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Abstract 

In digital video broadcasting, sometimes many sources are used. When handling this 

broadcast a problem is a limited interface that has a fixed number to input channels but 

overcapacity in data transfer rate. To be able to connect more inputs to the interface a 

protocol that lets the user send more than one channel on a connection is needed. The 

important part for the protocol is that it keeps the input equal to the output both in timing 

and in what data is sent. These are done by encapsulating the data and use a header 

containing information for recreating the input. To solve the timing constraint dynamic 

buffer are used that makes all data evenly delayed. To validate the functionality of the 

protocol a test designed is implemented in VHDL and simulated. 

Acknowledgments 

A special thanks to WiSi that let me do my work there especially to Patrik Sandrstöm for 

supervising me and to Herman Molinder for feedback on the report. 



 

  iv 

 

Contents 

1 ....................................................................................................................................  
Introduction .............................................................................................................. 3 

1.1 Background ................................................................................................. 3 
1.2 Motivation .................................................................................................. 4 
1.3 Purpose ....................................................................................................... 4 
1.4 Problem statements ..................................................................................... 4 
1.5 Limitations .................................................................................................. 5 

2 ....................................................................................................................................  
Theory ........................................................................................................................ 6 

2.1 Digital Video Broadcasting......................................................................... 6 
2.1.1 Base Band-frame ................................................................................ 7 
2.1.2 DVB overview .................................................................................... 7 

2.2 Formats ....................................................................................................... 8 
2.2.1 Generic Stream Encapsulation ............................................................ 8 
2.2.2 Generic Continuous Stream ................................................................ 9 
2.2.3 Generic Fixed-length Packetized Stream ............................................ 9 
2.2.4 Transport Stream ................................................................................ 9 

2.3 Jitter .......................................................................................................... 10 
2.4 Layer model ............................................................................................... 11 

3 ....................................................................................................................................  
Method ..................................................................................................................... 12 

3.1 Introduction .............................................................................................. 12 
3.2 Protocol..................................................................................................... 12 
3.3 FPGA Implementation .............................................................................. 13 

4 ....................................................................................................................................  
Design ...................................................................................................................... 14 

4.1 Introduction .............................................................................................. 14 
4.2 Protocol design ......................................................................................... 15 

4.2.1 Design parameters ............................................................................ 15 
4.2.2 Priority between input buffers .......................................................... 16 
4.2.3 Content of the header ........................................................................ 17 
4.2.4 Multiple messages in one packet ...................................................... 18 
4.2.5 Fragmentation of large input messages ............................................ 18 
4.2.6 When to send message ...................................................................... 20 
4.2.7 Buffer size ......................................................................................... 21 



 
 

4.2.8 System jitter ...................................................................................... 22 
4.2.9 In-Jitter ............................................................................................. 23 

4.3 FPGA Implementation .............................................................................. 23 
4.3.1 Design parameters ............................................................................ 23 
4.3.2 Encapsulation layer ........................................................................... 24 
4.3.3 Data link layer .................................................................................. 25 
4.3.4 Physical layer .................................................................................... 25 
4.3.5 Testing the implementation............................................................... 25 

5 ....................................................................................................................................  
Results ...................................................................................................................... 26 

5.1 Introduction .............................................................................................. 26 
5.2 Protocol design ......................................................................................... 26 

5.2.1 Priority between input buffers .......................................................... 27 
5.2.2 Multiple messages in one packet ...................................................... 27 
5.2.3 When to send message ...................................................................... 28 
5.2.4 Content of the header ........................................................................ 28 
5.2.5 Fragmentation of large input messages ............................................ 29 
5.2.6 Buffer size ......................................................................................... 30 
5.2.7 System jitter ...................................................................................... 31 

5.3 FPGA Implementation .............................................................................. 31 
5.3.1 Design parameters ............................................................................ 32 
5.3.2 Top level ........................................................................................... 33 
5.3.3 Encapsulation layer ........................................................................... 33 
5.3.4 Data link layer .................................................................................. 35 
5.3.5 Physical layer .................................................................................... 36 
5.3.6 Simulation results ............................................................................. 36 

6 ....................................................................................................................................  
Discussion ................................................................................................................ 39 

6.1 Method ...................................................................................................... 39 
6.1.1 Protocol ............................................................................................. 39 
6.1.2 Implementation ................................................................................. 40 

