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Abstract

Autonomous vehicles are no longer a thing of the future. The technology is here and getting
better every day. The current systems are however typically bound to specific controlled geo-
graphical areas, limiting their usability. There is still a lot of work and research to be done to
make a truly independent autonomous vehicle. Advancements in deep learning have increased
the validity of using end-to-end systems as a promising alternative approach to current systems.

This thesis explores some of the possibilities of these end-to-end systems and compares the
performance of different architectures and techniques i.a. the importance of using temporal
data, the importance of the quality of the dataset, classification vs. regression and the effect of
increasing the complexity of the system.

This work also explores the implementation of these architectures on the JetBot robotic test
platform for the task of both lane following and following navigational directions in a simplified
urban environment.

The architecture proposed by Aasbø and Haavaldsen, “Autonomous Vehicle Control: End-to-
end Learning in Simulated Environments.” [1] is used as a basis. The idea is explored further by
applying the findings on the jetbot platform, performing further tests and validating results.

The findings in this thesis show that even a simple deep neural net can achieve full autonomy,
given a sufficiently large dataset of high quality. The results with more complex models on the
JetBot platform were not promising, with the vehicle regularly ignoring commands or swerving
out of lane. Further experiments hinted that this is probably because those models were over-
qualified for the simple environment as well as the use of a (too) limited dataset.
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1
Introduction

1.1 Background and Motivation

We are at a crossroads in the history of human transportation. The time of manual driving
and its inevitable human errors will become a thing of the past. According to the European
commission of Mobility and Transport, there are still more than 40 000 deaths on EU roads each
year with more than 90% caused by human error, of which 10 to 30% caused by distraction[2].
The need for smarter and safer cars is high on the agenda.

More and more startups in this field are emerging and some big players have started investing,
such as Waymo (Alphabet Inc.) who have been developing their technology since 2009, have
already started a commercial taxi service in selective regions (known as level 4 autonomy or
high automation [3]). Other, well established car companies, such as GM, BMW, Nissan, Ford
and many others have also invested billions trying to get ahead of the competition.

Today’s most used approach is an explicit decomposition of the problem where the different sub
problems such as sensor fusion, lane marking detection, path planning, and control get solved
by separate modules, each using different technology stacks and techniques.

Another approach is to develop one coherent end-to-end system (such as a deep neural network)
which takes as input all sensor data and directly generates the output commands for the vehicle.

1



2 CHAPTER 1. INTRODUCTION

Such a system both reduces complexity and required knowledge of different domains. A deep
neural net based end-to-end approach can e.g. be trained using Imitation Learning. This way,
the system learns to drive by studying the behaviour of an expert driver. This thesis will explore
the field of imitation learning for end-to-end systems using only camera input. The findings will
be applied on the JetBot robotic test platform in a miniature real-world environment.

1.2 Objectives and Research Questions

1.2.1 Problem definition

The overall goal of this thesis is twofold.

Initially, this work is a continuation of the work of Aasbø and Haavaldsen, 2019[1]. The authors
proposed a deep learning architecture using different aspects from recent research to create an
end-to-end system for autonomous driving. In their work, the importance of dataset size and
optimal parameters were measured and analysed. This thesis investigates the importance of the
used architecture aspects as well as validates the achieved results.

In addition,this study explores the possibility of applying these systems into a simple real-world
scenario using a small robotic test platform called JetBot. This includes examining how well
these models perform in real life compared to their performance in simulated urban environ-
ments.

1.2.2 Research questions

• What is the importance of dataset balancing?

• What impact does the recurrent module of the end-to-end architectures have on a model’s
performance?

• Does the model architecture benefit from a more complex feature extractor?

• Do these methods translate to a simple real-world environment?

• Do the findings of performance differences correlate to the findings in the real-world envi-
ronment?
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1.3 Contributions

This is mostly an exploratory work. It covers deep learning as well as exploring the capabilities
of the JetBot robotic test platform. The thesis engages into the topic of artificial neural networks
for the use of end-to-end learning for autonomous vehicles.

Several models were trained, comparing their performance in simulation as well as on the JetBot
platform. The real-life tests using the JetBot show that following commands while keeping in
lane is possible, but that a larger dataset is needed to increase reliability. The tests also show
that a simpler architecture performs better in this case.

This being the first operational trial using the JetBot platform at NTNU, the acquired experience
exploring the possibilities and limitations of the system, sets the stage for the use in further
projects.

1.4 Thesis outline

Chapter 1: Introduction consists of a general introduction to the problem and poses research
questions, objectives and describes this thesis’s contributions.

Chapter 2: Background and related work contains the general background information
needed on artificial neural networks and on the relevant technology for this thesis, backed up by
related work.

Chapter 3: Methodology describes the methods used to collect, process and train on data
as well as the proposed architectures and the methodology for testing.

Chapter 4: Experiments and results covers the conducted experiments with their results
and a discussion of the findings of each experiment as well as a more general discussion. The
discussion reflects on both the experiment outcomes and on the choices that were made.

Chapter 5: Conclusion and Future work draws a conclusion and explores potential future
work to be done.



2
Background and related work

2.1 Artificial neural networks

Artificial Neural Networks are a means of doing machine learning in which a computer learns
to perform a task by observing and analysing a set of examples. An ANN is built up out of
thousands or even millions of simple processing nodes that are densely connected together to fulfil
complex functions that have proven hard or even impossible to solve with classical computation.

Usually, an analogy with the human brain is made, where the computational nodes in the ANN
are compared with biological neurons. It is important to note however that this is a loose
comparison as (at least in the current state of artificial intelligence) the neurons in the brain are
vastly more complex then artificial neurons.

Currently, most neural nets are organized into densely interconnected “Feed Forward” layers.
Feed Forward implies that data flows through the network in one direction: each node receives
data from several nodes in the preceding layer, performs a computation on that data and sends
it along to connected nodes in the following layer.

All in all, a neural network is basically a group of simple linear functions stacked together in a
hierarchical way to form a very complex nonlinear function.

4



2.1. ARTIFICIAL NEURAL NETWORKS 5

Figure 2.1: The modern perceptron

2.1.1 The perceptron

The perceptron is a type of artificial neuron first developed in the 1950’s and 1960’s by Frank
Rosenblatt[4], inspired by earlier work of Warren McCulloch and Walter Pitts. It is an algorithm
for learning a binary classifier called a threshold function: a function that maps its input, a vector
with real values, to a single binary output.

f (x) =

0,
∑

j wjxj + b > 0

1,
∑

j wjxj + b ≤ 0
(2.1)

The neuron’s output, 0 or 1, is determined by whether the weighted sum
∑

j wjxj + b is less
than or greater than some threshold value, called the bias b (see Equation 2.1). The bias is an
indication of how easily the node is activated while the weights signify how important each of
the inputs is.

The issue with this type of artificial neuron is that a small change in the input does not result
in a small change in output. A minuscule adjustment in the weights or the bias of a single
perceptron may flip its result from 0 to 1, causing an extensive behavioural change of the entire
network. This makes it difficult to see how to gradually modify the weights and biases so that
the network gets closer to the desired behaviour.

Therefore, the artificial neuron used today is somewhat different. The output of the neuron
is now the weighted sum of its inputs, transformed by an activation function that limits the
possible range of the output as well as introduces non linearity.

2.1.2 Activation functions

Activation functions have the crucial task of adding non-linearity to the nodes of a network.
Without this the network would collapse into an overly-complicated linear function, unable
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to fit any complex data. There are many different activation functions, each with their own
respective strengths and weaknesses.

Sigmoid

The sigmoid is a good activation function for classifiers. It tends to bring the activations to
either end of the curve. Making clear distinctions in prediction.

σ(x) =
1

1 + e−x
(2.2)

Another advantage of this activation function is that, unlike a linear function, the output, also
known as the activation, is always going to be in the range (0,1). This is desirable since unbound
activations will almost certainly lead to an explosion in activation size.

Figure 2.2: The Sigmoid activation function

The main disadvantage is that the gradient towards either end of the sigmoid will be small.
This is the main cause of the problem of “vanishing gradients” where the network stops learning
or learns drastically slow. There are ways around this issue and this is still the most popular
activation function to date.
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Tanh

Tanh is very similar to the sigmoid function. It is in fact a scaled version of the sigmoid with
the main difference being that the gradient of the Tanh is steeper and that the function bounds
the output to the range (-1, 1) instead of (0, 1).

Tanh(x) =
2

1 + e−2x
− 1 (2.3)

Deciding between the sigmoid or Tanh depends mostly on the requirement of the gradient
strength. Tanh also suffers from the vanishing gradient problem.

Figure 2.3: The tanh activation function

ReLU

ReLu or Rectified Linear Unit has become very popular due to its simplicity. When the input,
x, is positive, its output is x, otherwise it’s 0. At first this looks as if it has the same problem as
having just a linear output, but ReLu is in fact non-linear. It has the advantage of being very
simple to compute as well as not suffering from the vanishing gradient problem.

ReLU (x) =

x, x > 0

0, x ≤ 0
(2.4)

The main issue here is that the function has no upper bound on its output. This allows the
activations to blow up to very large values. Another downside, called “the dying ReLu problem”,
comes from being zero for all negative values. Once a neuron gets negative it is unlikely to
recover.
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Figure 2.4: The ReLU activation function

ELU

ELU is a fairly new activation function. It aims to fix the dying ReLU problem by allowing
negative values. ELU also tries to make the mean of the activations closer to zero which speeds
up training.

Figure 2.5: The ELU activation function

ELU (x) =

x, x > 0

α(ex − 1), x ≤ 0
(2.5)
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2.1.3 Training

Training a neural network is the process of finding the optimal value for each parameter in the
network (for all the weights wij and biases bij). To achieve this, the weights and biases get
initialised randomly and a cost function (often called a Loss function) is defined which assesses
the quality of the network. It does this by describing how close the network’s output is to its
desired target for a certain input.

