problem that has type zero. Before we can prove that this is
indeed the case, we must first have a closer look at equivalence in £L.

3 Equivalence and subsumption in ££

In order to characterise equivalence of £ L-concept terms, the notion of a reduced
EL-concept term is introduced in [17]. A given £L-concept term can be trans-
formed into an equivalent reduced term by applying the following rules modulo
associativity and commutativity of conjunction:

cnTtT-—-C for all £L-concept terms C'
AMNA— A for all concept names A € Nop,
Fr.CM3Ir.D — Ir.C' for all EL-concept terms C, D with C E D

Obviously, these rules are equivalence preserving. We say that the £L-concept
term C' is reduced if none of the above rules is applicable to it (modulo asso-
ciativity and commutativity of M). The £L-concept term D is a reduced form
of C if D is reduced and can be obtained from C' by applying the above rules
(modulo associativity and commutativity of M). The following theorem is an easy
consequence of Theorem 6.3.1 on page 181 of [17].

Theorem 1. Let C, D be EL-concept terms, and C’ D reduced forms of C, D,
respectively. Then C'= D zﬁC’ is identical to D up to associativity and commu-
tativity of M.

This theorem can also be used to derive a recursive characterisation of sub-
sumption in L. In fact, if C' C D, then CT D = C, and thus C and C'T D have
the same reduced form. Thus, during reduction, all concept names and existen-
tial restrictions of D must be “eaten up” by corresponding concept names and
existential restrictions of C.

Corollary 1. Let C = Ay n...MA, N3Ir.C1y 0 ...MN3Ir,.Cp and D = By 1M
..MByM3s1.D1N...M3s,.D,,, where Ay, ..., A, B1,..., By are concept names.
Then C C D iff {B1,...,B¢} C{A,..., A} and for every j,1 < j < n, there
exists an 1,1 <1 < m, such that r; = s; and C; € Dj.

Note that this corollary also covers the cases where some of the numbers
k,?,m,n are zero. The empty conjunction should then be read as T. The follow-
ing lemma, which is an immediate consequence of this corollary, will be used in
our proof that ££ has unification type zero.

Lemma 1. If C, D are reduced EL-concept terms such that Ir.D & C, then C
is either T, or of the form C = 3Ir.Cy1...N3Ar.C,, wheren >1; Cy,...,C, are
reduced and pairwise incomparable w.r.t. subsumption; and D C C4,...,D C C,.
Conversely, if C, D are EL-concept terms such that C' = 3Ir.C1MN...M3r.C, and
DCECy,...,DEC,, then Ir. DCEC.

In the proof of decidability of £L-unification, we will make use of the fact
that the inverse strict subsumption order is well-founded.

Proposition 1. There is no infinite sequence Cy,Cy,Co,Cs, ... of EL-concept
terms such that Co C C; C CoC C3C - -+

Proof. We define the role depth of an £L-concept term C' as the maximal nesting
of existential restrictions in C'. Let ng be the role depth of Cy. Since Cy C C;
for ¢ > 1, it is an easy consequence of Corollary 1 that the role depth of Cj is
bounded by ng, and that C; contains only concept and role names occurring in
Cy- In addition, it is known that, for a given natural number ny and finite sets
of concept names C and role names R, there are, up to equivalence, only finitely
many EL-concept term built using concept names from C and role names from
R and of a role depth bounded by ng [11]. Consequently, there are indices ¢ < j
such that C; = C;. This contradicts our assumption that C; C Cj. a

4 An £L-unification problem of type zero

To show that £L£ has unification type zero, we exhibit an £L-unification problem
that has this type.

Theorem 2. Let X,Y be variables. The EL-unification problem I' := {X N
3rY = .Y} has unification type zero.

Proof. 1t is enough to show that any complete set of unifiers for this problem
is redundant, i.e., contains two different unifiers that are comparable w.r.t. the
instantiation preorder. Thus, let M be a complete set of unifiers for I.