6.2 Results ...................................................................................................... 40 
6.2.1 Protocol ............................................................................................. 41 
6.2.2 FPGA implementation ...................................................................... 41 

6.3 Source criticism ........................................................................................ 41 
6.4 The work in a wider perspective ............................................................... 42 

7 ....................................................................................................................................  
Conclusions ............................................................................................................. 43 

7.1 Problem statements ................................................................................... 43 
7.2 Results ...................................................................................................... 44 

Appendix A .............................................................................................................. 45 
Appendix B .............................................................................................................. 46 



 
 

List of Figures 

Figure 1 – Limited interface 5 
Figure 2 - TS packets in a BB-frame 7 
Figure 3 - Encapsulation of data in GSE packets 9 
Figure 4 - TS header 10 
Figure 5 - Layer overview 15 
Figure 6 - Comparison between fragmentation or not 19 
Figure 7 - Used buffer during constant in bitrate 21 
Figure 8 - Used buffer during after burst 22 
Figure 9 – Encapsulation layer layout 24 
Figure 10 - Header field layout 29 
Figure 11 - Input side of encapsulation layer 33 
Figure 12 - Output side of encapsulation layer 34 
Figure 13 – Data link layer on both in and out side 36 
Figure 14 - Input and output data files 37 
Figure 15 - Simulation serial interface 37 
Figure 16 - Zoomed in simulation serial interface 38 

file:///C:/Users/Dark%20Master/Dropbox/Exjobb/Referencer.docx%23_Toc469651627
file:///C:/Users/Dark%20Master/Dropbox/Exjobb/Referencer.docx%23_Toc469651632
file:///C:/Users/Dark%20Master/Dropbox/Exjobb/Referencer.docx%23_Toc469651633
file:///C:/Users/Dark%20Master/Dropbox/Exjobb/Referencer.docx%23_Toc469651634


 
 

 
 
  0 

 
 
 
 
 
 

List of Tables 

Table 1 - Comparison multiple to single messages ............................................................ 18 
Table 2 - Amount of burst from jitter ................................................................................ 23 
Table 3 - Size comparison between single and multiple messages .................................... 28 
Table 4 - Size of multiple and single messages using header ............................................. 29 
Table 5 - Signals in Figure 10 ............................................................................................. 34 
Table 6 - Signals in Figure 11 ............................................................................................. 35 



 

1 
 

Notation 

 

Abbreviation/ 

Acronym 

Meaning Explanation Context 

BB-frame Base Band-frame A format used for sending 

data in DVB-C2/T2/S2 

looks a lot like GSE but 

bigger size 

2.1.1  

DVB-C2 Digital Video 

Broadcasting - Cable - 

Second Generation 

Digital television 

broadcast standard for 

cable transmissions 

2.1  

DVB-S2 Digital Video 

Broadcasting - Satellite 

- Second Generation 

Digital television 

broadcast standard for 

satellite transmissions 

2.1  

DVB-T2 Digital Video 

Broadcasting - 

Terrestrial - Second 

Generation 

Digital television 

broadcast standard for 

terrestrial transmissions 

2.1  

GFPS Generic Fixed-length 

Packetized Stream  

A format for transporting 

generic data in packets of 

a fixed size 

2.2.3  

GS Generic Stream A name for GSE,GSC and 

GFPS 

2.1  

GSE Generic Stream 

Encapsulation 

A format for transporting 

generic data in packet 

format  

2.2.1  
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GSC or GCS Generic Continues 

Stream  

A stream of continues 

data and not in package  

2.2.2  

msg Message A single unit of data 4.2.4  

TS Transport Stream A format used for 

transporting TV-canal 

package. Can de named 

MPEG-TS to 

2.2.4  

 Frame A unit of data made to be 

sent  

 

 Fragment Part of a packet, the 

product from fragmenting 

a packet 

 

 Packet A header and following 

data 

 

 Pay load The data to be sent for 

example the data in a 

packet 
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1  
Introduction 

1.1  Background 

The company WiSi have a product Chameleon that is used for different formats of 

digital media and transforms them to other formats. For this project, the Chameleon has 

a removable tuner board with two input ports, tuners and demodulators. The input is 

connected to a FPGA with two connections. In some use cases, the input data rate is 

much lower than the connection speed meaning there is a lot of free bandwidth. To use 

this in a better way a possibility is to change the tuner board to one with more input 

ports. The connections on the FPGA is locked to two ports meaning the new ports will 

have to be muxed together. Another interesting aspect is that new formats are coming 

and making a general solution that can take in not just the formats used today is 

interesting. 
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1.2  Motivation 