Cost functions

There are various different cost functions for numerous different applications. Here we use the
most common function for regression problems: Mean Square Error (MSE). If a vector of n
predictions is generated from a sample of n data points, and Y is the vector of observed values
being predicted, with Ŷ being the predicted values, then the MSE of the predictor is computed
as in equation 2.6.

MSE =
1

n

n∑
i=1

(Ŷi − Yi)
2 (2.6)

Back propagation

To adjust the parameters in the network the gradient descent optimisation algorithm is used.
Here, the gradient for each parameter is calculated (the gradient of a parameter being the partial
derivative of the loss in regards to that parameter). The value of each parameter is then updated
by taking a step of size α (the learning rate) in the downward direction of its gradient. This
process is repeated until a local minimum for the cost is reached.

Figure 2.6: Gradient descent
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Because neural networks are so complex, sometimes having hundreds of thousands of parame-
ters, using classic calculus to derive each parameter would be extremely impractical. Thus, an
algorithm called back propagation is used. It consists of two phases: the forward pass calculates
both the result of the network at each layer as well as the local gradient of each layer with
respect to its following layer. The backward pass then simply applies the chain rule to compute
the gradients for each parameter with respect to the final cost. It propagates the cost backwards,
hence the name back propagation.

Figure 2.7: How back propagation would work through a single node.

Optimizers

The way parameters of a neural network are updated is determined by the used optimizer. Op-
timizers are mathematical functions that modify the network’s parameters in order to minimise
the cost. The gradients of the loss function act as a guide, telling the optimizer in what direction
to move to reach a local minimum.

Stochastic Gradient Descent or SGD is a stochastic approximation of gradient descent opti-
mization, since it replaces the actual gradient (calculated from the entire data set) by an estimate
thereof (calculated from a randomly selected subset of the data). The weight update for SGD
is given in equation 2.7, where α is the learning rate that dictates how much the weights get
adjusted in each iteration.

wt+1
i,j := wt

i,j − α
∂x

∂wt+1
i,j

(2.7)
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Adam [5] is an adaptive learning rate optimization algorithm that aims to improve on SGD.
It calculates an adaptive learning rate for each individual parameter using the mean (the first
moment) and the variance (the second moment) of the gradient. The weight update can be seen
in equation 2.8.

wt+1 := wt − α
m̂t

√
v̂t + ε

(2.8)

Here, m̂t and v̂t are the first and second moment of the gradient, while ε is a constant with a
typical value of 10−8.

First published in 2014, Adam showed huge performance gains in terms of training speed. Un-
fortunately, it has been shown that Adam often finds a worse solution than stochastic gradient
descent. A lot of research has since been done to address these issues.

Learning rate

The learning rate regulates how much the weights get adjusted in each training step. Choosing
an optimal learning rate is important. When it is set too low the network will learn very slowly
and it might fail to escape a local minimum, making it unable to reach a global minimum and
thus an optimal solution. When set too high, the network might overshoot the global minimum
causing the performance of the model (such as its loss on the training dataset) to oscillate over
training (as illustrated in Figure 2.8).

(a) Large learning rate (b) Small learning rate

Figure 2.8: The effect of the learning rates. Figure (a) illustrates a large learning rate that is
too high. Figure (b) depicts a small learning rate that gets stuck in a local minimum.
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2.1.4 Momentum

By updating with only a subset of the data samples, the path taken by stochastic gradient
descent will “oscillate” towards convergence. Momentum is a technique which considers the
past gradients to smooth out the update. It computes an exponentially weighted average of
the gradients and uses that to update the weights instead, making it converge faster than the
standard gradient descent algorithm. How the weights are updated is shown in equation 2.9,
where γ governs how much the weight updates are affected by previous weight changes.

wt+1
i,j = wt

i,j − α
∂L

∂wt
i,j

+ γ∆wt+1
i,j (2.9)

2.1.5 Generalization

Generalization techniques are used to reduce the errors introduced into the network as a result of
the choice of dataset[6]. All standard neural network architectures such as the fully connected
multi-layer perceptron are prone to overfitting[7]. When a model over-fits, the error on the
training dataset will keep diminishing to almost 0 whilst performance on unseen data will get
worse. In this case, the network has started to memorise features which are unique to the
training data instead of finding meaningful, general features. When a model performs poorly
on both training and testing data however, it might be under-fitted. This might be because the
network was not trained for long enough or is too simple for the task at hand.

Early stopping is a common generalization technique in which the evolution over time is
tracked on a validation set. The validation set is a small part of the training data-set on which
the model is not trained. Figure 2.9 shows an example of a training loss curve and a validation
loss curve. This approach uses the validation set to anticipate the behaviour in real use (or on
a test set), assuming that the error on both will be similar. The validation error is used as an
estimate of the generalization error [8]. Validation error curves are rarely as smooth as in figure
2.9 and thus various criteria exist which determine when early stopping should actually take
place.
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Figure 2.9: Early stopping

Dropout is another popular generalization technique. First introduced in 2014 [9], dropout
aims to prevent overfitting by providing a way of combining many different neural network
architectures into one. The term “dropout” refers to randomly dropping out units in a neural
network by temporarily removing them, along with all their incoming and outgoing connections,
as shown in Figure 2.10.

(a) Large learning rate (b) Small learning rate

Figure 2.10: Dropout Neural Net Model. Figure (a) illustrates a standard neural net with 2
hidden layers. Figure (b) is an example of a thinned net produced by applying dropout to the
network on the left.
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Data Augmentation is an approach in which the size of the dataset is artificially expanded by
applying transformations on the existing data. If a model has a lot of parameters, it has to have
a proportional amount of examples to learn from to get good performance. Transformations
used for augmentation should keep all important features but expand the dataset. In the case
of a dataset of images, transformations can be mirroring, rotating, shifting the hue, perspective
transformation, adding noise (e.g. in the shape of a Gaussian blur), etc. The simple case of
flipping each image around one axis already increases the dataset size by a factor of 2. Data
augmentation is especially helpful when working with images, videos, and text sets.

Weight regularisation. While training neural networks, there is an opportunity for some
very large weight values to crop up. This happens because these weights are focusing on certain
features very specific to the training data which causes them to continuously increase in value
throughout the training process. Huge weights are very susceptible to small changes resulting in
many incorrect predictions arising on the test data, decreasing the generalisation of the neural
network.

L1 : λ ∗
∑
|W | (2.10) L2 : λ ∗

∑
W 2 (2.11)

Weight regularisation includes part of the weights in the loss function, so that weights are also
minimised whilst training. There are two methods of doing this, called L1 and L2 regularisation
(equation 2.10 and 2.11, where λ signifies the extent of weight change). These expressions are
simply added to the overall loss function of the neural network.

2.1.6 Batch normalisation

Batch normalisation is a method that normalises activations in a network across each mini-
batch. For each feature, it subtracts the mini-batch mean and divides the feature by its mini-
batch standard deviation (Equations 2.12, 2.13, 2.14). This forces the features to have a 0
mean and a unit standard deviation. To avoid problems where a large activation might have
actually benefited the network’s performance, batch normalisation adds two additional learnable
parameters: the mean and magnitude of the activations (it scales the normalised activations and
adds a constant, see Equation 2.15). This allows the magnitude and mean of the activations
to be controlled independent of all other layers, essentially “smoothing out” the loss surface,
making it easier to navigate.

µβ ←−
1

m

m∑
i=1

xi (2.12) σ2
β ←−

1

m

m∑
i=1

(xi − µβ) (2.13) x̂i ←−
xi − µβ√
σ2
β + ε

(2.14)
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yi ←− γxi + β ≡ BNγ,β(xi) (2.15)

2.1.7 Transfer Learning

Transfer learning is a technique in which a model trained for a task is reused as the starting
point for a model designed for a different task. It is an optimisation which allows for rapid
progress or improved performance when modelling the second task. The source model is often
pre-trained, but sometimes, just the untrained model is reused and trained from scratch. This
may involve using all or only parts of the model, depending on the modelling technique used.
Optionally, the model may need to be adapted or refined on the input-output pair data available
for the task of interest.

This technique is especially useful for the early layers in convolutional networks, as features are
more generic in early layers and more original-dataset-specific in later layers[10]. Olivas Et al.[11]
describes three possible benefits from transfer learning: a higher initial skill (before refining the
model), faster convergence (the rate of improvement of skill is higher during training) and a
higher convergence (better final network performance).

Figure 2.11: Ways in which transfer learning might improve training.

2.2 ANN Types

2.2.1 Convolutional Neural Networks

Regular neural networks don’t scale well to full images. For images which are only of size
32x32x3 (32 wide, 32 high with 3 colour channels), a single fully-connected neuron in a first
hidden layer of a regular neural network would have 32*32*3 = 3072 weights. Clearly this
structure does not scale to larger images, as an image of e.g. 200x200x3, would already lead to
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neurons that have 200*200*3 = 120,000 weights. A convolutional neural network (also known
as CNN, or ConvNet) is a type of deep neural networks which takes advantage of the fact
that the input is an image. The CNN can assign importance to various features in the input
through the learnable weights and biases, independent of their location in the image. While in
primitive methods, filters to find features in the image are hand-engineered, ConvNets have the
ability to attain these filters through training. A CNN also keeps the original image structure,
preserving the spatial information of the input where a typical ANN would flatten the input to
a one-dimensional vector.

Every layer of a ConvNet uses a differentiable function to transform one volume of activations
into another. There are three main types of layers to build a CNN architecture: Convolutional
Layers, Pooling Layers, and Fully-Connected Layers.