First, note that M must contain a unifier that maps X to an £L-concept
term not equivalent to T or Jr.T. In fact, consider a substitution 7 such that
7(X) =3r.Aand 7(Y) = A. Obviously, 7 is a unifier of I". Thus, M must contain
a unifier o such that o <¢ 7. In particular, this means that there is a substitution A
such that 3r.A = 7(X) = A(o(X)). Obviously, o(X) =T (¢(X) = 3r.T) would
imply AM(o(X)) =T (Mo(X)) = 3Ir.T), and thus Ir. A =T (Ir.A = Ir.T), which
is, however, not the case.

Thus, let o € M be such that o(X) # T and o(X) # 3. T. Without loss of
generality, we assume that C' := ¢(X) and D := o(Y") are reduced. Since o is a
unifier of I, we have 3r.D C C'. Consequently, Lemma 1 yields that C is of the
form C = 3r.CyM...M3Ir.C,, wheren > 1, C1q,...,C, are reduced and pairwise
incomparable w.r.t. subsumption, and D C Cy,...,D C C,.

We use o to construct a new unifier o as follows:

o(X):=3r.Ci1...N3Ir.C, NIr.Z
oY):=DnZz

where Z is a new variable (i.e., one not occurring in C, D). The second part of
Lemma 1 implies that ¢ is indeed a unifier of I".

Next, we show that ¢ < . To this purpose, we consider the substitution A
that maps Z to C4, and does not change any of the other variables. Then we
have A(6(X)) =3Fr.CyN...NI.C,NIr.Cy = Ir.C1N...N3Ir.Cp, = o(X) and
AMc(Y)) =DncCy, =D =o(Y). Note that the second equivalence holds since
we have D C (.

Since M is complete, there exists a unifier § € M such that § < 7. Tran-
sitivity of the relation <¢ thus yields 6§ < ¢. Since ¢ and 6 both belong to M,
we have completed the proof of the theorem once we have shown that o # 6.
Assume to the contrary that ¢ = 6. Then we have o < &, and thus there exists
a substitution p such that (o (X)) = 6(X), i.e.,

Frpu(Cy)n...NIru(Cy) =Ir.Cy0...NI.C, N 3IrZ. (1)

Recall that the concept terms C1, . .., C,, are reduced and pairwise incomparable
w.r.t. subsumption. In addition, since o(X) = Ir.C1M...M3Ir.C,, is reduced and
not equivalent to 3r.T, none of the concept terms C1,...,C, can be equivalent
to T. Finally, Z is a concept name that does not occur in Cy,...,C,. All this
implies that Ir.C1 M...M3r.C, M 3Ir.Z is reduced. Obviously, any reduced form
for Fr.u(Cy)M...M3r.u(C,,) is a conjunction of at most n existential restrictions.
Thus, Theorem 1 shows that the above equivalence (1) actually cannot hold.
To sum up, we have shown that M contains two distinct unifiers o, 6 such
that @ < 0. Since M was an arbitrary complete set of unifiers for I', this shows
that this unification problem cannot have a minimal complete set of unifiers. O

5 The decision problem

Before we can describe our decision procedure for £L-unification, we must in-
troduce some notation. An £L-concept term is called an atom iff it is a concept
name (i.e., concept constant or concept variable) or an existential restriction
Ir.D. Obviously, any € L-concept term is (equivalent to) a conjunction of atoms,
where the empty conjunction is T. The set At(C) of atoms of an EL-concept
term C is defined inductively: if C' = T, then A¢(C) := 0; if C' is a concept name,
then At(C) := {C}; if C = Ir.D then At(C) := {C} U At(D); if C = C; M Cy,
then At(C) := At(Ch) U At(Cy).

Concept names and existential restrictions 3r.D where D is a concept name
or T are called flat atoms. The € L-unification problem I is flat iff it only contains
equations of the following form:

— X =" C where X is a variable and C is a non-variable flat atom;
- Xin...NnX,, ="v;N...nY, where Xi,..., X, Y1,...,Y, are variables.

