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ABSTRACT
Many social Web sites allow users to annotate the content
with descriptive metadata, such as tags, and more recently
to organize content hierarchically. These types of structured
metadata provide valuable evidence for learning how a com-
munity organizes knowledge. For instance, we can aggre-
gate many personal hierarchies into a common taxonomy,
also known as a folksonomy, that will aid users in visualiz-
ing and browsing social content, and also to help them in
organizing their own content. However, learning from social
metadata presents several challenges, since it is sparse, shal-
low, ambiguous, noisy, and inconsistent. We describe an ap-
proach to folksonomy learning based on relational clustering,
which exploits structured metadata contained in personal
hierarchies. Our approach clusters similar hierarchies using
their structure and tag statistics, then incrementally weaves
them into a deeper, bushier tree. We study folksonomy
learning using social metadata extracted from the photo-
sharing site Flickr, and demonstrate that the proposed ap-
proach addresses the challenges. Moreover, comparing to
previous work, the approach produces larger, more accurate
folksonomies, and in addition, scales better.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining ; I.2.6 [ARTIFICIAL INTELLI-
GENCE]: Learning—Knowledge Acquisition

General Terms
Algorithms, Experimentation, Human Factors, Measurement

Keywords
Folksonomies, Taxonomies, Collective Knowledge, Social In-
formation Processing, Data Mining, Social Metadata, Rela-
tional Clustering
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1. INTRODUCTION
The social Web has changed the way people create and

use information. Sites like Flickr, Del.icio.us, YouTube, and
others, allow users to publish and organize content by anno-
tating it with descriptive keywords, or tags. Some web sites
also enable users to organize content hierarchically. The
photo-sharing site Flickr, for example, allows users to group
related photos in sets, and related sets in collections. Al-
though these types of social metadata lack formal structure,
they capture the collective knowledge of Social Web users.
Once mined from the traces left by many users, such collec-
tive knowledge will add a rich semantic layer to the content
of the Social Web that will potentially support many tasks in
information discovery such as personalization, data mining,
and information management.

A community’s knowledge can be expressed through a
common taxonomy, also called a folksonomy, that is learned
from social metadata created by many users. Compared to
existing hierarchies, such as Linnaean classification system
or WordNet, automatically learned folksonomies are attrac-
tive because they (1) represent collective agreement of many
individuals; (2) are relatively inexpensive to obtain; (3) can
adapt to evolving vocabularies and community’s information
needs; and (4) they are directly tied to the annotated con-
tent. A folksonomy can facilitate browsing of user-generated
content, and help users visualize how their own content fits
within the community’s or aid them in organizing it.

Learning a folksonomy by integrating structured meta-
data created by many users presents a number of challenges.
Since users are free to annotate data according to their own
preferences, social metadata is noisy, shallow, sparse, am-

biguous, conflicting, multi-faceted, and expressed at incon-

sistent granularity levels across many users. Several recent
works have addressed some of the above challenges. For in-
stance, [7, 15] proposed inducing folksonomies from tags by
utilizing tag statistics. The basic motivation behind these
approaches is that more frequent tags describe more general
concepts. However, frequency-based methods cannot distin-
guish between more general and more popular concepts. In
our previous work, sig [12], we overcame this problem by
using user-specified relations, extracted from personal hier-
archies. Nevertheless, it ignored other evidence, e.g., struc-
ture of hierarchies and tags, which potentially address the
challenges listed above.

We propose a novel approach to learn folksonomies from
social metadata in the form of tags and user-specified shal-
low hierarchies. Our approach is driven by a similarity mea-



sure that utilizes statistics of both kinds of metadata to in-
crementally weave individual hierarchies into a deeper, more
complete folksonomy. The approach has several advantages
over previous work. Specifically, it: (1) better addresses the
challenges of sparse, shallow, ambiguous, noisy and inconsis-
tent data; (2) the approach is more scalable, especially when
the learned folksonomies are deep; (3) it produces more con-
sistent and richer folksonomies. We demonstrate the utility
of our present approach on real-world data from Flickr, and
introduce a simple metric, which evaluates the quality of the
learned folksonomies in terms of depth and bushiness.

2. STRUCTURED SOCIAL METADATA
In addition to tagging content, some social Web sites also

allow users to organize it hierarchically. Delicious users can
group related tags into bundles, and Flickr users can group
related photos into sets and then group related sets in col-

lections. While the sites themselves do not impose any con-
straints on the vocabulary or semantics of the hierarchies,
in practice users employ them to represent both subclass
relationships (‘dog’ is a kind of ‘mammal’) and part-of re-
lationship (‘my kids’ is a part of ‘family’). Users appear to
express both types of relations (and possibly others) through
personal hierarchies, in effect using the hierarchies to spec-
ify broader/narrower relations. Even without strict seman-
tics being attached to these relations, we believe that per-
sonal hierarchies represent a novel, rich source of evidence
for learning folksonomies.

(a)

(b) (c)

Figure 1: Personal hierarchies specified by a Flickr
user. (a) Some of the collections created by the user
and (b) sets associated with the Plant Pests collec-
tion, and (c) tags associated with an image in the
Caterpillars set.

We briefly describe how this feature is implemented on the
social photo-sharing site, Flickr (http://www.flickr.com).

Flickr allows users to group their photos in album-like fold-
ers, called sets. Users can also group sets into “super” al-
bums, called collections.1 Both sets and collections are
named by the owner of the image. A photo can be part
of multiple sets.

While Flickr does not enforce any specific rules about how
to organize photos or how to name them, most users group
“similar” or “related” photos into the same set and related
sets into the same collection. Some users create multi-level
hierarchies containing collections of collections, etc., but the
vast majority of users create shallow hierarchies, consist-
ing of collections and their constituent sets. Figure 1(a)
shows some of the collections created by an avid naturalist
on Flickr. These collections reflect the subjects she likes to
photograph: Birds, Mammals, Plants, Mushrooms & Fungi,
Plant Pests, Plant Diseases, etc. Figure 1(b) shows sets of
the Plant Pests collection: Plant Parasites, Sap Suckers,
Plant Eaters, and Caterpillars. Each set contains one or more
photos, which are tagged by the user. For example, a pho-
tograph in the set Caterpillars (Figure 1(c)), is annotated
with multiple tags describing it:(Animal, Lepidoptera, Moth,
larva, Caterpillar), its color (Black and orange), con-
dition (on Senecio, eating), and location (North Seatac

Park, King County, WA, North America).