Convolution Layer

Convolutional layer’s parameters consist of a set of learnable filters. Every filter is spatially
small, but extends through the full depth of the input volume. During the forward pass, each
filter moves by a given amount across the width and height of the input (it convolves over
the image) and computes dot products between the entries of the filter and the input at every
position. This results in a 2-dimensional activation map which gives the responses of that filter at
every spatial position. The amount of filters determines the depth of the output map. Padding
may be added to the input to prevent a change in spatial dimension.

Intuitively, stacking multiple convolutional layers will result in the later layers activating on
features with higher abstraction (E.g. an eye or an entire face) while early layers will learn to
recognise very simple features such as horizontal or vertical lines.

Pooling Layer

Pooling layers are often periodically added in-between successive convolutions as a means to
progressively reduce the spatial size of the data. This reduces the amount of parameters and
computation in the network, also reducing overfitting. In max pooling, this is achieved through
dividing each depth slice in the input volume into subsections of a small spatial size, say 2x2,
and then simply taking the maximum of each section to form the output. Other techniques,
such as average pooling or sum pooling, work in much the same way, only replacing the max
operation.
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Fully-Connected Layer

At the end of a series of convolutional and pooling layers (known as the feature extractor layers),
there are usually one or more fully connected layers. These process the high-level features of
the image, produced by the feature extractor, to form the final prediction.

2.2.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of neural network which allows the output from
the preceding time step to be added to the current input. This combined input forms the internal
(hidden) state of the network, which allows the RNN to exhibit dynamic temporal behaviour.
RNNs can use their internal memory to process arbitrary sequences of inputs. This allows
for four different configurations of input/output relations making it useful for wide variety of
applications.

Figure 2.12: Types of RNN operations, from left to right: (1) one-to-one, (2) one-to-many, (3)
many-to-one, (4) many-to-many

Figure 2.12 shows the possible configurations. Each rectangle is a vector: input vectors are
red, output vectors are blue and green vectors hold the RNN’s state. One-to-one is processing
without RNN, from fixed-sized input to fixed-sized output. One-to-many can be used to produce
an output sequence (e.g. image captioning takes an image and outputs a sentence) while many-
to-one expects a sequence input and gives a fixed length output (e.g. sentiment analysis where a
given sentence is classified as expressing positive or negative sentiment). Finally, Many-to-many
processes one sequence and gives another sequence back (e.g. Translation: an RNN reads a
sentence in English and then outputs a sentence in Dutch).

Long Short-Term Memory networks

The main appeal of RNNs is the idea that they might be able to connect previous information
to the present task. This works well for short-term memory tasks and, in theory, RNNs are also
absolutely capable of handling long-term dependencies. In practice however, this is not the case
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Figure 2.13: A repeating LSTM cell: yellow squares represent Neural Network Layers, red circles
represent point-wise operations and arrows represent the flow of data

due to a trade-off between efficient learning with gradient descent and latching on to information
for longer periods [12].

A Long Short-Term Memory network (LSTM)[13] does not have this problem. An LSTM cell has
three inputs: a hidden state, a data input, and a cell state with the cell state holding long-term
dependencies. At every time step, three gates regulate what information is kept (remember
gate), thrown away (the forget gate) and added to the cell state (the input gate). The full
architecture can be seen in Figure 2.13

2.2.3 Residual Neural Networks

The accuracy of Neural networks should increase with an increasing number of layers. This is
only true to a certain point, after which the accuracy gets saturated and then degrades rapidly.
The problem of vanishing gradient creeps up: in some cases, a weight’s gradient becomes unde-
sirably small, effectively preventing the weight from changing its value. If a network becomes
sufficiently deep, it may not be able to learn even simple functions.

Residual layers address this issue by introducing skip connections: the input of a residual block
gets added to its output before it is fed into the next block. Essentially, this allows the prop-
agation of larger gradients to the initial layers (without passing through non-linear activation
functions, which cause the gradients to explode or vanish) so that they can learn as fast as the
final layers, giving the ability to train deeper networks.

M(x) = y (2.16) F (x) = M(x)− x (2.17) M(x) = F (x) + x (2.18)

Usually, a deep learning model learns the mapping, M , from an input x to an output y, as in
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Figure 2.14: A single residual block

equation 2.16. Instead of learning a direct mapping, the residual function uses the difference
between a mapping applied to x and the original input, x, as seen in equation 2.17. A skip layer
connection thus uses equation 2.18.

This way, a residual neural net lets the layers directly fit a residual mapping, as it is easier to
optimise this residual function F (x) compared to the original mapping M(x)[14].

2.3 Teaching Autonomous Vehicles to drive

2.3.1 Mediated Perception

The mediated perception approach to autonomy connects multiple separate components which
are each responsible for a different relevant subset of driving[15]. Some components may, for
example, be responsible for processing sensory input (using computer vision techniques to detect
lane-lines, traffic signs, traffic, ...) while other components can process the resulting information
to perform decision making.

Considered as the state of the art technique, this approach is the most developed and the most
widely adopted in the industry. This method however does not always work well in complex
traffic situations that cannot easily be characterized by analytical models[16]. One reason for
this is the utilisation of careful feature engineering, which increases the likelihood of missing
important details. Another disadvantage of this technology is the high cost associated with
hardware (e.g. LiDAR sensors and radar). Furthermore, most mediated perception approaches
rely on creating high definition maps of roads, which renders the system unable to drive in
unknown locations.
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Figure 2.15: Reinforcement feedback loop. Starting at time step t, the agent observes the state
st and reward rt. When the agent takes action at, the environment returns a new state st+1 and
reward rt+1 for time-step t+ 1.

2.3.2 End-to-end Learning

End-to-end Learning promises to address the steering, throttle, and braking predictions with a
single neural network, greatly simplifying the process (the different components do not have to
be designed and optimised separately with human intervention, minimising the required setup
for a running solution), making it a hot topic in the research field.

Reinforcement learning approaches the problem by defining the vehicle as an agent following
a policy. This agent has the ability to make actions in a dynamic environment, letting it explore.
During exploration, a feedback is given to the agent in the form of reward. A possible reward
metric for lane following could for example be the distance from the vehicle to the center of
the lane[17] but designing reward functions can be challenging, as the center of the lane may
not always be clearly defined. Such an agent, environment and reward system is traditionally
known as a Markov Decision Process (MDP). The agent’s policy is optimised using a deep neural
network to maximise the expected future reward. An example of the reinforcement feedback
loop can be seen in Figure 2.15. The exploration factor of reinforcement learning raises some
serious safety concerns as agents need to be able to make mistakes in order to learn. This
is probably a reason for development, outside of simulation, being slow. Recent work[18] has
shown however, that the application of deep reinforcement learning to a full sized autonomous
vehicle is possible and shows much promise.

Imitation Learning (also known as behavioural cloning) denotes a supervised learning tech-
nique in which a single network is trained to mimic an expert’s actions. An imitation learning
model is trained using a dataset of observations labelled with the corresponding correct decisions
to be made. Generally, imitation learning is useful when it is easier for an expert to demonstrate
the desired behaviour rather than to specify a reward function which would generate the same
behaviour or to directly learn the policy.

In the case of autonomous driving, a dataset can consist of a recording of human driving. This
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recording usually contains images, steering wheel angles, throttle and brake controls. The loss
of the network can then be calculated by comparing the recorded controls with the prediction
the network made based on the images. This way, the policy πθ is adjusted so that the taken
action for a given state si is closer the expert’s action ai for all recorded states and actions (see
equation 2.19).

minimize
∑
i

L(ai, πθ(si)) (2.19)

Relevant past experiments

ALVINN (Autonomous Land Vehicle In a Neural Network) is the first known project that
attempts to use an end-to-end neural network for autonomous driving[19]. The used model is a
3-layer fully connected neural net. The input consists of a combination of a laser range finder
and a gray scale forward-facing image for a total input resolution of 1217 units. The output
layer consists of 45 nodes that represent points along the curvature the vehicle should follow in
order to navigate. One node in the output layer is used to loop back to the input, meant to
serve as a feedback for the road intensity.

Published in 1989, ALVINN was very limited by the computational power available at that
time. Despite this limitation, the network was able to accurately complete a 400 meter path in
a wooded area. Even back then, simulated road images were used for training. ALVINN has
inspired many more recent end-to-end approaches.

DAVE (DARPA Autonomous Land Vehicle) was a project funded by DARPA, that explored
the idea further[20][21]. The most noticeable improvements were the use of a CNN and a stereo
camera using the YUV colorspace, which has shown to increase accuracy[16]. DAVE demon-
strated the potential of end-to-end learning (it was used to justify starting the DARPA Learning
Applied to Ground Robots (LAGR) program[22]), but performance was not yet sufficiently re-
liable to provide a full alternative to modern modular approaches (the mean distance between
crashes is about 20 meters in complex environments[20]).

DAVE-2 by Nvidia[23], also known as PilotNet, aimed to prove the feasibility of end-to-end
systems, building on the work of LeCun et. al[20]. The idea is that end-to-end learning leads to
better performance and smaller systems because the internal components self-optimise to max-
imise overall system performance, instead of optimising human-selected intermediate criteria.

The proposed architecture consists of a CNN with 5 convolutional layers: the first three with a
stride of 2 and a kernel-size of 5x5 and two non-strided with a kernel of 3x3 for the final two
convolutions. The five convolutional layers are followed by three fully connected layers, leading
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Figure 2.16: The PilotNet CNN architecture. The network has about 27 million connections
and 250 thousand parameters.

the vehicle control as output. The full network architecture can be seen in Figure 2.16.

Data was collected using three front-facing cameras with a set offset and steering angles were
recorded through the CAN bus of the vehicle. The training data was augmented using shifts
and rotations so that the model learns to recover from mistakes.