By introducing new concept variables and eliminating T, any &£L-unification
problem I' can be transformed in polynomial time into a flat £L-unification
problem I such that I' is solvable iff I is solvable. Thus, we may assume
without loss of generality that our input £ L-unification problems are flat. Given
a flat £L-unification problem I' = {C} ='"Dy,...,C, =7 D, }, we call the atoms
of Cy,D,...,C,, D, the atoms of I.

The unifier o of I' is called reduced (ground) iff, for all concept variables
X occurring in I', the £L-concept term o(X) is reduced (does not contain vari-
ables). Obviously, I" is solvable iff it has a reduced ground unifier. Given a ground
unifier o of I', we consider the set At(o) of all atoms of o(X), where X ranges
over all variables occurring in I'. We call the elements of At(c) the atoms of o.

Given £L-concept terms C, D, we define C' >;5 D iff C C D. Proposition 1
says that the strict order >;; defined this way is well-founded. This order is
monotone in the following sense.

Lemma 2. Let C,D,D’ be EL-concept terms such that D >;; D' and C is
reduced and contains at least one occurrence of D. If C' is obtained from C by
replacing all occurrences of D by D', then C >;, C'.

Proof. We prove the lemma by induction on the size of C. If C' = D, then
C'" = D', and thus C = D >;s D' = C’. Thus, assume that C' # D. In this
case, C' obviously cannot be a concept name. If C' = 3r.C, then D occurs in
(. By induction, we can assume that C; >;5 C7, where C7 is obtained from
C1 by replacing all occurrences of D by D’. Thus, we have C = 3r.C; >
Ir.C7 = C' by Corollary 1. Finally, assume that C = C; ... N C, for n >
1 atoms C4,...,C,. Since C is reduced, these atoms are incomparable w.r.t.
subsumption, and since D occurs in C' we can assume without loss of generality
that D occurs in Cy. Let Cf,...,C! be respectively obtained from Ci,...,C,
by replacing every occurrence of D by D’, and then reducing the concept term
obtained this way. By induction, we have C; >;5 C7. Assume that C' %#;; C'.

Since the concept constructors of ££ are monotone w.r.t. subsumption C, we
have C C ', and thus C %;; C’' means that C = C’. Consequently, C' =
CiM...NC, and the reduced form of C{ M ... M C] must be equal up to
associativity and commutativity of M. If C7 M ... M C/, is not reduced, then
its reduced form is actually a conjunction of m < m atoms, which contradicts
C=C. 1t Cin...NCY is reduced, then Cy >;, Cf implies that there is an ¢ # 1
such that C; = Cf. However, then C; = C] 3 C; contradicts the fact that the
atoms C1,...,C, are incomparable w.r.t. subsumption. a

We use the order >;; on £L-concept terms to define a well-founded order
on ground unifiers. Since >;, is well-founded, its multiset extension >,, is also
well-founded. Given a ground unifier o of I', we consider the multiset S(o) of
all £L-concept terms o(X), where X ranges over all concept variables occurring
in I'. For two ground unifiers ¢,6 of I', we define o > 0 iff S(o) >, S(0). The
ground unifier o of I" is minimal iff there is no ground unifier 6 of I" such that
o > 0. The following proposition is an easy consequence of the fact that > is
well-founded.

Proposition 2. Let I' be an EL-unification problem. Then I' is solvable iff it
has a minimal reduced ground unifier.

In the following, we show that minimal reduced ground unifiers of flat ££-
unification problems satisfy properties that make it easy to check (with an NP-
algorithm) whether such a unifier exists or not.

Lemma 3. Let I' be a flat £L-unification problem and ~ a minimal reduced
ground unifier of I'. If C' is an atom of vy, then there is a non-variable atom D
of I' such that C = ~(D).

