
www.manaraa.com

Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2013

Supporting Text Retrieval Query Formulation In
Software Engineering
Sonia Cristina Haiduc
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Haiduc, Sonia Cristina, "Supporting Text Retrieval Query Formulation In Software Engineering" (2013). Wayne State University
Dissertations. Paper 765.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/765?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

SUPPORTING TEXT RETRIEVAL QUERY FORMULATION IN SOFTWARE
ENGINEERING

by

SONIA HAIDUC

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2013

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

www.manaraa.com

ii

DEDICATION

To the loving memory of my mom, Maria Haiduc, the most amazing woman I

have known. You have been my guiding light, my source of optimism, my strength.

You taught me to enjoy every single day and to cherish the beauty of all things. Your

never-ending support, belief, and unconditional love brought me here. I am forever

grateful. Thank you for brightening my days for 29 years. I miss you every day.

www.manaraa.com

iii

ACKNOWLEDGEMENTS

I would first like to thank my academic advisor, Andrian Marcus for all he has

given me. His guidance, knowledge, support, advice, openness, dedication,

availability, work ethic, and example were priceless to me as a forming researcher

and adult and have made me understand and truly appreciate what research and a

job in academia are all about. My gratitude for all the time and energy he invested in

me are beyond words.

I would like to thank Václav Rajlich, Marwan Abi-Antoun, Lori Pollock, and Denys

Poshyvanyk for serving on my prospectus and dissertation committee and providing

me with excellent and detailed feedback on my work and dissertation.

I am grateful to Lori Pollock, Jonathan Maletic, Andrea De Lucia, Tim Menzies,

and Javad Abdollahi for patiently writing and sending reference letters for me during

my job search.

I would also like to thank my collaborators Gabriele Bavota, Rocco Oliveto,

Andrea De Lucia, Jairo Aponte, Massimiliano di Penta, Tim Menzies, Gregory Gay,

Laura Moreno, Surafel Lemma Abebe, Paolo Tonella, Giuseppe di Rosa, Valerio

Maggio, Anna Corazza, and Sergio di Martino. It has been always a pleasure to work

alongside you. I have learned a lot due to our collaboration.

I thank my friends in the Department of Computer Science for their continued

support over all these years, for patiently listening to my occasional complaints, and

for being always available to do something fun when I needed it. In particular, I

would like to thank Michele Donato, for always being there for me when I needed

him, and for feeding me gourmet food over the past four years. I thank Laura Moreno

www.manaraa.com

iv

for her support and help, and for gracefully playing the role of the little sister I never

had. Also, I thank my dear friend Grace Metri for our coffee breaks that brightened

my days and for all the encouragement she has given me. I also thank Calin Voichita

and Radu Vanciu for their moral and logistic support over the past seven years. It

has been great taking this journey together.

Last and foremost I thank my dad and my grandparents for their unconditional

love and support through all these years, and for encouraging me to pursue what I

wanted, even though it meant taking me away from them. Your love surpassed all

the distance that physically separates us. I have always felt you close and I thank

you for that.

www.manaraa.com

v

TABLE OF CONTENTS

Dedication .. ii

Acknowledgements ... iii

List of Tables .. viii

List of Figures ... x

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation .. 2

1.2 Thesis Statement ... 4

1.3 Contributions ... 5

1.4 Dissertation Organization .. 7

1.5 Bibliographical Notes ... 9

CHAPTER 2 BACKGROUND ON THE USE OF TEXT RETRIEVAL FOR
SOFTWARE ENGINEERING TASKS 11

2.1 The Process of Using Text Retrieval for Software Engineering 12

2.1.1 Corpus Creation .. 12

2.1.2 Corpus Normalization .. 13

2.1.3 Corpus Indexing .. 16

2.1.4 Query Formulation .. 19

2.1.5 Retrieval of Relevant Results .. 19

2.1.6 Results Examination ... 20

2.2 Text Retrieval-Based Concept Location .. 20

www.manaraa.com

vi

2.2.1 Evaluation for TR-based Concept Location Approaches 26

CHAPTER 3 MEASURING AND PREDICTING THE QUALITY OF QUERIES
FOR TEXT RETRIEVAL APPLICATIONS IN SOFTWARE
ENGINEERING .. 28

3.1 Determining the Specificity of Text Retrieval Queries to Support
Software Engineering Tasks ... 29

3.1.1 The Query Specificity Index .. 31

3.1.2 Evaluation on Concept Location in Source Code 35

3.2 Automatic Query Quality Prediction for Retrieval of Software Artifacts .. 41

3.2.1 Query Quality Properties and Measures ... 44

3.2.2 Query Quality Prediction for Text Retrieval in Software
Engineering .. 62

3.2.3 Evaluation on Concept Location in Source Code 68

3.3 Related Work ... 82

3.3.1 Query Quality Analysis in Software Engineering 82

3.3.2 Query Quality Analysis in Natural Language Document Retrieval .. 83

CHAPTER 4 QUERY REFORMULATION SUPPORT FOR TEXT
RETRIEVAL IN SOFTWARE ENGINEERING 86

4.1 Semi-Automatic Query Reformulation for Text Retrieval in Software
Engineering ... 87

4.1.1 Rocchio-based Relevance Feedback for Software Engineering 90

4.1.2 Evaluation on Concept Location in Source Code 92

4.2 Automatic Query Reformulation for Text Retrieval in Software
Engineering ... 105

4.2.1 Background on Automatic Query Reformulation Approaches 107

www.manaraa.com

vii

4.2.2 REFOQUS .. 112

4.2.3 Evaluation on Concept Location in Source Code 116

4.3 Related Work on Query Reformulation .. 130

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 133

Appendix ... 138

Bibliography .. 149

Abstract ... 169

Autobiographical Statement .. 171

www.manaraa.com

viii

LIST OF TABLES

Table 3-1. The systems used in the study .. 38

Table 3-2. Linear Correlation between CL Effort and the Specificity Measures .. 39

Table 3-3. The eight query specificity measures from natural language
document retrieval used by QualQ. .. 46

Table 3-4. The four new, entropy-based measures of specificity used by
QualQ .. 47

Table 3-5. The query similarity measures used by QualQ. 51

Table 3-6. The query coherency measures used by QualQ. 52

Table 3-7. The term relatedness measures used by QualQ. 53

Table 3-8. The Systems Used in the Study and their Properties 72

Table 3-9. The actual quality of the queries used in the study. 75

Table 3-10. The Accuracy and Error Rates of QualQ for Within- and Cross-
Project Training .. 76

Table 3-11. The Accuracy (Correct Classifications) of QualQ and the
Baseline Classifiers ... 78

Table 3-12. The Percentage of Incorrect Classifications for Within-Project
Training, by Error Type ... 79

Table 4-1. Concept location results for Eclipse, jEdit and Adempiere 100

Table 4-2. Characteristics of the Five Software Systems.................................. 119

Table 4-3. Improvement results of Refoqus for within-project training 122

Table 4-4. Results that were worsened or preserved using Refoqus for
within-project training .. 123

Table 4-5. Improvement results of Refoqus for cross-project training 123

Table 4-6. Results that were worsened or preserved using Refoqus for cross-
project training ... 123

Table 4-7. Comparison between Refoqus and the baseline reformulation
techniques on the 282 queries of the study 127

www.manaraa.com

ix

Table 4-8. The Mann-Whitney Test for the comparison between Refoqus and
the baselines .. 128

Table 5-1. Results for all queries from all systems in the preliminary study of
seven reformulation approaches (Section 4.2) 138

Table 5-2. Results for all queries of Adempiere in the preliminary study of
seven reformulation approaches (Section 4.2) 139

Table 5-3. Results for all queries of ATunes in the preliminary study of seven
reformulation approaches (Section 4.2) .. 141

Table 5-4. Results for all queries of FileZilla in the preliminary study of seven
reformulation approaches (Section 4.2) .. 143

Table 5-5. Results for all queries of JEdit in the preliminary study of seven
reformulation approaches (Section 4.2) ... 145

Table 5-6. Results for all queries of WinMerge in the preliminary study of
seven reformulation approaches (Section 4.2) 147

www.manaraa.com

x

LIST OF FIGURES

Figure 2-1. Simplified view of the software change process (adapted from
[105]). Concept location starts with the change requests and
produces the input for impact analysis ... 21

Figure 3-1. QSI for two queries for the same bug report 34

Figure 3-2. The training phase of QualQ. The Classification and Regression
Tree (CART) is trained based on a set of training queries, the
measures of their properties, and their category 64

Figure 3-3. Example of Classification and Regression Tree built for a dataset.
For this data set, only two measures are considered important for
the classification, i.e., AvgIDF, and MaxVAR. 67

Figure 3-4. The classification phase of QualQ. Based on the query property
measures, the Classification and Regression Tree (CART) is
classifies a new query as high or low quality. 68

Figure 4-1. An example of classification tree .. 116

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

During software development and evolution a variety of software artifacts are

created, such as, requirements, change requests, bug descriptions, user manuals,

developer communication, use cases, design documents, source code, test cases, etc.

These artifacts have different representations and contain different types of information,

i.e., structural (e.g., control and data flow, the package organization in an OO system),

dynamic (e.g., execution traces), process (change logs, time and activity logs, etc.), and

textual (identifiers and comments in source code, developer communication, user

manuals, requirements, etc.). The textual information found in software artifacts

captures knowledge about the problem and solution domain, about developers’

intentions, client demands, etc. and is the most common type of information found in

software, often surpassing other types of information by an order of magnitude. Text is

also the common form of information representation among various artifacts at different

abstraction levels, making it easy for developers, among other things, to understand

what the software is doing and to make decisions for their current task.

For very small software systems, developers could read all the text found in

software artifacts and extract and use only the information that is needed for their task

at hand. However, as the size and complexity of the systems increases, tools are

required in order to extract, store, analyze, retrieve, and present this information to the

developers. Text Retrieval (TR) techniques are one category of techniques that have

been successfully used for this task over the past few decades. They are used to

retrieve relevant information for a particular task from a large set of software artifacts

based on an input query and present a series of advantages over other techniques.

www.manaraa.com

2

First, they return a list of ranked results and therefore indicate the order in which the

results should be examined. This is not true for other approaches, such as, regular

expression search, which return results in no particular order. TR techniques are also

lightweight and programming language independent. In addition, they provide

complementary information to that provided by structural and dynamic techniques [85,

100] and scale well to large software systems.

For their versatility and good results, TR techniques have been applied in the

context of more than 25 different software engineering tasks, including impact analysis

[21, 49], concept and feature location [26, 87, 98], bug localization [77, 107], clone

detection [82, 120], refactoring [11, 12], measuring the cohesion and coupling of

software [85, 100], and traceability link recovery [6, 83].

1.1 Motivation

Despite the advantages TR techniques present for software engineering

researchers, they also pose challenges which can hinder their further adoption in

development environments and industrial settings. Approaches using TR require a

query as input and the usefulness of the returned results depends strongly on this query

and its relationship to the text in the software artifacts. The quality of a query indicates

the relevance to the task at hand of the results returned by TR in response to the query.

The higher the quality of a query, the better the results answer the information need

expressed by the user. High quality queries retrieve the relevant documents in the top

of the result list returned by TR techniques, while low-quality queries either retrieve the

desired documents in the bottom part of the list of results, or they do not retrieve them

at all.

www.manaraa.com

3

Choosing a high quality query is a difficult task. One of the main challenges is the

fact that in many cases the person writing the query is not the one that wrote the

software artifacts, and may therefore be unfamiliar with the text the artifacts contain.

This leads to the so-called “vocabulary mismatch problem” [46], due to the use of a

different terminology in the software artifacts than the one used when formulating the

query and in irrelevant results being retrieved. For example, when a developer wants to

search the source code for the implementation of a feature, she may be unfamiliar with

the identifiers used in the source code to refer to particular aspects of the feature and

may use different words in the query. Another factor that makes query formulation

difficult is the fact that TR techniques are often based on complicated mathematical

models and text similarities and it is difficult for developers to understand how to write

their queries in order to enable these models to match them to relevant results. All this

can lead to poorly chosen queries, which in turn means time and effort wasted by

developers by analyzing the irrelevant results retrieved in response to the queries.

The quality of a query can give an indication of whether the results returned by a TR

technique are worth investigating or if rather a reformulation of the query should be

sought instead. Knowing the quality of the query before the results are analyzed could

lead to time saved in the cases when irrelevant results are returned. However, the only

way currently available to determine if a query led to the wanted artifacts is by manually

inspecting the list of results. Designing automatic ways to predict the quality of queries

before the results are investigated could therefore benefit developers making use of TR

techniques. However, no work has yet addressed automatic query quality detection in

the software engineering domain.

www.manaraa.com

4

When the results returned by a TR technique in response to a query are

unsatisfactory (i.e., the query is of poor quality), the developer can reformulate the

query with the purpose of improving it. However, this can be just as hard for developers

as formulating the query in the first place and studies [119] have shown that some

developers have a hard time writing a good query even after several reformulations.

This is due to the fact that it is hard to understand when and why a query fails, thus it is

difficult to determine what should be added or removed from the original query. More

than that, different queries may require different approaches for reformulation (e.g.,

some may require removing terms, others may benefit from terms being added or

replaced). Automating the reformulation process such that the automatically

reformulated queries lead to better results than the original queries could therefore

reduce developer effort and improve the software engineering tasks supported by TR

techniques.

1.2 Thesis Statement

The thesis statement of this dissertation is the following:

When using text retrieval techniques to support of software engineering tasks, low

quality queries lead to lost developer time and effort. Automatic approaches can

accurately measure and predict the quality of text retrieval queries in the context of

software engineering tasks, such as, concept location and can reformulate queries such

that they lead to better results than the original queries.

The contributions of this dissertation supporting the above thesis statement are

described in the following section.

www.manaraa.com

5

1.3 Contributions

We introduce query quality measurement and prediction approaches in the context

of software engineering tasks in order to automatically determine the quality of TR

queries. We also propose query reformulation approaches meant to automate the

query reformulation process, making it easier for developers to focus on the code and

show that the queries reformulated using these approaches lead to better results than

the original queries in most cases. We evaluate these techniques in the context of

concept location in source code and show their benefits for this software engineering

task. On the long run, we expect that the proposed approaches will contribute directly

to the reduction of developer effort and implicitly the reduction of software evolution

costs.

The research contributions of this dissertation are the following:

• Determining the Specificity of TR Queries for software engineering Tasks. We

present the first measure for capturing a query quality attribute, namely

specificity, for TR-based software engineering tasks. The specificity of a query

measures how discriminative the terms in the query are for describing the current

information need. The new measure, called Query Specificity Index (QSI), is

able to capture the specificity of a query prior to running a TR engine and relies

on information theory in order to determine the ability of a query to discriminate

between relevant and irrelevant artifacts. We apply QSI in the context of concept

location in source code and we show that it is able to better reflect the results of

a query for this task than the leading specificity measure proposed in the field of

natural language document retrieval, i.e., AvgIDF.

www.manaraa.com

6

• Automatic Query Quality Prediction for TR in software engineering. We introduce

a novel approach, called QualQ, able to automatically predict the quality of

queries in the context of software engineering tasks. QualQ captures the

properties of queries using a set of 28 query measures and based on them is

able to learn, by using Classification and Regression Trees, the patterns that

distinguish high quality queries from low quality ones. After it builds a model

from a set of training queries, QualQ is able to automatically predict the quality of

new queries, based on measuring only their properties. One important aspect of

QualQ is the fact that it performs implicit feature selection and therefore is able to

determine and use only the subset of query measures needed for capturing the

quality of queries in a particular dataset. We evaluated QualQ in the context of

concept location in source code and showed that it is able to correctly predict the

quality of queries in 85% of the cases. This classification of the queries can be

used as an indication by developers if the results of a search should be

investigated or rather the query should be reformulated and the search rerun.

• Semi-Automatic Query Reformulation for Concept Location using Rocchio. We

present a semi-automatic approach for reformulating TR queries in the context of

concept location in source code. The approach makes use of developer

feedback by incorporating the Rocchio relevance feedback mechanism. After

each search, developers are asked to rate the first few results in the list as

relevant or irrelevant and the query is then automatically reformulated based on

this feedback. The process is iterative and can be repeated several times, until

the developer finds the right source code artifacts. We evaluated the approach in

www.manaraa.com

7

a study on concept location and we have shown that, while not a silver bullet, the

Rocchio-based relevance feedback mechanism can generally improve the results

if TR concept location.

• Automatic Query Reformulation for TR in software engineering. We introduce

Refoqus, a novel approach for automatically reformulating TR queries in the

context of software engineering tasks by automatically determining and applying

the best reformulation approach for a query based on its properties. Refoqus

makes use of the set of 28 query measures in order to determine the

distinguishing characteristics of the queries in a dataset, and makes use of

Classification and Regression trees in order to learn the best reformulation for a

type of query, among four options. When a new query is issues, Refoqus can

then determine the properties of the query and based on the model it built select

the right reformulation approach for the given query from the ones available.

Refoqus is flexible and can be adapted to include more reformulation approaches

when needed. We evaluated Refoqus in the context of concept location in

source code and the results of the study revealed that Refoqus is able to improve

or preserve the results of TR queries for CL in 84% of the cases.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 briefly describes the

software engineering tasks that have been so far addressed using TR techniques and

then presents background information on the process followed for applying TR

approaches for software engineering applications. The overview of the steps in this

process gives a perspective on where query formulation fits in. The chapter then offers

www.manaraa.com

8

a detailed description of the task of concept location (CL), which is the task used for the

evaluation of the proposed approaches throughout the rest of the dissertation. The

description of CL includes a detailed explanation of how each step in the TR process is

applied for this task and offers also a brief overview of the related work that has

addressed each step in this process in the context of CL.

Chapter 3 introduces novel approaches for measuring and predicting the quality of

queries in the context of software engineering tasks. More specifically, section 3.1

presents a new measure for capturing the specificity of queries in software engineering,

(i.e., the Query Specificity Index) and then presents an evaluation of this measure for

concept location. Section 3.2 introduces QualQ, a novel approach able to automatically

predict the quality of queries in the context of software engineering tasks. This

approach is one of the main contributions of the dissertation. Section 3.2 presents also

an evaluation of QualQ in the context of concept location. Section 3.3 concludes

chapter 3 with an overview of the related work on query quality measurement and

prediction in the field of software engineering, as well as in natural language document

retrieval.

Chapter 4 addresses the issue of query reformulation and proposes approaches to

help developers with this task. Section 4.1 introduces a semi-automatic approach which

uses developer feedback about the relevance of the retrieved results in order to

automatically reformulate the query. The section presents an evaluation of the

approach for concept location. Section 4.2 proposes a novel approach which is able to

automatically reformulate the query, and also to choose the best reformulation

techniques among a series of options based on the properties of a query. The

www.manaraa.com

9

evaluation of the approach for concept location is also presented in the same section.

Section 4.3 then presents a brief survey of the related work on query reformulation in

the field of software engineering.

Chapter 5 concludes the dissertation, summarizing its main contributions, as well as

directions for continuing this line of research beyond the scope of the dissertation.

1.5 Bibliographical Notes

Parts of this dissertation were previously published. This section also outlines some

of the materials that were produced in collaboration with other researchers.

The new query measure QSI was previously published [55] and presented in the

New Ideas and Emerging Results (NIER) track at the 34th IEEE/ACM International

Conference on Software Engineering (ICSE'12).

The initial version of QualQ, as well as an initial evaluation were previously

published [54] and presented in the main research track at the 27th IEEE/ACM

International Conference on Automated Software Engineering (ASE'12). However, the

version of QualQ already published made use only of pre-retrieval query measures,

while the version of QualQ presented in this dissertation includes both pre- and post-

retrieval measures and leads to better results than the initial version. The evaluation

performed in our earlier work [54] uses the initial, pre-retrieval based version of the

approach, and was performed on 5 software systems. The study presented in this

dissertation evaluates the latest approach, making use also of post-retrieval information,

and was performed on seven software systems. Both the work presented in Section 3.1

and 3.2 was performed in collaboration with Gabriele Bavota (University of Salerno,

Italy), Rocco Oliveto (University of Molise, Italy), and Andrea de Lucia (University of

www.manaraa.com

10

Salerno, Italy), who contributed mostly on the implementation of the approach and

training the machine learning technique.

The materials presented in Section 4.1 were previously presented at the 25th IEEE

International Conference on Software Maintenance (ICSM'09) [47]. This work was done

in collaboration with Gregory Gay (West Virginia University) and his advisor Tim

Menzies (West Virginia University). They contributed mostly on the implementation of

the approach.

Section 4.2 is based on a recent publication [53], presented at the 35th IEEE/ACM

International Conference on Software Engineering (ICSE'13). This publication was

done in collaboration with Gabriele Bavota (University of Salerno, Italy), Rocco Oliveto

(University of Molise, Italy), Andrea de Lucia (University of Salerno, Italy), and Tim

Menzies (West Virginia University), who contributed mostly on implementation, and

training the machine learning approach.

The work presented in this dissertation has not been included in any other

dissertation nor thesis.

www.manaraa.com

11

CHAPTER 2 BACKGROUND ON THE USE OF TEXT RETRIEVAL FOR SOFTWARE

ENGINEERING TASKS

Text Retrieval (TR) approaches have been used in software engineering to leverage

the textual information found in software artifacts, such as, requirements, source code,

documentation, user manuals, etc. TR-based approaches for software engineering

have become very popular since their introduction due to their capability to capture

information complementary to that of static and dynamic approaches. The earliest work

on using TR in software engineering began over two decades ago and focused on

constructing software libraries [78, 79] and code reuse [45, 58, 90]. Since then, TR

techniques have been used for more than 25 different software engineering tasks,

including traceability link recovery between different types of software artifacts [1, 6, 8,

37, 40, 56, 74, 84, 88, 103, 115, 126], concept [7, 25, 26, 47, 72, 87, 89, 98, 114],

concern [62, 117, 124], feature [43, 73, 99, 108, 109, 131], aspect [91], or bug [4, 15,

36, 77, 92, 93, 107, 132] location, impact analysis [5, 21, 22, 48, 60, 66, 102], defect

prediction [16, 121], software restructuring and refactoring [13, 14, 30, 68, 80, 94] and

so on. The last decade has witnessed a dramatic increase in the use of TA techniques

to address software engineering tasks, with more than 300 papers published in the field.

Applying TR techniques to software engineering often implies seeing the software

engineering tasks as classic TR problems: given a document collection and a query,

determine those documents, i.e., software artifacts, from the collection that are relevant

to the query. The idea is to treat software artifacts as a text corpus and use TR

methods to index the corpus and build a search engine, which allows developers to

www.manaraa.com

12

search the software much like they search other sources of digital information (e.g., the

internet).

2.1 The Process of Using Text Retrieval for Software Engineering

When the software engineering task is seen as a retrieval problem, TR-based

approaches follow the same process, no matter the particular software engineering task

for which they are being used. The steps of this process may be instantiated differently

based on the TR method used and the software engineering task. They are described

in the following subsections.

2.1.1 Corpus Creation

The first step in using TR techniques is to define a collection of text documents, also

known as corpus, which are extracted from the software artifacts. Documents can be

extracted at different granularities from an artifact. For example, in the case of source

code, a document could be represented by structural elements of the code, such as, a

source code file, a class, a function or method, a line of code, etc. In the case of

verbose natural language artifacts, such as, requirements or user manuals, sentences,

paragraphs, sections, or chapters can represent the documents. Thus, a software

artifact may be represented by one or more documents in the corpus. The document

granularity needs to be decided up front according to the needs of the task at hand.

Once the document granularity is determined, the documents are identified,

extracted, and included in the corpus. Note that certain software artifacts may contain

constructs which are not text, such as, images, attachments, etc. These are filtered out

during this step. Also, what exactly is extracted depends on the type of software

artifact. For example, the subject and the whole body of an email may be extracted, as

www.manaraa.com

13

all this information may be considered useful. On the other hand, in the case of source

code, it is customary to extract only identifiers, comments, and strings from each source

code document, as they usually represent the elements capturing the problem domain

concepts and programmer intentions.

The granularity of the documents can influence greatly the results of text retrieval,

as the frequency and term co-occurrence information change depending on how the

documents are chosen.

2.1.2 Corpus Normalization

After the corpus is extracted, a few optional, corpus normalization steps can be

performed before the documents are indexed by the text retrieval technique. These

steps are usually performed to facilitate retrieval, and can impact the results retrieved.

These normalization steps will be applied also to the query later in the process. This

section describes the most common corpus normalization techniques used in software

engineering applications.

Tokenization and Identifier Splitting.

Tokenization represents the process of converting a stream of characters into a

sequence of tokens, or terms. Tokenization is done by removing punctuation, brackets,

and extraneous separation characters, such as, spaces, tabs, and line breaks.

Identifier splitting follows tokenization and is usually employed when using text

retrieval on source code. The success of retrieval depends on many factors, but one of

the basic conditions that need to be satisfied is that the vocabulary of the corpus needs

to correspond to the vocabulary used by developers when formulating queries. As

developers usually express their information need using dictionary words, it is important

www.manaraa.com

14

that source code corpus contains also such words. Identifiers, however, are often

composed of several concatenated dictionary words. It is important therefore that the

corpus normalization includes a step where the identifiers are decomposed into their

constituent words. This step is usually performed automatically, as manual identifier

splitting is unfeasible due to the high number of identifiers in a software system.

The simplest approaches for identifier splitting are based on common conventions

for separating words in identifiers, such as using camel case, underscore, numbers and

symbols as separators. By splitting the identifiers where such separators are

encountered, the constituent words are obtained. For example, “SETpointer”,

“set_pointer”, “setPointer” would be all split to “set” and “pointer”.

More advanced techniques make use of dictionaries and abbreviation lists in order

to identify words in the cases where common naming conventions are not used. For

example, the identifiers “setptr” would be split into “set” and “pointer” based on these

techniques.

Splitting identifiers requires also a decision about keeping the original form of the

identifiers or not. Keeping the original identifiers along with the words resulted after

splitting can help when the developers included whole identifiers in their queries. On

the other hand, when no identifiers are included in the queries, keeping the original form

might negatively impact the results due to unnecessary increase of the vocabulary size.

Stop Words Removal

In this processing phase, terms that do not contribute to the semantics of the

extracted documents, known as stop words, are removed from the corpus. Such terms

are considered noise and include programming keywords (e.g., “for”, “class”, etc.) and

www.manaraa.com

15

common English terms, such as, conjunctions (e.g., “and”, “or”, etc.), pronouns (e.g.,

“he”, “they”, “it”, etc.), prepositions (e.g., “at”, “on”, “in”, etc.), common adverbs, etc.

Some words, such as the name of the system, certain prefixes or abbreviations, can

appear in many documents of the system without adding to the meaning of those

particular documents. In this case, they can also be included in the stop words list. The

terms remaining after filtering out the stop words are considered meaningful for the

documents in the corpus.

Other than stop word list, a stop word function can be used. Such a function is used

to prune out all the words having a length less than a fixed threshold (usually 3).

Generally, good results are achieved using both the stop word function and the stop

word list [9].

Stemming

Stemming is the process for reducing inflected (or sometimes derived) words to

their stem, base or root form, generally a written word form. For example, “run”, “runs”,

“ran” and “running” are all forms of the same root, “run”. The role of a stemmer is to

attribute all the derived forms to their root form, “run”. Stemming is used to improve

matching between similar words, in order to capture their underlying semantics,

disregarding the specifics in the lexical form. Stemming can lead to retrieving more

relevant documents, as the query gets matched to all documents containing similar

terms to the ones in the query, instead of just those containing exact matches.

Stemming can have a significant impact on the vocabulary size. Stemming can also

significantly reduce the vocabulary size of a corpus, which can also influence the results

of the retrieval.

www.manaraa.com

16

Stemming programs are commonly referred to as stemming algorithms or

stemmers. Designing stemmers has been a long-standing problem in computer science.

The first paper on the subject was published in 1968. There are several types of

stemmers, but the most used one in software engineering research is the Porter

stemmer, introduced in 1980 by Martin Porter [97]. This stemmer works by removing

well known word suffixes in several, iterative steps. Other stemmers used by

researchers in software engineering are WordNet's morphstr1 function, the Krovetz

stemmer [67], and the Snowball2 stemmer.