3. CHALLENGES IN LEARNING FROM
STRUCTURED METADATA

Learning folksonomies from social metadata, specifically,
from structured metadata, presents a number of challenges:

3.1 Sparseness
Social metadata is usually very sparse. Users provide 4

–7 tags per bookmark on Delicious in our data set and 3.74
tags per photo on Flickr [13]. Sparseness is also manifested
in the hierarchical organization created by an individual. In
our Flickr data set, we found only 600 out of 21, 792 users —
approximately 0.02 percent — who created multi-level (col-
lections of collections) hierarchies. Most users define shallow

(single-level) hierarchies. Moreover, among these shallow hi-
erarchies, few users organize content the same way. For in-
stance, of the 433 users who created an animal collection,
only a few created common child sets, such as bird, cat, dog
or insect. In order to learn a rich and complete folksonomy,
we have to aggregate social metadata from many different
users.

3.2 Noisy vocabulary
Vocabulary noise has several sources. One common source

is variations and errors in spelling. Noise also arises from
users’ idiosyncratic naming conventions. While such names
as not sure, pleaseaddthistothethemecomppoll, mykid may
be meaningful to image owner and her narrow interest group,
they are relatively meaningless to other users.

3.3 Ambiguity
An individual tag is often ambiguous [9, 5]. For exam-

ple, jaguar can be used to refer to a mammal or a luxury
car. Similarly, terms that are used to name collections and

1The collection feature is limited to paid “pro” users. Pro
users can also create unlimited number of photo sets, while
free membership limits a user to three sets.
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Figure 2: Schematic diagrams of personal hierar-
chies created by Flickr users. (a) Ambiguity: the
same term may have different meaning (“turkey”can
refer to a bird or a country). (b) Conflict: users’
different organization schemes can be incompatible
(china is a parent of travel in one hierarchy, but
the other way around in another). (c) Granular-
ity: users have different levels of expressiveness and
specificity, and even mix different specificity levels
within the same hierarchy (Scotland (country) and
London (city) are both children of UK). Nodes are col-
ored to aid visualization.

sets can refer to different concepts. Consider the hierar-
chy in Figure 2 (a), where turkey collection could be about
a bird or a country. Similarly, victoria can either be a
place in Canada or Australia. When combining metadata
to learn common folksonomies, we need to be aware of its
meaning. Structural and contextual information may help
disambiguate metadata.

3.4 Structural noise and conflicts
Like vocabulary noise, structural noise has a number of

sources and can lead to inconsistent or conflicting structures.
Structural noise can arise as a result of variations in indi-
viduals’ organization preferences. Suppose that, as shown
in Figure 2 (b), user A organizes photos first by activity,
creating a collection called travel, and as part of this collec-
tion, a set called china, for photos of her travel in China.
Meanwhile, user B organizes photos by location first, cre-
ating a collection china, with constituent sets travel, people,
food, etc. In one hierarchy, therefore, travel is more gen-
eral than china, and in the second hierarchy, it is the other
way around. Sometimes conflicts are caused by vocabulary
differences among individual users. For example, to some
users bug is a “pest,” a term broader than insect, while to
others it is a subclass of insect. As a result, some users may
express bug → insect, while the others express an inverse
relation. Another source of noise is variation in degree of
expertise on a topic. Many users assemble images of spiders
in a set called spiders and assign it to an insect collection,
while others correctly assign spiders to arachnid.

3.5 Varying granularity level
Differences in users’ level of expertise and expressiveness

may also lead to relatively imprecise metadata. Experts
may use specific breed names to tag dog photos, while non-
experts will simply use the tag dog to annotate them[5]. In
addition, one user may organize photos first by country and
then by city, while another organizes them by country, then
subregion and then city, as shown in Figure 2 (c). Combining
data from these users potentially generates multiple paths
from one concept to another.

4. LEARNING FOLKSONOMIES FROM
STRUCTURED METADATA

We propose a simple, yet effective approach to combine
many personal hierarchies into a global folksonomy that
takes above challenges into account. We define a personal hi-
erarchy as a shallow tree, a sapling, composed of a root node
ri and its children, or leaf nodes 〈li1, ..l

i
j〉. The root node cor-

responds to a user’s collection, and inherits its name, while
the leaf nodes correspond to the collection’s constituent sets
and inherit their names. Only a small number of users define
multi-level hierarchies; for these, we decompose them and
represent them as collections of saplings. At the top level,
we have a root node, which corresponds to the top-level col-
lection, and its leaf nodes corresponding to the root’s sets
or collections. We then construct saplings that correspond
to the leaf nodes, which are collections, and so on. We as-
sume that hierarchical relations between a root and its chil-
dren, ri → lij , specify broader-narrower relations. Hence,
the sapling in Figure 1 (b) is Plant Pests → {Plant Par-

asites, Sap Suckers, Plant Eaters, Caterpillars }.
In addition to hierarchical structure, each sapling carries

information derived from tags. On Flickr, users attach tags
only to photos; therefore, the tag statistics of a sapling’s
leaf (set) are aggregated from that set’s constituent photos.
Tag statistics are then propagated from the leaves to the
parent node. In our example, Plant Parasites aggregates tag
statistics from all photos in this set, and its parent Plant

Pests contains tag statistics accumulated from all photos in
Plant Parasites and its siblings. We define a tag statistic
of node x as τx := {(t1, ft1), (t2, ft2), · · · (tk, ftk

)}, where tk

and ftk
are tag and its frequency respectively. Hence, τri is

aggregated from all τli
j
s.

Given a collection of saplings, specified by many different
users, our goal is to aggregate them into a common, denser
and deeper tree. Before describing our approach, we first
briefly describe data preprocessing steps that address the
sparseness and noise challenges listed above.