Proof. Since v is ground, C' is either a concept constant or an existential re-
striction. First, assume that C' = A for a concept constant A, but there is no
non-variable atom D of I" such that A = (D). This simply means that A does
not occur in I'. Let +' be the substitution obtained from ~ by replacing every
occurrence of A by T. Since equivalence in £L is preserved under replacing con-
cept names by T, and since A does not occur in I, it is easy to see that 7/ is
also a unifier of I'. However, since v > +/, this contradicts our assumption that
7 is minimal.

Second, assume that C' = 3r.Cy, but there is no non-variable atom D of I'
such that C' = (D). We assume that C' is maximal (w.r.t. subsumption) with
this property, i.e., for every atom C’ of v with C = C’, there is a non-variable
atom D’ of I' such that C' = ~(D’). Let Dy,...,D,, be all the atoms of I"
with C C ~(D;) (i = 1,...,n). By our assumptions on C, we actually have
C C 7v(D;) and, by Lemma 1, the atom D; is also an existential restriction
D; =3r.D} (i =1,...,n). The conjunction D:= ~v(D1) M ...M~(D,,) obviously
subsumes C'. We claim that this subsumption relationship is actually strict. In
fact, if n = 0, then D = T, and since C' is an atom, it is not equivalent to
T.If n > 1, then C = Ir.Cy J Fry(Dy) M ... N Iry(D,) would imply (by

Corollary 1) that there is an ¢,1 < ¢ < n, with C; J (D). However, this would
yield C = 3r.Cy 3 Ir.y(D}) = v(D;), which contradicts the fact that C' C v(D;).
Thus, we have shown that C' C D. The substitution ~" is obtained from ~ by
replacing every occurrence of C' by D. Lemma 2 implies that v > +'. Thus, to
obtain the desired contradiction, it is sufficient to show that +’ is a unifier of I".

First, consider an equation of the form X =’ E in I", where X is a variable
and E is a non-variable flat atom. If F is a concept constant, then v(X) = E, and
thus 7/(X) = «(X), which shows that 4" solves this equation. Thus, assume that
E = 3r.F’. Since 7 is reduced, we actually have v(X) = Ir.y(E’). If C occurs in
~(E"), then each replacement of C by Din ~(E’) is matched by the corresponding
replacement in v(X). Thus, in this case 7/ again solves the equation. Finally,
assume that C' = v(X). But then C = «(E) for a non-variable atom E of I,
which contradicts our assumption on C

Second, consider an equation of the form X, M...MX,, =’ Y1M...NY,, where
X1,y Xm, Y1,...,Y, are variables. Then L := v(X1M...NX,,) and R := v(Y1N
...MY,,) reduce to the same reduced £L-concept term J. Let L', R’ J' be the £L-
concept terms respectively obtained from L, R, J by replacing every occurrence
of C by D. We prove that L' =+/(X1M...MX,,) and R’ = +/(Y1M...MY,) both
reduce to J’, which shows that ' solves this equation. It is enough to show that
the reductions are invariant under the replacement of C' by D. Obviously, all the
interesting reductions are of the form F;MFE,; — E; where Eq, Fy are existential
restrictions such that Fy C FEs. Since 7 is reduced, we can assume that F1, F»
are reduced. Let E}, FY be respectively obtained from FE1, E2 by replacing every
occurrence of C' by D. We must show that E} M E} reduces to E}. For this,
it is enough to show that E] T Ej. Assume that an occurrence of C' in Ej is
actually needed to have the subsumption Ey £ Fs. Then there is an existential
restriction C’ in Ey such that C C C’. If C = C’, then both are replaced by D,
and thus this replacement is harmless. Otherwise, C C C’. Since C’ is an atom
of v, maximality of C yields that there is a non-variable atom D’ of I" such that
C' = y(D'). Now C C C’ = v(D’) implies that there is an 4,1 < i < n, such
that D' = D;. Thus, Q’ is actually one of the conjuncts of ﬁ, which again shows
that replacing C' by D is harmless. Thus, we have shown that F{ T FE}, which
completes the proof of the lemma. a

The next proposition is an easy consequence of this lemma.