Stemmers can suffer from two types of errors. The first one is understemming,

which appears when a stemmer does not remove enough suffixes in order to reduce all

the forms of the same lexeme to the same stem. Understemming may reduce the

number of relevant results since fewer results may match the words in the query. In

contrast, overstemming happens when a stemmer reduces several words to the same

lexeme, even when the words have different meanings. This may increase the number

of irrelevant results returned by search, due to overmatching the query. Different

stemmers have different strengths and weaknesses, and may affect the results of TR

differently.

2.1.3 Corpus Indexing

In this step, a mathematical representation of the corpus is built, which is stored by

the text retrieval approach in a quickly accessible format called index. Each document

in the software corpus has a corresponding entry in the index. In order for the results of

TR techniques to be accurate, the index needs to be remade when a significant number

1
 http://wordnet.princeton.edu/

2
 http://snowball.tartarus.org/

www.manaraa.com

17

of documents in the corpus change or new documents are added. Indexing is different

for every text retrieval technique and is often what sets the various TR techniques apart.

Some of the most popular TR used in software engineering applications include the

Vector Space Model (VSM) [112], Latent Semantic Indexing (LSI) [39] and Latent

Dirichlet Allocation (LDA) [17]. VSM is one of the first and most widely used indexing

techniques in software engineering applications. As we make use of the VSM indexing

approach in the studies presented in this dissertation, we offer a brief description of the

main concepts behind it below.

In the Vector Space Model the documents in a corpus, as well as the queries written

by users are considered as bag of words and are represented as vectors in an n-

dimensional space, where n is the set of unique words found in all the documents in that

corpus. Each term in the corpus represents a distinct dimension in the n-dimensional

space considered. The corpus can be represented as term-by-artifact matrix that

captures all the artifact vectors and represents the distribution of terms in the artifacts.

If a term in the collection appears in a document, then the value associated to the

document for that dimension will be greater than zero. Otherwise, if the term appears in

the collection, but not in a particular document, the value for that dimension in the

document vector will be zero.

 Once the query and the documents are represented as n-dimensional vectors, the

similarity between the query and each of the software artifacts in the collection is

measured. Several ways for computing this similarity between the vectors have been

proposed, but the most commonly used one is the cosine similarity, which represents

the cosine of the angle between the query vector and an artifact vector. A smaller angle

www.manaraa.com

18

between the query and an artifact leads to a larger cosine value and indicates a better

match to the query and thus a higher rank in the retrieved set of results.

Independent of the text retrieval technique used, when building the index entry for a

document the terms in that document can be assigned a higher or lower importance, or

weight, based on two criteria: how well they describe the current document (local

weight) and how they relate to the entire corpus (global weight). This is a major

difference between text retrieval techniques and keyword matching approaches, which

usually consider all terms equal.

The term weight can have a significant impact on the results returned by text

retrieval techniques. Several term weighting schemes have been defined but the most

common combination of local and global weights is known as Term Frequency –

Inverse Document Frequency (TF-IDF). Term Frequency (TF) represents the frequency

of a term in a document in the corpus, and a high TF indicates that the term is often

used in that document and therefore likely representative for describing it. The Inverse

Document Frequency (IDF) is a global weighting scheme and it represents the inverse

of the number of documents in which a term appears in the corpus. A high IDF

indicates that the term is found in few documents in the corpus and may therefore be

more representative for the documents in which it appears than a term which appears in

many documents in the corpus, thus having a low IDF. The value of TF-IDF increases

proportionally to the number of times a word appears in the document, but is offset by

the frequency of the word in the corpus, which helps to control for the fact that some

words are generally more common than others.

www.manaraa.com

19

2.1.4 Query Formulation

In this step, a text query composed of a series of words, is written. This query

expresses a particular information need and is either formulated by a human (i.e., a

user or a developer), or automatically extracted from a given software artifact. For

example, when dealing with finding code relevant to a task, developers can use the

information contained in the description of the task at hand (e.g., a bug report, a new

feature request, etc.), as well as previous knowledge, the system documentation or any

other sources of information as a starting point for formulating the query. After the

query is formulated, it is subjected to the same normalization steps applied to the

corpus (i.e., identifier splitting, stop words removal, stemming, etc.). Once normalized,

the query is run by the text retrieval technique. When reformulating the query,

developers return to this step in the process and issue a new query.

2.1.5 Retrieval of Relevant Results

Once the query is formulated and run, the text retrieval technique computes

semantic similarities between the query and every document present in the corpus. It

then returns as a result an ordered list of documents, starting with the ones that match

the query best at the top of the list. Returning a ranked list of results is one of the key

aspects that differentiate TR from keyword-based approaches, which return results in

no particular order, and all results are considered equal matches to the query.

There are several similarity measures that can be used when matching the query to

documents in the corpus. The similarity measures that can be used in a particular case

depend on the type of text retrieval technique used. The choice of similarity must be

done with care, as it can have an impact on the results. The cosine similarity is the

www.manaraa.com

20

most popular choice when using VSM or LSI. It is a measure of similarity between two

vectors in an n-dimensional space and represents the cosine of the angle between

them. The cosine values range from -1 to 1. The cosine of the angle between two

vectors thus determines whether two vectors are pointing in roughly the same direction.

Its formula is based on the Euclidean dot product formula.

2.1.6 Results Examination

After the list of documents has been retrieved, the ranked list can be examined.

The higher a document is situated in the list of results, the higher it is ranked by the

system as containing the wanted information. Thus, usually the order of examination is

from the top of the list to the bottom. The examination of the results is performed by the

developer and for every document examined, she decides if it is relevant or not to the

task at hand. If the developer is able to find the documents that satisfy the information

need among the top results in the list, the search succeeded and the process ends.

Else, if new knowledge obtained from the investigated documents helps formulate a

better query (e.g., narrow down the search criteria), then the query should be

reformulated. Otherwise, the next document in the list should be examined.

2.2 Text Retrieval-Based Concept Location

Concept location in source code is one of the tasks that have been often addressed

using TR techniques [42] and where the classic TR problem is being employed. We

present here concept location as an example application for TR techniques in software

engineering and we use throughout the rest of the dissertation as an application

instance to evaluate the approaches we propose.

www.manaraa.com

21

Concept location is most often defined in the context of software change [106] (see

Figure 2-1), which occurs in the presence of a source code modification request. The

software change process [29] starts with the modification request and ends with a set of

changes to the existing code and addition of new code. The software maintainer

undertakes a set of activities [104] to determine the parts of the software that need to be

changed: concept location, impact analysis, change propagation, and refactoring.

Concept location starts with the change request and ends when the developer finds the

first location in the source code where a change must be implemented (e.g., a method).

The next activity in the software change process, i.e., impact analysis [18] starts from

the result of concept location and identifies the rest of the source code locations that are

affected by the change. Some researchers have adopted a different definition of

concept location, considering it the task of determining all the locations in the code

Figure 2-1. Simplified view of the software change process (adapted from
[105]). Concept location starts with the change requests and produces the

input for impact analysis

Change Request

Concept Location

Impact Analysis

Implementation

Change Propagation

Testing

www.manaraa.com

22

where changes need to be implemented. However, in the context of software change,

we consider these as two different tasks, i.e., concept location, responsible for

identifying the first change location, and impact analysis, which is responsible for finding

the rest of the change locations starting from the one determined by concept location.

One particular instance of concept location is feature location [42], which deals with

identifying the source code corresponding to a specific functionality of the software

system that is accessible and observable by the user (i.e., a feature). In other words,

the difference between concept and feature location is that feature location is focused

on special concepts (i.e., features). All features are concepts, but not all concepts are

features. For example, a linked list is a concept from the solution domain which may be

implemented in the source code, yet it is not a specific feature of the system. Bug

localization [107] is a specific instance of feature location which deals with identifying

unwanted features, (i.e., bugs) in the code of a software system.

Concern location [124] is another variant of concept location and is concerned with

locating anything that stakeholders of the software consider to be a conceptual unit,

such as features, requirements, design idioms, or implementation mechanisms. The

difference between concept and concern location is in the context and the scope.

Concept location is performed during software change (hence it has a specific input and

output), whereas concern location is a context agnostic view of the activity. Also,

concern location usually involves finding all the code elements participating in the

implementation of a concern, rather than locating just one of them. Aspect mining [91]

is an instance of concern location dealing with cross-cutting concerns.

www.manaraa.com

23

During concept location, the information need of the developers is to find a place in

the code that needs to change in response to the modification request. In order to find

the entity to change, developers search and navigate the source code. In this process,

developers can use as a starting point the textual description of the change they need to

perform, which often provides information that helps formulate a query for a search,

choose a starting point for the navigation of the code, or choose a scenario for

executing the program. In any case, the task of the developers is identifying the right

fragment of code from the large amount of possibilities available in the source code of a

system.

Approaches for concept location help developers with this task by suggesting a list

of source code artifacts (i.e., classes, methods, etc.) in the system where such a

change may take place. TR-based approaches for concept location start from the

change request or user query and recommend an ordered list of code artifacts, where

the ones found at the top of the list are the most likely to change in response to the

modification request. The steps in the process described in section 2.1 are instantiated

by concept location approaches as described below.

Corpus Creation

The task of concept location is focused on finding locations in code. Therefore, the

documents in the corpus represent code entities. The granularity of the documents can

influence greatly the results of concept location, as the frequency and term co-

occurrence information change depending on how the documents are chosen.

Researchers have used various document granularities for concept location and its

variants. However, there seems to be a preference for smaller granularity levels, such

www.manaraa.com

24

as, methods [25, 73, 77, 98] in the case of object oriented systems and functions [3, 87,

130, 131] for other programming paradigms. Even though less widespread, file level

granularity [34, 35] and class level granularity [86] were used in some work in the field

making use of text retrieval. In the evaluations presented in this dissertation, method

level granularity is considered.

Corpus Normalization

In concept and feature location recommendation systems using text retrieval, it is

common to apply identifier splitting approaches, since the documents in the corpus are

source code elements. The effect of different identifier splitting approaches has been

studied in several papers in recent years and new techniques have been developed to

ensure a better splitting [20, 29, 41, 44, 52, 69]. Abbreviation expansion of identifier

terms has also been proposed as a way to increase the quality of identifiers [59, 69, 70]

Stop words removal is also a common normalization step applied in concept

location approaches based on TR. A list of English stop words and programming

keywords is commonly used. Some approaches also make use of stemming, which can

have a significant impact on the results of text retrieval. Recent works have

investigated the amplitude of this impact in concept location recommendation systems

by analyzing the variation in results when different stemming algorithms were used [63].

Corpus Indexing

The internal representation of documents during text retrieval-based concept

location depends on the particular TR model used. Different text retrieval models

perform in different ways and researchers have employed various such models in the

attempt to find the one that performs the best.

www.manaraa.com

25

The Vector Space Model (VSM) [112] was among the first retrieval models being

used in the context of concept location and its related activities (i.e., feature location,

bug localization, etc.) and over time it has remained a common choice for researchers

in the field [3, 33, 47, 108, 113, 114, 131]. Latent Semantic Analysis [39] was first

introduced by Marcus et al. [87] for concept location and it has been used since then as

one of the standard TR techniques for the task [35, 73, 86, 93, 99, 101, 116]. Language

Models [96] and Latent Dirichlet Allocation [17] have also been used in the context of

concept location in the past few years [25, 26, 76, 77]. Some works in the field have

compared the performance of several text retrieval techniques in the context of concept

location, feature location or bug localization [107], indicating that simple retrieval models

such as VSM may work better than sophisticated models such as LSI or LDA. In our

evaluations in the context of concept location presented in this dissertation we make

use of the implementation of VSM available in the Lucene3 library.

Query Formulation

For concept location, the queries are often formulated by developers, using the text

of a change modification (i.e., bug report or new feature request) as a starting point for

writing the query [73, 87]. Over the past few years, a common approach adopted in

recent years for concept location evaluation is to automatically formulate queries by

considering the textual description of the change requests as an initial query [43, 47, 77,

107]. This practice is described in more detail in section 2.2.1.

Retrieval of Relevant Artifacts

The similarity between the query and each of the documents in the corpus is

computed and the artifacts most similar to the query are returned and ordered according

3
 http://lucene.apache.org/

www.manaraa.com

26

to their relevance to the query. The similarity used depends on the TR, but cosine

similarity is the most common choice for concept location in source code.

Results Examination

Once the results are returned, they are examined either by developers, in order to

find the wanted code, either by tools, which use this information for different purposes,

such as, filtering the results or query reformulation.

2.2.1 Evaluation for TR-based Concept Location Approaches

To evaluate concept location approaches, the effectiveness measure is most

commonly used. It was first proposed by Poshyvanyk et al. [99]. The measure was

introduced in order to allow the comparison between concept location approaches using

text retrieval and those using other methods, like dynamic analysis. Before the

introduction of the effectiveness measure, the metrics used for evaluating text retrieval-

based concept location techniques were precision and recall, which may not be

adequate for evaluating other approaches and present some issues when applied in the

context of concept location.

To deal with these issues, effectiveness was defined as the rank of the first

changed method related to the concept or feature of interest. This allows also for a

measurement of the effort of a developer during the location process, which can be

defined as the number of methods which appear in the final ranked list that the

developer needs to investigate. A lower value effectiveness value indicates less effort,

hence a more effective technique. In our evaluations of the proposed approaches, we

make use of the effectiveness measure.

www.manaraa.com

27

In order to obtain evaluation data for concept location, researchers have often used

an approach based on change reenactment [65] and user simulation, i.e., automatically

extracting TR queries and the changed code from bug reports found in online bug

tracking systems. In an ideal situation, the complete change should be implemented

and tested to verify that this location is correct. However, this requires an enormous

effort to perform post-hoc. Reenactment based on historical data allows to assess the

correctness of concept location without complete implementation and testing. Many

papers in the field in the past few years [43, 47, 77, 107] have adopted this approach to

evaluate text retrieval approaches. We adopt the same evaluation procedure in the

evaluation studies on concept location presented in this dissertation.

www.manaraa.com

28

CHAPTER 3 MEASURING AND PREDICTING THE QUALITY OF QUERIES FOR TEXT

RETRIEVAL APPLICATIONS IN SOFTWARE ENGINEERING

The results of TR techniques strongly depend on the textual query formulated by a

human or extracted automatically from an existing textual artifact. The quality of a

query refers to the ability of the query to retrieve the relevant software artifacts to the

task at hand in such a way that they are easily accessible by developers (i.e., they are

placed close to the top of the result list). Queries are considered of high quality if they

retrieve the relevant artifacts among the top results returned by TR techniques.

Conversely, low-quality queries either fail to retrieve the relevant documents altogether

or they place them at high ranks in the list of results, making them hard to reach by

developers. This definition of high- and low- quality queries can be fine-tuned

considering the needs of a developer in the context of a particular software engineering

task. For example, in some applications, a high-quality query may be considered one

that retrieves one of the relevant artifacts in the top 10 list of ranked results. In other

applications, however, a high quality query could be one that retrieves all the relevant

documents in the top 25 results.

Formulating a high quality query is not an easy task, and the only way for

developers to know if a query led to the wanted results or not is to actually analyze the

returned results. The problem with this approach is the fact that by the time developers

realize that a query is of low quality, they already spent significant time analyzing

irrelevant search results. It would be desirable, therefore, to have an approach that is

able to automatically predict and communicate the quality of queries to developers

before the analysis of the search results begins. This information could be used by

www.manaraa.com

29

developers as a recommendation indicating if the results are worth investigating or,

instead, the query should be reformulated and the search executed again. Determining

the quality of a query is a first step towards writing better TR queries and speeding up

the software engineering tasks making use of such techniques.

In order to predict the quality of a query for TR applications in software engineering,

however, it is first important to design appropriate measures for capturing the quality of

queries in a software engineering context. This dissertation presents in Section 3.1 the

first approach for capturing a quality property, namely specificity, of TR queries in the

context of software engineering tasks. Section 3.1.2.4 then presents the first approach

in software engineering for predicting the quality of TR queries, which makes use of the

specificity measure defined in Section 3.1 along with other measures to predict the

quality of the results returned by a query.

3.1 Determining the Specificity of Text Retrieval Queries to Support Software

Engineering Tasks

The problem of capturing the quality of TR queries in the context of software

engineering tasks has not yet been addressed. Predicting the quality of queries in

software engineering bares clear resemblances to the analogous problem in the field of

Text Retrieval for natural language (NL) documents, where a series of approaches to

capture the quality of queries have been proposed [23]. However, the techniques used

for NL documents do not always apply to software artifacts. For example, many

approaches for determining the quality of queries in NL rely on the rules governing the

English language. However, these rules often do not apply in software artifacts, which

contain much more than just natural language. For example, Sridhara et al. [118]

www.manaraa.com

30

showed that the semantic relationships between words (i.e., synonymy, hyponymy, etc.)

are different in source code than in English. In consequence, one must carefully

consider the existing query quality prediction approaches in the context of software

engineering, select only those that are applicable to software artifacts, and develop new

measures specific for software where needed.

We studied measures that capture the query specificity, which is among the most

investigated query properties in natural language document retrieval [23]. Specificity

measures how discriminative the terms in the query are for describing the current

information need and is usually reflected by the query terms’ distribution over the

collection of documents. For example, a query that contains words which are found in

half of the software artifacts in the system is less specific than a query having words

that appear in only a small percentage of the artifacts. TR techniques have a harder

time answering non-specific queries, as it is difficult to discriminate among the multitude

of artifacts containing query terms and retrieve only the ones that are truly relevant to

the task at hand. Therefore, a TR search based on a non-specific query is likely to

retrieve many irrelevant documents.

Among the measures for query specificity proposed in natural language document

retrieval, average inverse document frequency, or avgIDF [32] performs the best on

natural language corpora. AvgIDF is computed as the average of the inverse document

frequency (IDF) values of the terms in the query. The Inverse Document Frequency

(IDF) of a term is the inverse of the number of documents in the collection in which a

term appears and is a measure of the term's importance for any particular document it

appears in. If a term's IDF is low, it means the term appears in many documents in the

www.manaraa.com

31

collection, so it is not specific for any document in particular. If, on the other hand, the

term appears in few documents, its IDF will be high, and the term is specific and

representative for those documents it appears in. A query term with a high IDF makes it

easier to retrieve only relevant documents to the query, thus query terms should have

high IDF.

AvgIDF was found to have a relatively high correlation with the retrieval

performance of TR techniques. The retrieval performance indicates the quality of the

results retrieved by the TR techniques and therefore reflects the quality of a query. In

order to assess if avgIDF could be used to indicate the quality of queries also on

software data, we measured the correlation between avgIDF and the retrieval effort on

existing concept location data. Concept location is the process of identifying where a

code change is to start, in response to a change request and many concept location

techniques use TR as the underlying mechanism for tool support. The weak correlation

between AvgIDF and the effectiveness measure for concept location (see Section 3.1.2)

indicates that the metric does not work well in the case of concept location in source

code. This indicates that there is the need to propose new ways to capture query

specificity for queries in the context of software engineering tasks.

3.1.1 The Query Specificity Index

We introduce a novel metric, called Query Specificity Index (QSI), to automatically

detect the specificity of queries for TR approaches in the context of software

engineering tasks. The metric is able to measure the expected specificity of a query

prior to the retrieval and relies on information theory in order to determine the ability of a

query to discriminate between relevant and irrelevant artifacts. QSI can be used in

www.manaraa.com

32

several ways in software engineering tasks. For example, when dealing with user

formulated queries, QSI can be used to recommend the developer to reformulate the

query before spending time on investigating the retrieval results. Some software

engineering tasks rely on queries extracted from existing artifacts, such as, traceability

recovery. During this process a lot of effort is spent on the manual validation of the

retrieved links and on providing feedback to the retrieval system. QSI can be used to

prioritize the links that should be investigated first by the users.

QSI is based on concepts from information theory. More specifically, it uses the

concept of information entropy [31] to measure the specificity of a term in the query.

Information entropy measures the amount of uncertainty of a discrete random variable

[31]. In our case, the random variable is represented by a term in the query, while the

documents in the corpus (i.e., software artifacts in our context) are the possible states

that the variable can assume (i.e., the term does or does not occur in an artifact). This

means that the more scattered the term is in the corpus the higher its entropy will be.

Our conjecture is that a specific query should contain terms that are not very scattered

through the corpus, but that are found in a high concentration in few documents (i.e.,

the relevant ones). We call such terms specific terms. While avgIDF is also based on

the principle that terms with a low scattering are more specific, it overlooks one

important aspect: the concentration (i.e., the frequency of terms in the documents where

they appear). In consequence, it does not make a distinction between terms that are

found many times in a few documents in the corpus and terms that are found only once

in few documents in the corpus. QSI addresses this limitation by considering also the

concentration of terms in documents, along with their dispersion.

www.manaraa.com

33

Formally, the entropy of a term t is computed as:

���������	 = 	� ��
	 ×	 ������
	�∈��

Where:

- Dt is the set of documents containing the term t

- µ is the number of documents in the corpus

- p(d) represents the probability that the random variable (term) t is in the state

(document) d. Such a probability is computed as the ratio between the number

of occurrences of the term t in the document d over the total number of

occurrences of the term t in all the documents in the corpus.

The entropy has a value in the interval of [0, 1]. The higher the value, the less the

term is discriminating. We thus compute the QSI based on the entropy of its terms as:

���� = 1 − ��
����������� 	|	� ∈ "}

We chose to use the median over the average because the median is less impacted

by skewed distributions of values, caused by a few non-specific terms that may occur in

otherwise highly specific queries. Hence, we avoid situations where a few terms have a

strong impact on the QSI.

In the rest of this chapter we use and discuss QSI in the context of concept location

(CL) in source code. Figure 3-1 shows an example of computing the QSI of two

different queries formulated for locating the code related to a change request. In this

example the software is composed of six classes (C1– C6) and each is converted to a

document in the corpus. The change request is a bug fix request: “The window

containing the user interface does not scale to full screen when pushing the F11 button

on the keyboard.” The goal of CL in this example is to identify the class containing the

www.manaraa.com

34

bug (in this particular example is C2). Figure 3-1 shows the two queries (i.e., Q1 and

QualQ) as well as the document corpus. The figure also lists the terms used in the two

queries that occur in each of the classes (the number of occurrences appears in

parenthesis).

As we can see, query Q1 contains terms having very high entropy. All the terms

from Q1 appear in several classes of the system and thus they do not help much in

Figure 3-1. QSI for two queries for the same bug report

www.manaraa.com

35

discriminating between the documents. For this reason the query specificity of Q1 is not

high (QSIQ1 = 0.26). As we can see, when executing Q1, the relevant class (C2) is the

sixth class in the ranked list. Thus, the developer would need to investigate six classes

in order to locate the faulty one. Conversely, the terms in QualQ are well focused on a

particular document in the corpus (C2), thus exhibit a low entropy and consequently a

high QSI (QSIQ2 = 0.69). With such a query the relevant class is the first class in the

ranked list, indicating a minimum effort spent on CL. Note that low entropy does not

necessarily imply that the documents that the query is focused on are the relevant ones.

3.1.2 Evaluation on Concept Location in Source Code

We performed a study in the context of concept location (CL) in source code, where

the goal was to assess if query specificity metrics can be used as indicators of the effort

spent on TR - based CL by developers (which we consider as a measure of query

quality). The rest of this section is organized as follows. Section 3.1.2.1 offers

information about the design of the concept location study we performed, Section

3.1.2.2 describes the dataset we used, Section 3.1.2.3 presents the results of the study

and Section 3.1.2.4 concludes by describing the threats to the validity of the study

results.

3.1.2.1 Study Design

In this study we aim to determine how well the two specificity measures mentioned

in the previous section, i.e., AvgIDF and QSI, reflect the quality of a query in the context

of concept location in source code, as reflected by the effort spent on the task. In

particular, we are interested in answering the following research questions:

www.manaraa.com

36

RQ1: Is AvgIDF a good indicator of query quality in the context of concept

location in source code?

RQ2: Is QSI a good indicator of query quality in the context of concept

location in source code?

In the context of CL, we associate the quality of queries with the effectiveness

measure, which approximates the CL effort as the number of retrieved results (i.e.,

source code documents) that a developer needs to examine before finding the first

relevant document to the change (we assume the developer is examining the results in

the order provided by the TR engine). The effectiveness measure is commonly used in

the existing research that empirically evaluates CL techniques [42]. To answer the

research questions above we measure the correlation between the AvgIDF and QSI, on

one hand, and the CL effectiveness measure, on the other hand.

We used TR in a standard way in this study. We built the source code document

corpus considering every method in the system as a separate document. For each

method we extracted the text found in its identifiers and comments in the source code.

We then normalized the text using identifier splitting, stop words removal (i.e., we

removed common English words and programming keywords) and stemming. The

same normalization techniques were applied on the extracted queries. The corpus was

indexed by with Lucene4, a popular implementation of the Vector Space Model TR

technique.

The CL effort for a given query is the highest rank of any of the target methods in

the ranked list of search results. As mentioned before, this is a standard measure used

when evaluating CL techniques [42]. We computed the Pearson product-Moment

4
 http://lucene.apache.org/

www.manaraa.com

37

Correlation Coefficient (PMCC) [28] between the values obtained for avgIDF and QSI,

respectively, and the CL effort measure for each of the queries. PMCC is a measure of

correlation between two variables X and Y defined in [−1, 1], where 1 represents a

perfect positive linear relationship, −1 represents a perfect negative linear relationship,

and some value between −1 and 1 indicates the degree of linear dependence between

X and Y. Cohen et al. [28] provided a set of guidelines for the interpretation of the

correlation coefficient. It is assumed that there is no correlation when 0 < ρ < 0.1, small

correlation when 0.1< ρ < 0.3, medium correlation when 0.3 < ρ < 0.5, and strong

correlation when 0.5 < ρ < 1. Similar intervals also apply for negative correlations.

3.1.2.2 Data

We use change data from three open source systems, namely Adempiere5 3.1.0,

ATunes6 1.10.0, and JEdit7 4.2. Adempiere is a common-based peer-production of

open source enterprise resource planning applications, ATunes is a full-featured media

player and manager, and JEdit is a programming editor. For each object system, we

selected a set of change requests from its issue tracking system corresponding to bugs

present in the investigated version of the software, but fixed in a later version. The bug

reports were selected such that they contained patches, from which we could identify

the methods changed in order to fix the bugs. We determined the set of methods that

were modified in order to fix each bug, which we used then as the golden set for CL.

We will refer to these methods as the target methods. For each change request, we

created two queries, extracted from the online issue tracking systems: the first query

was composed from the title of the change request (i.e., short description) and the

5
 http://www.adempiere.com/

6
 http://www.atunes.org/

7
 http://jedit.org/

www.manaraa.com

38

second query composed from the long description of the change request. Table 3-1

reports the number of queries used for each system.

Table 3-1. The systems used in the study

System Version #Methods #Queries

Adempiere 3.1.0 28,354 34

ATunes 1.10.0 3,480 30

JEdit 4.2 5,532 30

Overall - 37,366 94

3.1.2.3 Results and Discussion

Table 3-2 reports the correlation values between AvgIDF and QSI on one hand,

respectively, and the effectiveness measure on the other hand for each of the three

object systems. Since high values for AvgIDF and QSI are in general associated with

high quality queries, and low values of the effectiveness measure are associated with

low developer effort in the context of TR-based concept location, AvgIDF and QSI are

considered good indicators of query quality in the context of concept location if there is

a negative correlation between them and the effectiveness measure.

Research Question 1

As it can be observed from Table 3-2, AvgIDF obtains a negative correlation with

the effectiveness measure only for ATunes, where a medium correlation is observed (-

0.35) and JEdit, where a strong correlation is observed (-0.51). Over all systems, the

average correlation between AvgIDF and the effectiveness measure is small (-0.13).

The results indicate that AvgIDF is able to partially capture the quality of a query for

concept location only in some systems, and that is definitely not a silver bullet.

www.manaraa.com

39

Research Question 2

When observing the correlation of QSI with the effectiveness measure, we note that

QSI obtains a negative correlation for all systems and that the correlation is medium or

high in all cases. Also, the results indicate that QSI obtains a high average correlation

with the effectiveness measure over all systems in the study (-0.53). One interesting

observation is that the correlation obtained by QSI with the effectiveness measure is

stronger than the correlation obtained in natural language document retrieval between

the performance of a query and any individual query quality measure tested [23]. The

highest average Pearson correlation obtained by any quality measure in natural

language document retrieval is 0.47 compared to 0.53 for QSI.

Compared with AvgIDF, QSI achieves a higher correlation than AvgIDF on two of

the three object systems. Only for JEdit the correlation obtained by AvgIDF is slightly

higher (-0.51 vs. -0.47). However, the overall average correlation for QSI is significantly

higher than that of AvgIDF.