For training, the network was fed images in order to predict a steering angle. These predictions
were then compared to the ground truth by calculating the Mean Square Error. Based on this,
the parameters in the network were adjusted through back propagation. After training, the
model could accurately predict steering angles given a single front-facing image.

The PilotNet model was able to navigate various roads and terrains with very little error, driving
autonomously 98 to 100% of the time. This promising result has generated a wave of interest
and research in end-to-end approaches for autonomous driving.

Limitations

Even though the end-to-end approach has showed promising results, the technology has several
limitations and challenges. One of the most problematic issues comes from the the fact that
end-to-end approaches are entirely based on deep neural networks. They therefore inherit much
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of the same problems. Known as the black box problem, deep neural networks are often criticized
to be non-transparent: it is difficult to know what information a network uses as a basis for
its prediction. This causes uncertainty on how the network may react to outliers in the data.
Recently, a lot of research has been conducted to create explanators or explainers which try to
point out the connection between input and output to represent, in a simplified way, the inner
structure of machine learning black boxes[24].

Furthermore, the black box issue raises concern on deliberate attacks based on the properties of
neural networks. Neural nets can be tricked into making wrong decisions based on deliberately
crafted patterns in the input data[25]. In the case of autonomous driving, drawing a line on the
road perpendicular to the driving direction can cause the vehicle to make a sharp turn which
leads to a certain crash[26].

Approaches

The architecture proposed by Bojarski et al.[23], a feed-forward CNN, takes a single input image
and gives the appropriate steering angle as output. This simple system is very streamlined and
proved to work remarkably well. Since then, some approaches have improved this system further.

Spatiotemporal features

One such improvement introduces spatiotemporal features to the CNN. This follows the notion
that humans don’t make driving decisions based on single snapshots in time but also consider
all events (points in space and time) leading up to that point. One way to add the notion
of time to a convnet is through 3D convolutions[27]. Another proposed technique uses Long
Short-Term Memory network (LSTM) cells which are connected to the output of the underlying
CNN[28][29].

Both 3D convolutional layers and recurrent layers make use of temporal information, so these
techniques combined greatly improve performance over the basic CNN[30]. On top of that, using
residual networks (such as ResNet[14]) with transfer learning allows for deeper networks that
converge faster and potentially to a better solution.

Conditional Imitation Learning

The CNN architectures discussed so far are really good at cloning the expert’s driving behaviour
but have no sense of their intent. A vehicle trained end-to-end to imitate an expert cannot be
guided to, for example, take a specific turn at an upcoming intersection. Conditional Imitation
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Learning aims to integrate the intent through high level navigational commands (e.g. go left,
change lane, ...). In real-world scenario’s, these commands could be triggered by navigation
software or the car’s turn-signals[31]. The commands are given as input during training, allowing
the model to react differently in scenarios that require decisions.

In traditional Imitation Learning, the approximator F (o; θ)must be optimized to fit the mapping
of observations oi to actions ai as in Equation 2.20. In contrast, the command-conditional
imitation learning objective is given in Equation 2.21. The learner is additionally informed
off the expert’s expected behaviour ci and it can use this extra information in predicting the
appropriate action.

minimize
θ

∑
i

L(ai, F (oi; θ)) (2.20) minimize
θ

∑
i

L(ai, F (oi, ci; θ)) (2.21)

Codevilla et al., 2019 “End-to-end Driving via Conditional Imitation Learning”[32] propose two
techniques of implementing a conditional approximator. In the command input network, the
images are fed into a CNN for feature extraction. Commands and environment measurements
are then concatenated to the feature extractor’s output before being fed into a fully connected
network. This approach runs the risk of commands being ignored by the network.

The other proposed architecture uses the command not as input but as a selector. Measurements
are still concatenated as before, but the network now has different fully connected sub-modules
(also called heads) corresponding with the possible discrete commands. The command thus
works much like a switch and is therefore guaranteed to have an effect during run-time. The
disadvantage here is that commands can no longer be continues values, which is possible using
command input network.

Figure 2.17: Two network architectures for command-conditional imitation learning. Figure (a)
command input: the command is processed as input. Figure(b) branched: the command acts
as a switch that selects between specialized sub-modules.

The authors tested both models in simulation and in a real-world suburban setting. The
branched network outperformed the command input network significantly in both speed and
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reliability.

2.4 Hardware

2.4.1 Nvidia JetBot

The JetBot development platform is an open-source development kit aimed at AI research.
The robot (Figure 2.18) uses differential steering with two wheels in the front and a single
caster-wheel in the back with a pair of drive motors which can be independently driven in both
directions. The robot can drive forwards, backwards, turn and spin or pivot on the spot. A
single wide-angle RGB camera is mounted to the front.

Figure 2.18: The SparkFun JetBot AI Kit, based on the open-source Nvidia JetBot

The kit is powered by an Nvidia Jetson Nano, a single-board computer with a Jetson powered
System on Module (SOM) focused on running modern AI algorithms fast through Nvidia’s
CUDA framework (described below). The Jetson Nano delivers 472 GFLOPs of computations
at a power usage of around 5 Watts.
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Interfacing with the JetBot

The main way of interfacing with the JetBot out of the box is through the browser using
JupyterLab. A python API allows for very simple and intuitive control of the robot’s motors
and camera. This is a great system to get started, but it does have limitations (mainly tele-
operation is unreliable and can have major delays making it difficult to drive). A more complex
but versatile way to use the robot is through ROS (The Robot Operating System), a set of
software libraries and tools to build robot applications. ROS comes pre-installed on the JetBot
but has a steeper learning curve than using the notebooks and is not mentioned in any of the
included demos.

2.4.2 Computations with GPU’s and CUDA

A Graphical Processing Unit or GPU is a specialised computation component designed to rapidly
manipulate memory and perform computations on large blocks of data in parallel to accelerate
the creation of images. Due to the increased popularity and demand of gaming and high com-
plexity computer aided design (CAD), GPUs have been designed with rising internal parallelism
and possibilities for vectorised programming.

The high level parallelism of modern GPUs has made them useful for more then just graphical
processing. ANNs are represented in memory as mostly vectors, meaning that both training and
prediction can be parallelised. The Compute Unified Device Architecture (CUDA) is a platform
developed by Nvidia which allows interfacing with their GPUs for general computing.

2.5 Software

2.5.1 CARLA simulator

CARLA[33] is an open-source simulator for autonomous driving research. It provides a realistic
virtual environment with assets such as urban layouts, buildings, vehicles and pedestrians. The
simulation platform is highly customisable with the ability to change the behaviour of dynamic
actors (e.g. pedestrians or vehicles), changing the environmental conditions (such as the weather)
and customising the sensor-array with an extensive library of sensors to choose from.

CARLA is currently under active development and is therefore constantly updated. At the time
of writing this thesis, there are 10 pre-built maps each having a different style and layout in
order to cover many different driving scenarios.
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Figure 2.19: CARLA client-server structure

The simulator consists of a scalable client-server architecture where the server handles everything
related to the simulation itself (rendering, sensors, physics, ...) and the client consists of a sum
of modules controlling the logic of actors on scene and setting world conditions. The CARLA
API is a layer that mediates between server and client and can be accessed in either Python or
C++.

The server is built on the Unreal Engine 4, a general purpose 3D creation platform mostly used
for game development. This allows for best in class graphics and performance with support for
running the simulation on GPUs.

Other than that, CARLA has many advanced features designed to make research on autonomous
driving easier. A built-in traffic control module controls vehicles besides the one used for learning
to recreate urban-like environments with realistic behaviours. The recorder feature allows to
record and replay complete scenarios. On top of this, CARLA can integrate with other learning
environments through ROS bridge and Autoware implementation.

2.5.2 The PyTorch framework

PyTorch is an open source machine learning library, primarily developed by Facebook’s AI
research lab (FAIR). The library is primarily python based but is also available in C++, all be
it less polished.

PyTorch provides two high-level features: Tensor based computing and automatic differentiation.
Tensor based computing allows for high parallelisation using GPUs. Deep neural networks are
built on an automatic differentiation system, taking advantage of the sequence of operations to
differentiate gradients through the chain rule.

Tensors are homogeneous multidimensional vectors that hold numbers (integers, floating points,
...). These tensors have the added functionality of supporting CUDA operations.

Pytorch’s Autograd module provides the automatic differentiation functionality but can be dif-
ficult to use. The nn module thus provides a higher-level way to create networks.
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When comparing PyTorch to its main competitor, Tensorflow, the most important difference is
the way these frameworks define the computational graphs. While Tensorflow creates a static
graph, PyTorch uses a dynamic graph. In Tensorflow, you first define the entire computation
graph of the model and then run it. In PyTorch, the graph is defined/manipulated during run
time, which is particularly useful for training models with variable length inputs.



3
Methodology

3.1 Data collection and preparation

Due to the specific annotations needed for training, it is unfeasible to use a pre-existing dataset.
Two different datasets were collected. The first was collected in simulation, with a realistic
depiction of a real-world driving environment using a full sized car in an urban environment.
The second dataset was collected using the Jetbot robot using its front-facing camera driving
around on a miniature urban-like environment built up out of varying intersections.

3.1.1 Simulation

The simulator of choice was CARLA (discussed in 2.5.1). Out of all the simulators considered,
CARLA was chosen due to the high level of customisation available as well as the high level of
photo-realism.

The used setup for collecting data consisted of an agent vehicle, controlled through CARLA’s
Python API. Varying pre-defined paths were laid out through town 1. This map is situated in
an urban environment and consists of two-lane roads and intersections. The map also features
multiple buildings and areas with vegetation.