4.1 Data Preprocessing
We extract terms representing concepts from collection

and set names. We found that users often combine two or
more concepts within a single name, e.g., “Dragonflies/Dam-
selflies”, “Mushrooms & Fungi”, “Moth at Night.” Terms can
be joined by bridging words that include prepositions “at”,
“of”, “in,” and conjunctions “and” and “or,” or special char-
acters, such as ‘&’, ‘<’, ‘>’, ‘:’, ‘/’. We start by tokenizing
collection and set names on these words and characters. We
do not tokenize on white spaces to avoid breaking up terms
like“South Africa.” We remove terms composed only of non-
alphanumeric characters and frequently-used uninformative
words, e.g., “me” and “myself.” We then normalize all terms
by lowercasing them.

After tokenization, a set or collection name may be split



into multiple terms, which we expand into leaves. Suppose
a user created a collection animal containing a set cats and

dogs. After tokenization we get the sapling animal →
{cats, dogs}. However, if the root node is determined to
have a composite name, we ignore the entire sapling because
we do not know which parent concepts correspond to which
child concepts.

4.2 Relational Clustering of Structured Meta-
data

In order to learn a folksonomy, we need to aggregate saplings
both horizontally and vertically. By horizontal aggregation,
we mean merging saplings with similar roots, which expands
the breadth of the learned tree by adding leaves to the root.
By vertical aggregation, we mean merging one sapling’s leaf
to the root of another, extending the depth of the learned
tree. The approach we use exploits contextual information
from neighbors in addition to local features to determine
which saplings to merge. The approach is similar to rela-
tional clustering[1] and its basic element is the similarity
measure between a pair of nodes.

We define a similarity measure which combines hetero-
geneous evidence available in the structured social meta-
data, and is a combination of local similarity and struc-

tural similarity. The local similarity between nodes a and
b, localSim(a, b), is based on the intrinsic features of a and
b, such as their names and tag distributions. The structural
similarity, structSim(a, b) is based on features of neighbor-
ing nodes. If a is a root of a sapling, its neighboring nodes
are all of its children. If a is a leaf node, the neighboring
nodes are its parent and siblings. The similarity between
nodes a and b is:

nodesim(a, b) = (1 − α) × localSim(a, b) (1)

+ α × structSim(a, b),

where 0 ≤ α ≤ 1 is a weight for adjusting contributions from
localSim(, ) and structSim(, ). We judge whether two nodes
are similar if the similarity is greater than the threshold, τ .

4.2.1 Local Similarity
The local similarity of nodes a and b is composed of (1)

name similarity and (2) tag distribution similarity. Name
similarity can be any string similarity metric, which returns
a value ranging from 0 to 1. Tag similarity, tagSim(, ), can
be any function for measuring the similarity of distributions.
Because of the sparseness of the data, and to make the com-
putation fast, we use a simple function which counts the
number of common tags, n, in the top K tags of a and b;
it returns 1 if this number is equal or greater than J , else
it returns n

J
. Local similary is a weighted combination of

name and tag similarities:

localSim(a, b) = β × nameSim(a, b) (2)

+ (1 − β) × tagSim(a, b)).

Tag similarity helps address the ambiguity challenge de-
scribed in Section 3. For example, the top tags of the node
turkey that refers to a bird include “bird”, “beak”, “feed”,
while the top tags of turkey that refers to the country in-
clude different terms about places within the country.

4.2.2 Structural Similarity
Structural similarity between two nodes depends on po-

sition of nodes within their saplings. We define two ver-

sions: structSimRR(, ) which computes structural similar-
ity between two root nodes (root-to-root similarity), and
structSimLR(, ) which evaluates structural similarity be-
tween a root of one sapling and the leaf of another (leaf-to-
root similarity).

Root-to-Root similarity. Two saplings A and B are likely
to describe the same concept if their root nodes rA and rB

have a similar name and some of their leaf nodes also have
similar names. In this case, there is no need to compute
tagSim(, ) of these leaf nodes. We define the normalized
common leaves factor, CL, as 1

Z

∑

i,j
δ(name(lAi ), name(lBj )),

where δ(., .) returns 1 if the both arguments are exactly the
same; otherwise, it returns 0; name(lAi ) is a function that
returns the name of a leaf node lAi of sapling A. Z is a nor-
malizing constant, which is described in greater detail later.
Structural similarity between two root nodes is then defined
as follows:

structSimRR(rA
, r

B) = CL + (1 −CL) (3)

× tagSim(L̀A
tag, L̀

B
tag),

where L̀
A
tag is an aggregation of tag distributions of all lAi ,

at which name(lAi ) 6= name(lBj ) for any leaf node lBj of the
sapling B. From Eq. 3, we compute similarity based on:
(1) how many of their children have common name (they
match); (2) the tag distribution similarity of those that do
not have the same name. The second term is an optimistic
estimate that child nodes of the two saplings refer to the
same concept while having different names.

The normalization coefficient Z = min(|lX |, |lY |), where
|lX | is a number of child nodes of X. We use min(, ) instead
of union. The reason is that saplings aggregated from many
small saplings will contain a large number of child nodes.
When merging with a relatively small sapling, the fraction
of common nodes may be very low compared to total number
of child nodes. Hence, the normalization coefficient with the
union (Z = union(lX , lY )), as defined in Jaccard similarity,
results in overly penalizing small saplings. min(, ), on the
other hand, seems to correctly consider the proportion of
children of the smaller sapling that overlap with the larger
sapling.

When we decide that roots rA and rB are similar, we
merge saplings A and B with the mergeByRoot(A,B) op-
eration. This operation creates a new sapling, M , which
combines structures and tag statistics of A and B. In par-
ticular, the tag statistics of the root of M is a combination
of those from rA and rB. The leaves of M , lM , are a union
of lA and lB . If there are leaves from A and B that share a
name, their tag statistics will be combined and attached to
the corresponding leaf in M .

The width of the newly merged sapling will increase as
more saplings are merged. Also, since we simply merge leaf
nodes with similar names, and their roots also have similar
names, leaf-to-leaf structural similarity structSimLL(, ) is
not required. This operation addresses the sparseness chal-
lenge mentioned in Section 3.