We conclude that, overall, QSI is a better indicator of query quality than AvgIDF in

the context of concept location in source code, achieving a high average correlation with

the effectiveness measure.

Table 3-2. Linear Correlation between CL Effort and the Specificity Measures

System Correlation

AvgIDF QSI

Adempiere 0.48 -0.72

ATunes -0.35 -0.43

JEdit -0.51 -0.47

Overall -0.13 -0.53

www.manaraa.com

40

3.1.2.4 Threats to Validity

This section presents the threats to the validity of the study and of the results

obtained, organized by threat category [128].

Threats to construct validity concern the relationship between theory and

observation. To evaluate the CL task, we used the effectiveness measure, which is

widely used in concept/feature location studies for this purpose since it provides a good

estimation of the effort that a developer needs to spend in a TR-based concept location

task. Also, for determining if AvgIDF and QSI are good indicators of query quality in the

context of TR-based concept location, we used the Pearson Product-Moment

Correlation Coefficient , which has been used in the field of natural language document

retrieval for the same purposes [23].

Threats to internal validity concern co-factors that can influence the results. In our

study we automatically extracted the set of queries from online bug tracking systems.

Such queries are approximations of actual user queries. However, developers are often

faced with unfamiliar systems, in which cases they must rely on outside sources of

information, such as bug reports, in order to formulate queries during TR-based concept

location. Therefore, we believe that the approach used in our experimentation

resembles real usage scenarios.

Threats to conclusion validity concern the relationship between treatment and

outcome. We used standard statistical methods, i.e., the Pearson Product-Moment

Correlation Coefficient to capture the correlation between AvgIDF and QSI and the

effectiveness measure. These statistical methods are the de-facto standard used in the

www.manaraa.com

41

field of natural language document retrieval to capture the relationship between query

performance and query quality measures [23].

Threats to external validity refer to the generalization of the results we obtained.

Regarding the systems used for the case study, we tried to mitigate this threat, by

selecting three software systems from diverse domains. A larger set of queries and

more systems would clearly strengthen the results from this perspective. While we

used data from several systems, we only used a single TR engine (i.e., Lucene). The

results may differ when using other TR engines. The last threat to external validity is

related to the fact that we only performed a study for the task of TR-based concept

location. Thus, we cannot (and do not) generalize the results to other software

engineering tasks or the obtained results.

3.2 Automatic Query Quality Prediction for Retrieval of Software Artifacts

The quality of a query captures how well the query retrieves the desired documents

when executed by a TR approach. A high-quality query retrieves the relevant

documents on top of the results list. Conversely, a low-quality query either retrieves the

desired documents in the bottom part of the list of the results, or it does not retrieve

them at all. We consider here a binary view of query quality, as we associate it with a

decision developers have to make: to reformulate or not the query. If we predict the

query to be of low quality, this can be used as an indication by developers that the

query should be reformulated. If it is of high quality, the query should be kept and the

results investigated. We plan to investigate ranges of query quality in our future work,

beyond this dissertation.

www.manaraa.com

42

When low-quality queries are executed, the software engineer will spend time and

effort analyzing irrelevant search results, and can lose the confidence in the TR-based

tools, to no fault of their own. Therefore, there is the need to provide software

engineers using TR tools with feedback related to the quality of the query being run.

Such tools will warn developers when the query is likely to lead to poor results or, on the

contrary, indicate that the results are likely to contain useful information, in the case

when the query is of high quality. The software developer can then take the right action

without frustration or time wasted.

We aim at predicting the quality of TR queries and presenting this information to the

software engineer before her analysis of the results begins. To this end, we propose a

solution to the problem of query quality prediction in software engineering by adapting

solutions from the field of natural language (NL) document retrieval [23] to their use on

software data. While similar, the problem of query quality prediction in software

engineering has essential differences with respect to NL document retrieval, due to the

properties of software artifacts, which contain different information than NL documents

(e.g., the text extracted from the source code is not always correct English). Therefore,

we carefully analyzed, selected, and adapted those NL techniques which are applicable

to software data. First, we performed an analysis of all the techniques existing for NL

and we eliminated those that relied on English semantic and syntactic rules. At the

same time, since we want to generate and present information about the quality of the

query in real time to the developer that is searching source code, we did not consider

those approaches which required a long processing time (i.e., higher than one minute).

We identified a set of 28 measures of query quality that meet these criteria. These

www.manaraa.com

43

measures have been previously used mostly in isolation as predictors of query quality,

with very few approaches making use of two or more measures.

Our approach, called QualQ (Quality of Queries) makes use of machine learning

techniques and the selected set of 28 pre-retrieval (collected before the query is run by

the TR engine) and post-retrieval (collected after the query is executed by the TR

engine) measures of query quality from the field of NL document retrieval. Based on

the 28 query quality measures and a set of training data, it uses a classifier to learn the

characteristics of high- and low-quality queries used in the context of software

engineering tasks and is able to predict the quality of new queries with high accuracy.

Based on these rules, the employed classifier is able to predict the quality of new

queries. Therefore, our approach offers a clear and pragmatic indication to developers

if a query is worth pursuing (high quality queries) or requires reformulation (low quality

queries).

Even though the current implementation of QualQ starts from the 28 measures

presented in the next section, when predicting the quality of queries in a system, our

approach performs as a first, internal step, a feature selection step (the type of classifier

we use, i.e., classification and regression trees, does this automatically when

constructing the learned model). This means that the classifier we use will determine

which measures among the 28 are truly representative to capture the quality of queries

for a particular dataset and then it will use only that reduced set of measures to make

the prediction. Therefore, for evaluating any of the data sets in our study, only two to

three measures (these can change between systems or between different evaluation

rounds in the same system) are used at a time by the classifier. Also, it is worth

www.manaraa.com

44

mentioning that the setup of our approach is generic, allowing the replacement of the 28

measures with any other set of measures deemed to capture query quality.

3.2.1 Query Quality Properties and Measures

Existing query quality measures are categorized into pre-retrieval and post-retrieval

[23], depending on the moment when they are employed and the type of information

about the query they capture. Pre-retrieval measures are computed before the query is

run, i.e., before the results to the query are retrieved. They capture various linguistic

and statistical properties of the query and of the document collection. In contrast, post-

retrieval measures make use of the list of results returned by the query, and are, thus,

employed after the query is run and the results are retrieved. The two types of

measures capture complementary properties of the query and our approach makes use

of both pre-retrieval and post-retrieval measures for a better prediction power. The

following subsections explain in detail the pre- and post-retrieval measures we use and

the quality properties of the query they measure.

3.2.1.1 Pre-Retrieval Measures

Our approach makes use of a set of 21 pre-retrieval measures, which assess four

different aspects of query quality: specificity, similarity, coherency, and term

relatedness. The measures were selected among all those proposed in the field of

natural language document retrieval such that they can be applied to any type of

software artifacts. We present the 21 measures used by approach below, categorized

according to the query quality property they capture.

www.manaraa.com

45

Specificity Measures

Specificity refers to the ability of the query to represent the current information need

and discriminate it from others. A query composed of non-specific terms, commonly

used in the collection of documents is considered having low specificity, as it is hard to

differentiate the relevant documents from non-relevant ones based on its terms. For

example, when searching source code, the query “initialize members” could have low

specificity, if a comment containing this text would be found in most class constructors

in a system.

Specificity measures are usually based on the query terms’ distribution over the

collection of documents, but the way this information is captured differs from measure to

measure. For our approach, we considered eight specificity measures from the text

retrieval literature [23], along with four new measures. The specificity measures used

are described below, grouped according to the core metric they are based on. A

summary description of each specificity measure as well as the formulas used to

compute these measures can be found in Table 3-3 and Table 3-4.

Measures Based on the Inverse Document Frequency of a Term

The Inverse Document Frequency (IDF) of a term is the inverse of the number of

documents in the collection in which a term appears and is a measure of the term's

importance for any particular document it appears in. If a term's inverse document

frequency is low, it means the term appears in many documents in the collection, so it is

not specific for any document in particular.

www.manaraa.com

46

Table 3-3. The eight query specificity measures from natural language
document retrieval used by QualQ.

Measure Description Formula

AvgIDF

Average of the Inverse

Document Frequency (idf)

values over all query terms

1|�|	� �
$�"	
�∈%

MaxIDF

Maximum of the Inverse

Document Frequency (idf)

values over all query terms

��&�∈% ��
$�"		

DevIDF

The standard deviation of

the Inverse Document

Frequency (idf) values over

all query terms

' 1|�|	���
$�"	 − �(��)*	
�∈%	

AvgICTF

Average Inverse Collection

Term Frequency (ictf)

values over all query terms

1|�|	� �+�$�"	
�∈%

MaxICTF

Maximum Inverse Collection

Term Frequency (ictf)

values over all query terms

��&�∈% ��+�$�"		

DevICTF

The standard deviation of

the Inverse Collection Term

Frequency (ictf) values over

all query terms

' 1|�|	���+�$�"	 − �(��,-*	
�∈%

QS

Query Scope – the

percentage of documents in

the collection containing at

least one of the query terms

| ⋃)��∈% ||)|

SCS

Simplified Clarity Score –

the Kullback-Leiber

divergence of the query

language model from the

collection language model

�����	
�∈%

∙ log	�����	���)		

�
$��	 = 	log	� |)||) |	 �+�$��	 = 	log	� |)|�$��,)		
Q –the set of query terms;

D – the set of documents in the

collection;

q – a term in the query;

Dt –the set of documents containing term t; tf(t,D) – the frequency of term t in all docs

www.manaraa.com

47

Table 3-4. The four new, entropy-based measures of specificity used by
QualQ

Measure Description Formula

AvgEntropy
Average entropy values over

all query terms

1|�|	� ��������"	
�∈%

MedEntropy
Median entropy values over

all query terms
��
����∈% 	���������"		

MaxEntropy
Maximum entropy values

over all query terms
��&�∈% 	���������"		

DevEntropy

The standard deviation of

the entropy values over all

query terms

' 1|�|	����������"	 − �(�4������	
�∈%

� �
	 = 	 �$��,
	|
| � �)	 = 	 �$��,)	|)| ���������	 = ∑ � �
	 ∙ log|�| � �
	�∈�� 	
Q –the set of query terms; D – the set of documents in the collection;

q – a term in Q; Dt –the set of documents containing term t; d – a document in D

tf(t,D) – the frequency of term t in all docs; tf(t,d) – the frequency of term t in d;

If, on the other hand, the term appears in few documents, its IDF will be high, and

the term is specific and representative for those documents it appears in. A query term

with a high IDF makes it easier to retrieve only relevant documents to the query, thus

query terms should have high IDF. We use three measures based on IDF for capturing

the specificity of a query. The Average Inverse Document Frequency (AvgIDF)

captures the average value of IDF among all query terms, and a high-quality query

should have a high AvgIDF. The Maximum Inverse Document Frequency (MaxIDF),

which represents the maximum IDF value across all query terms, is a popular variation

of the average, and is also expected to assume high values in the case of high-quality

www.manaraa.com

48

queries. The Standard Deviation of the Inverse Document Frequency (DevIDF)

captures how much the values of IDF vary among all the query terms. The assumption

is that a low variance reflects the lack of dominant, discriminative terms in the query,

which may prevent the retrieval of relevant documents. In consequence, DevIDF is

expected to be high for high-quality, specific queries.

Measures Based on the Inverse Collection Term Frequency of a Term

The Inverse Collection Term Frequency (ICTF) is another way to capture the

specificity of a term. ICTF is the inverse of the number of occurrences of a term in the

entire document collection. A specific term has a low ICTF, and the assumption is the

similar to that used in the case of IDF: the more a term is used in the documents in the

collection, the less specific it is, leading to a difficulty in discriminating the relevant

documents based on it.

Three specificity measures we use are based on ICTF: the Average Inverse

Collection Term Frequency (AvgICTF), the Maximum Inverse Collection Term

Frequency (MaxICTF), and the Standard Deviation of Inverse Collection Term

Frequency (DevICTF), which represent the average, maximum and standard deviation

of the ICTF values among all the terms in the query. Highly specific terms have a high

ICTF values and a highly specific query should have a high AvgICTF, MaxICTF, and

DevICTF.

Measures of Scope

Query Scope (QS) is another specificity measure, independent of IDF and ICTF. It

measures the percentage of documents in the collection containing at least one of the

query terms. A high QS value indicates that there are many candidates for retrieval

www.manaraa.com

49

thus separating relevant documents from irrelevant ones might be difficult. A query

should, therefore, aim at having a low QS.

Measures of Clarity

The last specificity measure we considered is the Simplified Clarify Score(SCS),

which measures the divergence of the query language model from the collection

language model, as an indicator of query specificity. More specifically, the measure

considers that a query is not specific if the language used in it (i.e., terms and their

frequency) is similar to the language used in the entire collection of documents, which

indicates a large number of documents that could potentially be retrieved. A high SCS,

indicating a significant divergence of the two language models, is thus desirable.

Measures Based on Entropy

In addition to the metrics existent in the field of TR, we considered four new metrics

based on using information entropy in order to identify discriminative, high-quality

queries. In a study, described in Chapter 3.1, we have shown that entropy is a better

indicator of query specificity for software engineering tasks than the leading specificity

measures from text retrieval. Therefore, we defined four query specificity measures

using entropy: AvgEntropy, which is the average entropy value among the query terms,

MedEntropy and MaxEntropy, which represent the median and the maximum entropy

values across the terms in the query, and DevEntropy, which is the standard deviation

of the entropy across all query terms. As low entropy indicates high information

content, the desirable values for a high-quality query are low for the first three entropy-

based measures. For DevEntropy, high values are wanted.

www.manaraa.com

50

Similarity Measures

The similarity between the query and the entire document collection is considered

as being another indicator of query quality. The argument behind this type of measures

is that it is easier to retrieve relevant documents for a query that is similar to the

collection since high similarity potentially indicates the existence of many relevant

documents to retrieve from.

The existing similarity approaches for query quality in the field of text retrieval make

use of a metric called collection query similarity (SCQ). This is computed for each

query term, and is a combination of the collection frequency of a term (CTF) and its IDF

in the corpus. Three measures of a query’s quality were defined based on it, namely

SumSCQ, which is the sum of the SCQ values over all query terms, AvgSCQ, which is

the average SCQ across all query terms, and MaxSCQ, which represents the maximum

of the query term SCQ values. In the case of every SCQ-based measure, a high value

is expected for high quality queries. The formulae used to compute each of these

measures can be found in Table 3-5.

Coherency Measures

Another quality indicator for queries is their coherency, which measures how

focused a query is on a particular topic. The coherency of a query is usually measured

as the level of inter-similarity between the documents in the collection containing the

query terms. The more similar the documents are, the more coherent the query is

considered to be. The measures used to capture the coherency of queries, along with

the formulae used to compute them are described in Table 3-6.

www.manaraa.com

51

Table 3-5. The query similarity measures used by QualQ.

Measure Description Formula

AvgSCQ
The average of the collection-query

similarity (SCQ) over all query terms

6|%| 	∑ �,��"	�∈%

MaxSCQ
The maximum of the collection-query

similarity (SCQ) over all query terms
��&�∈%��,��"		

SumSCQ
The sum of the collection-query

similarity (SCQ) over all query terms
∑ �,��"	�∈%

 �,���	 = �1 + log8�$��,)	9 ∙ �
$��	 �
$��	 = 	log	� |)||) |	
Q –the set of query terms; D – the set of documents in the collection

q – a term in the query; tf(t,D) – the frequency of term t in D

The coherence score (CS) of a term is one of the measures used for this quality

aspect and it reflects the average pairwise similarity between all pairs of documents in

the collection that contain that particular term. The CS of the query is then computed as

the average CS over all its query terms, and it is expected to be high in the case of

high-quality queries.

A second approach for measuring the query coherency is based on measuring the

variance (VAR) of the query term weights over the documents containing the terms in

the collection. The weight of a term in a document indicates the importance, or

relevance of the term for that document and it can be computed in various ways. One

of the most frequent ways to compute it, which we also adopt in our implementation, is

TF-IDF, i.e., a combination between the frequency of a term in the document (TF) and

the term’s IDF value over the document collection. The intuition behind measuring the

variance of the query term weights is that if the variance is low, then the retrieval system

www.manaraa.com

52

will be less able to differentiate between highly relevant documents and less relevant

ones, making the query harder to answer.

Three measures based on VAR have been defined, i.e., SumVAR, which is the sum

of the variances for all query terms, AvgVAR, computed as the average VAR value

across all query terms, and MaxVAR, which is the maximum VAR value among the

query terms. As in the case of CS, high values are expected for high quality queries.

Table 3-6. The query coherency measures used by QualQ.

Measure Description Formula

AvgVAR

Average of the variances of the query term

weights over the documents containing the

query term (VAR), over all query terms

6|%| 	∑ :;<�"	�∈%

MaxVAR

Maximum of the variances of the query term

weights over the documents containing the

query term (VAR), over all query terms

��&�∈%�:;<�"		

SumVAR

Sum of the variances of the query term

weights over the documents containing the

query term (VAR), over all query terms

∑ :;<�"	�∈%

CS

The average of the pairwise similarity between

all pairs of documents containing one of the

query terms (cs) among all

6|%| 	∑ +=�"	�∈%

 :;<��	 = '∑ �>��,
	 −	>? 	@�∈��
$��	 +=��	 = 	∑ =���
A,
B	��C,�D	∈��|) | ∙ �|) | − 1	

 >��,
	 = 	 1|
| log	�1 + �$��,
		 ∙ �
$��	 >? = 1|) | � >��,
	
�∈��

Q –the set of query terms; D – the set of documents in the collection; q – a term in Q

sim(di,dj) – the cosine similarity between the vector-space representations of di and dj

www.manaraa.com

53

Term Relatedness Measures

Term relatedness measures make use of term co-occurrence statistics in order to

assess the quality of a query. The terms in a query are assumed to be related to the

same topic and are, thus, expected to occur together frequently in the document

collection. For example, the query “money order” would be a high-quality query if the

terms "money" and "order" frequently co-occur in the corpus.

We use two measures of term relatedness previously used in text retrieval, both

using the Pointwise Mutual Information (PMI) metric, which is based on the probability

of two terms appearing together in the corpus. The two PMI-based metrics are AvgPMI

and MaxPMI, which compute the average and the maximum PMI values across all

query terms. High average and maximum PMI values indicate a query with strongly

related terms and indicate high query quality. The formulae used for the term

relatedness measures can be found in Table 3-7.

Table 3-7. The term relatedness measures used by QualQ.

Measure Description Formula

AvgPMI
Average Pointwise Mutual Information (PMI)

over all pairs of terms in the query

2	�|�| − 2	!�|�|	! � GH��"6, "@	�I,�J∈%

MaxPMI
Maximum Pointwise Mutual Information

(PMI) over all pairs of terms in the query
��&�I,�J∈%�GH��"6, "@		

 GH���6, �@	 = ��� � I, J�)	� I�)	 ∙ 	� J�)	 � �)	 = 	 �$��,)	|)|

Q –the set of query terms; D – the set of documents in the collection; q – a term in Q

www.manaraa.com

54

3.2.1.2 Post-Retrieval Measures

Post-retrieval query quality measures analyze the list of results retrieved in

response to the query and make a prediction based on the language used in the top

documents. The list of results provides a different type of information about the query

than the pre-retrieval measures. For example, the coherence of the search results, i.e.,

how focused they are on aspects related to the query, is not captured by the query text

and is hard to assess without an analysis of the results list. Post-retrieval measures are

categorized into different paradigms, based on the properties of the query and of the

results list they capture. We used seven measures that capture the robustness and

score distribution of the results, described below.

Robustness Measures

Robustness-based measures evaluate how stable the list of search results is to

perturbations in the query and the documents in the result list. The more robust the

result list is to perturbations, the higher the quality of the query. There are measures

based on query perturbation, which assess the robustness of the result list to small

modifications of the query. When small changes in the query translate to large changes

in the search results, the confidence in the capacity of the query to capture the essential

information diminishes. Document perturbation measures, on the other hand, rely on

injecting the top documents in the result list with noise and re-ranking them, measuring

the difference in their ranks before and after the perturbation. In the case of a high

quality queries, small perturbations of the documents in the result list should not result

in significant changes in their ranking.

www.manaraa.com

55

We use five robustness measures: Subquery Overlap, Robustness Score, First

Rank Change, Clustering Tendency, and Spatial Autocorrelation.

Subquery Overlap

Subquery Overlap perturbs the query and captures the extent (i.e., the standard

deviation) of the overlap between the result set retrieved by the entire query and the

result sets retrieved by individual query terms. This is based on the observation made

in the field of natural language document retrieval that some query terms have little or

no influence on the retrieved documents, especially in the case of low quality queries. A

low standard deviation of the overlap values indicates that the list of results is robust to

modifications of the query. Therefore, the lower the standard deviation is, the higher the

quality of the query. In order to obtain the Subquery Overlap, we used the following

algorithm:

a) Run the original query q, and obtain the result list R

b) Run each individual query term qt in the original query as a separate query and

obtain the result list Rt.

c) For each individual query term qt, compute the overlap between the first k (k=10)

documents in R and the first k documents in Rt (i.e., number of documents found

in both result lists)

d) The overall score of the query is the standard deviation of the values of the

overlap considered for each term in the query.

Robustness Score

To measure the Robustness Score, a document perturbation measure, the terms'

weights in the top relevant documents are slightly perturbed and the resulting

www.manaraa.com

56

documents are re-ranked. The correlation between the initial rank and that after

modification is considered. A higher robustness score indicates higher query quality.

The algorithm followed to compute the Robustness Score is:

a) Run the original query q, and obtain the result list R

b) Take the top 50 documents in R and consider them as ranked list L

c) For each document d in L, get a perturbed document d’ from d in the following

way:

• All terms t from the corpus that do not appear in document d, will not be

included in d’ neither.

• All terms t from the corpus that appear in document d with frequency f, but do

not appear in the query will appear in document d’ with the same frequency f.

• Each term t that appears in d with frequency f and appears also in the query q

will appear also in d’ , but with a frequency f’, which is a random number

obtained from a Poisson distribution P(λ) with λ = f

d) The new 50 documents obtained are ranked according to the query q, resulting

in a second ranked list L’, where each document corresponds to a document in

L.

e) Compute the Spearman rank correlation between the positions of the 50

documents in L and the positions of their corresponding perturbed documents in

L’ and record the correlation obtained.

f) Repeat steps c) – e) 100 times, and the final robustness score is the average

Spearman correlation between the 100 runs.

www.manaraa.com

57

First Rank Change

First Rank Change captures the probability of a document found on the first position

in the list of results to still remain on the first position after a perturbation is applied to it.

A high quality query will have a high first rank change, corresponding to a high

probability that the first ranked document will remain the same across perturbations.

We computed the First Rank Change in the following way:

a) Run the original query q, and obtain the result list R

b) Take the top 50 documents in R and consider them as ranked list L

c) For each document d in L, get a perturbed document d’ from d in the following

way:

• All terms t from the corpus that do not appear in document d, will not be

included in d’ neither

• All terms t from the corpus that appear in document d with frequency f, but do

not appear in the query will appear in document d’ with the same frequency f.

• Each term t that appears in d with frequency f and appears also in the query

q will appear also in d’ , but with a frequency f’, which is a random number

obtained from a Poisson distribution P(λ) with λ = f

d) The new 50 documents obtained are ranked according to the query q, resulting

in a second ranked list L’, where each document corresponds to a document in

L.

e) Record a 1 if the top ranked document in L is also the top ranked document

(after perturbation) in L’, and record 0 otherwise.

www.manaraa.com

58

f) Repeat steps c) – e) 100 times, and the final score is the sum of the values (0 or

1) obtained in step e) for all the 100 runs.

Clustering Tendency

Clustering Tendency (CT) is another document perturbation measure, capturing the

cohesion of the top retrieved documents as the textual similarity between them. The

higher the clustering tendency is, the better the query. We used the following formula to

compute the Clustering Tendency:

,- = H���	 K����LMNO8
PQ,
RRS"	����LMNO8�TQ,
PQS"9U ∗ 1-	��&A − �A	
W

AX6

Where:

- q is the query

- psp is the sampled point, i.e., a randomly chosen document from the corpus,

which does not appear in the top 100 documents

- dmp is the marked point, i.e., the document, inside the top 100 documents in the

ranked list , with largest similarity with the sampled point

- dnn is the nearest neighbor of the marked point within the top 100 documents in

the ranked list

- xi is the maximum weight for a term i across the top 100 retrieved documents

- yi is the minimum weight for a term i across the top 100 retrieved documents

- The mean in the CT formula is computed for 100 randomly sampled points (i.e.,

the similarity formulas are computed 100 times, each time with a different

randomly sampled point).

To compute the textual similarity between two documents we used the following

formula:

www.manaraa.com

59

����LMNO8
A ,
BS"9 = 	 ∑
AY
BYWZX6
[∑
AY@ ∑
BY@WYX6WYX6

∗ ∑ +Y"YWYX6\∑ +Y@ ∑ "Y@WYX6WYX6

Where:

- di and dj are the two documents

- T is the number of unique terms in the collection

- q is the query (with weight qk for term k) - the weight of a term in the query or a

document is its tf-idf

- c is the vector of terms common to both di and dj with weights ck being the

average of dik and djk

Spatial Autocorrelation

The Spatial Autocorrelation measure replaces the retrieval-scores of each top

relevant document with the average of the scores of its most similar documents. The

linear correlation between the new scores and the original ones is the spatial

autocorrelation of the query. A higher spatial autocorrelation indicates a higher quality

of the query. We used the following process to obtain the Spatial Autocorrelation:

a) Run the original query q, and obtain the result list R

b) Take the top 50 documents in R and consider them as ranked list L

c) For each document d in L, compute the cosine similarity between d and the rest

of the documents in L, using tf-idf as the weight of the terms in the document

vectors.

d) Among the documents in L, select the 5 documents that are most similar to d

according to the cosine similarity.

www.manaraa.com

60

e) Let s be the score of document d in L. Assign a new score to d, which is the

average score of the 5 most similar documents to it according to the cosine

similarity.

f) Perform the above steps for each document d in L

g) The Pearson correlation between the original scores of the documents in L and

the derived scores of those documents represents the index of spatial

autocorrelation.

Score Distribution Measures

Score distribution-based methods analyze the similarity between the query and the

results, which are used to rank the results of the retrieval. For example, the highest

retrieval score (i.e., similarity) and the mean of top scores indicate query quality since,

in general, low scores of the top-ranked documents indicate some difficulty in retrieval.

We use two score distributions measures, namely Weighted Information Gain and

Normalized Query Commitment.

Weighted Information Gain

The Weighted Information Gain (WIG) measures the divergence between the mean

retrieval score of top-ranked documents and that of the entire corpus. The hypothesis is

that the more similar these documents are to the query, with respect to the query

similarity exhibited by a general non-relevant document (i.e., the corpus), the more

effective the retrieval. The higher the weighted information gain, the better the query.

We used the following formula for computing the Weighted Information Gain:

]�^�"	 = 	 1_ � �`��	��� Pr	��|
	Pr	��|)	 ∈��∈�cd

Where:

www.manaraa.com

61

- q is the query

- t is a term in the query q

- D is the set of all documents in corpus

- Dq is the set of documents in the result set to query q

- Dq
k is the top k documents in the result list

- k is the number of top documents to consider

- |q| is number of terms in the query q

- `��	 = 6\|�|
Normalized Query Commitment

Normalized Query Commitment (NCQ), on the other hand, measures the standard

deviation of retrieval scores in the top k documents returned in response to query,

normalized by the score of the whole collection. The higher NCQ, the higher the quality

of the query.

We used the following formula to compute the Normalized Query Commitment:

e,� = 	[
1_ ∑ ��+����
	 − 	f	@�g�cd�+���8)�9

Where:

- k is the number of top documents to consider. Best performance was obtained

with k=100

- Dq
k is the top k documents from the result list returned in response to query q.