29
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data description

Center image Image from the vehicle’s center camera
Left image Image from the vehicle’s left camera
Right image Image from the vehicle’s right camera
High Level Command The current navigational input represented as a number
Vehicle control signal The signal the vehicle receives during recording (steering, throttle, brake)
PID control signal The signal the PID controller generates (steering, throttle, brake).
Speed The current speed of the vehicle
Speed Limit The current speed limit

Table 3.1: Recorded data in CARLA

A PID controller controls the agent-vehicle and acts as the master driver. The route is recorded
through 3 cameras mounted on the front of the vehicle. On top of this, the high level commands
needed to navigate the route, as well as environmental information are stored alongside the
camera images as can be seen in table 3.1.

This setup of using three cameras all facing forward positioned on the center, left, and right side
of the vehicle was inspired by Bojarski et. al[23]. Each camera produces a 350x160 RGB-image.
The central camera represents the car’s actual viewpoint while the cameras on the side are meant
to expand the dataset through the perspective of a vehicle that has drifted out of lane.

In order to teach the vehicle to correct itself in non ideal situations, a random noise was injected
into the steering angle during recording, forcing the vehicle to drive slightly to the left or right
for a brief moment. Only the autopilot’s response to this noise was then actually recorded.

This data-collection was repeated in different weather conditions consisting of cloudy sky, clear
sky, hard rain, medium rain, soft rain, clear wet roads and cloudy wet roads. This makes the
data more generalised and allows the model to learn to ignore puddles, changes in ambient light
and shadows.

3.1.2 Jetbot

In order to run experiments with the jetbot platform, a testing environment was created by
applying painters tape in an urban street-like pattern to the floor as seen in Figure 3.1. This
layout contains four types of road sections: T-junctions, crossroads, straights and corner roads.

The robot was controlled using a game controller. To achieve this, the joystick x and y position
needed to be translated to a differential drive model (also known as tank drive or skid steering).
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Figure 3.1: The testing and training data collection environment for the jetbot.

Deriving a control algorithm for this model requires combining two concepts: drive and pivot. It
is simple to determine a mapping between a joystick X-Y input and the drive output or between
a joystick X input and the pivot output. Combining the two, however, is less intuitive. The
used algorithm blends the two concepts based on the Y input.

The drive mapping takes priority except when close to the midpoint of the joystick Y position
at which point pivot operations get prioritised. The conversion algorithm can be implemented
in a few component steps:

1. Calculate the drive turn output from the joystick X input.

2. Scale the drive output using the joystick Y input.

3. Calculate the pivot output from the joystick X input.

4. Calculate the drive vs pivot scale using the joystick Y input.

5. Calculate the final mix of the calculated drive and pivot.

Navigational input (turn left, go straight, ...) is given through the controller by pressing one
of the D-pad buttons. Driving consistently using this system proved to be difficult, so data
was collected in short segments. A record of what intersections had been used as well as which
navigational commands were given was kept during the whole data collection process. This way,
the dataset could be balanced while recording, so less post-processing was necessary.

The Jetbot’s camera records 24 images per second. Alongside these images, the appropriate
navigational input is stored as well as the left and right wheel speeds. The relative info of each
datapoint was simply stored in the filename of the corresponding image. An overview of the
content of these datapoints can be found in Table 3.2.
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data description

Image Image from the vehicle’s forward facing camera
High Level Command The current navigational input represented as a number
Left wheel speed The speed setting for the left motor
Right wheel speed The speed setting for the right motor

Table 3.2: Recorded data using the Jetbot

3.1.3 Balancing the dataset

Balancing the CARLA dataset

Dropping and duplicating datapoints is a simple technique that is often used to balance datasets.
In the case of an RNN however, it is important not to interfere with the temporal information
of the dataset. To achieve this, two techniques were tested.

The first attempt tried to keep as much temporal information as possible by duplicating data.
This was achieved by splitting each episode in the dataset into segments according to their
navigational commands. This created five segment pools: straights, left turns, right turns,
straight lane follows and lane follows through corners.

The balanced dataset was then built up by repeatedly selecting a segment from one of the
segment pools at random. Once all segments in a pool are used, selection for that type restarts
at the beginning, essentially duplicating those segments. The selection of which type of segment
is taken next is weighted to keep the distribution of segments equal while building the dataset.
These weights are based on the average length of the segments per pool compared to the highest
average segment length. This causes segment types with less information to be duplicated more.
The effect of this balancing can be seen in Figure 3.3.

For the second balancing technique, no data was duplicated. Instead, the dataset was balanced
in the sequencer (the part of the code responsible for picking each data point/sequence of
datapoints to train on). The dataset was divided into segments of the correct sequence length
used for training. Each of these segments was represented by its most dominant navigational
command (e.g. if a segment has 10 datapoints where 4 are lane following but 6 are a right turn,
that segment is counted as a right turn segment). Segments were then shuffled and dropped in
order to reach the desired ratios. The result of this balancing technique is visible in Figure 3.4

Finally, the steering angles were balanced out. Small steering angles were dropped to make the
distribution more even. The result of this can be seen in Figure 3.5.
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Figure 3.2: Dataset distribution before balancing

Figure 3.3: Dataset distribution after balancing through duplication.

Figure 3.4: Dataset distribution after balancing by dropping data.

Balancing the jetbot dataset

Most balancing based on the navigational commands of the jetbot dataset happened during
data collection by keeping track of how many segments were recorded of each type. On top of
this, the entire dataset was mirrored to mitigate bias towards any one direction. This technique
was not possible for the simulation’s data as this would motivate the vehicle to drive into the
oncoming lane without trying to recover.
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(a) Steering angle histogram before balancing. (b) Steering angle histogram after balancing.

Figure 3.5: Steering angle distribution before and after balancing.

3.1.4 Training the model

Both the models for use in simulation and for the jetbot were trained in the same way. The
only difference being the output of a jetbot model was a pair of values representing the absolute
speed of each motor, where the output of a simulation model was three values corresponding
with the steering angle, throttle and brake.

Training procedure

All architectures were implemented using PyTorch (Section 2.5.2) and trained on an Nvidia
GeForce 2080 SUPER GPU, using the CUDA computational framework (Section 2.4.2).

A custom data loader and sequencer organise the dataset into usable batched data-sequences for
training. The data was split into 80% training data and 20% validation data. The models were
all trained using the Adam optimizer (Equation 2.8) with a learning rate of 1e-4. The model’s
weights were periodically saved throughout the training process so that the weights associated
with the smallest overall error could be selected for testing. In other cases, models could be
compared after the same amount of training steps, regardless of how long that model actually
trained for.

Data augmentation

Augmentation proved to be absolutely crucial to generalise the model and allow it to navigate
previously unseen environments and situations. During training, each image was first cropped
by removing the top 50 pixels, removing much of the sky, which was considered not to contain
any useful information. The cropped image then had a random chance to be augmented using
one or more transformations. These transformations consisted of random shifts in brightness,
changes in hue, adding a Gaussian blur over the entire image and adding random dark spots to
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Figure 3.6: Used data augmentations: (top left): simulated shadows, (top right): random
brightness shift, (bottom left): Gaussian blur, (bottom right): random shift in hue.

the image to simulate shadows. The augmentations are shown in Figure 3.6.

3.1.5 Model architectures

One of the goals of this thesis is to explore the performance of different architectures and what
the impact is of different components/aspects of these architectures.

Plain CNN architecture

Figure 3.7: Architecture of the CNN Feature extractor.

The first model is based on the DAVE-2 architecture[23]. It is built up out of 6 convolutional
layers followed by 4 fully connected linear layers. The model takes as input a sequence of RGB
images of shape 3x110x350 and concatenates them depth-wise into one input tensor. After
concatenation follows the convolutional layers. The first three layers use a 5x5 filter with a
stride of 2, while the last three use a 3x3 filter with a stride of 1. All convolutional layers use
the ELU activation function (Equation 2.5) and apply batch normalization (chapter 2.1.6). The
output is then flattened into a one dimensional vector of length 1024.

Next, the output is concatenated with the navigational input (a one-hot encoded value of length
6) and external state information, producing a vector of length 1033. The concatenated vector is
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Figure 3.8: Plain CNN model architecture. See Figure 3.7 for the architecture of the CNN
modules.

then fed through three different classifier blocks: one predicting the steering angle, one predicting
the throttle and one predicting the brake. Dropout was applied to all non-output fully connected
layers (Section 2.1.5). The steering classifier used the Tanh activation function (Equation 2.3)
on the last layer, allowing the output to range between -1 and 1. All other linear layers used
the Sigmoid activation function (Equation 2.2).

LSTM architecture

The second model shares much of the same architecture of the plain CNN but adds an LSTM
module with 10 hidden states between the CNN and the classifier heads. A sequence of outputs
of the CNN gets fed into the LSTM module at a time. The hidden state produced by the input
at each time step is concatenated to the next input of the sequence. At the last step, the output
is directed into the (now less complex) classifier heads for steering, throttle and brake. The
architecture can be seen in Figure 3.10 with a detailed view of the LSTM module in Figure 3.9.

Figure 3.9: Architecture of the LSTM modules for a sequence length of n. The internal cell
states C0−n have 10 features each.
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Figure 3.10: LSTM model architecture. See Figure 3.9 for the architecture of the LSTM modules
and Figure 3.7 for the CNN modules.

Classification architecture

The assumption for this architecture change is that portraying a problem as a deep classification
task often performs better than performing direct regression[34]. This classification can be
implemented by making the task of the network to learn a sine wave that encodes the actual
steering angle in its phase shift[29]. This introduces a spatial relationship between the nodes in
the output layer (neurons close to each other are more similar).

Figure 3.11: Usage of sine encoder/decoder for generating the training error and for making
predictions. On the left is the LSTM architecture of figure 3.10.