Root-to-Leaf similarity. Merging the root node of one sam-
pling with the leaf node of another sapling extends the depth
of the learned folksonomy. Since we consider a pair of nodes
with different roles, their neighboring nodes also have dif-
ferent roles. This would appear to make them structurally



incompatible. However, in many cases, some overlap be-
tween siblings of one sapling and children of another sapling
exists. Formally, suppose that we are considering similar-
ity between leaf lAi of sapling A and root rB of sapling B.
There might be some lAk 6=i of A similar to lBj of B. Con-
sider Figure 2 (c). Suppose that we have already merged
uk saplings. Now, there are two saplings uk → {scotland,
glasgow, edinburgh, london} and scotland → {glasgow,
shetland}, and we would like to merge the two scotlands.
Since both uk and scotland saplings have glasgow in com-
mon, and the user placed glasgow under uk instead of scot-
land, this shortcut contributes to the similarity between
scotland nodes. The structural similarity between leaf and
root nodes that takes this type of shortcut into consideraion
is:

structSimLR(lAi , r
B) = structSimRR(rA

, r
B). (4)

Specifically, this is simply the root-to-root structural simi-
larity of rA and rB , which measures overlap between siblings
of lAi and children of rB. For the case when there is no short-
cut, the similarity from this part will be dropped out; hence,
the Eq. 1 will only be based on the local similarity.

4.3 SAP: Growing a Tree by Merging Saplings
We describe sap algorithm, which uses operations defined

above to incrementally grow a deeper, bushier tree by merg-
ing saplings created by different users. In order to learn
a folksonomy corresponding to some concept, we start by
providing a seed term, the name of that concept. The seed
term will be the root of the learned tree. We cluster indi-
vidual saplings whose roots have the same name as the seed
by using the similarity measures Eq. 1, Eq. 2 and Eq. 3 to
identify similar saplings. Saplings within the same cluster
are merged into a bigger sapling using the mergeByRoot(, )
operation. Each merged sapling corresponds to a different
sense of the seed term.

Next, we select one of the merged saplings as the starting
point for growing the folksonomy for that concept. For each
leaf of the initial sapling, we use the leaf name to retrieve all
other saplings whose roots are similar to the name. We then
merge saplings corresponding to different senses of this term
as described above. The merged sapling whose root is most
similar to the leaf (using similarity measures Eq. 1, Eq. 2 and
Eq. 4), is then linked to the leaf. In the case that several
saplings match the leaf, we merge all of them together before
linking. Clustering saplings into different senses, and then
merging relevant saplings to the leaves of the tree proceeds
incrementally until some threshold is reached.

Suppose we start with saplings shown in Figure 2(c), and
the seed term is uk. The process will first cluster uk saplings.
Suppose, for illustrative purposes, that there is only one
sense of uk, resulting in a single sapling with root uk. Next,
the procedure selects one of the unlinked leaves, say glas-

gow, to work on. All saplings with root glasgow will be clus-
tered, and the merged glasgow sapling that is sufficiently
similar to the glasgow leaf of the uk sapling will then be
linked to it at the leaf, and so on.

Handling Shortcuts. Attaching a sapling A to the learned
tree F can result in structural inconsistencies in F . One type
of inconsistency is a shortcut, which arises when a leaf of A

is similar to a leaf of F . In the illustration above, attaching
the scotland sapling to the uk tree will generate a shortcut,

UK

Scotland London England

London

England
Glasgow

EnglandB. Museum

LondonLiverpool

Manchester
Dockland

Figure 3: Appearance of mutual shortcuts between
London and England when merging London and
England saplings. To resolve them, we compare
the similarity between UK-London and UK-England
sapling pairs. Since England sapling is closer to
UK than London sapling, we simply attach England
sapling to the tree; while ignoring London leaf under
UK.

or two possible paths from uk to glasgow (ruk → luk
glassgow

and ruk → luk
scotland → lscotland

glasgow ). Ideally, we would drop the
shorter path and keep the longer one which captures more
specific knowledge.

There are cases where the decision to drop the shorter
path cannot be made immediately. Suppose we have uk →
{london, england, scotland} as the current learned tree,
and are about to attach london → {british museum, dock-
land, england} to it. Unfortunately, some users placed eng-

land under london, and attaching this sapling will create a
shortcut to england. The decision to eliminate the shorter
path to england cannot be made at this point, since we have
no information about whether attaching the england sapling
will also create a shortcut to london from the root (uk). We
have to postpone this decision until we retrieve all relevant
saplings that can be attached to the present leaf (luk

london)
and its siblings (luk

england and luk
scotland).

Suppose that luk
england does match the root of sapling eng-

land → {london, manchester, liverpool}. Mutual short-
cuts to england and london would undesirably appear once
all the saplings are attached to the tree. Hence, the decision
to drop luk

england or luk
london must be made. We base the deci-

sion on similarity. Intuitively, a sapling that is more similar,
or “closer,” to ruk should be linked to the tree. Formally, the
node to be kept is luk

x̂ , where x̂ = argmaxx{nodesim(ruk, rx)}
and x = {england, london}, while the other will be dropped.
This is illustrated in Figure 3.

Handling Loops. Attaching a sapling to a leaf of the learned
tree may result in another undesirable structure, a loop.
Suppose that we are about to attach a sapling A to the
leaf lFi of F . A loop will appear if there exists a leaf lAj of
A with the same name as some node in the path from root
to lFi in F . In order to make the learned tree consistent, we
must remove lAj before attaching the sapling. For instance,
suppose we decide to attach london sapling to the england

sapling in Figure 3 at its london node, we have to remove
england node of london sapling first.

In some cases, loops indicate synonymous concepts. In
our data set, we found that there are users who specify
the relation animal → fauna, and those who specify the in-
verse fauna → animal. Since animal and fauna have similar



meaning, we hypothesize that this conflict appears because
of variations in users’ expertise and categorization prefer-
ences.

To determine whether a loop is caused by a synonym,
we check the similarity between rA and rF . If it is high
enough, we simply remove lFj from F , for which name(lFj ) =

name(lAj ); then, merge rA and rF . The similarity mea-
sure is based on Eq. 1. More stringent criteria are required
since rA and rF have different names. Specifically, we mod-
ify tagSim(X,Y ) to tagSimsyn(X, Y ), which instead evalu-

ates |τX∩τY |
min(|τX |,|τY |)

, and modify structSim(X, Y ) to struct-

Simsyn(X, Y ), which only evaluates 1
Z

∑

i,j
δ(name(lXi ),

name(lYj )).