A product has a predefined interface that is not easy to change. However, the interface 

has higher bandwidth than is needed for its current application. This gives a possibility 

to have more inputs if only all inputs can be sent over this single interface, which can be 

one by a protocol. It is important that after the interface the inputs are identical to the 

recived data. To solve this, an idea is to put a small FPGA before the interface and have 

it packetize the data with important information to be able to recreate it to its original 

state. Then the data are sent through the interface and the receiver implements an 

algorithm that returns the data to the original state. To make a general solution that is 

easy to test and have a well-defined layout a layer view is used. This means splitting up 

the process in different layers that are unaware of how the other layers work resulting in 

that each layer can be implemented and tested separately. 

1.3  Purpose 

Because the FPGA inside a product already have a fully defined interface but want to be 

able to take more input streams a solution that do not need any changes in the interface 

is needed. In the future new formats of input will be interesting meaning that it is 

desirable that the solution is general purpose and not limited to just the standards used 

today. 

1.4  Problem statements 

Questions that are to be answered in this work. 

 How is it possible to mux together TS (transport streams) from multiple 

channels to one single channel send the TS by a serial interface Figure 0 and 

then demux them back to their original state again? 

 

 Is it possible to take the solution for TS and apply it for other formats like GS 

(Generic Stream) and if not how to make it possible?  

 

 What design parameters are important and how do they impact the protocol? 
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1.5  Limitations 

No implementation of other formats than TS will be done mainly because WiSi is only 

using TS at the moment. Nevertheless, other formats will be investigated and will be 

used in the protocol design. 

The second generation DVB standards are backward compatible and because of this the 

first generation is not needed because it does not give extra functionality. 

Figure 1 – Limited interface 
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2  
Theory 

To be able to know the environment of the system and the requirements for it knowledge 

from different sources are needed and will be discussed in the theory chapter. 

2.1  Digital Video Broadcasting 

To get an understanding for the environment of the system Digital Video 

Broadcasting(DVB) is studied. Digital Video Broadcasting is a series of standards 

developed for digital media broadcasting[1]. The main application of the system will 

have a source of some form of DVB transmission. It is not the only standard but the one 

that will be used in this work because it is the European standard. 

DVB-T2 is the second generation standard for terrestrial transmissions[1], DVB-S2 is 

the standard for satellite transmissions[2] and DVB-C2 is the standard for digital 

television transmissions over cable[3]. All of them send other TS or GS formats of data. 

The different DVB standards are implemented a little bit differently and have different 

limitations to work for different signal mediums. To get a TS or GS from any of the 

transmission standards the signals are needed to be demodulated.  
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2.1.1  Base Band-frame 

A Base Band-frame (BB-frame) is used in DVB for sending and encapsulating data. BB-

frames have a 10 byte header and up to 7264 bytes payload[1]. The payload is one or 

more of TS, GSE, GPFS or GCS[1] like in Figure 1. Continuous streams can be 

fragmented and fragments of the stream can be sent in different BB-frames but more 

than one packet can also be sent in one BB-frame. The BB-frame then contains 

information to put the stream back into one piece.  

Figure 2 - TS packets in a BB-frame 

2.1.2  DVB overview 

To send data with satellite DVB-S2 is used. It is a way of taking data in form of TS or 

GS and encapsulates it to send in a satellite channel. It has three goals, maximise 

transmission performance, high degree of freedom and not too complex receivers [4]. 

Performance is gained by two levels of encapsulation. The first layer is a BB-frame and 

takes the TS or GS and packetizes them. After that the BB-frames are Forward error 

correction (FEC) encoded symbol mapped by using QPSK, 8PSK, 16PSK or 32PSK and 

put in a physical layer frame (PL-frame) that is sent. The PL-frame makes the 

transmission sturdy and makes it tolerant to noise and bit errors. To give freedom the 

BB-frames can take more or less any kind of data and packetize it and the signals are 

designed to work with any satellite transponder [4].  