- Score (d) is the score obtained by document d in Dq
k

- Dq is the set of all results returned in response to query q

www.manaraa.com

62

- Score (Dq) is the sum of the scores of all the documents in the result list returned

by the IR technique

- f = 	 6Y∑ �+����
	�g�cd

3.2.2 Query Quality Prediction for Text Retrieval in Software Engineering

Our approach, QualQ, uses the 28 query quality measures defined in the previous

section in order to learn, using a classifier, the properties that indicate the quality of a

query, i.e., the relevance of the returned results to the task at hand. QualQ consists of

two steps. The first step is training the classifier, which constructs a model of query

quality based on rules involving the query quality measures. For example, if queries

having a high AvgIDF are often associated with good results, then a rule in the model

will be designated to check the AvgIDF of the queries against a threshold; queries for

which AvgIDF will be above the threshold will be considered of higher quality than those

with an AvgIDF below the threshold. A series of such rules are produced based on the

query quality measures. Once such a model is built, the second step can be applied,

i.e., predicting the quality of new queries by just computing their quality measures and

feeding them into the model. The two steps of QualQ are described in more details in

the following subsections.

3.2.2.1 Training the classifier

In order to predict the quality of queries, our approach makes use of a classifier,

which is first trained (see Figure 3-2) on a set of queries to discriminate among low- and

high-quality queries. To this aim, two things are needed:

a) a set of training data consisting of queries and their associated relevant

documents.

www.manaraa.com

63

b) a classification criterion defined by the user (i.e., the developer) on how to

discriminate between low- and high-quality queries.

These two points strongly depend on the software engineering task addressed. For

example, if the task to perform is concept location, the training queries could be

automatically extracted from bug tracking systems (i.e., BugZilla) from the text present

in bug reports associated with fixed bugs. Using fixed bugs, it is easy to identify the

documents relevant to the queries by looking at the source code components (i.e.,

methods, classes, etc.) changed to solve the bugs. Concerning the criterion defined by

the developer to discriminate between low- and high-quality queries, a criterion for the

concept location task could be related to the effectiveness measure, setting a maximum

acceptable value for it such that the query is considered of high quality. The criterion

used in our evaluation study is described in the Section 3.2.3.

Our approach uses the training data and the chosen classification criterion to

classify the training queries as low- or high-quality and then learn a model for query

quality from the training data using the process described in Figure 3-2. Each training

query is first executed using the TR engine and, analyzing the ranked list of retrieved

documents, is classified as low- or high-quality according to the chosen classification

criterion and the position of the relevant documents in the list of results retrieved by the

TR engine. Then, the value of the 28 query measures for each training query is

computed. Finally, the classifier is trained using the collected training data. One data

point in the final training data used by the classifier corresponds to a query. Each data

point has 28 attributes corresponding to the query quality measures and one

corresponding to the query classification, i.e., low- or high-quality (see Figure 3-2).

www.manaraa.com

64

As a classifier, QualQ currently uses a classification and regression tree (CART)

[19] in order to determine the rules that can predict if queries are high- or low-quality.

However, QualQ is based on a general model able to accommodate any other classifier

instead of CART.

CART is a prediction model that can be represented as a decision tree [19].

Decision tree learning has been previously applied successfully to query performance

prediction in NL [51, 122, 129], and also to analyzing software engineering data [71]

(i.e., for defect prediction). We chose classification trees for the current implementation

of QualQ, as they present several advantages. First, the rules produced by

classification trees are easy to understand by humans, which is not true for other, more

Figure 3-2. The training phase of QualQ. The Classification and
Regression Tree (CART) is trained based on a set of training queries, the

measures of their properties, and their category

www.manaraa.com

65

complex models. Second, classification trees perform implicitly feature selection. This

is a very important property, as it allows our approach to be less sensitive to the choice

of query property measures. In the current form, it allows us to give as input all 28

measures of a query, as our classification tree will determine automatically the subset of

measures relevant for the classification, and will use only those for the classification.

Note that CART selected no more than three measures for any data set.

Classification trees are suitable to solve problems where the goal is to determine

the values of a categorical variable based on one or more continuous and/or categorical

variables. In our approach, the categorical dependent variable is represented by the

quality of a particular query (i.e., low- or high-quality), while the independent variables

are the 28 query quality measures described in Section 3.2.1. The classifier uses the

training data to automatically select the independent variables and their interactions that

are most important in determining the dependent variable to be explained. As a

reminder, even though QualQ currently makes use of the set of 28 measures presented

in Section 3.2.1, it allows for the replacement of these measures with any other set of

measures deemed to capture the quality of a query.

There are two possible approaches when training the classifier, namely within-

project and cross-project training, each having advantages and disadvantages. In

within-project training, the classifier is trained and tested on the same system, and the

evaluation is done independently for each software system. In order to ensure the least

bias in the evaluation, all data points should be used for training and testing at some

point. For this purpose, cross-validation is used, where the evaluation is done in

several rounds, such that all data points get to be evaluated exactly once, in one of the

www.manaraa.com

66

rounds. In each round a small part of the data is kept for testing, while the rest is used

for training. When performing this kind of validation it is important to select balanced

training sets, where there are enough data points to learn from for each possible class

and that the number of data points belonging to each class is balanced in the training

set. In the case of Refoqus this means that the training sets need to be chosen such

they contain approximately equal numbers of data points assigned to each of the

reformulation strategies.

The advantage of within-project training is the fact that it could potentially capture

properties of the data specific to a software system. On the other hand, it requires

additional overhead as the classifier requires retraining for new systems. This can be a

problem when little or no training data is available for the new systems. The alternative

is cross-project training, where, given a set of n systems, the classifier is trained using

all data points from n-1 systems and then tested on the data from the nth system, which

was not included in the training. This evaluation is repeated n times, each time

considering one of the systems for testing and the rest for training.

Cross-project training has the disadvantage, however, that it may miss some

project-specific properties of the data, which the within-project training may be able to

take advantage of for producing more accurate results. We investigate both

approaches in our evaluation, described in Section 3.2.3.

www.manaraa.com

67

The output of the training stage is the classification tree, represented by a set of

yes/no questions that splits the training sample into gradually smaller partitions that

group together cohesive sets of data, i.e., those having the same value for the

dependent variable. An example of classification tree can be found in Figure 3-3. Note

that, when within-project training is performed and the evaluation is based on cross-

validation, a different classification tree may be built for each evaluation round during

the cross-validation, as the training data used is different in each round.

In the second step of the approach used by QualQ, the classification tree built

during the training phase is used to predict the quality of new queries. This step is

described in detail in the following section.

3.2.2.2 Using the Classification Tree to Assess the Quality of Queries

Once the classification tree is built, it can be used to automatically assess the

quality of a new query. When the new query is issued (manually or automatically) to the

TR engine, QualQ computes the 28 query measures for it. Based on the classification

Figure 3-3. Example of Classification and Regression Tree built
for a dataset. For this data set, only two measures are considered

important for the classification, i.e., AvgIDF, and MaxVAR.

www.manaraa.com

68

tree and the quality measures, QualQ automatically classifies the quality of the given

query as being low or high. This phase of the approach is depicted in Figure 3-4.

Based on the task to be performed, this information can be useful in different ways.

For example, if the task at hand is concept location and QualQ classifies a query written

by the developer as a low-quality one, the developer could reformulate the query

without spending time analyzing the likely irrelevant results retrieved by the TR engine.

In the following section we present an evaluation of QualQ in the context of this task

(i.e., concept location in source code).

3.2.3 Evaluation on Concept Location in Source Code

We evaluated QualQ in a study on concept location in source code, as many

existing concept location techniques use TR-based solutions [42]. Concept location is

an activity performed during software change, concerned with identifying a point in the

Figure 3-4. The classification phase of QualQ. Based on the query property
measures, the Classification and Regression Tree (CART) is classifies a new

query as high or low quality.

www.manaraa.com

69

source code (e.g., a class or a method) where a change needs to be made in order to

implement a given change request. TR approaches are used in order to search the

code for the point of change using a query formulated based on the change request.

More details about concept location and about using TR approaches to address it can

be found in Section 2.2.

3.2.3.1 Study Design

The goal of this study is to determine how well QualQ performs when predicting the

quality of TR queries in the context of concept location. There are several aspects we

want to evaluate. First, we want to establish how well QualQ performs in predicting the

quality of queries for concept location. We investigate both types of training for the

classifier in QualQ, i.e., cross- and within-project training and in doing so, we want to

learn which training strategy works better for QualQ. Therefore, we formulate the

following research question:

RQ1: How accurate is QualQ in predicting the quality of queries for TR-based

concept location when using within- and cross-project training?

For the within-project training, the classification model was trained on each system

individually and a 4-fold cross-validation was performed. The process for the within-

project validation is composed of five steps:

a) randomly divide the set of queries for a system into 4 approximately equal

subsets

b) set aside one query subset as a test set, and build the classification model with

the queries in the remaining subsets (i.e., the training set)

www.manaraa.com

70

c) classify the queries in the test set using the classification model built on the

query training set and store the accuracy of the classification

d) repeat this process, setting aside each query subset in turn

e) compute the overall average accuracy of the model. The misclassification rate

of the model has been evaluated in terms of Type I and Type II classification

errors. A Type I error occurs when the model wrongly classifies a high quality

query as low quality, while a Type II error is when the model wrongly classifies a

low quality query as high quality.

For the cross-project training, given a set of n systems, we use the data from n-1 of

the software systems to train the model and then tested it on the remaining, nth system.

This model mimics the realistic situation when the queries of a new system need to be

evaluated, for which no training data is available.

Analyzing the two types of validation, i.e., within-project and cross-project, can give

us an indication of whether a specialized model is required for each system or it is

possible to define a generic model that could be applied on several systems, thus

reducing the overhead of procuring training data and rebuilding the classification model

for each new system.

The second research question refers to the performance of QualQ compared to

baseline techniques:

RQ2: Does QualQ perform better than the baseline classifiers?

In the context of our study we compared QualQ based on classification trees with

three baseline approaches: a random classifier, and two variants of a constant classifier

(pessimistic and optimistic). The random classifier randomly selects a prediction from

www.manaraa.com

71

the possible values, i.e., high or low quality. The two values have the same probability

to be selected. The constant classifier always predicts a specific value disregarding the

instance. In particular, the pessimistic constant classifier always classifies a query as

low quality, while the optimistic constant classifier works by always classifying a query

as high quality. It is worth noting that a classifier is useful only if it outperforms a

random or constant classifier.

3.2.3.2 Data

In order to collect the queries needed for the study, we used an approach frequently

adopted in concept location empirical studies, based on change reenactment and user

simulation [65], described also in Section 2.2.1. We collected queries for seven open

source object-oriented (OO) systems from different problem domains, implemented in

Java and C++, which are summarized in Table 3-8. Adempiere8 is a common-based

peer-production of open source enterprise resource planning applications. ATunes9 is

a full-featured media player and manager. FileZilla10 is a graphical FTP, FTPS, and

SFTP client, JEdit11 is a programming editor, Mahout12 is a machine learning and data

mining library, Eclipse13 is a popular integrated development environment for Java, and

WinMerge14 is a document differencing and merging tool.

The online bug tracking systems of each of the seven systems were consulted and

a set of closed bug fix requests were identified. The selected bug reports correspond to

bugs that are present in the version of the software system used in our study, but fixed

8
 http://www.adempiere.org

9
 http://www.atunes.org

10
 http://www.filezilla-project.org

11
 http://www.jedit.org

12
 http://mahout.apache.org/

13
 http://www.eclipse.org/

14
 http://www.winmerge.org

www.manaraa.com

72

in a later version. We also determined the set of methods that were modified in order to

fix each bug, based on the patches attached to the bug reports in the online bug

tracking systems. This set of methods represents the oracle for concept location. We

will refer to these methods as the target methods.

Table 3-8. The Systems Used in the Study and their Properties

System Version Language KLOC #Methods #Queries

Adempiere 3.1.0 Java 330 28,355 51

ATunes 1.10.0 Java 80 3,481 51

Eclipse 2.0 Java 2,500 76,335 51

FileZilla 3.0.0 C++ 240 3,240 87

JEdit 4.2 Java 250 5,532 54

Mahout 0.4 Java 110 15,338 54

WinMerge 2.12.2 C++ 410 8,012 69

Total - - 3,920 140,293 417

For each change request, we collected three queries, two automatically extracted

from the online bug tracking systems and one manually formulated by one of the

authors. While automatically extracting queries from bug tracking systems is a de-facto

practice in software engineering, it still lacks resemblance to actual human queries. We

included the third, manually formulated query to mitigate this aspect. The first extracted

query was obtained from the title of the bug report (i.e., the short description), while the

second extracted query represented the description of the bug (i.e., the long

description). As usually done for concept location, any trace information or log files

contained in these descriptions were eliminated prior to the extraction. We then

normalized the text using identifier splitting (we also kept the original identifiers), stop

words removal (i.e., we removed common English words and programming keywords),

www.manaraa.com

73

and stemming (we used the Porter stemmer). Table 3-8 reports the number of queries

we selected for each system.

For example, from Bug #1605980 of Adempiere, we obtained the following three

queries after extraction and normalization (in parenthesis is the original text extracted

from the bug reports, before the normalization):

1. From bug title: invoic process draft select

(Original title: Print Invoices process - draft and selection)

2. From bug description: us garden world select date rang in todai all invoic select

regardless document statu client bad print post custom us email option draft

potenti cancel invoic sent

(Original description: Using Garden World, if you select a date range from

somewhere in 2001 to today then ALL invoices are selected regardless of

document status OR client!!! Not so bad if you are printing them and posting

them to customers but if you use the email option then drafted (and potentially

cancelled) invoices are sent too!)

3. From developer query: print invoic select draft email

(Original developer query: print invoice selection draft email)

While fixing this bug, the target method changed by the developers was doIt(),

found in the process package, InvoicePrint.java file, and InvoicePrint class. The

document corresponding to this method is the one that the queries are supposed to

retrieve during TR-based concept location.

For each system, we built the source code corpus used by the TR search by

considering every method in the system as a separate document. For each method we

www.manaraa.com

74

extracted the terms found in its source code identifiers and comments. We then

normalized the text using the same normalization approaches used for the queries:

identifier splitting, stop words removal, and stemming. The chosen TR technique was

Lucene15, which a popular and improved implementation of the Vector Space Model.

Lucene was used to index the source code corpus and to search the source code using

the defined queries.

During concept location, it is important that developers find their target method (i.e.,

the method where they have to start the change) as fast as possible. Therefore, if any

of the target methods ranks in among the top retrieved results, we consider it a

successful retrieval. Other methods that change are usually identified during impact

analysis. When reenacting concept location, the success criterion is translated into the

rankings of the target methods (as opposed to many other TR applications where recall

and precision are considered). In other words, if any of the target methods ranks in

among the top retrieved results, we consider it a successful retrieval. A rule often used

in concept location applications is that finding a target method among the top 20 ranked

results is considered a good result, based on the assumption that most developers

would look at no more than 20 methods before reformulating their query. Hence we

define a query as high quality if any of the target methods is retrieved in the top 20

results. Otherwise, we consider the query as having low quality. We classify in this way

all the queries used in our evaluation. In the above example, if a query returns the

target method doIt() in top 20, then it is considered of high quality.

Knowing the target methods beforehand (from the submitted patches) allowed us to

categorize all the queries used in the study following the same procedure. Table 3-9

15

 http://lucene.apache.org/

www.manaraa.com

75

shows the actual number of high and low quality queries for each system used in our

study. Note that this reflects the actual quality of the queries, not the predicted one.

Table 3-9. The actual quality of the queries used in the study.

System Total # queries # High quality queries # Low quality queries

Adempiere 51 23 28

ATunes 51 20 31

Eclipse 51 15 36

FileZilla 87 19 68

JEdit 54 24 30

Mahout 54 25 29

WinMerge 69 23 46

All 417 149 268

One interesting observation is that, while for some systems the numbers of high and

low quality queries are more or less balanced, for others, such as, FileZilla, Eclipse, and

WinMerge the number of low quality queries is two to four times higher than the number

of high quality queries. This means that, when TR techniques are applied for concept

location in these systems, it is likely that developers will have to investigate more than

20 irrelevant artifacts before finding a relevant one. This underlines the need for query

quality prediction, which would prevent developers from investigating the results of such

low quality queries and would prompt them to reformulate the query instead.

Having such a difference in the number of high and low quality queries can also

represent a challenge for our approach, as QualQ would have significantly less

examples to learn from for determining the properties that high quality queries share.

However, QualQ is still able to obtain good results for these cases, as shown in the

following section.

www.manaraa.com

76

3.2.3.3 Results and Discussion

Research Question 1

We first compared the accuracy of QualQ using within- and cross-project training,

as we were interested to know which training procedure is more appropriate, and also to

know if cross-project training is feasible to use when training data is not available for

new systems. Table 3-10 shows the results for the within- and cross-project training for

each system and overall for all seven systems in the study, including the

misclassification rates for each system and error type.

In the cross-project training scenario, QualQ obtains a much lower accuracy on

average (60%) than the within-project training (85%). This difference in accuracy,

favoring the within-project training is observable also for each individual system, where

the difference in accuracy ranges between 15% in the case of FileZilla, and 33% in the

case of Adempiere and jEdit, in favor of the within-project training.

Table 3-10. The Accuracy and Error Rates of QualQ for Within- and Cross-
Project Training

System Within-project training Cross-project training

Correct Type I Type II Correct Type I Type II

Adempiere 90% 10% 0% 57% 25% 18%

ATunes 88% 8% 4% 59% 29% 12%

Eclipse 90% 10% 0% 65% 25% 10%

FileZilla 89% 7% 4% 74% 22% 4%

JEdit 83% 9% 8% 50% 43% 7%

Mahout 82% 10% 7% 56% 37% 7%

WinMerge 75% 15% 10% 57% 32% 11%

Average 85% 10% 5% 60% 30% 10%

Regarding the misclassifications, within-system training obtains on average three

times less Type I misclassification errors and half the Type II misclassifications

www.manaraa.com

77

compared to cross-system training. It is worth noting that the high accuracy (85%)

achieved by QualQ using within-project training was obtained using very small training

samples, as the average size of a training set is 45 queries per system. Such results

emphasize the applicability of QualQ using within-project training. Based on these

results, we can conclude that within-project training is superior compared to cross-

project training and it should be sought whenever training data for a new system is

available, even if in small amounts.

For both within- and cross-project training, however, the number of Type I errors is

considerably higher than the number of Type II errors. When trying to explain this

observation, we noticed that for each system, and overall for all systems there are less

high quality queries in the training data than low quality queries (see Table 3-9) and in

some systems this difference is considerable. For the within-system training, on

average, there are 16 high quality queries to learn from per system in each evaluation

round, compared to 29 low quality queries on average per system. This may mean that

QualQ can learn better the patterns characterizing low quality queries than those for

high quality queries. This may lead to more high quality queries being misclassified

than the low quality queries, and may therefore explain the difference in Type I and

Type II errors observed in each of the software systems and overall in the average, as

well as the occurrence of this type of error in the first place.

In the remainder of the section, due to the superior results, we focus the analysis of

the results on QualQ using the within-project training.

www.manaraa.com

78

RQ1 answer. Within-project training is superior to cross-project training. Within-

project training obtains very good results (85% accuracy on average) with little training

data.

Research Question 2

Table 3-11 shows the accuracy (i.e., percentage of correctly classified queries) of

QualQ and the baselines for the seven software systems. QualQ is the most accurate

predictor on all the systems and overall, when considering the average across all

systems. As mentioned before, QualQ obtains a correct classification rate of 85% on

average. In comparison, the optimistic constant model obtains a correct classification

rate of only 37%, the pessimistic constant model has a correct classification rate of

63%, and the random model correctly classifies the queries in only 52% of the cases.

This indicates that QualQ outperforms all the baseline classifiers.

Table 3-11. The Accuracy (Correct Classifications) of QualQ and the Baseline
Classifiers

System QualQ Optimistic Constant Pessimistic Constant Random

Adempiere 90% 45% 55% 41%

ATunes 88% 39% 61% 59%

Eclipse 90% 29% 71% 61%

FileZilla 89% 22% 78% 57%

JEdit 83% 44% 56% 50%

Mahout 82% 46% 54% 46%

WinMerge 75% 33% 67% 49%

Average 85% 37% 63% 52%

In addition to the improved results obtained by QualQ over the baseline

approaches, these results are better than even state-of-the-art results from the NL

document retrieval field. By comparison, the best approaches in NL document retrieval

www.manaraa.com

79

correctly classify queries as high or low quality between 62% [51] and 74% [122] of the

times on average.

We further investigated the results by analyzing the number of misclassifications

obtained by QualQ and the baselines. Table 3-12 shows the number of Type I and

Type II misclassifications. The total percentage of errors obtained by QualQ is 15%,

with (10% Type I + 5% Type II). This is much lower compared to 63% for the optimistic

constant classifier, 36% of the pessimistic constant and 49% of the random classifier.

Table 3-12. The Percentage of Incorrect Classifications for Within-Project
Training, by Error Type

System QualQ Optimistic Pessimistic Random

Type I Type II Type I Type II Type I Type II Type I Type II

Adempiere 10% 0% 0% 55% 45% 0% 33% 26%

ATunes 8% 4% 0% 61% 39% 0% 31% 10%

Eclipse 10% 0% 0% 71% 20% 0% 25% 14%

FileZilla 7% 4% 0% 78% 22% 0% 7% 36%

JEdit 9% 8% 0% 56% 44% 0% 43% 7%

Mahout 10% 7% 0% 54% 46% 0% 6% 48%

WinMerge 15% 10% 0% 67% 33% 0% 20% 31%

Average 10% 5% 0% 63% 36% 0% 24% 25%

Among the baseline classifiers, the pessimistic classifier performs the best on

average (63% accuracy), as well as for each system in particular. This is explained by

the fact that there is a considerably higher number of low quality queries compared to

high quality queries in the data sets used in the study (see Table 3-9). All these low

quality queries are therefore classified correctly by the pessimistic classifier, which

leads to its higher accuracy compared to the rest of the baseline approaches.

RQ2 answer. QualQ outperforms all baselines, and its accuracy also surpasses

that of approaches proposed in natural language document retrieval.

www.manaraa.com

80

Analysis of Misclassifications

The higher occurrence of Type I errors (i.e., a high quality query is classified as a

low quality one) compared to Type II (low quality query classified as high quality) can be

explained by the presence of a lower number of high quality queries. This smaller

number of high quality queries may be insufficient to learn all the patterns high quality

queries follow, leading to the misclassifications. There is, however, no apparent

indication of the reasons behind Type II errors. Therefore, we analyzed some examples

in order to understand the reasons behind the poor accuracy of QualQ in these cases.

QualQ obtained the most misclassifications of Type II in the case of WinMerge, i.e.,

10% of classifications were Type II errors. We investigated some Type II

misclassification examples from this software system. We observed that in most cases

where a low quality query was misclassified as high quality, it contained very few or

none of the terms found in the target methods. Therefore, these queries often do not

retrieve any of the target methods in the list of results, or retrieve them on a very high

position in the ranked list of results. This is one of the challenges caused by using bug

descriptions and change data for such studies as, in some cases, the bug descriptions

capture the observed behavior of the system, whereas the bug is fixed in a part of a

code with different vocabulary characteristics. This leads to vocabulary mismatch

between the bug reports and the target methods and leads to Type II misclassifications,

where queries fail to retrieve relevant results, therefore being low quality, even though

the quality metrics, based on statistics (and therefore with no knowledge of the

meaning) may mark them as high quality.

www.manaraa.com

81

In order to verify our assumption, we also checked the Type II misclassifications in

another system, i.e., FileZilla. We observed the same phenomenon, i.e., most

misclassified low quality queries contained no or few terms found in the target methods.

In these cases, other approaches may be needed in order to complement TR during

concept location, such as, static or dynamic analysis. In order to determine this type of

cases, however, QualQ would need to be complemented with measures capturing the

semantic information contained in queries. We leave this for future work, beyond the

scope of this dissertation.

3.2.3.4 Threats to Validity

This section discusses the main threats to validity [128] that could affect our results.

Construct validity threats concern the relationship between theory and observation.

We evaluated the accuracy of the proposed approach by observing the number of Type

I and Type II errors. These measures are widely used in software engineering to

evaluate predictor models [2]. In addition, we analyze and compare the overall

classification accuracy of the proposed approach taking into account the number of

queries correctly and wrongly classified, and also perform a qualitative analysis of the

errors.

With respect to the internal validity, in our experimentation for concept location we

automatically extracted the set of queries from the online bug tracking system of the

object systems. In particular, we extracted two different queries from the bug reports,

one derived from the title of the bug report and one from the description of the bug.

Such queries are approximations of actual user queries. However, we also included a

www.manaraa.com

82

manually formulated query to address the threat to validity introduced by the

automatically constructed queries.

The external validity refers to the generalization of our findings. In order to address

this threat, we selected a set of seven software systems from diverse domains,

implemented in two programming languages for our concept location study. A larger set

of queries and more systems would clearly strengthen the results from this perspective.

One threat to the external validity of our results is the fact that we used the results of

only one TR engine in order to classify the queries as high-quality or low-quality. More

precisely, we used Lucene, which is an implementation of the VSM technique. Since

several other TR methods have been previously used to support concept location,

further experimentation is needed to analyze whether the proposed approach works

well also with other TR methods. The last threat to external validity is related to the fact

that we only evaluated the proposed approach for the task of TR-based concept

location. Thus, we cannot (and do not) generalize the results to other software

engineering tasks.

Finally, conclusion validity refers to the degree to which conclusions reached about

relationships between variables are justified. In our study, we only draw conclusions

referring to the use of different classifiers, which we support with evidence in the form of

classification correctness and Type I and II errors.

3.3 Related Work

3.3.1 Query Quality Analysis in Software Engineering

There is currently no other work in software engineering analyzing the quality of text

retrieval queries.

www.manaraa.com

83

The closest work in the field includes studies that have looked at the results of

formulating different queries for the same information need [73, 87, 95, 119]. The

drastic differences between the results returned by the different queries highlight the

strong dependence of the retrieval performance on the query and motivate our work.

3.3.2 Query Quality Analysis in Natural Language Document Retrieval

Query quality was first studied in the Text Retrieval community and emerged from

the need to explain the high variance in performance across different queries observed

during the Text REtrieval Conference (TREC) competitions. A special track was

created for this purpose at the TREC conference between 2003-2005, i.e., the Robust

track [123]. The participants were first encouraged to decrease the variance of their TR

engines across the range of queries, by focusing on improving the performance on

queries known to be hard to answer (i.e., having low quality). This was followed in 2004

and 2005 by an additional challenge of predicting the performance of the TR engines on

each individual query, i.e., to predicting the quality of each query. The query quality

predictions were done based on different measures that captured various properties of

the queries, document collections, and list of search results. The prediction power of

each measure was determined by correlating its values with the average precision (AP)

values achieved by the queries after execution. A high correlation would indicate that

the measure is able to assess the performance of a query, in terms of AP. The

correlations obtained were, however, very low and even negative in some cases. The

outcome of the Robust track indicated that predicting the quality of queries is a

challenging problem, and sprouted the research on this topic. Since then, numerous

approaches for assessing the quality of TR queries have been proposed in the NL

www.manaraa.com

84

document retrieval field [23], but the main goal has remained the same: predicting the

AP of a query based on measures that correlate with it.

Our main goal is different than most of the work on query quality existent in the field

of NL document retrieval. While having a correlation between the quality of a query and

the AP is interesting, it has little practical application as the end goal. On the other

hand, assigning a quality label to each query, i.e., high or low, enables the software

engineer to use this information as a recommendation of whether the results returned

by a TR approach are worth investigating or not. If the query is estimated to be of low

quality, it is likely that the results returned in response to that query are not satisfactory,

and thus, investigating them could lead to time and effort wasted. If the query is of high

quality, on the other hand, the software engineer is likely to find useful information

among the top retrieved results.

A few papers in the field of NL document retrieval have also investigated the query

quality prediction problem from the perspective of classifying incoming queries into easy

to answer (high-quality) and hard to answer (low-quality) queries [51, 122, 129]. In

these works, several classification approaches have been used for this purpose, and in

each case, decision trees were found to be the most adequate for solving this problem.

While we take inspiration from this work in using classifiers, and in particular decision

trees for predicting if a query is of low- of high-quality, our work is different in several

ways from the work in NL document retrieval.

First of all, we use a different set of quality measures for training the classifiers.

Many of the measures used by the work in NL retrieval are relying on the fact that the

query and the documents are written in natural language, specifically English, and make

www.manaraa.com

85

use of the rules that govern this language. On the other hand, software artifacts and the

queries used to search them commonly contain terms and constructions that are not

correct English and therefore do not adhere to those rules. We carefully selected a set

of 28 pre-retrieval (collected before the query is executed) and post-retrieval (collected

after the query is executed) query quality measures which do not rely on English rules

and are suited to be applied to software engineering artifacts.