Mitigating Noisy Vocabularies. As mentioned in Section 3,
noisy nodes appear from idiosyncratic vocabularies, used by
a small number of users. For a certain merged sapling, we
can identify these nodes by the number of users who speci-
fied them. Specifically, we use 1% of the number of all users
who “contribute” to this merged sapling as the threshold.
We then remove leaves of the sapling, that are specified by
fewer number of users than the threshold.

Managing Complexity. Computing the similarity measure
for all pairs of saplings in the corpus is impractical, even
considering local or structural similarity only. We address
this scalability issue in two ways. First, we only compare
sapling nodes if they share the same (stemmed) name. This
reduces the total number of pairs which need to be com-
pared and eliminates the need to compute nameSim(, ) in
Eq. 2. Second, we apply the blocking approach [11] for effi-
ciently computing similarity and merging sapling roots. The
basic idea behind this approach is to first use a cheap sim-
ilarity measure to “roughly” group similar items. We can
then thoroughly compute item similarities and merge them
within each “roughly similar” group by using the more com-
putationally expensive similarity measure. We assume that
items judged to be dissimilar by the cheap measure will also
be dissimilar when evaluated by the more expensive mea-
sure. Since the approach applies the expensive measure to
a much smaller set of items, it reduces the time complexity
of the clustering method.

In our case, we compute an inexpensive similarity measure
based on the most frequent tags. Specifically, we map the
top tags to some integer code, which can be cheaply sorted
by any database. Subsequently, we use the database to sort
saplings by their codes, moving roughly similar saplings to
neighboring rows. The process begins by scanning sorted
saplings in the database table on a sapling by sapling basis.
If the presently scanned sapling has not been merged with
some other sapling, we add this sapling to the top of the
queue. If the present sapling does belong to some merged
sapling, we check if this sapling is also similar to some other
merged saplings in the queue. We use Eq. 1, Eq. 2 and Eq. 3
to evaluate their similarity. If they are similar enough, we
will merge them together into a new merged sapling; then
add it to the top of the queue. The scanning is performed
repeatedly until the number of merged saplings no longer
changes.

4.4 Complexity Analysis
Here we sketch the computational complexity of sap. Ba-

sically, sap can be decomposed into 2 different parts: (1)
root-to-root merging, which expands folksonomies’ width;
(2) leaf-to-root merging, which extends folksonomies’ depth.
These two parts are loosely dependent, i.e., one can cluster
all saplings into different senses; then “vertically” merge the
root of one sapling sense with a leaf of the other. Since
we use blocking and only cluster saplings with the same
stemmed names, the computational complexity depends on
(1) the number of unique stemmed names in the data set;
(2) the average number of saplings that share a name. Let
N and M be the number of nodes and the number of unique
stemmed names in the data set respectively. Hence, for each
stem, there are N

M
nodes to be compared on average. We

use database to first roughly sort saplings, which generally
requires O( N

M
log( N

M
)). After saplings are sorted, they are

scanned and merged. This is repeatedly, say in i iterations,
until the number of clusters no longer changes, which re-
quires O(i × N

M
). In all, the complexity of the first part

is O(Nlog( N
M

) + iN). Empirically, the number of clusters
converges in 2-3 iterations on average.

Let b and d be the branching factor and the depth of the
tree we want to produce. In addition, suppose that there are
s sapling senses for each stemmed name on average. Since
we have to traverse each inner node of the tree to attach
relevant sapling senses, and for each of these nodes we need
to compare the similarity to all sapling senses with similar
root names, this requires O(s × bd).

Our earlier work, sig [12], which is described in more de-
tail in Section 5, only considered the best path from a root
to a given leaf of the tree, and required enumerating all pos-
sible paths between them. In the best case, when there are
no shortcuts or loops in the data set, the number of paths
from the root to all leaves of a given tree is equal to the
number of the leaves, and that only requires O(bd + bd−1) to
check whether each edge should be included. In the worst
case, when shortcuts appear to all node pairs, we would
need O(

(

d+1
2

)

× bd) to check all possible edges. Moreover,
we also need to enumerate all possible paths for the root to
all leaves of the tree, which requires O(1 +

∑

e=1:d−1

(

d−1
e

)

)
per root-to-leaf pair. Hence, we expect our approach to scale
better than the previous one as the depth of the output tree
increases and when there are many shortcuts.

5. EMPIRICAL VALIDATION
We constructed a data set containing collections and their

constituent sets (or collections) created by a subset of Flickr
users who are members of seventeen public groups devoted
to wildlife and nature photography [12]. These users had
many other common interests, such as travel and sports,
arts and crafts, and people and portraiture. We extracted
all the tags associated with images in the set, and retrieved
all other images that the user annotated with these tags. We
constructed personal hierarchies, or saplings, from this data,
with each sapling rooted at one of user’s top-level collections.
For reasons described in Section 4.1, we ignore collections
with composite names. This reduces the size of the data set
to 20, 759 saplings created by 7, 121 users. A small number
of these saplings are multi-level.

The folksonomy learning approach described in this pa-
per has a number of parameters as shown in Table 1. In our
experiment, we ignored the parameter β since only sapling
nodes with the same name are needed to be compared as de-
scribed the previous section. To explore the range of these



Figure 4: Folksonomies learned for bird and sport

parameters, we set up a small experiment by first select-
ing 5 different seed terms2; then running the approach with
different values. Optimal parameter values would enable
the approach to reasonably combine/separate saplings with
similar/different senses. We manually inspected the induced
folksonomies to check how the saplings were merged/separated.