In the case of DVB-C2 and T2, procedure similar to DVB-S2 is used but in the last part 

the data is sent as orthogonal frequency-division multiplexing (OFDM) symbols instead 

of QPSK, 8PSK, 16PSK or 32PSK[3][1]. The OFDM symbols are sent on multiple 

orthogonal carrier frequencies. The signal is created from the discrete Fourier transform 

of the signal and then split it up between frequencies. OFDM lets the receiver 

compensate for distortion from the transition channel.  
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2.2  Formats 

There are many formats for streaming digital television and they address problems with 

similarities to the problem statement. The generic formats are more of concepts of how 

streaming can be done and sets up limitations but have some freedom in how to 

implement them. The input streams typically come from a demodulator that has received 

some kind of broadcasting data e.g. DVB-S2, and demodulated it to e.g. TS, to be able 

to create a protocol that can take different formats an understanding of similarities and 

differences between t hem is needed. 

2.2.1  Generic Stream Encapsulation 

A Generic Stream Encapsulation (GSE) is a streaming format of packages. The packages 

have predefined length but different packets can have different length. Every GSE 

packet has minimum of 2 bytes header containing information about the packet and a 

GSE payload containing the data that is to be sent. The two first bits of the header tell if 

the start and /or the end of the data in the GSE payload are present in this packet. Next 

two bits tell if any extra header data is added. The last part of the mandatory GSE header 

has a 12bit field for length of GSE packet (=length GSE header + GSE payload). Frag 

ID is added if not both the start and end bits are set to one and is used to identify all 

packets that have been fragmented from one source. If the start bit is one but not end bit 

a Total length field is added that tells the length until the end part of the fragments. The 

GSE packet is limited to a maximum of 4096 bytes but supports fragmentation of the 

data that is sent, meaning the data can be spread out between different GSE packets. In 

Figure 2 two unfragmented data packets are received and then on that needs to be 

fragmented. With the fragmentation a data block of maximum of 65 536 bytes is 

supported.[5] 
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Figure 3 - Encapsulation of data in GSE packets 

2.2.2  Generic Continuous Stream 

A Generic Continuous Stream (GCS) is use to define a constant stream of data or 

something that sends more than 64 Kbits in a single packet. Because it is continuous it 

does not have a need for a beginning or a header.  GCS will need to be split into limited 

sized packets to be sent to work like the other formats. Using any of the DVB standards 

this will be done by fragmenting the stream to packets that can be sent. [3] 

2.2.3  Generic Fixed-length Packetized Stream 

Generic Fixed-length Packetized Stream (GFPS) is a concept of streams that have a 

predefined length that is the same for all packages. But in DVB-T2 and DVB-C2 it is 

mostly used for compatibility with older standards and GSE is expected to be used 

instead.[3] 

2.2.4  Transport Stream  

Transport Stream (TS) is a special case of a GFPS as it has a fixed packet size its own 

version of header. It has a total length of 188 bytes of which 184 bytes are used for the 

payload and 4 bytes for the header. Figure 4 shows the layout of the header for TS.  
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Figure 4 - TS header 

The parts mostly important for this work are: 

 The Sync bytes are 0x47 and are used for detecting the beginning of a packet.  

 Payload unit start indicator (PUSI) is an indicator used when data is fragmented 

between more then on TS packet and tells if this is the beginning of the 

fragmented data or not. 

 PID (Packet Identifier) tells what kind of data is in the packet up to the user to 

assign codes. 

 Continuity counter (CC) is used for TS packets that have the same PID to see if 

any packet is missing. It is incremented by one for each packet of same PID.[6] 

 

PUSI, PID and CC are used to get functionality for sending fragmented payloads. PID 

tells what data is in the payload and all fragments need to have same PID. PUSI tells 

what the first part of the fragment is. One can use PID to find all packets from a 

fragment and PUSI to find the first of them then use CC to find the order between the 

packets. All packets from a fragment have a CC value one more than the previous 

packet. But in case CC is on its last number the next CC is zero. 