The second aspect of our work that is different is the context in which the query

quality approaches are used. This is the first time query quality prediction has been

addressed in the context of software engineering tasks. Accurately predicting the

quality of text retrieval queries can have a significant impact on the multitude of tasks

supported by such approaches.

www.manaraa.com

86

CHAPTER 4 QUERY REFORMULATION SUPPORT FOR TEXT RETRIEVAL IN

SOFTWARE ENGINEERING

When the results returned by TR in response to a query are not relevant (i.e., the

query is of low quality), the query is usually reformulated by adding or removing words.

Rewriting a query in order to improve its quality and retrieve the relevant documents

closer to the top of the list of results is often as difficult as writing the query in the first

place. This is due to several reasons. First, the developers writing the queries are

often not the same as the ones that wrote the software artifacts being searched, which

can lead to mismatch between the vocabulary used in the query and the one of the

searched artifacts, leading to failed searches. Another problem is the fact that it is hard

for developers to understand what was wrong with the initial query and how to improve

it. This is often due to the fact that TR techniques use complicated mathematical

models which are hard to grasp in enough detail to understand how queries should be

written or improved. Also, studies [119] have shown that developers often have a hard

time reformulating and improving queries even after several tries.

This problem has been recognized by software engineering researchers and two

types of approaches have been proposed to assist developers with the query

reformulation. The first category of approaches is based on user relevance feedback

and it has been employed in the context of traceability link recovery [38]. In this chapter

we investigate the application of relevance feedback in the context of a different task,

namely concept location (Section 4.1).

The second category of approaches are completely automatic, but employ the same

reformulation strategy for all queries [27, 50, 61, 87, 117, 127]. We argue that different

www.manaraa.com

87

queries may require different reformulation approaches and introduce a novel approach

which differentiates between queries based on their lexical properties and selects the

best reformulation approach for each query individually based on these properties

(Section 4.2).

4.1 Semi-Automatic Query Reformulation for Text Retrieval in Software

Engineering

Text Retrieval techniques have some limitations when applied to software

engineering tasks:

1. all TR approaches are highly sensitive to the ability of the user to write good

queries;

2. the knowledge gained by the user while using the TR approaches is not

captured explicitly.

Developers start the process of using TR techniques from a description of the task

or a software artifact and they either use the entire description or artifact as a query or

they select a set of words from it and use this subset as a query. How the developers

formulate the queries depends on their experience and on their knowledge of the

system. Previous work showed that developers tend to write queries with significantly

different performance starting from the same change request [73]. As the developer

investigates the results of the first search, she learns more about the system and can

eventually decide to improve the query by adding or removing words. However, there is

a gap between the source code representation as classes and methods (or other

decomposition units) and the words in a query and some developers can fill this gap

easier than others.

www.manaraa.com

88

Relevance feedback is a semi-automatic technique which aims at addressing these

limitations. It captures the developer knowledge by utilizing user input in order to

automatically reformulate TR queries. Relevance feedback has been one of the

successes of information retrieval research for the past 30 years [81]. For example, the

Text Retrieval Conference (co-sponsored by the National Institute of Standards and

Technology - NIST and the U.S. Department of Defense) has a relevance feedback

track. While the applications of relevance feedback and the type of user input to

relevance feedback have changed over the years, the actual algorithms have not

changed much. Most algorithms are either pure statistical word based, or are domain

dependent. There is no general agreement of what the best RF approach is, or what

the relative benefits and costs of the various approaches are. In part, that is because

RF is hard to study, evaluate, and compare. It is difficult to separate out the effects of

an initial retrieval run, the decision procedure to determine what documents will be

looked at, the user dependent relevance judgment procedure, and the actual RF

reformulation algorithm.

There are three types of feedback: explicit, implicit, and blind (“pseudo”) feedback.

In our approach, we chose to implement an explicit RF mechanism. Explicit feedback is

obtained from users by having them indicate the relevance of a document retrieved for a

query. Users may indicate relevance explicitly using a binary or graded relevance

system. Binary relevance feedback indicates that a document is either relevant or

irrelevant for a given query. Graded relevance feedback indicates the relevance of a

document to a query on a scale using numbers, letters, or descriptions (such as "not

relevant", “somewhat relevant", "relevant", or "very relevant").

www.manaraa.com

89

Classic text retrieval applications of RF make several assumptions [81], which are

not always true in the case of source code text and make the problem more challenging:

- The user has sufficient knowledge to formulate the initial query. This is not

always the case when it comes to software, as developers might be unfamiliar

with a software system or they might not have enough knowledge about a

particular problem domain.

- There are patterns of term distribution in the relevant vs. non-relevant

documents: (i) term distribution in relevant documents will be similar; (ii) term

distribution in non-relevant documents will be different from that in relevant

documents (i.e., similarities between relevant and non-relevant documents are

small). There is no evidence so far if this is true for source code.

RF has also some known limitations, which approaches in software engineering

also face:

- It is often harder to understand why a particular document was retrieved after

applying relevance feedback.

- It is easy to decrease effectiveness (i.e., one irrelevant word can undo the good

caused by many good words).

- Long queries are inefficient for a typical IR engine. In the case where the

queries represent software artifacts, it is easy to end up with long queries.

In software engineering, RF has been previously used for traceability link recovery

[38, 57]. In the context of software engineering tasks, the developers especially

benefitting from TR use are those that are not familiar with the software, which means

they may not be able to reformulate the query in a way that matches relevant

www.manaraa.com

90

documents. Relevance feedback relieves the burden of reformulating queries from

developers’ shoulders and allows them to focus on the software artifacts rather than on

the query. Rather, relevance feedback requires developers to analyze the results of TR

and judge if the artifacts are relevant or not to the task at hand. Using this information,

relevance feedback mechanisms can then reformulate the queries without developer

involvement.

4.1.1 Rocchio-based Relevance Feedback for Software Engineering

Using relevance feedback with TR-based approaches for software engineering

changes the process described in Section 2 by modifying the last step, i.e., results

examination. When using the relevance feedback mechanism, the developer examines

the top N documents in the ranked list of results and for every software document (i.e.,

class, method, requirement, test case, etc.) examined, makes a decision on whether the

document satisfies the information need for the current task or not. If the document

satisfies the information needed, then the search succeeded and the process ends.

Else, the user marks the document as relevant or irrelevant for the task at hand, based

on the information it contains. A relevant document will contain useful information, on

the topic of the current task, while it is still not the final target of the search. After the N

documents are marked a new query is automatically formulated and the TR engine uses

the new query to search the code. The process is iterative and can be repeated several

times. If several rounds of feedback do not result in reaching the wanted documents,

the query may still be reformulated manually by the user.

There are several options to implement a relevance feedback mechanism. One of

the most popular approaches is the Rocchio relevance feedback method [111], used in

www.manaraa.com

91

conjunction with a Vector Space Model (VSM) [112] indexing technique. Rocchio has

been previously used in the context of traceability link recovery [38, 57] in software

engineering.

The Rocchio algorithm bases the reformulation of the query on the formula

described below. Given a set of documents DQ encompassed by query Q, let RQ be the

subset of relevant documents and IQ the set of irrelevant documents to the query. The

original query Q can be then transformed by adding terms from RQ and removing terms

from IQ. This mechanism is meant to bring the query closer to the relevant documents

and drive it away from the irrelevant documents in the vector space. The new query is

formulated as follows:

�h = 	i� +	 jS<%S�
 −	 k|�%|�
�∈lm�∈nm

Where:

- Q’ is the new, reformulated query

- Q is the initial query (the query before reformulation)

- α is the weighting parameter for the terms in the initial query. It represents the

boost or importance (in the reformulated query Q’) given to the terms in the

original query Q

- β is the weighting parameter for the terms in the relevant documents. It

represents the boost or importance (in the reformulated query Q’) added to the

terms which appear in the documents marked as relevant by the users

- χ is the weighting parameter for the terms in the irrelevant documents. It

represents the penalization (in the reformulated query Q’) of the terms which

appear in the documents marked as irrelevant by the users

www.manaraa.com

92

- d represents a document and its associated vector in VSM

The relevance feedback can be given by the user in several feedback rounds and

the query is updated after each round based on the query generated in the previous

round and the terms in the documents marked as relevant or irrelevant by the user. The

three constants α, β, and χ are provided so that a level of importance can be specified

by the user for the initial query, the relevant documents and the irrelevant documents.

4.1.2 Evaluation on Concept Location in Source Code

We performed an evaluation of Rocchio in an empirical study in the context of

concept location in source code.

4.1.2.1 Study Design

The goal of the study was to address the following research question:

RQ: Does Rocchio improve the results of TR-based concept location?

To answer it, we compared the results of TR-based concept location with and

without using Rocchio, given a set of change requests. The study consists of the

reenactment of past changes in open source software (i.e., we know which methods

were modified in response to the change request). The modified methods form the

change set, and we call these methods target methods. This methodology has been

used in previous work on evaluating concept location techniques [73, 76, 99].

We implemented our own version of Rocchio, which integrates with Apache

Lucene16, a commonly used and improved implementation of VSM. For setting the

weighting parameter values, De Lucia et al. [38] advocate using α=1, β=0.75, and

χ=0.25 (i.e., relevant documents are three times more important than irrelevant ones).

16

 http://lucene.apache.org

www.manaraa.com

93

Our implementation follows a similar line of thought, setting values of α=1, β=0.5, and

χ=0.15 for the three weighting parameters. We tried other sets of weights (α=1, β=0.75,

and χ=0.25 and α=1, β=1, and χ=1), but the final choice of weights yielded the best

results. In the rest of this section, we refer to the implementation using the chosen set

of weights.

Query reformulation using relevance feedback is prone to noise, as many terms can

be added to the query in just one round of feedback. To filter noise and prevent

common but unimportant terms to be included in the query, the system used in this

paper only allows terms to be added to the query if they appear in less than 25% of the

documents in the corpus.

When analyzing the top ranked methods, a user is asked to judge the current

method as relevant, irrelevant, or neutral to the current change task. For our study on

concept location, one developer provided the feedback for Rocchio. He has seven

years of programming experience (five in Java) and was not familiar with the source

code used in the study. For each change request his task was to locate one of the

methods from the change set, based on the following scenario:

a) He starts by running a query based on the change request, called the initial

query.

b) If any one of the target methods is among the top 5 methods in the ranked list of

results, then he stops and selects another change request, as Rocchio is not

needed in this case (i.e., IR-based concept location will reach the method fast

enough). We considered 5 as the threshold here as we selected this as the

www.manaraa.com

94

maximum number of methods the developer needs to evaluate in a round of

feedback before reformulating the queries.

c) Else he provides Rocchio in several rounds. In each round, the developer

marks the N top ranked methods as being relevant or irrelevant. If he cannot

judge the relevancy of a method, the he marks the document as neutral and

proceeds to the next document, increasing the size of the set of marked

methods set by one.

d) Rocchio automatically reformulates the query based on the feedback provided

by the developer, runs the new query, and a new round of feedback begins. We

keep track of the number of methods marked by the developer.

e) After each query is run, based on the positions of the target methods in the

ranked list of search results and on the number of methods marked, the

following decisions are made:

• If any of the target methods is located in the top N documents, then STOP;

consider Rocchio successful and a target method found.

• If for two consecutive feedback rounds the positions of the target methods

declined in the ranked list of results, then STOP; consider that Rocchio failed

(i.e., the developer needs to reformulate the query manually).

• If more than 50 methods were marked by the developer, then STOP; consider

that Rocchio failed (i.e., the developer needs to reformulate the query

manually).

The values used for N vary and the performance of Rocchio depends on it. The

most commonly used values in literature range from 1 to 10. We investigated the

www.manaraa.com

95

results of Rocchio for three values of N: 1, 3, and 5, which are recommended values in

recent studies for presenting lists of results to developers for investigation [110]. Each

reenactment was done three times by the developer, the difference from case to case

was the number N of marked methods in one round.

4.1.2.2 Data

We chose as the objects of the study three open source systems: Eclipse17 2.0,

JEdit18 4.2, and Adempiere19 3.1.0. Eclipse is an integrated development environment

developed in Java. For our study, we considered version 2.0 of the system, which has

approximately 2.5 millions lines of code and 7,500 classes. JEdit is an editor developed

for programmers and it comes with a series of plugins which add extra features to its

core functionality. It is developed in Java and version 4.2 used in this study has

approximately 300,000 lines of code and 750 classes. Adempiere is a commons-based

peer-production of open source enterprise resource planning applications. It is

developed in Java and it has approximately 330,000 lines of code and 1,900 classes in

version 3.1.0, which was used in our study.

All three systems have an active community and a rich history of changes. They all

have online bug tracking systems, where bugs are reported and patches are submitted

for review. We used the history of a software system, i.e., approved patches of

documented bugs, in order to extract real change requests and their corresponding

change sets. The bug descriptions are considered to be the change requests. This

approach, based on reenactment, has been used in previous work on evaluating

17

 http://www.eclipse.org/
18

 http://www.jedit.org/
19

 http://www.adempiere.org/

www.manaraa.com

96

concept location techniques [73, 76, 99]. Some changes involve the addition of new

methods. We do not, however, include these methods in the change sets, as they did

not exist in the version that a developer would need to investigate in order to find the

place to implement the change. For each of the systems, we analyzed their online

defect tracking systems and manually selected a set of ten bugs to extract change sets

for our study.

The Eclipse community uses the open-source bug tracking system BugZilla20 to

keep track of bugs in the system. Each bug has an associated bug report, which

consists of several sections, one of which is the bug description. Sometimes the

patches used to fix the bugs are also contained in the bug report, as attachments. They

are usually in the form of diff files, containing the lines of code that changed between

the version of the software where the bug was reported and the version where the bug

was fixed. For our study, we chose an initial set of ten Eclipse bugs reported in version

2.0 of the system, for which the patches were available in their bug reports.

For jEdit21 and Adempiere22, we analyzed the bug tracking systems hosted on the

projects’ sourceforge.net website. Both projects have systems that keep track of the

patches submitted for known bugs in the source code. In these trackers, each patch

has an associated report where the changes implemented in the patch are described in

a diff file attached to the report. We selected for each system ten initial patches for

which a good description of the bug fixed by the patch was available, either in the

description of the patch or in a separate bug report. All the patches we selected for

20

 https://bugs.eclipse.org/bugs/
21

 http://sourceforge.net/tracker/?group_id=588&atid=300588
22

 http://sourceforge.net/tracker/?atid=879334&group_id=176962

www.manaraa.com

97

jEdit were submitted and their corresponding bugs reported after version 4.2 of the

system was released. For Adempiere, the patches selected were after the release of

version 3.1.0.

Based on the patches reported for the three systems, we constructed the 10 change

sets for each system. All change sets contained between one and six target methods.

We extracted a corpus for each of the three systems. We used the version of the

software in which the bugs chosen in the previous step were reported. We mapped

each method in the source code to a document in our corpus. The Eclipse corpus has

74,996 documents, the JEdit corpus has 5,366 documents, and the Adempiere corpus

has 28,622 documents. By comparison, the size of the corpora used in previous work

on Rocchio in traceability [38, 57] is in the few hundreds of documents range.

The corpora were built in the following manner:

a) We extracted the methods using the Eclipse built in parser. Then, the

comments and identifiers from each method implementation were extracted.

b) The identifiers were split according to common naming conventions. For

example, “setValue”, “set_value”, “SETvalue”, etc. are all split to “set” and

“value”. We kept the original identifiers in the corpus, which would favor any

query containing an identifier already known by the user.

c) We filtered out programming language specific keywords, as well as common

English stop words23.

23

 www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

www.manaraa.com

98

d) We used the Porter stemmer24 in order to map different forms of the same

lexeme to a common root.

As mentioned before, the goal of relevance feedback is to allow the developer not to

write manually defined queries. Hence, in the study the developer used as the initial

query the bug description and bug title contained in the bug or patch reports (i.e., he

copied the bug description and title). However, prior to the study we eliminated any

details referring to the implementation of the bug fix contained in these descriptions.

The query was then automatically transformed following the same steps as the corpus

(i.e., identifier splitting, stop word removal, stemming).

Tool support in concept location is geared towards reducing developers’ effort in

finding the starting point of a change. Previous work on concept location [73, 76, 99]

defined and used as an assessment measure the number of source code documents

that the user has to investigate before locating the point of change, called effectiveness.

We use here the same measure with an added advantage. In previous work the cost

for formulating and reformulating a query was never considered in evaluation (i.e.,

assumed to be zero). In our case, the cost of formulating and reformulating a query is

indeed almost zero, as the initial query is copied from the bug description and title,

whereas subsequent queries are formulated automatically. The number of methods

investigated is automatically tracked as they are explicitly marked by the developer.

For each change request, the baseline is provided by the IR-based concept location

without query reformulation. The initial query is run and the baseline effectiveness

measure is the highest rank (k) of any of the target methods. This means the user

24

 http://tartarus.org/~martin/PorterStemmer/

www.manaraa.com

99

would have to investigate k methods to reach the target. For the Rocchio case the

effectiveness measure is the number of methods marked one way or another (i.e.,

relevant, irrelevant, or neutral) before the target was found or until Rocchio fails (see the

methodology described above) plus the last rank of the target method in the results list.

Rocchio is considered to improve the baseline if its effectiveness measure is lower than

that of the baseline (i.e., fewer methods are investigated).

4.1.2.3 Results and Discussion

We selected 10 changes for each system (i.e., 30 in total). In 12 cases, at least one

of the target methods was ranked in top 5 after the initial query, hence we did not use

Rocchio in those cases. Therefore, our analysis focused on the remaining changes: 7

for Eclipse, 6 for jEdit, and 5 for Adempiere.

Quantitative Evaluation

Table 4-1 shows the quantitative results obtained by the Baseline and Rocchio with

the N values of 1, 3 and 5. The Baseline column shows the positions of the target

methods in the result list when the initial query was run. The best rank in each case

where there is more than one target method is marked in bold. This represents the

effectiveness measure in the baseline case (i.e., how many methods would the user

need to investigate to find the best ranked target).

The Rocchio columns show the positions of the target methods at the end of the

relevance feedback location process, whether it succeeded or not. If a target method

was not ranked in the top 1,000 results at the end of Rocchio, we denote its position as

1K+. The N in the column header indicates the number of marked methods in each

feedback round during Rocchio. Note that only the methods for which relevance was

www.manaraa.com

100

given are counted as one of the N methods ranked in a feedback round (i.e., methods

marked neutral are not counted towards the N, yet they count towards the effectiveness

measure).

The number of methods analyzed by the developer before he stopped (i.e., the

effectiveness measure), either because a target method was found or because Rocchio

failed is reported in parenthesis (marked with m). This number includes all the methods

Table 4-1. Concept location results for Eclipse, jEdit and Adempiere

Eclipse

No. Defect # Baseline Rocchio with N=1 Rocchio with N=3 Rocchio with N=5

1 13926 54 1 (16m/15r) 11(51m/16r)- 50m+ 36 (50m/10r) - 50m+

2 23140 17,42,47 99, 1, 2 (9m/8r) 4, 1, 2 (7m/3r) 6, 4, 14 (9m/2r)

3 19691
1K+,368,531,
K+, 108, 139

1K+, 1K+, 1K+, 1K+,
1K+, 1K+ (2m/2r) - NI

1K+, 1K+, 1K+, 1K+,
1K+, 1K+ (7m/2r) - NI

1K+, 1K+, 1K+, 1K+,
1K+, 1K+ (11m/2r)- NI

4 12118 9 1 (5m/5r) 1 (23m/8r) 4 (10m/2r)

5 17707 8 1 (2m/2r) 1 (4m/2r) 2 (7m/2r)

6 19686 428 448 (5m/5r) - NI 3 (48m/16r) 5 (46m/9r)

7 21062 583,56 1K+, 781 (2m/2r) - NI 604, 1 (37m/13r) 1K+, 1K+ (20m/4r) - NI

jEdit

1 1649033 40,87,22 70,60,50(8m/7r) - NI 39,7,42 (22m/7r) - NI 30, 5, 33 (26m/5r)

2 1469996 296 1 (37m/36r) 289 (12m/4r) - NI 5 (41m/9r)

3 1593900 7 1 (6m/4r) 1 (5m/2r) 1 (7m/2r)*

4 1601830 47 216 (2m/2r) - NI 242 (9m/3r) - NI 146 (10m/2r) - NI

5 1607211 354 98 (5m/5r) - NI 3 (36m/12r) 3 (28m/6r)

6 1275607 151 238 (4m/4r) - NI 38 (48m/16r) - NI 35 (50m/10r) - 50m+

Adempiere

1 1605419 15,550 1, 11 (8m/7r) 3, 109 (17m/5r) 1, 81 (12m/3r)

2 1599107 122 613 (6m/3r) - NI 1K+ (8m/2r) - NI 1K+ (12m/2r) - NI

3 1599116 7 1 (3m/2r) 1 (5m/2r) 1 (7m/2r)*

4 1612136 58 141 (4m/3r) - NI 1 (13m/5r) 1 (16m/4r)

5 1628050 52 1 (3m/3r) 2 (5m/2r) 2 (7m/2r)

Rocchio retrieves results more
efficiently

Rocchio retrieves a better cumulative ranking of the
target methods.

* Rocchio performs as efficiently as the baseline
NI: no improvement for 2 consecutive rounds;
50m+: 50+ methods need to be analyzed to reach a target method

www.manaraa.com

101

marked by the developer in all the rounds of feedback, including also the methods

marked as neutral, plus the rank of the target method in the final round. To complete

the picture, the number of feedback rounds is also reported in parenthesis (denoted with

r), including the (incomplete) round when the target is found.

For example, row #2 in Eclipse, reads as follows. Baseline (17, 42, 47) means

there are three target methods and the best ranked is on position 17. Rocchio with N=3

(4, 1, 2 (7m/3r)) means that one of the three target methods (i.e., the second) was

ranked #1 on the 3rd round and the user marked a total of 7 methods to reach it

(including the target method in the 3rd round). The two numbers to compare here are:

17 in the baseline vs. 7 in the Rocchio case. We consider that Rocchio improves here

and highlight the table cell with dark grey. Cells marked with light grey show no

improvement of Rocchio, but they are interesting as the cumulative ranking of methods

is better than in the baseline (the number of investigated methods needs to be added

here to the ranks of the target methods for a proper comparison). White cells indicate

cases where Rocchio does not improve the baseline. NI marks the cases where there

was no improvement for 2 consecutive rounds and 50m+ the cases where more than 50

methods were analyzed by the developer without reaching a target method. The stars

in the white cells indicate the cases when Rocchio performed as good as the baseline.

The data reveals that Rocchio brings improvement over the baseline in 13 of the 18

change requests. In 3 cases, the improvement is observed for all values of N (i.e., all

three Rocchio cells are dark grey in these rows). Rocchio with N=1 improved in 9

cases, Rocchio with N=3 improved in 9 cases, and Rocchio with N=5 improved in 8

cases, not all the same. More specifically, in Eclipse for 6 out of the 7 change sets

www.manaraa.com

102

reported, Rocchio retrieved one of the target methods more efficiently than the baseline.

In jEdit, the ratio was 3 to 3, and in Adempiere Rocchio performed better in 4 out of 5

cases. We did not observe a pattern of when one of the values of N performs better

than the other ones, nor about the magnitude of the Rocchio improvement over the

baseline. So, we can not formulate at this time rules such as “N=5 is a better choice

than N=3 or N=1”, nor we can state that there is a correlation between the initial query

and Rocchio improvements.

Qualitative Evaluation

One interesting phenomenon that we observed is that for one change set in jEdit

and for one in Adempiere Rocchio did not improve the effectiveness of the baseline

(based on our working definition), however it achieved a better cumulative ranking of the

target methods. These two cases are marked with light grey in the table. We highlight

these cases as we believe is still an indication that Rocchio brings some added benefit

in these situations.

Another interesting and rather unexpected phenomenon is that in some cases

where the there are more target methods the baseline favors one of them, whereas

Rocchio helps retrieve another one faster. See Bug #23140 in Eclipse and Patch

#1649033 in JEdit (the light grey cell).

We identified cases when neither the ranking of the first target method, nor the

cumulative ranking of Rocchio was better than in the case of the baseline (i.e., all white

rows in the table). Our initial assumption was “if the initial query is really poor, Rocchio

does not help much”. However, this is not true as there were several cases where the

initial query led to poor results, yet Rocchio improved them drastically (i.e., by one order

www.manaraa.com

103

of magnitude). For example, see Bug #19686 in Eclipse, Patch # 1469996, and Patch

#1607211 in JEdit.

We then investigated the cases with poor Rocchio performance in more detail. For

example, in the case of Bug #19691 in Eclipse, we found that the methods the

developer would consider as being relevant based on the bug description would in fact

not be relevant, even if they contained related terms from the bug description. The bug

description is about exporting preferences for the team, whereas the target methods just

contained "ignore" settings in the team preferences. This case highlights the difficulty of

concept location in practice. Change requests are often formulated in terms different

that the source code, both linguistically and logically. We can safely conclude that

Rocchio brings improvements over IR based concept location in many cases, but it is

far from being a silver bullet.

4.1.2.4 Threats to Validity

This section presents the threats to the validity of the study and of the results

obtained, organized by threat category [128].

Threats to construct validity concern the relationship between theory and

observation. To evaluate the CL task, we used the effectiveness measure and the

ranks of the relevant methods in the list of results, which are widely used measures in

concept/feature location studies since they provide a good estimation of the effort that a

developer needs to spend in a TR-based concept location task.

Threats to internal validity concern co-factors that can influence the results. In our

study we automatically extracted the set of queries from online bug tracking systems.

Such queries are approximations of actual user queries and in practice, the user may

www.manaraa.com

104

reformulate the query along the way and IR may retrieve better results with the user re-

formulated query. Simply put, the study approximates the situation when the developer

is not good at writing queries. However, developers are often faced with unfamiliar

systems, in which cases they must rely on outside sources of information, such as bug

reports, in order to formulate queries during TR-based concept location. Therefore, we

believe that the approach used in our experimentation resembles real usage scenarios.

We also argue that in the case when developers formulate good initial queries, Rocchio

is not needed. In fact, as the results revealed, 12 of the 30 bug descriptions produced

great initial queries. It is important to clearly establish the cases where explicit Rocchio

helps.

Threats to conclusion validity concern the relationship between treatment and

outcome. Our results are based on the feedback provided by only one user. Different

people might give different feedback to Rocchio. Also, the change requests were

selected by a researcher from the pool of change requests available, which had also the

patches available. Even though the researcher selecting the change requests was not

the one providing the relevance feedback and there was no knowledge of the results for

particular change requests at the time of the selection, we are aware of the fact that

selecting other changes might lead to different results.

We used only three values of N (i.e., 1, 3, and 5) in the study and a single weighting

scheme in the Rocchio implementation. We are aware of the fact that other values of N

might retrieve different results. However, these values are within the range of values

usually adopted in the implementation of explicit relevance feedback and represent a

reasonable amount of information for a user to analyze in one round of feedback. The

www.manaraa.com

105

current set of weights used in our Rocchio implementation was chosen based on

empirical evidence. Other weights could lead to slightly different results.

Threats to external validity refer to the generalization of the results we obtained.

Regarding the systems used for the case study, we tried to mitigate this threat, by

selecting three software systems from diverse domains. A larger set of queries and

more systems would clearly strengthen the results from this perspective. While we

used data from several systems, we only used a single TR engine (i.e., Lucene). The

results may differ when using other TR engines.

4.2 Automatic Query Reformulation for Text Retrieval in Software Engineering

While the semi-automatic reformulation of queries led to promising results, one of

the shortcomings of this approach is that the developers still need to put in effort in

analyzing the list of results and marking them according to their relevancy. An

automatic approach, able to reformulate queries without developer assistance would be

desirable. Researchers have looked at this issue and proposed a series of approaches

for automatic query reformulation in software engineering [27, 50, 61, 87, 117, 127].

However, these approaches also have a limitation: they apply the same reformulation

approach to all queries.