The parameter K allows the approach to consider only
top frequency tags, which tend to be more stable and less
noisy [5]. Nevertheless, the top tags will not contain enough
information if the number is set too low, e.g., K = 10. At
the fixed values of the common tag threshold, J = 4, and
the structural-local weight combination, αRR = 0.1 (in this

2ski, bird, victoria, africa and insect

Parameters Description

K The number of top frequent tags

J The number of common tags for tag similarity

αRR The weight combination of local and structural
similarity for computing root-to-root similarity

αLR The weight combination of local and structural
similarity for computing leaf-to-root similarity

β The weight combination of name and tag similar-
ity (not required in our experiment)

τ The similarity threshold

Table 1: Parameters of the folksonomy learning ap-
proach.

case, we simply evaluated on merging root-root nodes; hence
there is no need for αLR), we found that the approach per-
forms reasonably well when the value of K is around 30–60,
while the performance starts to degrade for K > 60. Smaller
values of J leads to a weak tag similarity measure, which, in
turn, mistakenly causes the approach to merge saplings with
different senses. Large J will be relatively stringent, and as
a result, saplings of the same sense will not be merged. We
found that, at K = 40, the value of J between 4 to 6 allows
reasonable results.

For αRR and αLR, the weight combination between local
and structural similarity for root-root and leaf-root nodes in
Eq. 1, the larger the values the more the similarity measure
emphasizes on the structural similarity. From our experi-
ments, we found that the structure information is very infor-
mative. When αRR is set to a very large value or the max-
imum, 1.0, the approach clusters “structure-rich” saplings,
i.e., saplings containing many children, reasonably well. For
leaf-to-root merging or in situations where structural infor-
mation is uncommon, local similarity becomes more impor-
tant. We discovered that at αRR = 0.1 and αLR = 0.8, the
approach produces reasonable folksonomies. Due to space
limitations, we do not include the complete set of results.
Here, we report the parameter values that resulted in good
performance: we set K = 40; J = 4. In addition, since all
similarity measures are normalized to range within 0.0 and
1.0, we set τ = 0.5.

We compare sap against the folksonomy learning method,
sig, described in [12]. Briefly, sig first breaks a given sapling
into (collection-set) individual parent-child relations. With
the assumption that the nodes with the same (stemmed)
name refer to the same concept, the approach employs hy-
pothesis testing to identify the informative relations, i.e.,
checking if the relation is not generated at random. Infor-
mative relations are then linked into a deeper folksonomy.
We used a significance test threshold of 0.01.

5.1 Methodology
We quantitatively evaluate the induced folksonomies by

(1) automatically comparing them to a reference hierarchy;
(2) structural evaluation; (3) manual evaluation.
Evaluation against the reference hierarchy: We use
the reference hierarchy from the Open Directory Project
(ODP).3 We selected ODP because, in contrast to Word-
Net, ODP is generated, reviewed and revised by many reg-
istered users. These users seem to use more colloquial terms
than appear in WordNet. In addition, like Flickr users, they
specify less formal relations, mainly broader/narrower rela-
tions. WordNet, on the other hand, specifies a number of
formal relations among concepts, including hypernymy and
meronymy.

We use methodology described in [12] to automatically
evaluate the quality of the learned folksonomies. Although
ODP and saplings are generated from different sources, there
is substantial vocabulary overlap that makes them compa-
rable. Since the ODP hierarchy is relatively large and com-
posed of many topics, we had to carve out the “relevant”
portion for comparison. First, we specified a seed, S, which
is the root of the learned folksonomy F and the reference
hierarchy to which it is compared.

Next, the folksonomy is expanded two levels along the
relations in F. The nodes in the second level are added as

3http://rdf.dmoz.org/, as of September 2008



leaf candidates, LC. If the spanning stops after one level,
we also add this node’s name to LC. Given S and LC,
we identify leaf candidates, LCD, that also appear in ODP,
D. All paths from S to LCD in D constitute the reference
hierarchy for the seed S.

Next, S is used as seed for learning the folksonomy asso-
ciated with this concept. In sig, S and LC are both used to
learn the folksonomy. The maximum depth of learned trees
is limited to 4. The metrics to compare the learned folk-
sonomies to the reference are Lexical Recall [8] and the mod-
ified Taxonomic Overlap defined in [12], mTO. Lexical Re-
call measures the overlap between the learned and reference
taxonomies, independent of their structure. mTO measures
the quality of structural alignment of the taxonomies. Here,
we report the harmonic mean, fmTO, instead, because of
mTO’s asymmetry. Since the proposed approach generates
bushy folksonomies whose leaf nodes may not appear in the
reference taxonomy, the mTO metric may unfairly penalize
the learned folksonomy. Instead, we only consider the paths
of the learned folksonomy that are comparable to the refer-
ence hierarchy. Specifically, for each leaf l in LCD, we select
the path S → l in the learned folksonomy and compare it to
one in the reference hierarchy. If there are many comparable
paths existing in the reference, we select the one that has
the highest LR to compare.
Structural evaluation: Ideally, we prefer an approach
that generates bushier and deeper trees. The scope of con-
cepts in such trees are broadly enumerated (tree width);
while, each concept is subcategorized in enough detail (tree
depth). Although one can use an average depth of a tree
and branching factor, it is difficult to justify which trees are
better overall since these metrics are independent. A very
bushy tree may have only 1 level depth; meanwhile, a very
deep tree may have a chain-like structure. In this work,
we define a simple, yet intuitive measure, Area Under Tree
(AUT), which takes both tree bushiness and depth into ac-
count. To calculate AUT for a certain tree, we compute the
distribution of the number of nodes in each level and then
compute the area under the distribution. Intuitively, trees
that keep branching out at each level will have larger AUT
than those that are short and thin. Suppose that we have a
tree with one node at the root, three nodes at 1st level and
four at 2nd. With the scale of tree depth set to 1.0, AUT of
this tree would be 0.5× (1 + 3) + 0.5× (3 + 4) = 5.5 (a sum
of trapezoids).
Manual evaluation: We use 3 human subjects to evaluate
the portions of induced folksonomies which were not compa-
rable to ODP hierarchy. We randomly selected 10% of the
paths (all of them if there are fewer than 10 paths in the
learned folksonomy) that are not in the reference hierarchy
and asked three judges to evaluate them. If a portion of the
path is incorrect, either because an incorrect concept ap-
pears or the ordering of concepts is wrong, the judges were
asked to mark it incorrect, otherwise it is correct. They
can also mark the path “unsure” if there is not enough evi-
dence for a decision. A path’s label is based on the majority
decision. If there is no agreement, or the path is marked
uncertain by all judges, we exclude it.