2.3  Jitter 

Jitter is a phenomena that occurs when different messages gets different delays 

compared to each other. According to [7] a de-jitter buffer is a good solution to get rid of 

jitter. The buffer is supposed to detect spikes and increase the buffer size during them 

and then go back to a normal run state wear it buffer a time dependent on previous 

buffer time and the delay of the current data. In its normal state the total delay is 

calculated by Eq. 1𝑑𝑖 = 0,125 × 𝑛𝑖 + 0,875 × 𝑑𝑖−1. To get the time for the data in 

the de-jitter buffer it is just to take total time in system minus time in system before de-
jitter buffer. This formula will give a buffer time that slowly depends on other delays in 

the system but will be to slow to solve bursts of data. 
 

    8b         1  1  1            13b      2b   2b    4b 

Sync  PUSI          PID                        AFC  

 

 

 

 

 

                     TEI      TP                TSC            CC 
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di=total time in system (delay) 
ni=time in system before de-jitter buffer(delay-de-jitter buffer) 
 

𝑑𝑖 = 0,125 × 𝑛𝑖 + 0,875 × 𝑑𝑖−1 

Eq. 1 

2.4  Layer model 

A layer model is the OSI layer model contain seven layers that is used in TCP/IP 

communication. Each layer has a peer that it communicates with. The peer is on the 

same level in the layer and is expected to receive the same data sequence like the peer 

sent including header. [8] 
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3  
Method 

3.1  Introduction 

To be able to make an effective protocol a plan of how to make it is needed. The design 

of the protocol and the implementation differs a lot resulting in that it is best to use 

different methods for solving each of them. The protocol is general purpose and need to 

be easy adaptable but the implementation on the other hand is for a single purpose only 

and do not need that flexibility. 

3.2  Protocol 

The problem is analysed by breaking it up to smaller parts and each part is addressed 

separately. From the parts, requirements and design parameters are found and used to get 

a better understanding of the problem and a foundation of the solution. To solve the 

requirements of the parts, other protocols are analysed and key components from them 

are extracted. The key components are then investigated and evaluated to find the 
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needed components for the protocol. Then the components are modified to work for the 

protocol and then put in to the protocol designee. 

3.3  FPGA Implementation 

Implementation will be done by the layer method resulting in layers will be implemented 

from the top to bottom. This is because a layer is supposed to be independent of the 

other layers and functionality will be able to be tested without the lower layers. The code 

will be written in VHDL and synthesized for use in a Xilinx Spartan 6 FPGA. Each layer 

will have two sides on input and one output side. Using VHDL will result in that the 

code will be divided into blocks. A top level of implementation will be made that 

connects the different layers and contains blocks containing one side of a layer in each 

block. 
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4  
Design 

4.1  Introduction 

The design process contains of two parts: a protocol design and an FPGA 

implementation. The protocol design is about making a general protocol for sending the 

data through a limited interface and recreating the data on the receiver side.  

The implementation part aims to make a prototype in VHDL code for a single 

application. It uses the resulting protocol from the protocol design to define its 

functionality. To try to make a general system all of the design is done using a layer 

method containing three layers, an encapsulation layer, a data link layer and a physical 

layer shown in Figure 5. Each layer is implemented separately and tested without any 

other layers.  Finally all layers are merged and tested together. 
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Figure 5 - Layer overview 

4.2  Protocol design 

The protocol design will contain methods for calculating design parameters and will take 

discuss process of designing a protocol for how to mux data together and what is needed 

to send and receive it. The protocol is expected to be general and easy to adapt for 

different use cases. It is important to be able to adapt the protocol to different design 

parameters without needing to make a new protocol. 

4.2.1  Design parameters 

To be able to make a protocol a way of describing the application is needed. This done 

by using design parameters. 

System delay is the time it takes for data to get from the input to the output. It will be 

calculated as the time from the last bit of a packet is received to the last bit of that packet 

is sent. A motivation to choose the last bit and not first is in case of fragmentation when 

it can happen that the first part gets in one early fragment and the last part arrives much 

later. System delay is used for being able to calculate the systems impact on timing at the 

output and be able to counter it. 

System jitter is a measurement of the difference in delay. It is channel limited and will 

be calculated in the following way. Maximum delay in the channel subtracted with the 
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minimum delay in the same channel gives the jitter in that channel. A more refined 

version of the system delay for correcting the timing on the output. 

Throughput is the speed of the system. The amounts of data that can pass through in a 

set time. It is limited to the slowest transfer link in the system but will be define as the 

amount of bits out from the system during the time it takes to send one packet. Average 

throughput will need to be equal or greater than the average total of the inputs bit rates 

for the system to possible work. Thro put is needed for guaranteeing that the system can 

send all data and that it will not fill up its buffers. 