The performance of a query depends on many factors and we conjecture that

queries with different properties may need different reformulation strategies. For

example, a query that has a single term will likely need an expansion strategy (i.e.,

adding terms) to improve its performance, whereas a verbose query may need a

reduction strategy (i.e., removing terms).

www.manaraa.com

106

In this section, we propose and evaluate an automated approach that, for a given

query, recommends a reformulation strategy based on its properties in order to improve

its results. We call this recommender Refoqus (REFormulation Of QUerieS). Refoqus

is based on the idea that the properties of a query dictate the best reformulation

technique to be used with it. It relies on historical data of queries, their properties, and

their performance when subjected to different reformulation approaches in order to learn

the best pairings between query types and reformulation techniques. To determine the

type of a query, it relies on a set of measures indicating several query quality attributes,

i.e., specificity, coherency, similarity, term relatedness, robustness, and score

distribution. These properties and the measures capturing them have been shown to

correlate with the performance of queries in the field of natural language document

retrieval [23]. Section 3.2 presents an application of these measures in software

engineering for predicting the quality of TR queries and offers also a description of the

28 measures used. We use the same set of measures in Refoqus, as these measures

have been carefully selected to be applicable to software data.

Refoqus determines among a set of possible reformulations the best one to use for

each individual query. We selected four reformulation strategies proposed in the field of

natural language document retrieval (see Section 4.2.1), which perform best in that

field, yet they are appropriate for software engineering data. Refoqus automatically

applies each reformulation strategy for the queries in the training set and learns which

reformulation strategy works best for which type of query (based on the relevant

properties). Given the model it builds based on training data, it is able to determine the

best reformulation for incoming queries, based on measuring just their properties. The

www.manaraa.com

107

underlying algorithms of Refoqus are generic, so the measures and recommendation

strategies can be replaced, if needed.

The Refoqus recommender is a premiere in software engineering, as well as in

natural language document retrieval. It is to date the only automatic query reformulation

approach that employs multiple strategies and selects the best one for each query, as

opposed to applying a single strategy to all queries.

4.2.1 Background on Automatic Query Reformulation Approaches

In this section we introduce terminology and definitions necessary to understand the

reformulation strategies used by Refoqus. The goal of query reformulation is to define a

new query, starting from the initial one, which is able to lead to improved retrieval

results. What exactly “good search results” means can differ according to context in

which the search is used, but it usually refers to the relevant documents being as close

as possible to the top of the search results list. This is the interpretation of quality we

adopt in this work, and we instantiate it later in our evaluation on concept location.

Over time, researchers in the field of TR have proposed and investigated a large

variety of approaches for producing candidate reformulations for an initial query. These

approaches fall in two categories [75]: query expansion approaches and query

reduction approaches. We introduce briefly each category with emphasis on the

reformulation strategies used in our proposed approach.

Query Expansion

Query expansion is meant to offer a solution to the problem known as “the

vocabulary mismatch problem” [46], where the terms in the query do not match the

vocabulary of the relevant documents in the corpus. A variety of query expansion

www.manaraa.com

108

approaches have been proposed in the field of TR. We found, however, that not all

these were applicable to our circumstances (i.e., source code based corpora). We

selected three existing approaches in the following way. We did not consider

approaches that relied on linguistic features or on sources of information external to the

corpus, like the web, ontologies, Wikipedia, or Wordnet. Such approaches are

designed to work for natural language documents as they rely on word relationships that

exist in English. Since we target source code-based corpora and previous studies [118]

have shown that words do not share the same relationships in source code as they do

in natural language, we decided not to consider such strategies in our recommender.

Some approaches [23]are based on algorithms with high computational complexity

to produce reformulations for a query. Since our end goal is to produce a recommender

which can be used by developers during their daily tasks, we did not consider such

approaches practical and thus, we did not select them.

 Finally, from all other available strategies we selected seven expansion strategies

that are reported to perform best in the TR literature [24]. We performed a preliminary

evaluation with the seven expansion strategies and selected the best three approaches

to be used by Refoqus. The results of the preliminary study can be found in the

Appendix of this dissertation. This final selection of reformulation approaches was

necessary in order to reduce the number of categories considered by the machine

learning approach when performing the classification step in order to assign queries to a

reformulation approach. This is needed in order to accommodate the situations where

the training data available for a particular software system is limited, and is therefore not

enough to learn accurate classification models based on many categories. This was the

www.manaraa.com

109

case also with the software systems we considered for our study on concept location,

where the number of queries available was limited.

Even though Refoqus in its current implementation makes use of only four

reformulation strategies overall (three expansion and one reduction technique), it is able

to obtain very good results and improve the results of queries after reformulation.

However, Refoqus is designed to be flexible, such that any reformulation strategy can

be replaced and additional ones can be added.

All three query expansion strategies selected are based on some form of pseudo-

relevance feedback, in that they consider the top K documents from the list of results as

relevant documents to the query. Then they use different techniques to order the terms

in these K documents and select the top N ones to use for the query expansion.

Currently, we use K=5 and N=10 in the implementation of Refoqus. However, these

parameters can be modified as needed and we plan to experiment with more values in

the future.

The first strategy is similarity-based and orders the terms in the top K documents

based on their Dice similarity (see below) with the individual query terms. The idea

behind Dice similarity is that two terms are related if they appear in the same

documents in the corpus, a common assumption in all TR engines. The formula of the

Dice similarity is:

)�+� = 	 2
$L⋀p
$L +
$p

Where:

- u is a term from the query

- v is a term from the top K documents

www.manaraa.com

110

- df denotes the number of documents in the corpus containing u, v, or both u and

v, respectively.

The other two techniques do not rely on similarities with the terms in the query. The

idea is to use the first K documents retrieved in response to the original query as a more

detailed description of the underlying query topic. Therefore, descriptive terms for this

topic can be used for expansion, and can be determined by identifying the most

representative terms for the set of top retrieved documents. One of the approaches is

based on Rocchio's [111] method for relevance feedback and assigns a score to each

term in the top K documents based on the sum of the tf-idf scores of the term in each of

the K documents. Tf-idf is a score often used in the field of TR to determine the

importance of a term for a particular document relative to the corpus. The formula of

Rocchio is:

<�++ℎ�� = 	�-$�
$��,
	
�gn

Where:

- R is the set of top K relevant documents in the list of retrieved results

- d is a document in R

- t is a term in d.

The last approach uses the Robertson Selection Value (RSV), as an ordering

function for the terms in the top K documents. The RSV formula is:

<�: = 	�-$�
$��,
	 × [���|<	 − ���|,]
�∈n

Where:

- C denotes the collection of documents in the corpus

www.manaraa.com

111

- R is the set of top K relevant documents in the list of retrieved results

- d is a document in R

- t is a term in d

- p(t|R) is the number of times t appears in the top K documents in the list of

results (R) divided by the number of terms in R

- p(t|C) is the number of times t appears in the whole document collection(C)

divided by the number of terms in C.

RSV also uses Tf-idf as part of its formula, but considers in addition the probability

of a term occurring in a relevant document in order to determine its importance for the

query topic (i.e., for the top K documents).

Query Reduction

Query reduction is based on the idea that the query contains both important

information as well as noise, i.e., words that do not contribute to the main intent of the

query and may hinder the retrieval of relevant documents. Therefore, query reduction

should help improve the results of a query. In the absence of user feedback and

information about the semantics of the query, automated query reduction needs to be

done with care, as intrusive reduction strategies may actually harm the results [75].

We adopt a conservative reduction strategy, which eliminates the terms that appear

in more than 25% of the documents in the corpus, as they are considered non-

discriminating. We previously used this strategy with Rocchio (see Section 4.1) for

filtering the set of terms added to a query when reformulating it.

www.manaraa.com

112

4.2.2 REFOQUS

Refoqus is based on the idea that the properties of a query are indicative of the best

way to reformulate it. Therefore, it uses historical data capturing the measures of query

quality and the performance of queries when reformulated using the different

reformulation approaches in order to learn, using a machine learning algorithm, the best

reformulation techniques for different types of queries.

When learning the best reformulation approaches, Refoqus uses a classifier and

assigns a label to each reformulation approach (including a label for “none”, indicating

that the query leads to the best results when left in its original form). When a new query

comes in, it will be assigned one of these labels based on its properties and on the

model learned by Refoqus from the historical data.

Refoqus has two main steps: (1) training the classifier; and (2) using the classifier to

recommend the best reformulation technique for incoming queries.

Training the Classifier

Refoqus needs a training data set for its classifier. The training data consists of

queries and their associated relevant documents. Refoqus communicates with the TR

engine used by the developer in order to run a query and get its list of results. In the

current implementation (which we used in the empirical evaluation from the next

Section), we used Lucene25. Refoqus executes the following steps in order to train its

classifier:

a) Refoqus uses the TR engine to rank all the relevant documents for each query in

the training data set.

25

 http://lucene.apache.org/

www.manaraa.com

113

b) The values of the 28 query property measures are computed for each of the

queries in the training data.

c) The four reformulation techniques are applied, one at a time, to each query in

the training set and the resulting reformulated queries are run by the TR engine.

d) The results obtained by the four reformulation variants are compared and the

best performing reformulation is determined for each query.

e) If there are queries that led to no relevant document being retrieved by the TR

engine after they were run in their original form and in any of the reformulated

forms, then these queries are removed from the training set. This is a necessary

step, as for such queries Refoqus will not be able to make any recommendation,

given that it cannot decide which is the best reformulation strategy.

f) The classifier is trained using the collected training data. One data point in the

final training data used by the classifier corresponds to a query. Each data point

has 29 attributes, 28 attributes corresponding to the query property measures

and one corresponding to the best reformulation strategy.

We chose classification trees [19] as the machine learning techniques, due to their

advantages and our previous good results in using them for predicting the quality of

queries (Section 3.1.2.4). The rules produced by classification trees are easy to

understand by humans, which is not true for other, more complex models. Hence, a

developer could interpret easily the recommendation made by Refoqus, before allowing

it to automatically reformulate the query, if she chooses to do so. Second, classification

trees perform implicitly feature selection. This is a very important property, as it allows

Refoqus to be less sensitive to the choice of query property measures. In the current

www.manaraa.com

114

form, it allows us to give as input all 28 measures of a query, as the classification tree

will determine automatically the subset of measures relevant for the classification, with

little overhead. The subset of measures used by Refoqus always contained only two

measures, selected among the 28 given as input. Note that this set of measures can

change between systems and between different evaluation rounds for cross- validation

within the same system.

Classification trees are suitable to solve problems where the goal is to determine

the values of a categorical variable based on one or more continuous and/or categorical

variables. In our approach, the categorical dependent variable is represented by the

best query reformulation technique for a particular query, while the independent

variables are the 28 query property measures described in Section II. The classifier

uses the training data to automatically select the independent variables and their

interactions that are most important in determining the dependent variable to be

explained.

There are two possible approaches when training the classifier, namely within-

project and cross-project training, each having advantages and disadvantages. In

within-project training, the classifier is trained and tested on the same system, and the

evaluation is done independently for each software system. In order to ensure the least

bias in the evaluation, all data points should be used for training and testing at some

point. For this purpose, cross-validation is used, where the evaluation is done in

several rounds, such that all data points get to be evaluated exactly once, in one of the

rounds. In each round a small part of the data is kept for testing, while the rest is used

for training. When performing this kind of validation it is important to select balanced

www.manaraa.com

115

training sets, where there are enough data points to learn from for each possible class

and that the number of data points belonging to each class is balanced in the training

set. In the case of Refoqus this means that the training sets need to be chosen such

they contain approximately equal numbers of data points assigned to each of the

reformulation strategies.

In cross-project training, given a set of n systems, the classifier is trained using all

data points from n-1 systems and then tested on the data from the nth system, which

was not included in the training. This evaluation is repeated n times, each time

considering one of the systems for testing and the rest for training.

Cross-project training has the advantage that it does not require training data for a

new system, thus simulating a plausible scenario when such data is not available.

However, it may miss some project-specific properties of the data, which the within-

project training may be able to take advantage of for producing more accurate results.

We investigate both approaches in our evaluation, described in Section 4.2.3.

The output of the training step, no matter the type of training used (i.e., within- or

cross- project), is the classification tree, represented by a set of yes/no questions that

splits the training sample into gradually smaller partitions that group together cohesive

sets of data, i.e., those having the same value for the dependent variable. An example

of classification tree built in our study is reported in Figure 4-1.

www.manaraa.com

116

Figure 4-1. An example of classification tree

Using the Classifier for New Queries

Once the classification tree is built, it can be used to recommend the best

reformulation technique for a given query. When a new query is issued (manually or

automatically) to the TR engine, which returns the results, Refoqus computes the 28

measures for the new query. Based on the classification tree and these 28 measures,

Refoqus determines automatically which reformulation strategy should be applied to the

new query and it recommends it to the developer. The recommended reformulation

technique is then automatically applied to add and/or remove terms from the query in

order to improve its performance.

4.2.3 Evaluation on Concept Location in Source Code

4.2.3.1 Study Design

We conducted an empirical study to investigate the performance of Refoqus in the

context of TR-based concept location. There are several aspects of Refoqus that we

want to evaluate. First, we want to establish which training strategy (i.e., within- or

cross-project training) works better. Second, we want to establish whether the

www.manaraa.com

117

reformulations recommended by Refoqus improve the queries and if so by how much.

Our conjecture is that the strength of Refoqus comes from the fact that it selects the

best reformulation strategy for each query. Hence, third, we compare Refoqus with

baseline approaches, based on the individual reformulation strategies used by Refoqus.

In order to address these issues, we formulated three research questions and

conducted three experiments to answer them:

RQ1: Which training approach leads to better predictions for Refoqus?

RQ2: Does Refoqus improve the performance of the queries?

RQ3: Does Refoqus perform better than the baseline reformulation

techniques?

Answering RQ1 allows us to determine and inform future users what is the best way

to construct the training data. A positive answer for RQ2 implies that Refoqus can be

used to improve TR-based concept location approaches (and hopefully TR approaches

for other software engineering tasks). A positive answer for RQ3 confirms our

conjecture that selecting the best reformulation strategy for each query is better than

applying the same strategy to all queries.

4.2.3.2 Data

Our choice of empirical evaluation uses reenactment of concept location based on

past changes. This is a very common evaluation technique used in feature/concept

location research. Past changes in software provide us with a change request (or bug

description in this case) and the actual changes in the code done in response to the

request, named the change set. During concept location a user or a tool starts with the

change request and finds a place in the code where a change should be made. To

www.manaraa.com

118

verify that this location is correct, the complete change should be implemented and

tested. Reenactment based on historical data allows us to assess the correctness of

concept location without complete implementation and testing. If concept location

results in a place in the code that is in the original change set, then we can conclude

that concept location succeeded. If the result of the concept location leads to a place

that is not in the change set, then we consider that concept location failed.

Reenactment also allows us to automatically formulate queries for TR-based

concept location. The bug reports contain both the title of the bugs and their

description. In this study we automatically created queries considering two different

options: (i) the title of the bug; (ii) the description of the bug. In addition, to have a

better simulation of a usage scenario of the proposed approach, we also asked a Ph.D.

student to manually formulate a query after analyzing only the bug report content. In

the end, we obtained three queries for each bug report. For each query formulated for a

bug report, the set of relevant documents to be retrieved is defined by the change set.

The same data set is used when answering each research question. We collected

an initial set of 309 queries, corresponding to 103 bugs extracted from the bug tracking

systems of five open source systems implemented in Java and C++: Adempiere26 3.1.0,

ATunes27 1.10.0, FileZilla28 3.0.0, JEdit29 4.2, and WinMerge30 2.12.2. Adempiere is a

common-based peer-production of open source enterprise resource planning

applications. ATunes is a full-featured media player and manager. FileZilla is a

26

 http://www.adempiere.org/
27

 http://www.atunes.org/
28

 https://filezilla-project.org/
29

 http://www.jedit.org/
30

 http://winmerge.org/

www.manaraa.com

119

graphical FTP, FTPS, and SFTP client, while JEdit is a text editor for programmers.

Finally, WinMerge is a document differencing and merging tool.

We removed the queries for which no target method was retrieved when running the

original query and all of its four reformulated forms. The data set was reduced to 94

bugs and their corresponding 282 queries. From this point on, we will refer only to

these remaining 282 queries. The number of queries extracted from each project are

reported, together with some size attributes of the object systems, in Table 4-2.

Table 4-2. Characteristics of the Five Software Systems

System Version Language KLOC #Methods #Queries #Bugs

Adempiere 3.1.0 Java 330 28,355 51 17

ATunes 1.10.0 Java 80 3,481 51 17

FileZilla 3.0.0 C++ 240 3,240 72 24

JEdit 4.2 Java 250 5,532 54 18

WinMerge 2.12.2 C++ 410 8,012 54 18

Total - - 1310 48,620 282 94

4.2.3.3 Planning and Execution

In order to generate term suggestions for query expansion, we used the top five

documents in the ranked list of results. Also, when expanding the query, we considered

the first 10 term suggestions. These decisions were made based on recommendations

found in the domain literature [24].

After the collection of the data, we performed the following steps:

a) Document corpus creation. We built the source code corpus by considering each

method in the system as a separate document. For each method, we extracted

the terms found in its identifiers and comments. We then normalized the text

using identifier splitting (we also kept the original identifiers), stop words removal

www.manaraa.com

120

(i.e., we removed common English words and programming keywords), and

stemming (we used the Porter stemmer).

b) Query execution and effectiveness measurement. We performed the same text

normalization process adopted for the methods on all the 282 queries and their

reformulations. Then, we executed each query on their respective document

corpus by using Lucene and measured the query effectiveness by identifying the

position of the first relevant document (i.e., changed method) in the ranked list of

search results. The higher the method appears in the result list (i.e., the lower

its rank), the better the query performance.

c) Answering RQ1. To find out which training strategy works better, Refoqus was

trained using the within- and cross-project strategy, respectively. For the within-

project case, the classification model is trained on each system individually and

a 4-fold cross-validation was performed: (i) randomly divide the set of queries for

a system into 4 approximately equal subsets, (ii) set aside one query subset as

a test set, and build the classification model with the queries in the remaining

subsets (i.e., the training set), (iii) use the classification model built on the

training set to identify the best reformulation technique for the queries in the

evaluation set, (iv) repeat this process, setting aside each query subset in turn.

The key element here is that each query is used only once in the test set. For

the cross-project training, the queries from four of the five projects are used for

training and the queries from the fifth project is used for evaluation. This is

repeated such that the queries in each project are tested. The 282 queries were

reformulated and the performance (i.e., the best rank among the methods in the

www.manaraa.com

121

change set) of the reformulated queries was recorded for each type of training.

The two sets of performances were then compared.

d) Answering RQ2. To find out whether Refoqus improves the results compared to

the original queries, the performance of the reformulated queries based on the

Refoqus' recommendation were compared with the performance of the original

queries.

e) Answering RQ3. We defined four baselines using the reformulation strategies

employed by Refoqus: query reduction, Rocchio expansion, RSV expansion,

and Dice expansion. Each baseline approach applies a single reformulation

strategy to all 282 queries, respectively. For example, the reduction baseline

applies query reduction to all queries. In order to analyze the comparisons,

when comparing Refoqus with any of the baselines (or when comparing the two

training strategies), we report the number of times the query reformulated by

Refoqus and by the compared baseline has a better performance (i.e., lower

rank of the top changed method) than the original query, the number of times the

performances are the same, and the number of times the original query

achieves better query performance. We also report the minimum, maximum,

median, mean, and the 25% and 75% percentiles values of the differences in

performance (i.e., difference in ranking of the top changes method).

The sets of results were also analyzed through statistical analysis using the Mann-

Whitney test [18]. We chose this test as we cannot assume normality of data and the

test does not make normality assumptions. The results are interpreted as statistically

significant at p < 0:05. However, since we performed multiple tests, we adjusted our p-

www.manaraa.com

122

values using the Holm’s correction procedure [64]. This procedure sorts the p-values

resulting from n tests in ascending order, multiplying the smallest by n, the next by n-1,

and so on.

4.2.3.4 Results and Discussion

We present and discuss the results that we used to answer each research question.

Research Question 1

Table 4-3 and Table 4-5 report the improvement in results achieved by Refoqus

compared to the initial query, for within- and cross- system training, respectively. Also,

Table 4-4 and

Table 4-6 report the results for the queries whose performance was maintained or

got worse after the reformulation with Refoqus. The within-project strategy achieves a

mean query performance improvement of 262 positions (for 146 queries) and a

maximum of 5,286, compared to the mean of 229 (for 113 queries) and the maximum of

5,197 obtained by the cross-project training strategy. At the same time, the number of

queries that were improved using the within-project approach is higher by 33 queries

compared to the cross-project approach, while the number of worsened queries is

higher by only 6 for the within-project.

Table 4-3. Improvement results of Refoqus for within-project training

System #Queries #Improved Improvement

Mean Q1 QualQ Q3 Min Max

Adempiere 51 30 418 3 12 97 1 5,286

ATunes 51 29 85 5 9 86 1 667

FileZilla 72 42 383 7 163 611 1 1,409

JEdit 54 19 64 5 29 56 1 434

WinMerge 54 26 230 4 18 36 2 4,909

All 282 146 262 4 23 166 1 5,286

www.manaraa.com

123

Table 4-4. Results that were worsened or preserved using Refoqus for within-
project training

System #Preserved #Worsened Worsening

Mean Q1 QualQ Q3 Min Max

Adempiere 11 10 261 18 26 381 3 970

ATunes 12 10 54 5 40 100 1 324

FileZilla 23 7 90 10 21 106 1 371

JEdit 26 9 25 2 12 52 1 83

WinMerge 17 11 43 6 11 53 2 151

All 89 47 100 5 19 86 1 970

Table 4-5. Improvement results of Refoqus for cross-project training

System #Queries #Improved Improvement

Mean Q1 QualQ Q3 Min Max

Adempiere 51 15 585 7 11 109 1 5,197

ATunes 51 25 62 3 9 51 1 413

FileZilla 72 32 275 11 157 425 1 1,403

JEdit 54 18 68 7 29 61 1 434

WinMerge 54 23 242 2 8 46 1 4,603

All 282 113 229 4 15 157 1 5,197

Table 4-6. Results that were worsened or preserved using Refoqus for cross-
project training

System #Preserved #Worsened Worsening

Mean Q1 QualQ Q3 Min Max

Adempiere 33 3 71 25 49 107 1 165

ATunes 20 6 107 41 51 148 4 319

FileZilla 28 12 105 22 27 158 2 437

JEdit 26 10 112 8 52 71 1 781

WinMerge 21 10 34 2 5 16 1 164

All 128 41 87 5 28 96 1 781

www.manaraa.com

124

We therefore hypothesize that the within-project approach leads to better results

than the cross-project one and we use the Mann-Whitney test to test this hypothesis.

The Mann-Whitney test is a non-parametric test (therefore does not assume normality

of the data) applied to observe if a particular treatment leads to significantly different

results compared to another treatment or the original state. In our case, the test reports

statistically significant differences between the performance values of the reformulated

queries using the two approaches, in favor of the within-project training (p-value=0.002,

mean=-40). A mean value of -40 indicates the within-project training returns the first

relevant method 40 positions on average higher in the results list than the cross-project

training, therefore leading to an average of 40 less methods that need to be analyzed

before finding the first relevant method in the list of results.

RQ1 answer. We conclude that the within-project training is superior to the cross-

project training. Nonetheless, cross-project training for Refoqus still manages to

improve or preserve the performance of a large number of the original queries. This

indicates that cross-project training could be still used, when within-project data is not

available.

We use the within-project training strategy to answer the subsequent research

questions.

Research Question 2

When compared to the performance obtained by original queries, Refoqus is able to

improve or maintain the performance of 235 out of the 282 queries (Table 4-3) on which

it has been applied (i.e., 84% of the queries). This improvement is in several cases by

hundreds or thousands of positions. When analyzing the results, it is important to focus

www.manaraa.com

125

on the performance in the worse cases, as these are the situations where Refoqus is

most useful (i.e., when the original query is really bad). When the original query is

already good (for example, the best ranked method is in top 10), reformulation

strategies in general led to small improvements or no improvement. The rather large

difference between the median and mean improvements indicates that many "bad"

queries had large performance improvements.

We therefore hypothesize that Refoqus (using the within-project approach) leads to

better results than the original query. We make use again of the Mann-Whitney test to

verify this hypothesis. The results indicate that the difference between the effectiveness

measure as returned by Refoqus and that of the original query is statistically significant

(p-value<0.0001, mean = -119). On average, Refoqus is able to obtain an improvement

(i.e., a lower effectiveness measure) of 119 positions in the list of ranked results and

this improvement is statistically significant.

RQ2 answer. We conclude that the query reformulation recommendations

formulated by Refoqus led to the improvement or preservation of the query

performances in most cases (52% of the queries improved their performance and 32%

preserved it).

We discuss some examples and observations from the data, in order to get a better

understanding of the cases when Refoqus works the best or does not work. An

example of large improvement in query performance was observed on a query in the

FileZilla system. The original query was automatically extracted from the title of the bug

report: set use medium large icon. Using this query the first target document retrieved

was the method LoadPage from the COptionsPageThemes class, on position 175.

www.manaraa.com

126

Refoqus suggested to apply the Rocchio expansion, and was reformulated as: set use

medium large icon theme panel scroll preview wx ptheme. In other words, the terms

theme, panel, scroll, preview, wx, ptheme were added to the query. The reformulated

query retrieved the same target method (i.e., COptionsPageThemes.LoadPage) on

position 6 of the ranked list. When analyzing the content of this method we observed

that all the terms added by the Rocchio expansion were present in the body of the

method: wx (25 occurrences), theme (24), panel (12), ptheme (9), scroll (6), and

preview (2); which explains the improvement.

Further analysis of the queries that preserved their performance after reformulation

revealed that, for all of them, Refocus recommended query reduction. One observation

is that, when applying this technique the query is not always modified (only if it contains

“non-discriminatory” terms that appear in more than 25% of the methods in the system,

which is not always the case).

We also noticed that 20 of the queries achieving stable performances were not

improvable, that is, they already retrieved the first relevant method on the first position.

The fact that Refoqus does not decrease the performances of these queries is certainly

a notable result. Another 22 original queries retrieved the relevant method in the top ten

positions of the ranked list.

There were 47 (17%) cases when the performances of the reformulated queries

using Refoqus decreased. The decrease was, on average, of 100 positions in the

ranked list, which is, less than half of the average improvement obtained by Refoqus on

the improved queries. In other words, the potential negative effect of the reformulations

may be outweighed by the significant improvements.

www.manaraa.com

127

It is also worth noting that we did not observe significant differences between the

percentage of manually formulated queries that were improved by Refoqus (51%) and

automatically extracted queries that were improved (52%). We also did not observe

significant differences between the C++ systems and the Java systems, which indicates

that Refoqus is robust with respect to this aspect.

Research Question 3

Table 4-7 compares Refoqus and the four baseline reformulation techniques.

Table 4-7. Comparison between Refoqus and the baseline reformulation
techniques on the 282 queries of the study

Reformulation #Preserved Improvement Worsening

Mean Q1QualQ Q3 Min Max # MeanQ1 QualQ Q3 Min Max

Reduction 242 47 78 4 15 33 1 530 13 15 2 4 20 1 59

Rocchio 28 124 166 3 14 148 1 5286130 100 6 28 127 1 1280

RSV 22 146 233 4 21 178 1 4843114 148 5 29 103 1 4529

Dice 18 127 266 4 32 237 1 5197137 314 5 52 204 1 12829

Refoqus 89 146 262 4 23 166 1 5286 47 100 5 19 86 1 970

The obvious observations are: the number of queries improved by Refoqus is

matched by RSV Expansion (i.e., 146), the mean improvement is slightly better for the

Dice Expansion (i.e., 266 vs. 262), and the number of queries with reduced

performance after reformulation is better for Query Reduction (i.e., 13 vs. 47).

However, the RSV Expansion, along with the other expansion techniques led to the

worsening of the results for two to three times as many queries than Refoqus. We

conclude that there is a higher risk to use them over Refoqus.

We can see that the number of queries with preserved results when applying the

Query Reduction is very large (86%). As explained before, these can be explained by

www.manaraa.com

128

the fact that this technique is rather conservative and it only eliminates words from the

query in few cases, keeping the query unchanged in many cases.

Finally, Table 4-8 reports the results of the Mann-Whitney Test performed between

the results of Refoqus and each baseline, respectively. The tests indicate that Refoqus

achieves statistically significant better results compared to each baseline. Indeed, the

mean of differences is negative, showing that Refoqus achieves, on average, lower

(and thus better) effectiveness measures for the queries.

Table 4-8. The Mann-Whitney Test for the comparison between Refoqus and
the baselines

Test p-value Mean

Refoqus vs. Reduction <0.0001 -112

Refoqus vs. Rocchio <0.0001 -92

Refoqus vs. RSV <0.0001 -58

Refoqus vs. Dice <0.0001 -152

RQ3 answer. We conclude that Refoqus outperforms the baseline approaches

considered.