5.2 Results
In Table 2, we compare the quality of the folksonomy

learned for each seed by sap, and the earlier work, sig. sap

generally recovers a larger number of concepts, relative to

Approach Incorrect Path

sap anim/other anim/mara

sap world/landscap/architectur/scarborough

sap world/scotland/through viewfind

sap europ/franc/flight to

sig anim/pet/chester/chester zoo

sig bird/turkei/antalya

sig bird/turkei/ephesu

sig fauna/underwat/destin

sig south africa/safari/isla paulino

sig south africa/safari/la flore

sig sport/golf/adamst

sig sport/ski/cloud/other/new year

sig world/canada/victoria/melbourn

Table 3: The table lists all incorrect paths caused
by possibly ambiguous nodes, which are in bold.

ODP, as indicated by the numbers of overlapping leaves (in
90% of the cases) and better LR scores (in 76% of the cases).
Moreover, sap can produce trees with higher quality, rela-
tive to the ODP, as indicated by fmTO score (in 68% of
the cases). From the structural evaluation, sap produced
bushier trees as indicated by AUT in 87% of the cases. In
addition, the average depth (not shown in the Table) from
roots to all leaves of the trees over all cases generated by sap

is deeper than sig (2.68 vs. 2.37).
Although the manual evaluation suggests that both ap-

proaches can induce about the same quality on the paths
that are uncomparable to ODP, after closely inspecting the
learned trees, we found that sap demonstrates its advantage
over sig in disambiguating and correctly attaching relevant
saplings to appropriate induced trees. For instance, bird

tree produced by sap does not includes Istanbul or other
Turkey locations, as shown in Figure 4. In the sport tree,
sap does not include any concept about the sky (Note that
skies and skiing share common name). In addition, there
are no concepts about irrelevant events like birthdays and
parades appearing in the tree. There are some cases, e.g.,
dog and cat, where we could not compute the hand labeling
scores because these trees often contained pet names, rather
than breeds.

We further considered how many of the incorrect paths
are caused by node ambiguity. To do so, we first identi-
fied ambiguous terms, and checked to see how many of the
incorrect paths contain these terms. Although it is not obvi-
ous how to automatically identify ambiguous terms, we use
the following heuristic to determine the possible ambigui-
ties: for a given leaf of the induced tree, if many different
merged senses exist (i.e., > 10), then we consider the leaf
ambiguous. During the tree induction process, we keep track
of these nodes and the root. Subsequently, we use the am-
biguous terms and their root names to check the accuracy
of paths in the hand labeled data containing them. As pre-
sented in Table 3, there is about a half reduction in error for
ambiguous paths using sap. This supports our claim about
superiority of sap on node disambiguation.

In all, the proposed approach, sap, has several advantages
over the baseline, sig. First, it exploits both structure in-
formation and tag statistics to combine relevant saplings,
which can produce more comprehensive folksonomies as well
as resolve ambiguity of the concept names. Second, it al-



Whole folksonomies Comparison with ODP Manual
#leaves AUT #ovlp lvs fmTO LR AUT Acc (10%)

seeds sig sap sig sap sig sap sig sap sig sap sig sap sig sap
anim 268 583 694.0 1076.0 68 92 0.602 0.659 0.281 0.360 160.0 189.5 0.89 0.74
bird 73 103 84.5 113.5 20 22 0.760 0.755 0.281 0.315 21.5 28.5 0.60 1.00

invertebr 11 15 15.5 19.5 3 1 0.762 1.000 0.250 0.125 4.5 1.5 1.00 1.00
vertebr 80 114 162.5 236.5 1 0 1.000 n/a 0.600 0.200 2.5 n/a 1.00 1.00
insect 29 44 35.5 61.5 5 5 0.924 0.924 0.857 0.857 6.5 6.5 1.00 1.00
fish 7 6 7.5 6.5 0 0 n/a n/a 0.016 0.016 n/a n/a 1.00 1.00
plant 110 194 265.5 426.0 6 7 0.613 0.735 0.250 0.273 13.0 11.5 0.67 1.00

flora 64 403 173.0 1048.5 6 18 0.483 0.481 0.130 0.407 16.0 84.0 1.00 1.00
fauna 141 609 420.0 1146.0 9 31 0.463 0.490 0.113 0.212 27.0 71.5 0.91 0.85
flower 112 169 210.5 226.5 1 1 0.379 1.000 0.267 0.250 3.5 1.5 1.00 n/a
reptil 3 4 4.5 4.5 2 3 0.625 0.622 0.500 0.667 2.5 3.5 n/a n/a
amphibian 1 1 1.5 1.5 1 1 1.000 1.000 1.000 1.000 1.5 1.5 n/a n/a
build 7 23 11.5 37.5 0 0 n/a n/a 1.000 1.000 n/a n/a 1.00 1.00
urban 6 80 15.0 145.5 0 0 n/a n/a 0.071 0.071 n/a n/a 1.00 1.00
countri 378 1605 798.5 4504.0 2 4 0.447 0.665 0.143 0.214 8.0 8.5 1.00 1.00
africa 53 71 90.5 119.5 23 27 0.773 0.895 0.508 0.547 37.5 40.5 1.00 1.00
asia 187 284 389.0 631.5 80 85 0.734 0.788 0.396 0.484 165.5 168.5 1.00 1.00
europ 379 1073 916.0 2706.5 165 301 0.619 0.670 0.236 0.418 369.0 874.5 1.00 0.94
south africa 12 17 15.5 18.5 3 3 0.431 0.600 0.444 0.444 3.5 3.5 0.78 1.00