The implementation of this, shown in Figure 3.11, takes any of the previous architectures and
changes the number of output layers to 10. During training, the ground truth steering angle is
encoded into a sine wave using Equation 3.1, where Y is a 10-dimensional vector (representing
the sine wave), θ is the steering angle and θmax is the maximum possible steering angle. The
training error between this encoded steering angle Y and the output of the network is calculated
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using MSE (Equation 2.6).

Yi(θ) = sin
2π(i− 1)

10− 1
− θπ

2θmax
(3.1)

For deployment, the sine wave needs to be converted back into a steering angle. The output
from the network gets fitted into a clean sine wave using Least Squares Regression (LSR). The
steering angle is then extracted from the sine wave using equation 3.2 where φ is the phase shift.

θ = −2θmaxφ

π
(3.2)

3.1.6 Model analyses

Grad-CAM

In order to visualise what a trained model is looking at, a method called Gradient-weighted Class
Activation Mapping (Grad-CAM) was used[35]. This technique uses the gradients of any target
concept, flowing into a convolutional layer to produce a coarse localisation map highlighting
important regions in the image for predicting the concept.

(a) Regions of interest in clear weather. (b) Regions of interest in rainy weather (left turn).

Figure 3.12: Example heat maps of regions of interest from the 3rd layer of the feature extractor.

Figure 3.12a shows that the trained model (in this case the LSTM model with sine encoding)
looks mostly for lines on the edge of the roads as well as the lane markings. In a rainy scenario,
like in figure 3.12b, the model is less focused, but still manages to find road edges.

3.1.7 Experimental setup

CARLA test setup

The performance of each model was tested by letting it control a vehicle in previously unseen
environments. The model was continuously fed images from the vehicle’s forward facing central
camera, while the model’s predictions were applied real-time as control signals. Three different
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routes were defined in which the model was expected to navigate in five distinctive weather
conditions (clear noon, clear sunset, wet sunset, heavy rain at noon, and soft rain at sunset).

(a) CARLA Town 2 (b) JetBot test environment

Figure 3.13: Routes for evaluating the performance of models.

The routes were positioned in Town 2, testing the model’s ability to operate in urban environ-
ments. This gives the model 15 different weather/route permutations to drive through, resulting
in a combined distance of 5 km. A test is considered complete if the vehicle completes the route,
gets stuck, ignores a navigational command or starts driving into the oncoming lane. The test
routes can be seen in Figure 3.13a.

Jetbot test setup

The real-time performance of the models trained for the Jetbot were tested by letting the model
navigate several predefined paths in the environment described in chapter 3.1.2. These 11 paths,
shown in Figure 3.13b, were chosen to include as many different situations (variation in type of
manoeuvres, background props, lighting conditions) as possible. Performance was then measured
by what percentage of tracks were completed successfully.
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Experiments and results

4.1 Experiment 1: The effect of dataset balancing

4.1.1 Setup

Goal The goal of the first experiment is to identify the best balancing technique out of the two
techniques described in chapter 3.1.3.

Training Three models were trained on the same dataset but with different balancing tech-
niques: one without any balancing, one using the drop technique and one using duplication. For
this, the LSTM model, described in chapter 3.1.5, was used with a sequence length of 10.

Testing Each trained model was gauged by their achieved performance from a single run of the
real-time test. The procedure for the real-time test is described in chapter 3.1.7. Due to the
different sizes in datasets, the performance was measured at specific training steps instead of
epochs.

40
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4.1.2 Result

The results from table 4.1 show that the model trained on the dataset balanced with duplication
performed substantially better. All models were tested after 11k steps of training (highlighted
in gray). The duplication model yielded a performance of 37.28% at 11k training steps where
the model balanced by dropping only completed 19.92%. The test results taken at 23k training
steps for the duplication model performs better in sunset conditions but actually worse in noon
conditions. The worst performing model was that trained without applying any balancing
techniques, completing only 15.99% of the courses after 11k training steps.

balancing training Clear Clear Hard rain Soft rain Wet Avg.
step Noon Sunset Noon Noon Sunset

None 11818 14.70% 14.70% 21.16% 14.70% 14.70% 15.99%
None 19282 10.36% 38.00% 15.28% 17.85% 33.66% 23.03%
Drop 6048 17.85% 16.53% 26.65% 14.70% 16.53% 18.45%
Drop 11718 30.10% 10.36% 13.51% 11.96% 33.66% 19.92%
Duplication 5984 36.52% 38.00% 10.36% 14.70% 29.20% 25.76%
Duplication 11968 33.66% 44.98% 22.71% 64.17% 20.87% 37.28%
Duplication 23936 13.91% 63.92% 30.10% 38.00% 63.92% 41.97%

Table 4.1: Average route completion using different balancing techniques (models with the same
amount of training steps are highlighted in gray)

balancing training step Object Stuck Lane invasion Lane invasion Ignore
collision no recovery with recovery command

None 11818 6 4 5 0 6
None 19282 6 2 5 1 6
Drop 6048 13 7 7 5 1
Drop 11718 7 4 11 6 0
Duplication 5984 3 3 4 1 7
Duplication 11968 5 3 3 2 5
Duplication 23936 3 2 5 2 3

Table 4.2: Total failures using different balancing techniques

The total amount of failures of each model in the test can be found in Table 4.2. The model
trained without balancing tends to ignore navigational commands, causing the test to be neg-
ative. The drop models mostly fail due to driving into the oncoming lane. Besides that, they
make a lot of object collisions, which do not have the immediate effect of having the test fail but
can cause the vehicle to get stuck, which does end the test. The best performing model, trained
with duplication for 23k steps, had the main issue of ignoring navigational commands.
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4.1.3 Discussion

The worse performance of the model trained on the dataset balanced by dropping is likely the
direct effect of the smaller dataset. Another difference between these balancing techniques was
the way the data was split into segments, but this should have little to no effect on performance
since in both techniques, the sequence information of the data was kept intact completely. The
results also show the overall importance of balancing, as the model trained without any balance
has by far the worst performance.

The model trained with dropping data seems to perform best with regards to following com-
mands. This is unfortunately not because this model is better at this task, but rather because
the model usually failed before it reached difficult intersections (where other models were prone
to ignore these commands).

4.2 Experiment 2: Classification vs. direct regression

4.2.1 Setup

Goal The proposed architecture in Aasbø and Haavaldsen, 2019[1] uses classification as output
of the model (as described in section 3.1.5) instead of direct regression for the steering angle.
This way, there is a correlation between the output neurons, bridging the gap between the
regression and the classification problem. This experiment compares regression and sine-encoded
classification by comparing their performance.

Training Two models were trained: one uses an LSTM architecture that outputs the steering
angle directly, while the other model outputs 10 values representing a steering angle encoded in
a sine wave. Both models used a sequence length of 10 and were trained for 23k steps (8 epoch).

Testing Each trained model was gauged by their achieved performance from a single run of the
real-time test. The procedure for the real-time test is described in chapter 3.1.7.

4.2.2 Result

The results in table 4.3 show that the sine encoded architecture performs better than the direct
regression architecture, attaining an average completion of 69.23% of the tracks, compared to
the 41.97% of the other model. It is also notable that the sine encoded model performs more
consistent across the different weather conditions.
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model training Clear Clear Hard
rain

Soft rain Wet Avg.

step Noon Sunset Noon Noon Sunset

LSTM 23936 13.91% 63.92% 30.10% 38.00% 63.92% 41.97%
LSTM + sine 23936 79.85% 85.18% 40.86% 65.03% 75.26% 69.23%

Table 4.3: Average route completion with or without sine encoding

Table 4.4 presents the type of failures each model made during the test. The sine encoded
model mostly failed because it ignored the given navigational commands while making overall
less technical mistakes than the direct regression model.

model training step Object Stuck Lane invasion Lane invasion Ignore
collision no recovery with recovery command

LSTM 23936 3 2 5 2 3
LSTM + sine 23936 3 3 1 2 6

Table 4.4: Total failures with or without sine encoding

4.2.3 Discussion

The sine encoded model performed noticeably more stable than the regression model. The turns
looked smoother and performance was more consistent over the different weather conditions.

4.3 Experiment 3: Combining the feature extractors

4.3.1 Setup

Goal The proposed architecture in Aasbø and Haavaldsen, 2019[1] uses two separate feature
extractors for the tasks of steering and acceleration (see chapter 3.1.5). Normally when a CNN
has multiple outputs or functions, only one feature extractor is used. This supposedly forces the
convolutional layers to learn features that generalize better for the task at hand. The counter
argument to this is that each feature extractor can learn features that are better for one specific
goal. This experiment investigates if the architecture benefits from the dual CNN.

Training Two models were trained: one uses the architecture as described in section 4.3 and
one uses a modified architecture where only one feature extractor is used. Both models were
trained with a sequence length of 10 and a batch size of 32.
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Testing Each trained model was gauged by their achieved performance from a single run of the
real-time test. The procedure for the real-time test is described in chapter 3.1.7.

4.3.2 Result

The results in table 4.5 show that the model using two feature extractors performs a great deal
better, with a route completion of 69.23% compared to 23.43% for the other model.

model training Clear Clear Hard rain Soft rain Wet Avg.
step Noon Sunset Noon Noon Sunset

One F. extr. 14960 36.52% 14.70% 10.36% 40.86% 14.70% 23.43%
Split F. extr. 23936 79.85% 85.18% 40.86% 65.03% 75.26% 69.23%

Table 4.5: Average route completion using one or two feature extractors

Table 4.6 highlights that the model with one feature extractor both drives more unstable as well
as ignores more navigational commands.

model training Object Stuck Lane invasion Lane invasion Ignore
step collision no recovery with recovery command

One feature extr. 14960 7 3 3 4 9
Split feature extr. 23936 3 3 1 2 6

Table 4.6: Total failures using one or two feature extractors

4.3.3 Discussion

Using two separate feature extractors for the tasks of steering and acceleration is clearly ben-
eficial. The feature extractor responsible for steering can specialize more. Important to note
is that the model with one feature extractor is vastly less complex, making it less capable of
learning complicated tasks.