4.2.3.5 Threats to Validity

Threats to construct validity concern the relationship between theory and

observation. We evaluated Refoqus using a query performance measure (i.e.,

effectiveness), which is widely used in concept/feature location studies since it provides

a good estimation of the effort that a developer needs to spend in a TR-based concept

location task.

Threats to internal validity concern co-factors that can influence the results. In our

study we automatically extracted the set of queries from the online bug tracking system

of the object systems. Such queries are approximations of actual user queries.

www.manaraa.com

129

However, developers are often faced with unfamiliar systems, in which cases they must

rely on outside sources of information, such as bug reports, in order to formulate

queries during TR-based concept location. Therefore, we believe that the approach

used in our experimentation resembles real usage scenarios. However, in order to

mitigate such a threat we also asked a Ph.D. student to manually formulate queries as

well.

This is the first work that makes use of measures that capture properties of a query

and the four reformulation techniques. We do not know at this stage how would the

results be affected if we use other measures or reformulation strategies. The same is

true for the number of documents in the result list used to suggest expansion terms and

the number of terms included in the query during expansion. We used the values of 5

and 10, respectively, but we do not know at this stage how using different values would

impact the results. We also do not know how the results would change if we increased

the size of the training data sets.

Threats to conclusion validity concern the relationship between treatment and

outcome. Where appropriate, we used non-parametric statistical tests (Mann-Whitney)

to show statistical significance of threats to external validity concern generalization of

the obtained results. In order to mitigate this threat, we selected five software systems

from diverse domains, implemented in two programming languages, i.e., Java and C++.

A larger set of queries and more systems would clearly strengthen the results from this

perspective. While we used data from several systems, we only used a single TR

engine (i.e., Lucene). The results may differ when using other TR engines.

www.manaraa.com

130

The last threat to external validity is related to the fact that we only evaluated the

proposed approach for the task of TR-based concept location. Thus, we cannot (and do

not) generalize the results to other software engineering tasks or the obtained results.

4.3 Related Work on Query Reformulation

In the field of natural language document retrieval, query reformulation has long

been established as a way to improve the results returned by an TR engine [111].

Various approaches have been proposed over time, which fall in two main categories:

query reduction [10, 125] and query expansion [24] approaches.

In software engineering, a few works have also taken advantage of query

reformulation strategies in order to improve software engineering tasks supported by

TR. A few studies have investigated the manual reformulation of queries by developers.

Query reformulation using ontology fragments has been investigated in the context of

concept location by Petrenko et al. [95]. In this work, developers build and update

ontology fragments which capture their knowledge of the system and then reformulate

queries based on these fragments, leading to improved results. Starke et al. [119] have

studied how developers search source code when performing corrective tasks on an

unfamiliar system. Their findings indicate that even after several reformulations some

developers are unable to locate the information they need. These studies provide

motivation for our work as they support the need for automatic techniques for query

reformulation.

The semi-automated (i.e., interactive) approach for reformulating the queries, which

requires the intervention of a developer for relevance feedback [111] was previously

used to improve TR-based traceability link recovery between various types of software

www.manaraa.com

131

artifacts [38, 57]. The results suggest that user relevance feedback generally benefits

software engineering tasks. However, they also underline that it is not always the

solution.

A few papers have investigated automated query reformulations. These

approaches are usually based on reformulating the query using words that are either

similar or related in some way to the query terms. Some of these approaches

determine word relations based solely on their usage in source code. For example,

Marcus et al. [87] have used Latent Semantic Indexing in order to determine the most

similar terms to the query from the source code and include them in the query. Yang et

al. [127] use the context in which query words are found in the source code to extract

synonyms, antonyms, abbreviations and related words to include them in the

reformulated query. Hill et al. [61] also use word context in order to extract possible

query expansion terms from the code. Shepherd et al. [117] build a code search tool

that expands search queries with alternative words learned from verb-direct object

pairs. Other approaches make use of external sources of information in order to

determine the related words that should be included in the query. Web mining is used

[27, 50] to identify web documents relevant to the query from which to extract domain

terms to replace the original query.

A common feature of these automated techniques is that they utilize the same

reformulation strategy, regardless of the query or system used. In contrast, Refoqus

chooses and recommends the best reformulation strategy for each given query and

system. In this chapter we presented the first approach using query quality measures

www.manaraa.com

132

are used as attributes for learning the best reformulation technique among several

options for each individual query.

www.manaraa.com

133

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

During software development and evolution a variety of software artifacts are

created, such as, requirements, change requests, bug descriptions, etc. These artifacts

have different representations and contain different types of information. The textual

information found in software artifacts captures knowledge about the problem and

solution domain, about developers’ intentions, client demands, etc. Text Retrieval (TR)

techniques have been successfully used to leverage this information. Despite their

advantages, the success of TR techniques strongly depends on the textual queries

given as input. When poorly chosen queries are used, developers can waste time

investigating irrelevant results.

In this dissertation we proposed approaches to automatically capture and predict

the quality of TR queries in the context of software engineering tasks. Also, we

introduced novel techniques for automating query reformulation, which can help

developers in the cases when their queries lead to poor results. In particular, this

dissertation makes the following main contributions:

• We developed and validated a new measure to capture the specificity of TR

queries in the context of software engineering tasks. The new measure, called

Query Specificity Index, is evaluated in a study on concept location, revealing

that it is able to capture the quality of a query better than the leading specificity

measure proposed in the field of natural language document retrieval.

• We developed and validated a novel approach, called QualQ, which is able to

automatically predict the quality of queries in the context of software engineering

tasks based on the statistical properties of the text they contain. We evaluated

www.manaraa.com

134

QualQ for concept location in source code and showed that it is able to correctly

predict the quality of queries in 85% of the cases.

• We proposed and validated the use of an approach based on the Rocchio

algorithm, which uses developer feedback for automatic reformulation of TR

queries in the context of concept location in source code. We evaluated the

approach in a study on concept location and the results showed that the

Rocchio-based relevance feedback can generally improve the results if TR

concept location.

• We developed and evaluated a novel approach, called Refoqus, for automatically

reformulating TR queries in the context of software engineering tasks by

automatically determining and applying the best reformulation approach for a

query based on its properties. We evaluated Refoqus in the context of concept

location in source code and the results of the study revealed that Refoqus is able

to improve or preserve the results of TR queries for CL in 84% of the cases.

While the work presented in this dissertation represents an important step towards

addressing the problem of query formulation for TR-based approaches for software

engineering, there are still steps to be made in this direction, beyond the scope of this

dissertation. In particular, we aim to pursue the following research directions in the

future:

• Extensive user studies for Rocchio. The study we performed for evaluating

Rocchio made use of the feedback of only one developer. We plan to replicate

the study in the future and involve a larger number of developers.

www.manaraa.com

135

• Query quality range. When determining the quality of queries, QualQ currently

considers queries as either high or low quality. We plan to investigate also the

use of a range to describe the quality of a query, rather than the current binary

approach.

• Applying QualQ and Refoqus to other software engineering tasks. So far we

have evaluated our approaches for automatic query quality prediction and

automatic query reformulation in the context of concept location. However, there

are many more software engineering tasks that rely on TR techniques and could

benefit from these approaches. We plan to investigate the applicability and

results of QualQ and Refoqus in the context of other software engineering tasks.

• Investigate new measures for query quality. We observed that a new query

measure, QSI, used for determining the specificity of a query, performed better

than the state of the art specificity measure from the field of natural language

document retrieval. We plan to investigate the use of new measures, adapted to

software data for all the query properties presented in this dissertation, and refine

existing measures to account also for the location of the terms in the code.

• Investigate more training and evaluation data variations for QualQ and Refoqus.

The results of QualQ and Refoqus depend greatly on the data on which they are

trained and evaluated. We plan to investigate the effect of evaluating a trained

model on various versions of a software system, with the goal of determining the

spots when the models should be retrained, due to changes in the system in

response to software evolution. We will also investigate the possibility of using

training data from multiple versions of a software system. We also plan to

www.manaraa.com

136

investigate how the accuracy of the two approaches changes according to the

type of the system being evaluated. In that regard, we will experiment with using

systems from the same problem domain for training and testing and observe if

the results improve. We will also experiment with different sizes of the training

set, in order to determine how sensitive the training is to the size of the training

sample and the number of systems used.

• More reformulation approaches in Refoqus. Currently Refoqus considers three

query expansion and one query contraction approaches as the possible options

for reformulating the queries. We plan to integrate other approaches for query

reformulation in Refoqus, previously proposed in software engineering and

natural language document retrieval. In order to allow for enough examples to

learn from for the new reformulation approaches, more evaluation data will be

collected. Also, Classification and Regression Trees may not represent the

best machine learning solution when more categories are considered. We will

investigate other classification approaches which allow for many categories.

• Integrate Relevance Feedback and Refoqus. Currently Refoqus relies only on

statistics to determine the best reformulated query and therefore it does not

make use of any semantic information. We plan to investigate an approach

which combines the power of Refoqus in determining the best reformulation of

a query based on its properties with relevance feedback given by developers,

which can provide semantics and guide the search in the right direction.

• Investigate more IR techniques. The quality and the best reformulation of a

query can depend also on the IR technique used. We plan to repeat the

www.manaraa.com

137

studies performed so far using various IR techniques and observing how the

quality and reformulation of queries change according to the IR engine used.

• Use developer judgments for concept location. So far we have used

reenactment in order to determine the relevant methods for concept location.

In our future work, we plan to have also ask developers to actually implement

changes and determine the relevant methods to a change this way.

• We plan to performs a more in-depth analysis of the differences and similarities

between user queries and automatically extracted queries and observe their

quality and best reformulation technique.

www.manaraa.com

138

APPENDIX

Table 5-1. Results for all queries from all systems in the preliminary study of
seven reformulation approaches (Section 4.2)

Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

Sum
ranks

89704 80100 97427 105339 102870 104977 107668

Average
Rank

318 284 345 374 365 372 382

www.manaraa.com

139

Table 5-2. Results for all queries of Adempiere in the preliminary study of
seven reformulation approaches (Section 4.2)

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

1 22 25 26 23 23 24 27

2 18 27 43 44 22 25 35

3 166 206 257 257 308 379 471

4 34 23 22 11 20 20 18

5 32 35 41 41 12 14 22

6 4 7 13 33 26 30 34

7 137 324 471 521 389 462 530

8 905 1728 1845 1845 1668 1807 1842

9 2 1 1 1 1 1 1

10 45 57 94 104 150 180 243

11 5 4 2 2 2 2 1

12 33 45 60 48 35 32 42

13 7 5 6 17 15 15 14

14 114 91 116 207 182 193 192

15 83 89 95 71 72 55 63

16 280 602 1108 1012 324 285 427

17 71 50 32 43 60 50 38

18 453 375 379 372 485 541 515

19 110 224 429 435 2166 3197 4040

20 7740 2334 1979 1980 3409 2727 2479

21 11 12 15 11 6 7 7

22 901 321 342 335 249 268 282

23 1 1 1 1 1 1 1

24 5 5 4 3 5 7 8

25 8 10 11 11 11 11 11

26 2 1 2 2 3 2 2

27 1 1 1 1 1 1 1

28 19 101 373 687 744 1007 1123

29 18 19 18 17 15 13 15

30 12 10 11 11 12 12 12

31 18 67 52 150 203 280 235

32 377 1721 2372 3031 2766 3175 3489

33 2 2 2 2 2 2 2

34 87 71 68 64 68 65 62

35 115 127 144 95 69 57 65

36 55 62 74 69 63 43 51

37 4 7 13 33 26 17 19

www.manaraa.com

140

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

38 946 1728 1845 1845 1668 1671 1810

39 2 1 1 1 1 1 1

40 27 23 24 33 17 16 17

41 1 1 1 1 1 1 1

42 280 602 1108 1012 324 285 427

43 281 315 934 286 275 286 312

44 1926 4731 5782 13664 15498 15656 15677

45 756 5252 13552 13552 15282 15284 15410

46 1 1 1 1 1 1 1

47 11 11 11 11 13 14 18

48 1 1 1 1 1 1 1

49 9 8 9 9 9 9 9

50 52 955 1177 1455 1730 1729 1776

51 11 4 3 4 5 3 3

Note: The queries for which none of the reformulation approaches retrieved any

relevant method were removed from the results for brevity, as they do not contribute to

the decision.

www.manaraa.com

141

Table 5-3. Results for all queries of ATunes in the preliminary study of seven
reformulation approaches (Section 4.2)

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

1 5 8 5 4 6 4 4

2 570 47 42 29 55 49 47

3 661 727 821 609 434 475 527

4 93 83 74 85 94 106 98

5 504 197 209 260 245 204 173

6 144 119 136 155 83 83 95

7 2 2 2 3 4 4 4

8 31 20 29 40 12 14 22

9 331 110 76 65 106 106 93

10 331 110 76 65 106 106 93

11 6 6 5 9 9 9 8

12 22 38 109 63 76 38 74

13 2 3 3 2 2 2 2

14 20 17 16 17 19 19 19

15 4 4 4 4 3 3 2

16 303 362 651 599 639 723 815

17 78 75 73 93 125 128 127

18 2 2 2 2 3 3 3

19 60 36 30 25 40 41 45

20 119 31 11 17 20 21 15

21 21 20 21 18 20 20 20

22 8 13 21 21 10 10 12

23 6 7 9 8 8 8 9

24 2 1 1 2 2 2 2

25 187 209 221 224 233 242 251

26 43 45 62 67 44 51 56

27 1 1 1 1 1 1 1

28 3 2 2 2 1 1 1

29 160 167 178 168 187 196 218

30 90 161 278 308 343 367 399

31 1 1 1 1 1 1 1

32 20 21 38 32 21 19 24

33 2 3 7 3 3 7 8

34 730 446 836 836 954 873 840

35 5 9 5 3 4 5 5

36 125 202 288 280 177 178 221

37 358 56 102 107 78 81 72

www.manaraa.com

142

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

38 31 20 29 40 12 12 13

39 318 109 76 66 106 106 93

40 142 21 86 86 72 72 85

41 13 16 22 26 27 19 28

42 249 349 421 541 436 495 593

43 1 1 1 1 1 1 1

44 11 16 22 59 57 57 48

45 36 21 19 16 12 12 13

46 6 7 9 8 8 7 8

47 131 107 284 380 237 265 300

48 2 3 3 3 3 3 3

49 152 122 262 250 235 231 260

50 6 11 19 14 13 11 13

51 842 195 147 147 154 154 130

Note: The queries for which none of the reformulation approaches retrieved any

relevant method were removed from the results for brevity, as they do not contribute to

the decision.

www.manaraa.com

143

Table 5-4. Results for all queries of FileZilla in the preliminary study of seven
reformulation approaches (Section 4.2)

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

3 6 7 7 6 7 6 6

4 609 752 789 790 544 544 614

5 1127 165 90 107 130 162 127

6 379 308 306 387 316 317 312

8 1957 2014 2014 2014 740 740 767

9 3 4 4 5 5 5 5

10 93 73 61 49 66 69 69

11 235 416 741 788 485 487 606

12 11 3 2 1 1 1 1

13 437 525 623 623 784 791 802

14 1718 360 230 246 381 325 272

16 8 8 8 8 9 10 9

17 1674 616 491 536 819 819 661

18 26 15 13 41 28 29 21

20 24 58 143 211 177 183 234

21 5 2 2 2 2 2 2

22 315 248 214 259 301 331 308

23 1700 600 576 576 670 668 630

24 52 39 33 35 36 37 37

25 5 5 4 5 5 5 5

26 158 198 238 257 179 164 171

27 191 120 117 117 171 171 162

28 194 157 157 166 117 117 121

29 42 26 22 26 28 26 25

32 94 67 51 73 63 53 43

33 311 332 346 361 236 257 279

34 370 135 85 136 134 134 102

35 288 307 329 433 316 320 331

37 2366 2409 2409 2409 1115 1151 1163

38 6 16 33 34 22 36 45

39 154 112 102 62 62 63 65

40 1032 761 548 705 615 514 448

41 20 17 16 16 14 11 10

42 1301 1508 1529 1358 831 926 1012

43 2042 2099 2100 2163 2090 2090 2090

45 2 2 2 4 5 4 4

46 1986 2046 2046 2046 1561 1561 1561

www.manaraa.com

144

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

47 9 6 4 4 6 5 4

49 129 136 146 139 95 109 120

50 6 6 6 5 5 5 6

51 561 581 605 642 787 814 840

52 1110 1005 917 917 891 830 816

53 173 66 38 38 78 57 52

54 8 7 8 9 10 9 9

55 4 3 3 2 2 2 1

56 372 369 259 241 277 277 227

57 117 82 61 29 34 30 27

58 47 49 48 51 68 69 65

61 5 5 5 5 5 5 5

62 230 384 563 575 604 604 722

63 797 435 331 408 376 376 354

64 384 298 311 426 288 288 289

66 1982 2074 2074 2074 338 338 385

67 5 5 5 5 5 5 5

68 1075 509 413 198 188 191 198

69 79 39 31 31 35 44 40

70 53 40 34 34 11 11 11

71 315 405 550 549 481 553 585

72 2140 738 434 364 422 333 301

74 9 6 6 7 7 7 6

75 1298 1101 909 916 1121 1126 1039

76 22 14 13 14 14 14 13

78 23 33 49 49 25 25 26

79 4 5 6 6 6 6 6

80 339 306 322 325 310 315 320

81 1807 1877 1877 1877 773 779 779

82 45 67 106 106 119 119 158

83 5 4 4 4 5 5 5

84 36 30 31 37 24 27 27

85 77 96 127 127 108 108 127

86 111 86 86 103 30 30 33

87 26 32 67 44 35 34 34

Note: The queries for which none of the reformulation approaches retrieved any

relevant method were removed from the results for brevity, as they do not contribute to

the decision.

www.manaraa.com

145

Table 5-5. Results for all queries of JEdit in the preliminary study of seven
reformulation approaches (Section 4.2)

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

1 15 19 40 11 10 12 17

2 145 175 207 188 255 278 307

3 393 415 440 489 452 476 507

4 4 6 6 7 6 6 6

5 522 366 231 343 363 268 214

6 316 276 225 223 266 223 199

7 1 1 1 1 1 1 1

8 1 2 2 2 2 2 2

9 4 4 7 7 6 8 8

10 21 8 7 7 8 7 6

11 771 745 709 757 769 737 695

12 22 29 49 33 25 41 58

13 1 2 2 1 1 1 1

14 91 156 314 268 228 308 378

15 37 58 94 124 71 95 129

16 74 45 25 26 34 38 28

17 54 69 107 141 109 123 142

18 59 66 73 84 86 92 96

19 9 11 15 11 8 9 11

20 518 693 867 867 711 711 839

21 911 1211 1446 1630 836 959 1094

22 2 10 16 22 12 15 19

23 16 5 4 2 2 2 2

24 720 633 385 305 413 413 361

25 1 1 1 1 1 1 1

26 1 2 2 2 2 2 2

27 1 1 1 1 1 1 1

28 3 3 2 2 2 2 2

29 1084 706 548 479 472 497 396

30 560 713 1042 1054 677 681 859

31 1 1 1 1 1 1 1

32 1 1 1 3 2 3 2

33 106 128 163 135 90 99 113

34 3847 4235 4235 4235 3440 3441 3441

35 107 144 230 90 80 80 107

36 8 30 46 91 49 33 51

37 9 11 15 11 8 9 11

www.manaraa.com

146

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

38 89 120 164 186 82 93 111

39 59 88 125 115 92 82 97

40 18 51 79 70 41 40 46

41 42 30 29 31 36 36 34

42 272 140 69 45 132 134 106

43 1 1 1 1 1 1 1

44 1 2 2 2 2 2 2

45 13 8 10 17 19 22 22

46 43 29 24 23 22 24 22

47 970 1059 1142 1147 1087 1087 1115

48 112 98 87 99 153 158 156

49 1 2 4 4 2 3 4

50 4 2 2 1 2 2 2

51 35 49 79 70 57 71 86

52 51 37 29 31 29 30 30

53 23 25 32 32 45 51 56

54 33 54 87 90 82 82 100

Note: The queries for which none of the reformulation approaches retrieved any

relevant method were removed from the results for brevity, as they do not contribute to

the decision.

www.manaraa.com

147

Table 5-6. Results for all queries of WinMerge in the preliminary study of
seven reformulation approaches (Section 4.2)

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

2 217 14 322 254 293 314 324

4 7 9 8 10 8 9 10

6 75 98 137 175 102 77 96

7 902 1023 1189 1055 907 913 920

8 7197 2323 2017 1815 2544 2544 2187

9 54 48 81 59 62 65 65

11 6 10 11 10 11 11 11

12 35 40 49 41 48 67 67

14 6791 6920 6920 6920 6960 6960 6960

15 17 16 24 18 15 18 19

16 435 337 705 703 744 698 727

17 5 17 97 91 113 223 279

18 7 2 5 2 3 3 2

19 130 35 20 26 16 18 18

20 6 4 3 3 3 2 2

21 64 55 24 37 22 18 16

22 20 5 158 158 295 295 440

23 245 185 214 214 181 188 231

25 3 2 3 2 4 4 4

27 89 81 91 81 99 90 86

29 94 109 149 122 147 160 182

30 601 211 760 619 666 699 715

31 30 32 36 36 42 49 57

32 15 14 18 19 14 16 17

34 2 2 2 2 2 2 1

35 114 117 128 113 147 147 139

37 3 3 6 6 5 6 6

38 7 8 10 11 8 7 7

39 135 141 204 204 154 204 234

40 1 1 1 1 1 1 1

41 1 1 1 1 1 1 1

42 5 3 2 2 1 2 2

43 6 4 3 3 3 3 3

44 101 69 68 52 100 100 75

45 5 5 5 5 4 4 4

46 115 128 161 151 182 208 242

48 13 8 9 8 9 10 10

www.manaraa.com

148

ID Rocchio RSV Dice KLD NumPseudoDoc MutualInfo RelevanceModel

50 165 103 73 73 104 83 77

52 217 170 180 134 203 205 176

53 35 27 39 38 36 36 44

54 1503 230 1566 1100 2063 2063 1874

55 54 48 64 59 50 54 61

57 1 1 1 1 2 2 1

58 45 60 69 60 71 65 67

60 1 1 1 1 1 1 1

61 10 10 11 10 11 12 12

62 174 203 335 235 263 284 291

63 2 1 1 1 1 1 1

64 6 2 5 2 3 4 3

65 47 30 19 31 17 19 20

66 6 4 3 3 3 3 3

67 64 55 24 37 22 18 16

68 35 5 34 28 45 61 59

69 48 83 91 134 49 49 74

Note: The queries for which none of the reformulation approaches retrieved any

relevant method were removed from the results for brevity, as they do not contribute to

the decision.

www.manaraa.com

149

BIBLIOGRAPHY

[1] Abadi, A., Nisenson, M., and Simionovici, Y., "A Traceability Technique for

Specifications", in Proceedings of 16th IEEE International Conference on

Program Comprehension (ICPC'08), Amsterdam, Netherlands, 10-13 June 2008

2008, pp. 103-112.

[2] Agresti, A., Categorical Data Analysis, Wiley-Interscience, 2002.

[3] Ahn, S.-Y., Kang, S., Baik, J., and Choi, H.-J., "A Weighted Call Graph Approach for

Finding Relevant Components in Source Code", in Proceedings of 10th ACIS

International Conference on Software Engineering, Artificial Intelligences,

Networking and Parallel/Distributed Computing (SNPD'09), Daegu, Korea, 27-29

May 2009, pp. 539-544.

[4] Ali, N., Sabane, A., Gueheneuc, Y.-G., and Antoniol, G., "Improving Bug Location

Using Binary Class Relationships", in Proceedings of 12th International Working

Conference on Source Code Analysis and Manipulation (SCAM'12), 2012.

[5] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A., "Identifying the Starting

Impact Set of a Maintenance Request: A Case Study", in Proceedings of 4th

European Conference on Software Maintenance and Reengineering (CSMR'00),

Zurich, Switzerland, 29 February - 03 March 2000, pp. 227-231.

[6] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E., "Recovering

Traceability Links between Code and Documentation", IEEE Transactions On

Software Engineering, vol. 28, no. 10, October 2002 2002, pp. 970-983.

[7] Asadi, F., Di Penta, M., Antoniol, G., and Gueheneuc, Y.-G., "A Heuristic-based

Approach to Identify Concepts in Execution Traces", in Proceedings of 14th

www.manaraa.com

150

European Conference on Software Maintenance and Reengineering (CSMR'10),

Madrid, España, 15-18 March 2010, pp. 31-40.

[8] Bachelli, A., Lanza, M., and Robbes, R., "Linking E-mails and Source Code

Artifacts", in Proceedings of 32nd ACM/IEEE International Conference on

Software Engineering (ICSE'10), Cape Town, South Africa, 2-8 May 2010, pp.

375-384.

[9] Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval, Addison

Wesley, 1999.

[10] Balasubramanian, N., Kumaran, G., and Carvalho, V. R., "Exploring Reductions for

Long Web Queries", in Proceedings of SIGIR, 2010, pp. 571-578.

[11] Bavota, G., De Lucia, A., Marcus, A., and Oliveto, R., "Software Re-Modularization

Based on Structural and Semantic Metrics", in Proceedings of 17th IEEE

Working Conference on Reverse Engineering (WCRE'10), Beverly, MA, USA,

October 13-16 2010, pp. 195-204.

[12] Bavota, G., De Lucia, A., Marcus, A., and Oliveto, R., "Using structural and

semantic measures to improve software modularization", Empirical Software

Engineering 2012, pp. 1-32.

[13] Bavota, G., De Lucia, A., Marcus, A., and Oliveto, R., "Using structural and

semantic measures to improve software modularization", Empirical Software

Engineering (EMSE) 2012.

[14] Bavota, G., De Lucia, A., and Oliveto, R., "Identifying Extract Class refactoring

opportunities using structural and semantic cohesion measures", Journal of

Systems and Software, vol. 84, no. 3, March 2011, pp. 397-414.

www.manaraa.com

151

[15] Beard, M. D., Kraft, N. A., Etzkorn, L. H., and Lukins, S. K., "Measuring the

Accuracy of Information Retrieval Based Bug Localization Techniques", in

Proceedings of 18th IEEE International Working Conference on Reverse

Engineering (WCRE'11), Limerick, Ireland, 17-20 October 2011, pp. 124-128.

[16] Binkley, D., Feild, H., Lawrie, D., and Pighin, M., "Software Fault Prediction using

Language Processing", in Proceedings of 2nd Testing: Academic and Industrial

Conference (TAIC-PART), Windsor, United Kingdom, 12-14 September 2007

2007, pp. 99-110.

[17] Blei, D. M., A.Y. Ng, and Jordan, M. I., "Latent Dirichlet Allocation", Journal of

Machine Learning Research, vol. 3, March 2003 2003, pp. 993-1022.

[18] Bohner, S. and Arnold, R., Software Change Impact Analysis, IEEE Computer

Society, 1996.

[19] Breiman, L., Friedman, J., Stone, C., and Olshen, R. A., Classification and

Regression Trees, Chapman and Hall, 1984.

[20] Butler, S., Wermelinger, M., Yu, Y., and Sharp, H., "Improving the tokenisation of

identifier names", Lecture Notes in Computer Science, vol. 6813, 2011, pp. 130 -

154.

[21] Canfora, G. and Cerulo, L., "Impact Analysis by Mining Software and Change

Request Repositories", in Proceedings of 11th IEEE International Symposium on

Software Metrics (METRICS'05), 2005, pp. 20-29.

[22] Canfora, G. and Cerulo, L., "Fine Grained Indexing of Software Repositories to

Support Impact Analysis", in Proceedings of International Workshop on Mining

Software Repositories (MSR'06), 2006.

www.manaraa.com

152

[23] Carmel, D. and Yom-Tov, E., Estimating the Query Difficulty for Information

Retrieval, Morgan & Claypool, 2010.

[24] Carpineto, C. and Romano, G., "A survey of automatic query expansion in

information retrieval", ACM Computing Surveys, vol. 44, 2012, pp. 1-56.

[25] Cleary, B. and Exton, C., "Assisting Concept Location in Software Comprehension",

in Proceedings of 19th Psychology of Programming Workshop, 2007, pp. 42-55.

[26] Cleary, B., Exton, C., Buckley, J., and English, M., "An Empirical Analysis of

Information Retrieval based Concept Location Techniques in Software

Comprehension", Empirical Software Engineering, vol. 14, no. 1, February 2009,

pp. 93-130.