Proposition 3. Let I" be a flat £L-unification problem and ~y a minimal reduced
ground unifier of I'. If X is a concept variable occurring in I', then v(X) = T
or there are mon-variable atoms Dy,..., D, (n > 1) of I' such that v(X) =
W(Dl) ... I_IfY(Dn)‘

Proof. If v(X) #£ T, then it is a non-empty conjunction of atoms, i.e., there are
atoms C1,...,C, (n > 1) such that v(X) =CyM...MC,. Then C4,...,C, are
atoms of v, and thus Lemma 3 yields non-variable atoms D+, ..., D, of I" such
that C; = v(D;) for i = 1,...n. Consequently, v(X) =~v(D1) M...Nvy(Dy). O

This proposition suggests the following non-deterministic algorithm for de-
ciding solvability of a given flat € L-unification problem I:

1. For every variable X occurring in I'; guess a finite, possibly empty, set Sx
of non-variable atoms of I".

2. We say that the variable X directly depends on the variable Y if Y occurs
in an atom of Sx. Let depends on be the transitive closure of directly de-
pends on. If there is a variable that depends on itself, then the algorithm
returns “fail.” Otherwise, there exists a strict linear order > on the variables
occurring in I" such that X > Y if X depends on Y.

3. We define the substitution o along the linear order >:

— If X is the least variable w.r.t. >, then Sx does not contain any variables.
We define o(X) to be the conjunction of the elements of Sx, where the
empty conjunction is T.

— Assume that o(Y) is defined for all variables Y < X. Then Sx only
contains variables Y for which o(Y) is already defined. If Sx is empty,
then we define o(X) := T. Otherwise, let Sx = {D1, ..., D,}. We define
o(X):=0(D1)N...MNa(Dy).

4. Test whether the substitution o computed in the previous step is a unifier
of I'. If this is the case, then return o; otherwise, return “fail.”

This algorithm is trivially sound since it only returns substitutions that are
unifiers of I'. In addition, it obviously always terminates. Thus, to show correct-
ness of our algorithm, it is sufficient to show that it is complete.

Lemma 4 (completeness). If I' is solvable, then there is a way of guessing
in Step 1 subsets Sx of the non-variable atoms of I' such that the depends on
relation determined in Step 2 is acyclic and the substitution o computed in Step 3
s a unifier of .

Proof. If I' is solvable, then it has a minimal reduced ground unifier v. By
Proposition 3, for every variable X occurring in I" we have v(X) = T or there
are non-variable atoms Ds,...,D,, (n > 1) of I' such that y(X) = ~v(D1) N
.. My(Dy). U y(X) = T, then we define Sx := (). Otherwise, we define Sy :=
{Dy,...,Dy,}.

We show that the relation depends on induced by these sets Sx is acyclic, i.e.,
there is no variable X such that X depends on itself. If X directly depends on Y,
then Y occurs in an element of Sx. Since Sx consists of non-variable atoms of
the flat unification problem I', this means that there is a role name r such that
IrY € Sx. Consequently, we have v(X) C Jr.y(Y). Thus, if X depends on X,
then there are & > 1 role names ry,...,7, such that y(X) C Jry. - Irgp.y(X).
This is clearly not possible since v(X) cannot be subsumed by an £L-concept
term whose role depth is larger than the role depth of v(X).

To show that the substitution ¢ induced by the sets Sx is a unifier of I,
we prove that o is equivalent to 7, i.e., o(X) = (X) holds for all variables X
occurring in I'. The substitution o is defined along the linear order >. If X is the
least variable w.r.t. >, then Sx does not contain any variables. If Sy is empty,
then o(X) = T = (X). Otherwise, let Sx = {Ds, ..., D,}. Since the atoms D;
do not contain variables, we have D; = v(D;). Thus, the definitions of Sx and
of o yield o(X)=D1M...MD, =~(Dy)MN...05(D,) =v(X).