4.4 Experiment 4: The effects of different architecture aspects

4.4.1 Setup

Goal The goal of this experiment is to figure out the effect of temporal information by removing
the LSTM module and to study if using a more complex feature extractor positively impacts
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the model’s competency. In layman’s terms, this experiment is meant to unveil what aspects of
the architecture have the most effect on overall performance.

Training Three models were trained: the CNN-LSTM combo from section 3.1.5 with a batch
size of 32 and a sequence length of 10; the plain CNN from section 3.1.5 with a batch size of
32 and a sequence length of 3 and a model using ResNet as the feature extractor instead of the
simple CNN with a batch size of 20 and a sequence length of 8. The batch size and sequence
length of the ResNet model had to be reduced due to memory limitations, but this should have
negligible influence on the final result.

Testing Each trained model was gauged by their achieved performance from a single run of the
real-time test. The procedure for the real-time test is described in chapter 3.1.7. All trained
models use the sine-encoder trick from section 3.1.5.

4.4.2 Result

The plain CNN model performed by far the worse, only completing 17.97% of the routes on
average but actually completing only 14.70% in almost every weather condition except in “hard
rain noon”, where it achieved 31.08%. The ResNet model performed second to worst with an
average completion of 37.50%. These results can be seen in Table 4.7.

model training Clear Clear Hard rain Soft rain Wet Avg.
step Noon Sunset Noon Noon Sunset

CNN 22440 14.70% 14.70% 31.08% 14.70% 14.70% 17.97%
CNN + LSTM 23936 79.85% 85.18% 40.86% 65.03% 75.26% 69.23%
ResNet + LSTM 21537 34.01% 19.53% 36.52% 60.91% 36.52% 37.50%

Table 4.7: Average route completion with different architectures

model training Object Stuck Lane invasion Lane invasion Ignore
step collision no recovery with recovery command

CNN 22440 2 4 5 0 6
CNN + LSTM 23936 3 3 1 2 6
ResNet + LSTM 21537 0 1 0 0 14

Table 4.8: Total failures using different architectures

Table 4.8 reveals that most ResNet failures are due to ignoring the navigational commands.
Actual driving was very stable and even better than the CNN-LSTM model, which performed
best in route completeness. The plain CNN model drove very unstable, with most issues being
caused by driving into the oncoming lane by taking corners too wide and not recovering.
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4.4.3 Discussion

Performance of the plain CNN is about as expected. Not having as much temporal data and
having less complexity renders the model incapable of learning to navigate anything more compli-
cated than just lane following. More surprising is the poor performance of the ResNet model. It
seems that the added complexity of the feature extractor overpowers the navigational command
input. This is likely because the more complex model over-fits on the small dataset.

4.5 Experiment 5: testing model performance on jetbot

4.5.1 Setup

Goal The goal of this experiment was to compare the performance of various architectures in
the Jetbot environment. The models were chosen to analyze the gravity of importance of the
LSTM module and the feature extractor.

Training Each architecture uses direct regression to predict the absolute speed of each wheel.
The models used where the LSTM model from chapter 3.1.5, the plain CNN from chapter 3.1.5
and a modified version of the LSTM model where the feature extractor (the CNN) was replaced
with ResNet18.

Testing Each model’s performance was assessed using the testing procedure described in section
3.1.7.

4.5.2 Result

Table 4.9 shows the average routes completed out of the predefined test routes for each model.
The best performing model was the plain CNN model with a sequence length of 3. It completed
64% of the routes while the worst performing model, combining ResNet with an LSTM, only
completed 18% of its assigned routes.

model sequence length success rate

CNN 3 0.64
CNN + LSTM 3 0.45
CNN + LSTM 8 0.36
ResNet + LSTM 8 0.18

Table 4.9: JetBot model average route completion
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There were two types of failure during the test. Either the robot would drift out of lane or it
would ignore the given navigational command. Table 4.10 shows the number of mistakes each
model made during testing. Generally, the models with a sequence length of 8 tended to drift
out of lane more often than the models with sequence length 3. With a total of 9 failures,
the ResNet model made the most mistakes across the board, failing to follow the navigational
commands 4 times and drifting out of lane 5 times.

model sequence length out of lane ignored command Tot.

CNN 3 1 3 4
CNN + LSTM 3 2 4 6
CNN + LSTM 8 4 2 7
ResNet + LSTM 8 5 4 9

Table 4.10: Total number of failures

4.5.3 Discussion

Surprisingly, the more advanced models performed significantly worse. This probably denotes
that they are too complex for the small size of the dataset. The longer sequence length seems
to have an adverse effect on performance as the LSTM model with sequence length 3 performs
marginally better than the one trained with a sequence length of 8.

4.6 Discussion

The main takeaway from these experiments is definitely the importance of both dataset size and
quality. This mostly comes to light when looking at the experiment with the JetBot, where the
dataset size was very limited, causing more complex and capable models to perform worse. It
would have been beneficial to collect a larger dataset from different environments to see how
much improvement this would bring. The second aspect of dataset quality in this case is the
balancing, which proved to play an important role as well.

Besides the quality of the dataset, the recurrent module, responsible for processing temporal
information, has proven to be very important.

A more complex feature extractor could be beneficial to improve driving stability, but again,
this added architecture complexity would have to be compensated by a larger dataset.

The findings from the (more complex) simulated environment did not translate to the simple
real-world test. While the small dataset is probably the biggest culprit, the different type of
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control, being differential drive, might also have had an influence. A relation between the wheel
speeds (that were a direct regression output of the models) might have been beneficial. The
results of experiment 4.3 indicate that using the sine encoded classification trick for the JetBot
would improve stability significantly. Here, further work is needed.

The achieved result in the work of Aasbø and Haavaldsen[1] seems optimistic when comparing
them to the findings of these experiments. The CNN-LSTM model from experiment 4.3 with
sine encoder is the exact architecture described by their work, yet the results differ substantially.
Their model was able to consistently complete 95.3% of the test tracks, while in this experiment,
only 69.23% was completed in almost the same circumstances.

If I were to start over again, I would use ROS (The Robot Operating System) to control the
JetBot. ROS allows for easier control, which would have made data-collection simpler thus more
stable and less time consuming. ROS also has excellent integration with the Gazebo simulator
which would have sped up development and testing significantly. A large dataset could have been
collected in simulation and, through transfer learning, be applied to the real-world environment.



5
Conclusion and Future work

5.1 Conclusion

The main goal of this thesis was to explore the possibilities of the JetBot platform for the task
of end-to-end autonomous driving. The platform has proven to be more than capable given
a large high quality dataset. The thesis shows that a less complex model, with no RNN was
better suited for this task than its more complex counterparts. Another finding is that for more
complex and serious experiments, it is desirable to use The Robot Operating System (ROS) to
control the JetBot.

Another goal was to explore the importance of various aspects of the proposed architecture.
The most important outcome here is that the architecture should be appropriately complex for
the size of the dataset and that the quality of this dataset needs to be as high as possible.
Moreover, handling the issue as a deep classification problem instead of direct regression had a
more significant positive impact than expected. Less of a surprise was the impact of the LSTM
module to learn temporal features. Its effect was the most substantial on the overall driving
quality.
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5.2 Future work

While results with JetBot are promising, a larger dataset would definitely need to be collected
(e.g. in a more complex, larger environment with more roads and intersection types and poten-
tially even stop-lights and traffic signs).

Multiple JetBots could be deployed in the environment simultaneously to study V2V commu-
nication in combination with autonomous driving. For this, using/exploring ROS might be a
better option as simulations (e.g. in the Gazebo simulator) could be used to speed up test-
ing/development.

Finally, handling the control of the jetbot as a classification problem with a method similar to
that of Section 3.1.5 will probably yield improved stability. As such, this is a valuable route to
take for any future work.
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Appendix A - Guide on JetBot setup and control

Connecting to the JetBot

Connecting to the JetBot for the first time in a new network requires a display, a keyboard
and a mouse. The control board boots up automatically when power is supplied. This is done
by pressing the button on the side of the power bank. Once booted, you will be greeted by
a standard Gnome desktop. On the top right of the screen you can connect the robot to the
required network trough WiFi. Once connection is complete, you can disconnect the display
and peripherals.

Once the JetBot is connected, it will display its IP-address on the small LCD display on the
back. Connect to this IP-address on port 8888 using the browser. This should open up the
JupyterLab environment running on the Jetbot.

If you want to shut down the JetBot, open a terminal in JupyterLab, type “sudo shutdown now”
and provide the jetson’s password (By default, this is jetbot).

Remote control using a controller

Both manual control and the display of information happens through the Python library ipy-
widgets. This library contains a collection of interactive HTML widgets for Jupyter notebooks.