[27] Cleland-Huang, J., Czauderna, A., Gibiec, M., and Emenecker, J., "A Machine

Learning Approach for Tracing Regulatory Codes to Product Specific

Requirements", in Proceedings of 32nd ACM/IEEE International Conference on

Software Engineering (ICSE'10), Cape Town, South Africa, 2-8 May 2010, pp.

155-164.

[28] Cohen, J., Statistical power analysis for the behavioral sciences, 2nd edition ed.,

Hillsdale, NJ, Lawrence Earlbaum Associates, 1988.

[29] Corazza, A., Di Martino, S., and Maggio, V., "Linsen: An efficient approach to split

identifiers and expand abbreviations", in Proceedings of 28th IEEE International

Conference on Software Maintenance (ICSM’12), 2012, pp. 233 – 242.

[30] Corazza, A., Di Martino, S., Maggio, V., and Scanniello, G., "Investigating the use

of Lexical Information for Software System Clustering", in Proceedings of 14th

www.manaraa.com

153

IEEE Conference on Software Maintenance and Reengineering (CSMR'11),

Oldenburg, 1-4 March 2011, pp. 35-44.

[31] Cover, T. M. and Thomas, J. A., Elements of Information Theory, Wiley-

Interscience, 1991.

[32] Cronen-Townsend, S., Zhou, Y., and Croft, W. B., "Predicting query performance",

in Proceedings of 25th annual international ACM SIGIR conference on research

and development in information retrieval, 2002, pp. 299-306.

[33] Cubranic, D. and Murphy, G. C., "Hipikat: Recommending pertinent software

development artifacts", in Proceedings of 25th International Conference on

Software Engineering (ICSE'03), 2003, pp. 408-418.

[34] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S., "Learning from project

history: a case study for software development", in Proceedings of ACM

Conference on Computer Supported Cooperative Work, 2004, pp. 82-91.

[35] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S., "Hipikat: A Project

Memory for Software Development", IEEE Transactions On Software

Engineering, vol. 31, no. 6, 2005, pp. 446-465.

[36] Davies, S., Roper, M., and Wood, M., "Using bug report similarity to enhance bug

localisation", in Proceedings of 19th Working Conference on Reverse

Engineering (WCRE'12), 2012, pp. 125-134.

[37] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G., "Recovering Traceability

Links in Software Artefact Management Systems", ACM Transactions on

Software Engineering and Methodology, vol. 16, no. 4, 2007.

www.manaraa.com

154

[38] De Lucia, A., Oliveto, R., and Sgueglia, P., "Incremental Approach and User

Feedbacks: a Silver Bullet for Traceability Recovery", in Proceedings of IEEE

International Conference on Software Maintenance (ICSM'06), 2006, pp. 299-

309.

[39] Deerwester, S., Dumais, S., Furnas, G. W., Landauer, T., and Harshman, R.,

"Indexing by Latent Semantic Analysis", Journal of the American Society for

Information Science, vol. 41, 1990, pp. 391-407.

[40] Dekhtyar, A., Hayes, J. H., Sundaram, S., Holbrook, A., and Dekhtyar, O.,

"Technique Integration for Requirements Assessment", in Proceedings of 15th

IEEE International Requirements Engineering Conference, 2007, pp. 141-150.

[41] Dit, B., Guerrouj, L., Poshyvanyk, D., and Antoniol, G., "Can Better Identifier

Splitting Techniques Help Feature Location?", in Proceedings of 19th IEEE

International Conference on Program Comprehension (ICPC'11), Kingston, ON,

22-24 June 2011, pp. 11-20.

[42] Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D., "Feature Location in Source

code: A Taxonomy and Survey", Journal of Software Maintenance and Evolution:

Research and Practice 2011, pp. to appear.

[43] Dit, B., Revelle, M., and Poshyvanyk, D., "Integrating Information Retrieval,

Execution and Link Analysis Algorithms to Improve Feature Location in

Software", Empirical Software Engineering (EMSE), vol. 18, no. 2, 2013, pp. 277-

309.

[44] Enslen, E., Hill, E., Pollock, L., and Vijay-Shanker, K., "Mining Source Code to

Automatically Split Identifiers for Software Analysis", in Proceedings of 6th IEEE

www.manaraa.com

155

Working Conference on Mining Software Repositories (MSR'09), Vancouver, BC,

16-17 May 2009, pp. 71-80.

[45] Frakes, W., "Software Reuse Through Information Retrieval", in Proceedings of

20th Hawaii International Conference On System Sciences (HICSS'87), 1987,

pp. 530-535.

[46] Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T., "The Vocabulary

Problem in Human-System Communication", Communications of the ACM, vol.

30, no. 11, 1987, pp. 964-971.

[47] Gay, G., Haiduc, S., Marcus, A., and Menzies, T., "On the Use of Relevance

Feedback in IR-Based Concept Location", in Proceedings of 25th IEEE

International Conference on Software Maintenance (ICSM'09), Edmonton, AB,

20-26 September 2009, pp. 351-360.

[48] Gethers, M., Dit, B., Kagdi, H., and Poshyvanyk, D., "Integrated impact analysis for

managing software changes", in Proceedings of International Conference on

Software Engineering (ICSE'12), 2012, pp. 430-440.

[49] Gethers, M., Kagdi, H., Dit, B., and Poshyvanyk, D., "An Adaptive Approach to

Impact Analysis from Change Requests to Source Code", in Proceedings of 26th

IEEE/ACM International Conference on Automated Software Engineering

(ASE'11), Lawrence, KS, 6-10 November 2011, pp. 540-543.

[50] Gibiec, M., Czauderna, A., and Cleland-Huang, J., "Towards Mining Replacement

Queries for Hard-to-Retrieve Traces", in Proceedings of 25th IEEE/ACM

International Conference On Automated Software Engineering (ASE'10),

Antwerp, Belgium, 20-24 September 2010, pp. 245-254.

www.manaraa.com

156

[51] Grivolla, J., Jourlin, P., and De Mori, R., "Automatic Classification of Queries by

Expected Retrieval Performance", in Proceedings of ACM Special interest Group

on Information Retrieval, 2005.

[52] Guerrouj, L., Di Penta, M., Antoniol, G., and Gueheneuc, Y.-G., "Tidier: an identifier

splitting approach using speech recognition techniques", Journal of Software

Maintenance and Evolution: Research and Practice 2011.

[53] Haiduc, S., Bavota, G., Marcus, A., Oliveto, R., De Lucia, A., and Menzies, T.,

"Automatic Query Reformulations for Text Retrieval in Software Engineering", in

35th IEEE/ACM International Conference on Software Engineering (ICSE'13),

2013, pp. to appear.

[54] Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., and Marcus, A., "Automatic Query

Performance Assessment during the Retrieval of Software Artifacts", in

Proceedings of 27th IEEE/ACM International Conference on Automated Software

Engineering (ASE'12), Essen, Germany, September 3-7 2012.

[55] Haiduc, S., Bavota, G., Oliveto, R., Marcus, A., and De Lucia, A., "Evaluating the

Specificity of Text Retrieval Queries to Support Software Engineering Tasks", in

Proceedings of 34th IEEE/ACM International Conference on Software

Engineering (ICSE'12), Zurich, Switzerland, 2-9 June 2012, pp. 1273-1276.

[56] Hayes, J. H., Antoniol, G., and Gueheneuc, Y.-G., "PREREQIR: Recovering Pre-

Requirements via Cluster Analysis", in Proceedings of 15th Working Conference

on Reverse Engineering, 2008, pp. 165-174.

www.manaraa.com

157

[57] Hayes, J. H., Dekhtyar, A., and Sundaram, S., "Text mining for software

engineering: How analyst feedback impacts final results", in Proceedings of

International Workshop on Mining Software Repositories, 2005, pp. 1–5.

[58] Helm, R. and Maarek, Y., "Integrating information retrieval and domain specific

approaches for browsing and retrieval in object-oriented class libraries", in

Proceedings of Object-oriented programming systems, languages, and

applications, 1991, pp. 47-61.

[59] Hill, E., Fry, Z. P., Boyd, H., Sridhara, G., Novikova, Y., Pollock, L., and Shanker,

V., "AMAP: Automatically Mining Abbreviation Expansions in Programs to

Enhance Software Maintenance Tools", in Proceedings of 5th Working

Conference on Mining Software Repositories, 2008.

[60] Hill, E., Pollock, L., and Shanker, V., "Exploring the Neighborhood with Dora to

Expedite Software Maintenance", in Proceedings of 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE'07), 2007,

pp. 14-23.

[61] Hill, E., Pollock, L., and Vijay-Shanker, K., "Automatically Capturing Source Code

Context of NL-Queries for Software Maintenance and Reuse", in Proceedings of

31st IEEE International Conference on Software Engineering (ICSE'09),

Vancouver, BC, 16-24 May 2009, pp. 232-242.

[62] Hill, E., Pollock, L., and Vijay-Shanker, K., "Investigating How to Effectively

Combine Static Concern Location Techniques", in Proceedings of 3rd IEEE/ACM

International Workshop on Search-driven Development: Users, Infrastructure,

Tools, and Evaluation (SUITE'11), Honolulu, HI, 28 May 2011, pp. 37-40.

www.manaraa.com

158

[63] Hill, E., Rao, S., and Kak, A., " On the use of stemming for concern location and

bug localization in java", in Proceedings of IEEE International Conference on

Source Code Analysis and Manipulation (SCAM’12), 2012, pp. 184-193.

[64] Holm, S., "A Simple Sequentially Rejective Multiple Test Procedure", Scandinavian

Journal of Statistics, vol. 6, no. 2, 1979, pp. 65-70.

[65] Jensen, C. and Scacchi, W., "Discovering, Modeling, and Reenacting Open Source

Software Development Processes", New Trends in Software Process Modeling

Series in Software Engineering and Knowledge Engineering, vol. 18, 2006, pp. 1-

20.

[66] Kagdi, H., Gethers, M., Poshyvanyk, D., and Collard, M. L., "Blending Conceptual

and Evolutionary Couplings to Support Change Impact Analysis in Source Code",

in Proceedings of 17th IEEE Working Conference on Reverse Engineering

(WCRE'10), Beverly, MA, 13-16 October 2010, pp. 119-128

[67] Krovetz, R., "Viewing Morphology as an Inference Process", in Proceedings of 16th

ACM SIGIR Conference, 1993, pp. 191-202.

[68] Kuhn, A., Ducasse, S., and Girba, T., "Semantic Clustering: Identifying Topics in

Source Code", Information and Software Technology, vol. 49, no. 3, 2007, pp.

230-243.

[69] Lawrie, D., Binkley, D., and Morrell, C., "Normalizing source code vocabulary", in

Proceedings of 17th Working Conference on Reverse Engineering (WCRE’10),

2010, pp. 3–12.

www.manaraa.com

159

[70] Lawrie, D., Feild, H., and Binkley, D., "Extracting Meaning from Abbreviated

Identifiers", in Proceedings of 7th IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM'07), 2007, pp. 213-222.

[71] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S., "Benchmarking

Classification Models for Software Defect Prediction: A Proposed Framework and

Novel Findings.", IEEE Transactions On Software Engineering, vol. 34, no. 4,

2008, pp. 485-496.

[72] Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., and Baldi, P., "Mining concepts

from code with probabilistic topic models", in Proceedings of 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE'07), 2007,

pp. 461-464.

[73] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature Location via

Information Retrieval based Filtering of a Single Scenario Execution Trace", in

Proceedings of 22nd IEEE/ACM International Conference on Automated

Software Engineering (ASE'07), 2007, pp. 234-243.

[74] Lormans, M. and Van Deursen, A., "Can LSI help Reconstructing Requirements

Traceability in Design and Test?", in Proceedings of 10th European Conference

on Software Maintenance and Reengineering (CSMR'06), 2006, pp. 47-56.

[75] Lu, X. A. and Keefer, R. B., "Query expansion/reduction and its impact on retrieval

effectiveness", NIST SPecial Publication SP, vol. 225, no. 500, 1995, pp. 231-

239.

www.manaraa.com

160

[76] Lukins, S. K., Kraft, N. A., and Etzkorn, L. H., "Source Code Retrieval for Bug

Localization Using Latent Dirichlet Allocation", in Proceedings of 15th Working

Conference on Reverse Engineering, 2008, pp. 155-164.

[77] Lukins, S. K., Kraft, N. A., and Etzkorn, L. H., "Bug Localization using Latent

Dirichlet Allocation", Information and Software Technology, vol. 52, no. 9,

September 2010, pp. 972-990.

[78] Maarek, Y. S., Berry, D. M., and Kaiser, G. E., "An Information Retrieval Approach

for Automatically Constructing Software Libraries", IEEE Transactions On

Software Engineering, vol. 17, no. 8, 1991, pp. 800-813.

[79] Maarek, Y. S. and Smadja, F. A., "Full Text Indexing Based on Lexical Relations,

an Application: Software Libraries", in Proceedings of SIGIR89, 1989, pp. 198-

206.

[80] Maletic, J. and Valluri, N., "Automatic Software Clustering via Latent Semantic

Analysis", in Proceedings of 14th IEEE International Conference on Automated

Software Engineering (ASE'99), 1999, pp. 251-254.

[81] Manning, C. D., Raghavan, P., and Schütze, H., Introduction to Information

Retrieval, Cambridge University Press, 2008.

[82] Marcus, A. and Maletic, J., "Identification of High-Level Concept Clones in Source

Code", in Proceedings of Automated Software Engineering (ASE'01), 2001, pp.

107-114.

[83] Marcus, A. and Maletic, J., "Recovering Documentation-to-Source-Code

Traceability Links using Latent Semantic Indexing", in Proceedings of 25th

www.manaraa.com

161

IEEE/ACM International Conference on Software Engineering (ICSE'03), 2003,

pp. 125-135.

[84] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery of Traceability Links

Between Software Documentation and Source Code", International Journal of

Software Engineering and Knowledge Engineering, vol. 15, no. 5, 2005, pp. 811-

836.

[85] Marcus, A., Poshyvanyk, D., and Ferenc, R., "Using the Conceptual Cohesion of

Classes for Fault Prediction in Object Oriented Systems", IEEE Transactions On

Software Engineering, vol. 34, no. 2, 2008, pp. 287-300.

[86] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and Sergeyev, A., "Static

Techniques for Concept Location in Object-Oriented Code", in Proceedings of

13th IEEE International Workshop on Program Comprehension (IWPC'05), St.

Louis, MO, USA, May 15-16 2005, pp. 33-42.

[87] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J. I., "An Information Retrieval

Approach to Concept Location in Source Code", in Proceedings of 11th IEEE

Working Conference on Reverse Engineering (WCRE'04), Delft, The

Netherlands, November 9-12 2004, pp. 214-223.

[88] McMillan, C., Poshyvanyk, D., and Revelle, M., "Combining Textual and Structural

Analysis of Software Artifacts for Traceability Link Recover", in Proceedings of

ICSE Workshop on Traceability in Emerging Forms of Software Engineering

(TEFSE'09), Vancouver, BC, 18-18 May 2009, pp. 41-48.

[89] Medini, S., Galinier, P., Di Penta, M., Gueheneuc, Y.-G., and Antoniol, G., "A Fast

Algorithm to Locate Concepts in Execution Traces", in Proceedings of 3rd

www.manaraa.com

162

International Symposium on Search Based Software Engineering (SSBSE'11),

Szeged, Hungary, 10-12 September 2011, pp. 252-266.

[90] Michail, A. and Notkin, D., "Assessing software libraries by browsing similar

classes, functions and relationships", in Proceedings of IEEE International

Conference on Software Engineering (ICSE'99), 1999, pp. 463-472.

[91] Moldovan, G. and Serban, G., "Aspect Mining using a Vector-Space Model Based

Clustering Approach", in Proceedings of Workshop on Linking Aspect

Technology and Evolution (LATE'06), 2006.

[92] Nguyen, A. T., Nguyen, T. T., Al-Kofahi, J., Nguyen, H. V., and Nguyen, T. N., "A

Topic-based Approach for Narrowing the Search Space of Buggy Files from a

Bug Report", in Proceedings of 26th IEEE/ACM International Conference On

Automated Software Engineering, Oread, Lawrence, Kansas, 2011, pp. 263-272.

[93] Nichols, B. D., "Augmented Bug Localization Using Past Bug Information", in

Proceedings of 48th ACM Annual Southeast Regional Conference (ACMSE'10),

Oxford, MS, 15-17 April 2010, pp. 1-6.

[94] Oliveto, R., Gethers, M., Bavota, G., Poshyvanyk, D., and De Lucia, A., "Identifying

Method Friendships to Remove the Feature Envy Bad Smell", in Proceedings of

33rd IEEE/ACM International Conference on Software Engineering (ICSE'11),

NIER Track, Waikiki, Honolulu, HI, 21-28 May 2011, pp. 820-823.

[95] Petrenko, M., Rajlich, V., and Vanciu, R., "Partial Domain Comprehension in

Software Evolution and Maintenance", in Proceedings of 16th IEEE International

Conference on Program Comprehension (ICPC'08), 2008, pp. 13-22.

www.manaraa.com

163

[96] Ponte, J. M. and Croft, W. B., "A Language Modeling Approach to Information

Retrieval", in Proceedings of 21st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, 1998, pp. 275–281.

[97] Porter, M., "An Algorithm for Suffix Stripping", Program, vol. 14, no. 3, 1980, pp.

130-137.

[98] Poshyvanyk, D., Gethers, M., and Marcus, A., "Concept Location using Formal

Concept Analysis and Information Retrieval", ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 21, no. 4, November 2012 2012,

pp. to appear.

[99] Poshyvanyk, D., Gueheneuc, Y. G., Marcus, A., Antoniol, G., and Rajlich, V.,

"Feature Location using Probabilistic Ranking of Methods based on Execution

Scenarios and Information Retrieval", IEEE Transactions On Software

Engineering (TSE), vol. 33, no. 6, 2007, pp. 420-432.

[100] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling Metrics for Object-

Oriented Systems", in Proceedings of 22nd IEEE International Conference on

Software Maintenance (ICSM'06), 2006.

[101] Poshyvanyk, D. and Marcus, A., "Combining Formal Concept Analysis with

Information Retrieval for Concept Location in Source Code", in Proceedings of

15th IEEE International Conference on Program Comprehension (ICPC'07),

Banff, Alberta, Canada, June 26-29 2007, pp. 37-46.

[102] Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimothy, T., "Using Information

Retrieval based Coupling Measures for Impact Analysis", Empirical Software

Engineering, vol. 14, no. 1, February 2009, pp. 5-32.

www.manaraa.com

164

[103] Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., and Binkley, D., "SCOTCH: Test-

to-Code Traceability using Slicing and Conceptual Coupling", in Proceedings of

27th IEEE International Conference on Software Maintenance (ICSM'11),

Williamsburg, VI, 25-30 September 2011, pp. 63-72.

[104] Rajlich, V., Software Engineering: The Current Practice, Boca Raton, FL, CRC

Press, 2012.

[105] Rajlich, V. and Gosavi, P., "Incremental Change in Object-Oriented

Programming", IEEE Software, vol. 21, no. 4, 2004, pp. 62-69.

[106] Rajlich, V., Marchesi, M., Succi, G., Wells, D., and Williams, L., "A Methodology

for Incremental Change", in Extreme Programming Perspectives, Addison

Wesley, 2002, pp. 201-214.

[107] Rao, S. and Kak, A., "Retrieval from Software Libraries for Bug Localization: a

Comparative Study of Generic and Composite Text Models", in Proceedings of

8th IEEE/ACM Working Conference on Mining software repositories (MSR'11),

Wikiki, Honolulu, WI, 21-28 May 2011, pp. 43-52.

[108] Ratanotayanon, S., Choi, H. J., and Sim, S. E., "My Repository Runneth Over: An

Empirical Study on Diversifying Data Sources to Improve Feature Search", in

Proceedings of 18th IEEE International Conference on Program Comprehension,

Braga, Minho, June 30 -July 2 2010, pp. 206-305.

[109] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on Assessing Feature

Location Techniques", in Proceedings of 17th IEEE International Conference on

Program Comprehension (ICPC'09), Vancouver, British Columbia, Canada, 17-

19 May 2009, pp. 218-222.

www.manaraa.com

165

[110] Robillard, M. P., "Topology Analysis of Software Dependencies", ACM

Transactions on Software Engineering and Methodology, vol. 17, no. 4, 2008.

[111] Rocchio, J. J., "Relevance feedback in information retrieval", in The SMART

Retrieval System - Experiments in Automatic Document Processing, Prentice

Hall, 1971, pp. 313-323.

[112] Salton, G., Wong, A., and Yang, C. S., "A vector space model for automatic

indexing", Commun. ACM, vol. 18, no. 11, 1975, pp. 613–620.

[113] Savage, T., Dit, B., Gethers, M., and Poshyvanyk, D., "TopicXP: Exploring Topics

in Source Code using Latent Dirichlet Allocation", in Proceedings of 26th IEEE

International Conference on Software Maintenance (ICSM'10), Timisoara,

Romania, 12-18 September 2010, pp. 1-6.

[114] Scanniello, G. and Marcus, A., "Clustering Support for Static Concept Location in

Source Code", in Proceedings of 19th IEEE International Conference on Program

Comprehension (ICPC'11), Kingston, ON, June 22-24 2011, pp. 1-10.

[115] Settimi, R., Huang, C., Khadra, B., Mody, J., Lukasik, W., and DePalma, C.,

"Supporting Software Evolution through Dynamically Retrieving Traces to UML

Artifacts", in Proceedings of 7th International Workshop on Principles of Software

Evolution (IWPSE), 2004, pp. 49-54.

[116] Shao, P. and Smith, R. K., "Feature Location by IR Modules and Call Graph", in

Proceedings of 47th ACM Annual Southeast Regional Conference (ACM-SE'09),

Clemson, SC, 19-21 March 2009.

[117] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker, K., "Using

Natural Language Program Analysis to Locate and Understand Action-Oriented

www.manaraa.com

166

Concerns", in Proceedings of International Conference on Aspect Oriented

Software Development (AOSD'07), 2007, pp. 212-224.

[118] Sridhara, G., Hill, E., Pollock, L., and Vijay-Shanker, K., "Identifying Word

Relations in Software: A Comparative Study of Semantic Similarity Tools", in

Proceedings of 16th IEEE International Conference on Program Comprehension

(ICPC'08), Amsterdam, 10-13 June 2008, pp. 123-132.

[119] Starke, J., Luce, C., and Sillito, J., "Searching and Skimming: An Exploratory

Study", in Proceedings of 25th IEEE International Conference on Software

Maintenance (ICSM'09), Edmonton, AB, 20-26 Sept. 2009, pp. 157-166.

[120] Tairas, R. and Gray, J., "An Information Retrieval Process to Aid in the Analysis of

Code Clones", Empirical Software Engineering, vol. 14, no. 1, February 2009, pp.

33-56.

[121] Tian, Y., Lo, D., and Sun, C., "Information Retrieval Based Nearest Neighbor

Classification for Fine-Grained Bug Severity Prediction", in Proceedings of 19th

Working Conference on Reverse Engineering (WCRE'12), 2012, pp. 214-225.

[122] Vercoustre, A.-M., Pehcevski, J., and Naumovski, V., "Topic Difficulty Prediction in

Entity Ranking", in Proceedings of 7th International Workshop of the Initiative for

the Evaluation of XML Retrieval (INEX 2008), Dagstuhl Castle, Germany, 15-18

December 2008, pp. 280-291.

[123] Voorhees, E., "The TREC robust retrieval track", ACM SIGIR Forum, vol. 39, no.

1, 2005, pp. 11-20.

www.manaraa.com

167

[124] Wang, S., Lo, D., Xing, Z., and Jiang, L., "Concern Localization using Information

Retrieval: An Empirical Study on Linux Kernel", in Proceedings of 18th Working

Conference on Reverse Engineering, 2011, pp. 92-96.

[125] Xue, X., Huston, S., and Croft, W. B., "Improving Verbose Queries using Subset

Distribution", in Proceedings of ACM International Conference on Information and

Knowledge Management, 2010.

[126] Yadla, S., Hayes, H., and Dekhtyar, A., "Tracing Requirements to Defect Reports:

An Application of Information Retrieval Techniques", Innovations in Systems and

Software Engineering: A NASA Journal, vol. 1, no. 2, 2005.

[127] Yang, J. and Tan, L., "Inferring Semantically Related Words from Software

Context", in Proceedings of 9th IEEE/ACM Working Conference on Mining

Software Repositories (MSR'12), Zurich, Switzerland, 2-3 June 2012, pp. 161-

170.

[128] Yin, R. K., Case Study Design: Design and Methods, 3rd ed., SAGE Publications,

2003.

[129] Yom-Tov, E., Fine, S., and Darlow, D. C. A., "Learning to Estimate Query

Difficulty", in Proceedings of ACM Special Interest Group on Information

Retrieval (SIGIR 2005), 2005, pp. 512-519.

[130] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL: towards a static non-

interactive approach to feature location", in Proceedings of 26th International

Conference on Software Engineering (ICSE'04), 2004, pp. 293-303.

www.manaraa.com

168

[131] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL: Towards a Static

Non-interactive Approach to Feature Location", ACM Transactions on Software

Engineering and Methodologies (TOSEM), vol. 15, no. 2, 2006, pp. 195-226.

[132] Zhou, J., Zhang, H., and Lo, D., "Where Should the Bugs Be Fixed? More

Accurate Information Retrieval-Based Bug Localization Based on Bug Reports",

in Proceedings of 34th International Conference on Software Engineering

(ICSE'12), Zurich, Switzerland, 2012, pp. 14-24.

www.manaraa.com

169

ABSTRACT

SUPPORTING TEXT RETRIEVAL QUERY FORMULATION IN SOFTWARE
ENGINEERING

by

SONIA HAIDUC

August 2013

Advisor: Dr. Andrian Marcus

Major: Computer Science

Degree: Doctor of Philosophy

The text found in software artifacts captures important information. Text Retrieval

(TR) techniques have been successfully used to leverage this information. Despite their

advantages, the success of TR techniques strongly depends on the textual queries

given as input. When poorly chosen queries are used, developers can waste time

investigating irrelevant results.

The quality of a query indicates the relevance of the results returned by TR in

response to the query and can give an indication if the results are worth investigating or

a reformulation of the query should be sought instead. Knowing the quality of the query

could lead to time saved when irrelevant results are returned. However, the only way to

determine if a query led to the wanted artifacts is by manually inspecting the list of

results. This dissertation introduces novel approaches to measure and predict the

quality of queries automatically in the context of software engineering tasks, based on a

set of statistical properties of the queries. The approaches are evaluated for the task of

concept location in source code. The results reveal that the proposed approaches are

www.manaraa.com

170

able to accurately capture and predict the quality of queries for software engineering

tasks supported by TR.

When a query has low quality, the developer can reformulate it and improve it.

However, this is just as hard as formulating the query in the first place. This dissertation

presents two approaches for partial and complete automation of the query reformulation

process. The semi-automatic approach relies on developer feedback about the

relevance of TR results and uses this information to automatically reformulate the query.

The automatic approach learns and applies the best reformulation approach for a query

and relies on a set of training queries and their statistical properties to achieve this.

Both approaches are evaluated for concept location and the results show that the

techniques are able to improve the results of the original queries in the majority of the

cases.

We expect that on the long run the proposed approaches will contribute directly to

the reduction of developer effort and implicitly the reduction of software evolution costs.

www.manaraa.com

171

AUTOBIOGRAPHICAL STATEMENT

Sonia Haiduc is a Ph.D. candidate in the Department of Computer Science at

Wayne State University in Detroit. She received her M.A. in Computer Science from

Wayne State University in 2009. Before coming to Wayne State University, she

received her B.Sc. from Babes-Bolyai University in Cluj-Napoca, Romania.

Her research interests are in software engineering with focus on software

maintenance and evolution. She has published multiple research papers in highly

selective venues, including IEEE/ACM International Conference on Software

Engineering, IEEE/ACM International Conference on Automated Software Engineering,

IEEE International Conference on Software Maintenance, IEEE International

Conference on Program Comprehension, IEEE Working Conference on Reverse

Engineering, and IEEE European Conference on Software Maintenance. She has been

a member of the organizing and program committee for several conferences in the field.

She has also been awarded the 2011 Google Anita Borg Memorial Scholarship for her

research and leadership.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2013

	Supporting Text Retrieval Query Formulation In Software Engineering
	Sonia Cristina Haiduc
	Recommended Citation