Assume that o(Y) = v(Y) holds for all variables Y < X. If Sy =), then
we have again o(X) = T = v(X). Otherwise, let Sx = {D1,...,D,}. Since the
atoms D; contain only variables that are smaller than X, we have o(D;) = ~v(D;)
by induction. Thus, the definitions of Sx and of ¢ yield o(X) = o(Dy) M1 ... 1M
o(Dy) =y(D1) M. Ny(Dy) = y(X). 0

Note that our proof of completeness actually shows that, up to equivalence,
the algorithm returns all minimal reduced ground unifiers of I".

Theorem 3. £L-unification is NP-complete.

Proof. NP-hardness follows from the fact that ££-matching is NP-complete [17].
To show that the problem can be decided by a non-deterministic polynomial-
time algorithm, we analyse the complexity of our algorithm. Obviously, guessing
the sets Sx (Step 1) can be done within NP. Computing the depends on relation
and checking it for acyclicity (Step 2) is clearly polynomial.

Steps 3 and 4 are more problematic. In fact, since a variable may occur in
different atoms of I", the substitution o computed in Step 3 may be of exponential
size. This is actually the same reason that makes a naive algorithm for syntactic
unification compute an exponentially large most general unifier [12]. As in the
case of syntactic unification, the solution to this problem is basically structure
sharing. Instead of computing the substitution o explicitly, we view its definition
as an acyclic TBox. To be more precise, for every concept variable X occurring
in I', the TBox 7, contains the concept definition X = T if Sx = 0 and
X =DiN...ND, if Sy ={Ds,...,D,} (n > 1). Instead of computing ¢ in
Step 3, we compute 7,. Because of the acyclicity test in Step 2, we know that
7, is an acyclic TBox. The size of 7, is obviously polynomial in the size of I,
and thus this modified Step 3 is polynomial. It is easy to see that applying the
substitution o is the same as expanding the concept terms C, D w.r.t. the TBox
7,. This implies that, for every equation C =° D in I', we have C =7, D iff
o(C) = o(D). Thus, testing whether o is a unifier of I" can be reduced to testing
whether C' =7, D holds for every equation C =’ D in I'. Since subsumption
(and thus equivalence) in £L£ w.r.t. acyclic TBoxes can be decided in polynomial
time [3],* this completes the proof of the theorem. O

6 Unification in semilattices with monotone operators

Unification problems and their types were originally not introduced for Descrip-
tion Logics, but for equational theories [12]. In this section, we show that the
above results for unification in ££ can actually be viewed as results for an
equational theory. As shown in [19], the equivalence problem for £L-concept
terms corresponds to the word problem for the equational theory of semilattices
with monotone operators. In order to define this theory, we consider a signa-
ture Xgrmo consisting of a binary function symbol A, a constant symbol 1, and
finitely many unary function symbols f1, ..., f,. Terms can then be built using
these symbols and additional variable symbols and free constant symbols.

4 Of course, the polynomial-time subsumption algorithm does not expand the TBox.

Definition 4. The equational theory of semilattices with monotone operators
is defined by the following identities:

SLmO :={xA(yAz)=(xAy)ANz, cANy=yAz, cAx=x, tAN1l=x}U
{file Ny) A fily) = filz Ay) |1 <i<n}

A given £L-concept term C using only roles 71, ..., 7, can be translated into
a term to over the signature Ygr.,0 by replacing each concept constant A by
a corresponding free constants a, each concept variable X by a corresponding
variable z, T by 1, M by A, and 3r; by f;. For example, the £L-concept term
C = AN 3r. TN 3Irs. (X N B) is translated into tc = a A f1(1) A fz(z A D).
Conversely, any term over the signature Xsr,,0 can be translated back into an
EL-concept term.