The next code snippet is an example on how to get a controller instance (given that you have a
controller already connected and set up).

import ipywidgets.widgets as widgets

controller = widgets.Controller(index=0) # replace with index of your controller
display(controller)

Next, you’ll need control over the actual robot. The included JetBot library makes this very
simple.

from jetbot import Robot
robot = Robot()

To link together the input of the controller with the control of the robot, another crucial library is
needed: traitlets. Traitlets is a framework which lets Python classes have observable attributes.
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This allows us to observe changes in the controller output and use that information to update
the motor speeds.

from traitlets import observe

def update(change):
left_wheel = controller.axes[0].value
right_wheel = controller.axes[1].value
robot.set_motors(left_wheel, right_wheel)

for a in controller.axes:
a.unobserve_all() # makes sure that no double links get made after re-executing the code

controller.axes[2].observe(update, names=['value'])
controller.axes[1].observe(update, names=['value'])

Controlling the JetBot by setting the speed of each wheel is, to put it lightly, fairly frustrating
and impractical. To get around this, pass the joystick controls through an algorithm that
converts throttle/steer to differential drive.

def to_differential(nJoyY, nJoyX):
# Differential Steering Joystick Algorithm
# ========================================
# by Calvin Hass
# https://www.impulseadventure.com/elec/
# translated to Python by Laurin Neff

fPivYLimit = 32.0

# TEMP VARIABLES
nMotPremixL = 0 # Motor (left) premixed output (-128..+127)
nMotPremixR = 0 # Motor (right) premixed output (-128..+127)
nPivSpeed = 0 # Pivot Speed (-128..+127)
fPivScale = 0.0 # Balance scale b/w drive and pivot ( 0..1 )

# Calculate Drive Turn output due to Joystick X input
if(nJoyY>=0):

# Forward
nMotPremixL = 127.0 if nJoyX>=0 else 127.0 + nJoyX
nMotPremixR = 127.0 - nJoyX if nJoyX>=0 else 127.0

else:
# Reverse
nMotPremixL = 127.0 - nJoyX if nJoyX>=0 else 127.0
nMotPremixR = 127.0 if nJoyX>=0 else 127.0 + nJoyX
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# Scale Drive output due to Joystick Y input (throttle)
nMotPremixL = nMotPremixL * nJoyY/128.0
nMotPremixR = nMotPremixR * nJoyY/128.0

# Now calculate pivot amount
# - Strength of pivot (nPivSpeed) based on Joystick X input
# - Blending of pivot vs drive (fPivScale) based on Joystick Y input
nPivSpeed = nJoyX
fPivScale = 0.0 if abs(nJoyY)>fPivYLimit else 1.0-abs(nJoyY)/fPivYLimit

# Calculate final mix of Drive and Pivot
nMotMixL = int((1.0-fPivScale)*nMotPremixL + fPivScale*( nPivSpeed)) # Motor (left) mixed output (-128..+127)
nMotMixR = int((1.0-fPivScale)*nMotPremixR + fPivScale*(-nPivSpeed)) # Motor (right) mixed output (-128..+127)
return (nMotMixL / 128, nMotMixR / 128)

And change the update code to use this function.

def update(change):
steer = controller.axes[0].value
throttle = controller.axes[1].value
joystick_y = int(throttle * 128)
joystick_x = int(steer * 128)
diff_throttle = to_differential(joystick_y, joystick_x)
robot.set_motors(diff_throttle[0], diff_throttle[1])

Important to know for debugging is that, as soon as a widget is used, the normal print() will
not work anymore. You’ll have to create an output widget and print to that.

output = widgets.Output()

using output:
print("hello world!")

display(widgets.VBox([
controller,
output,

]))

Data collection

To capture images from the camera, make an instance of the Camera class included in the jetbot
library and observe its changes (using the traitlets library).
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from jetbot import bgr8_to_jpeg
from jetbot import Camera

camera = Camera.instance()

def save_snapshot(change):
image = PIL.Image.fromarray(change['new'])
uuid = create_filename()
image_path = os.path.join(DATASET_DIR, uuid + '.jpg')
image.save(image_path, "JPEG")

camera.observe(save_snapshot, names='value')

If the camera fails to initialise, run the command “sudo systemctl restart nvargus-daemon” to
restart the JetBot drivers.

The data is stored on the JetBot’s SD-card. When you want to download this dataset, I advise
adding all files to an archive. This can be done using the command “zip -r -q dataset.zip
DATASET-DIR” in a terminal. The zip file can then be downloaded by right-clicking on the
file in JupyterLab’s file explorer and selecting download.
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Appendix B - LSTM architecture code

This appendix contains the code from my PyTorch implementation of the CNN-LSTM archi-
tecture used in this thesis. This does not include the code needed to train this architecture.

1 import torch.nn as nn
2 import torch
3

4

5 class TimeDistributed(nn.Module):
6 """
7 Wrapper that adapts the given module to accept time series data.
8 """
9 def __init__(self, module, time_steps):

10 super(TimeDistributed, self).__init__()
11 self.module = module
12

13 def forward(self, x):
14 batch_size, time_steps, C, H, W = x.size()
15 output = torch.tensor([]).to(device='cuda')
16 for i in range(time_steps):
17 output_t = self.module(x[:, i, :, :, :])
18 output_t = output_t.unsqueeze(1)
19 output = torch.cat((output, output_t), 1)
20 return output
21

22

23 class FeatureExtractor(nn.Module):
24 def __init__(self, image_channels):
25 """
26 Is called when model is initialized.
27 Args:
28 image_channels. Number of color channels in image (3)
29 """
30 super().__init__()
31

32 # Define the convolutional layers
33 self.feature_extractor = nn.Sequential(
34 nn.Conv2d(in_channels=image_channels, out_channels=24,
35 kernel_size=5, stride=2),
36 nn.BatchNorm2d(24),
37 nn.ReLU(),
38 nn.Conv2d(in_channels=24, out_channels=36,
39 kernel_size=5, stride=2),
40 nn.BatchNorm2d(36),
41 nn.ReLU(),
42 nn.Conv2d(in_channels=36, out_channels=48,
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43 kernel_size=5, stride=2),
44 nn.BatchNorm2d(48),
45 nn.ReLU(),
46 nn.Conv2d(in_channels=48, out_channels=64,
47 kernel_size=3, stride=2),
48 nn.BatchNorm2d(64),
49 nn.ReLU(),
50 nn.Conv2d(in_channels=64, out_channels=64,
51 kernel_size=3, stride=1),
52 nn.BatchNorm2d(64),
53 nn.ReLU(),
54 nn.Conv2d(in_channels=64, out_channels=64,
55 kernel_size=3, stride=1),
56 nn.BatchNorm2d(64),
57 nn.ReLU()
58 )
59 self._init_weights()
60

61 def _init_weights(self):
62 layers = [*self.feature_extractor]
63 for layer in layers:
64 for param in layer.parameters():
65 if param.dim() > 1:
66 nn.init.xavier_uniform_(param)
67

68 def forward(self, x):
69 """
70 Performs a forward pass through the model
71 Args:
72 image_input: shape: [batch_size, 3, 110, 350]
73 """
74 return self.feature_extractor(x)
75

76

77 class LSTMDrivingModel(nn.Module):
78

79 def __init__(self, image_channels, seq_length, sine_output=False):
80 """
81 Is called when model is initialized.
82 Args:
83 image_channels. Number of color channels in image (3)
84 seq_length: Length of one training sample sequence
85 sine_output: Wether or not the network should output a sine wave
86 """
87 super().__init__()
88 self.sine_output = sine_output
89

90 # Define the convolutional layers
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91 self.feature_extractor_steering = TimeDistributed(
92 FeatureExtractor(image_channels),
93 seq_length
94 )
95 self.feature_extractor_acceleration = TimeDistributed(
96 FeatureExtractor(image_channels),
97 seq_length
98 )
99

100 self.input_dim = 1033 # represents the size of the input at each time step
101 self.hidden_dim = 10 # represents the size of the hidden state and cell state at each time step
102 self.num_layers = 1 # the number of LSTM layers stacked on top of each other
103

104 self.steer_intermediate_fc = nn.Sequential(
105 nn.Linear(self.input_dim, 128),
106 nn.ReLU()
107 )
108

109 self.accleration_intermediate_fc = nn.Sequential(
110 nn.Linear(self.input_dim, 128),
111 nn.ReLU()
112 )
113

114 self.steering_lstm = nn.LSTM(128, self.hidden_dim, self.num_layers, batch_first=True)
115 self.acceleration_lstm = nn.LSTM(128, self.hidden_dim, self.num_layers, batch_first=True)
116

117 if self.sine_output:
118 self.steering_classifier = nn.Sequential(
119 nn.Linear(10, 10),
120 nn.Tanh()
121 )
122 else:
123 self.steering_classifier = nn.Sequential(
124 nn.Linear(10, 1),
125 nn.Tanh()
126 )
127

128 self.throttle_classifier = nn.Sequential(
129 nn.Linear(10, 1),
130 nn.Sigmoid()
131 )
132

133 self.brake_classifier = nn.Sequential(
134 nn.Linear(10, 1),
135 nn.Sigmoid()
136 )
137

138 self.seq_length = seq_length
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139

140 def forward(self, image_input, hlcs, infos):
141 """
142 Performs a forward pass through the model
143 Args:
144 image_input : shape: [batch_size, seq_length, 3, 110, 350]
145 hlcs : shape: [batch_size, seq_length, 6]
146 infos : shape: [batch_size, seq_length, 3]
147 """
148

149 batch_size, seq_length, C, H, W = image_input.shape
150

151 # steering
152 x = self.feature_extractor_steering(image_input)
153 x = x.view(batch_size, seq_length, -1) # Flatten
154 x = torch.cat((x, hlcs, infos), dim=2) # concatinate infos and hlc
155 x = self.steer_intermediate_fc(x)
156

157 # lstm layer
158 x, (h_n, c_n) = self.steering_lstm(x)
159 x = x[:, -1, :] # Obtaining the last output
160

161 steer_pred = self.steering_classifier(x)
162

163 # throttle and brake
164 x = self.feature_extractor_acceleration(image_input)
165 x = x.view(batch_size, seq_length, -1) # Flatten
166 x = torch.cat((x, hlcs, infos), dim=2) # concatinate infos and hlc
167 x = self.accleration_intermediate_fc(x)
168

169 x, (h_n, c_n) = self.acceleration_lstm(x)
170 x = x[:, -1, :] # Obtaining the last output
171

172 throttle_pred = self.throttle_classifier(x)
173 brake_pred = self.brake_classifier(x)
174

175 return steer_pred, throttle_pred, brake_pred
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