north america 166 731 435.0 2203.5 67 118 0.545 0.576 0.165 0.319 170.5 361.5 1.00 0.92
south america 32 50 54.5 101.5 12 15 0.706 0.832 0.415 0.463 20.5 28.5 1.00 1.00
central america 27 8 53.5 12.5 1 2 0.631 0.754 0.417 0.500 2.5 4.5 1.00 1.00
unit kingdom 106 267 274.5 658.5 31 82 0.787 0.724 0.099 0.127 71.5 179.5 1.00 1.00
unit state 102 375 217.0 936.5 35 55 0.620 0.749 0.130 0.256 74.5 122.0 1.00 1.00
world 545 3177 1437.0 9235.0 191 475 0.476 0.461 0.085 0.215 490.0 1676.5 0.97 0.96
citi 123 448 234.0 927.5 0 0 n/a n/a 0.111 0.100 n/a 2.5 1.00 1.00
craft 5 1 10.5 1.5 1 0 0.603 n/a 0.056 0.050 2.5 n/a 1.00 n/a
dog 15 26 17.5 28.5 0 1 n/a 1.000 0.045 0.080 n/a 1.5 n/a n/a
cat 11 39 13.5 41.5 0 0 n/a n/a 0.100 0.100 n/a n/a n/a n/a
sport 207 74 407.0 86.5 19 27 0.693 0.647 0.091 0.084 30.0 31.5 0.28 1.00

australia 47 83 71.0 147.5 12 27 0.354 0.665 0.123 0.216 14.5 36.5 0.67 1.00

canada 55 763 128.0 2502.0 11 27 0.620 0.587 0.158 0.241 21.5 75.5 1.00 1.00

Table 2: This table presents empirical validation on folksonomies induced by the proposed approach, sap,
comparing to the baseline approach, sig. The first column group presents properties of the whole induced
trees: the number of leaves and Area Under Tree(AUT). The second column group reports the quality of
induced trees, relatively to the ODP hierarchy. The metrics in this group are modified Taxonomic Overlap

(fmTO) (averaged using Harmonic Mean), Lexical Recall (LR), where their scales are ranging from 0.0 to
1.0 (the more the better), as AUT is computed from portions of the trees, which are comparable to ODP.
“#ovlp lvs” stands for a number of overlap leaves (to ODP). The last column group reports performance
on manually labeled portions of the trees, which do not occur in ODP. In some cases, “n/a” exists since we
cannot compute its corresponding value.

lows similar concepts to appear multiple times within the
same hierarchy. For example, sap allows the anim folkson-
omy to have both anim → pet → cat and anim → mammal

→ cat paths, while only one of these paths is retained by
sig. Last, sap can identify synonyms from structure (loops).
We learned the following synonyms from Flickr data: {anim,
creatur, critter, all anim, wildlife} and {insect, bug}.

6. RELATED WORK
Constructing ontological relations from text has long in-

terested researchers, e.g., [6, 16, 19]. Many of these methods
exploit linguistic patterns to infer if two keywords are related
under a certain relationship. However, these approaches are
not applicable to social metadata because it is usually un-

grammatical and much more inconsistent than natural lan-
guage text.

Several researchers have investigated various techniques
to construct conceptual hierarchies from social metadata.
Most of the previous work utilizes tag statistics as evidence.
Mika [10] uses a graph-based approach to construct a net-
work of related tags, projected from either a user-tag or
object-tag association graphs; then induces broader/narrower
relations using betweenness centrality and set theory. Other

works apply clustering techniques to tags, and use their co-
occurrence statistics to produce conceptual hierarchies [3].
Heymann and Garcia-Molina [7] use centrality in the simi-
larity graph of tags. The tag with the highest centrality is
considered more abstract than one with a lower centrality;
thus it should be merged to the hierarchy first, to guarantee
that more abstract nodes are closer to the root. Schmitz [15]
applied a statistical subsumption model [14] to induce hier-
archical relations among tags. Since these works are based
on tag statistics, they are likely to suffer from the “popular-
ity vs. generality” problem, where a tag may be used more
frequently not because it is more general, but because it is
more popular among users.

Our present work, sap, is different from our earlier ap-
proach, sig [12] in many aspects. First, sap exploits more
evidence, i.e., structure and tag statistics of personal hierar-
chies rather than individual relations’ co-occurrence statis-
tics as in sig. Second, sap is based on the relational cluster-
ing approach that incrementally attaches relevant saplings
to the learned folksonomies, as sig exhaustively determines
the best path out of all possible paths from the root node to
a leaf, which is computationally expensive when the learned
folksonomies are deep. Last, sap demonstrates many advan-



tages as presented in Section 5.
The sapling merging approach described in this paper is

an extension of collective relational clustering approach used
for entity resolution [1]. That work proposed a method to
identify and disambiguate entities, such as authors, that uti-
lizes two types of evidence: intrisic and extrinsic features.
Intrinsic features are associated with specific instances, such
as author names, while extrinsic features are derived from
structural evidence, e.g., co-authors in a citations database.
Intuitively, two names refer to the same author if they are
similar and their co-author names refer to the same set of
authors. Analogously, we identify and disambiguate con-
cept names from names and tags (intrinsic) and neighboring
nodes’ features (extrinsic). However, for efficiency reasons,
we use the naive version of the relational clustering, where
we directly use the features from neighbors as the extrinsic
features, rather than cluster labels.

Handling mutual shortcuts by keeping the sapling which
is more similar to the ancestor is similar in spirit to the
minimum evolution assumption in [19]. Specifically, a cer-
tain hierarchy should not have any sudden changes from a
parent to its child concepts. Our approach is also similar to
several works on ontology alignment (e.g. [4, 17]). However,
unlike those works, which merge a small number of deep,
detailed and consistent concepts, we merge large number of
noisy and shallow concepts, which are specified by different
users.

7. CONCLUSION
This paper describes an approach which incrementally

combines a large number of shallow hierarchies specified
by different users into common, denser and deeper folk-
sonomies. The approach addresses the challenges of learning
folksonomies from social metadata and demonstrates sev-
eral advantages over the previous work. Additionally, it is
general enough for other domains, such as tags/bundles in
Delicious and files/folders in personal workspaces.

For the future work, in addition to automatically sepa-
rating broader/narrower from related-to relations, we would
like to develop a systematic way to handle individual saplings
whose child nodes are from different facets. This will im-
prove the quality of the learned folksonomies by not mix-
ing concepts from different facets. We are also working on
combining more sources of evidence such as geographical
information for learning accurate folksonomies. Lastly, we
would like to frame the approach in a fully probabilistic way
(e.g., [18, 2]), which provides a systematic way to combine
heterogeneous evidence, and takes into account uncertain-
ties on similarities between concepts and relations.
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