Lemma 5. Let C, D be EL-concept term using only roles ry,...,ry,. Then C' =
D iff tc =stmo tp-

As an immediate consequence of this lemma, we have that unification in the
DL E£L corresponds to unification modulo the equational theory SLmO. Thus,
Theorem 2 implies that SLmO has unification type zero, and Theorem 3 implies
that SLmO-unification is NP-complete.

Corollary 2. The equational theory SLmO of semilattices with monotone oper-
ators has unification type zero, and deciding solvability of an SLmO-unification
problem is an NP-complete problem.

7 Conclusion

In this paper, we have shown that unification in the DL £L£ is of type zero
and NP-complete. There are interesting differences between the behaviour of £L£
and the closely related DL FLy w.r.t. unification and matching. Though the
unification types coincide for these two DLs, the complexities of the decision
problems differ: FLy-unification is ExpTime-complete, and thus considerably
harder than £L-unification. In contrast, FLy-matching is polynomial, and thus
considerably easier than £L-matching, which is NP-complete.

It is well-known that there is a close connection between modal logics and
DLs [5]. For example, the DL ALC, which can be obtained by adding negation
to EL or FLy, corresponds to the basic (multi-)modal logic K. Decidability of
unification in K is a long-standing open problem. Recently, undecidability of
unification in some extensions of K (for example, by the universal modality)
was shown in [20]. The undecidability results in [20] also imply undecidability of
unification in some expressive DLs (e.g., SHZ Q). The unification types of some
modal (and related) logics have been determined by Ghilardi; for example in
[14] he shows that K4 and S4 have unification type finitary. Unification in sub-
Boolean modal logics (i.e., modal logics that are not closed under all Boolean
operations, such as the modal logic equivalent of ££) has, to the best of our
knowledge, not been considered in the modal logic literature.

References

1.

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Baader. Unification in commutative theories. J. of Symbolic Computation, 8(5),
1989.

F. Baader. Terminological cycles in KL-ONE-based knowledge representation lan-
guages. In Proc. AAAI’90, 1990.

F. Baader. Terminological cycles in a description logic with existential restrictions.
In Proc. IJCAI’03, 2003.

F. Baader, S. Brandt, and C. Lutz. Pushing the £L£ envelope. In Proc. IJCAI’05,
2005.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

F. Baader and R. Kiisters. Matching in description logics with existential restric-
tions. In Proc. KR’00, 2000.

F. Baader and R. Kiisters. Unification in a description logic with transitive closure
of roles. In Proc. LPAR’01, Springer LNAI 2250, 2001.

F. Baader, R. Kiisters, A. Borgida, and D. L. McGuinness. Matching in description
logics. J. of Logic and Computation, 9(3), 1999.

F. Baader and P. Narendran. Unification of concepts terms in description logics.
J. of Symbolic Computation, 31(3), 2001.

F. Baader and W. Nutt. Basic description logics. In [5], 2003.

F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer
w.r.t. a background terminology. J. of Applied Logic, 5(3), 2007.

Franz Baader and Wayne Snyder. Unification theory. In Handbook of Automated
Reasoning, volume 1. Elsevier Science Publishers, 2001.

S. Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

S. Ghilardi. Best solving modal equations. Ann. Pure Appl. Logic, 102(3), 2000.
I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1),
2003.

Y. Kazakov and H. de Nivelle. Subsumption of concepts in FLq for (cyclic) ter-
minologies with respect to descriptive semantics is PSPACE-complete. In Proc.
DL’03. CEUR Electronic Workshop Proceedings, http://CEUR-WS.org/Vol-81/,
2003.

R. Kiisters. Non-standard Inferences in Description Logics, Springer LNAT 2100,
2001.

A. Rector and I. Horrocks. Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In Proc.
AAAT97, 1997.

V. Sofronie-Stokkermans. Locality and subsumption testing in ££ and some of its
extensions. In Proc. AiML’08, 2008.

F. Wolter and M. Zakharyaschev. Undecidability of the unification and admissi-
bility problems for modal and description logics, ACM Trans. Comput. Log., 9(4),
2008.