In-Jitter is how much jitter exists in the input and can results in bursts of data. The bit 

rates of the inputs are constant during long time but in shorter instances the in-jitter can 

increase them. In-Jitter is used for determine how large buffers are needed and how well 

the system operates in the worst case. 

Channels are how many sources of inputs that exist. 

In bit rate specified for every input channel and is the average bit rate over that channel. 

Minimum message size is the smallest allowed message to be sent that guarantees that 

the throw put is not too low. Minimum message size is needed for determine throw put 

and deciding on fragmentation. 

Transmission speed is the internal speed of the system. It is the slowest connection 

inside the system where the message need to pass.  

4.2.2  Priority between input buffers 

What buffer that is allowed to send and when might have an impact on the overall 

performance of the system and will be relevant for calculations of buffer size and system 

delay. To evaluate what method that gives the most decidable result, one solution is 

simulating different priority orders. A simulation made in Matlab to evaluate different 

priority orders is made. 

 Three different priority orders have been chosen to be simulated. One priority order that 

always takes the most prioritized channel if it has anything to send if not the second 

most and going through all channels until it finds anything to send. Round Robin that 

lets the first channel one send one packet then channel two going through all channels 

and then restarts at the first again. Lastly Largest buffer first that sends the channel that 

has the largest input buffer first. 

To generate the input for the simulation a randomizing algorithm is used. It creates 

bursts of data that are supposed to simulate packets and all have an end bit. No input 

data is generated in the end part of the simulation to give it time to analyse all data and 
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not need to cut away some last data. It is supposed to try to generate more data than the 

system can handle in a single instance to force the system to select what data to send and 

have different options. Furthermore, is simulates a busty behaviour of the input sources 

coming from that BB-frames use bigger packets that can contain more than one packet 

after the demodulation and then arrive directly after each other forming a short duration 

over which much data arrive. 

During the simulation the random generated data are put in input buffers of arbitrary size 

that always can store the input. If an end of packet indicator is received it is given a time 

stamp for calculating the delay. Then the priority algorithm is deciding what buffer is 

allowed to send and that buffer sends data. When an end of packet indicator is sent, it is 

counted as being done and the delay is calculated from the time stamp to current time 

and stored. From the delays from each packet it is possible to get the maximum delay of 

the system for this input sequence and how much system jitter it has.  

4.2.3  Content of the header 

The goal is to minimise the size of the header. This can be done in two ways minimising 

the size of each field in the header and minimise the amount of fields. The header fields 

size will be pre-determined to be able to solve general requirements on the system. For a 

specific application a different size might be better but in general the resulting field size 

will be the best. 

Receiver address or identification is needed. This is to be able to send it out on right 

output port. The size of the channel field limits how many channels are supported and 

will be chosen accordingly. It needs to be able to contain the design parameter channels. 

Size of payload is just needed if different payloads have different size and have to large 

enough so that it can describe the numbers of bytes in the largest payload. 

Time in buffer is useful if a system that compensates for system jitter is to be 

implemented and needs to be large enough to describe the maximum possible delay to 

address. The time resolution is based on the maximum possible that will be based on the 

clock and how much system jitter is allowed. More jitter means lower resolution needed. 

Time in buffer describes system jitter. 

Fragmentation support is done in most input formats. Important parts of its 

implementation can be found in section 4.2.5 . The need of it is dependent if packets can 

arrive in wrong order, if jitter exists and if an input packet can have delays inside it. If 

input throughput is lower than output throughput fragments can have gaps between 
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them. Because the start of packet is used like a flag on the input it is needed on the 

output so that the start of fragment bit is useful.  

Start of packet indicator is a way of solving if a single packet can be split up in two or 

more different fragments. If more than one packet is to be sent in a single frame a way of 

distinguish them is needed. This can be done by having a pointer to every start of a 

packet or by knowing how big the packet is.  

4.2.4  Multiple messages in one packet 

To send more than one message in a single packet is possible and have a positive effect 

on throughput. Nevertheless, the header will need more information to be able to 

distinguish the start of every message it includes and a way to send the delay of every 

message.  

Table 1 - Comparison multiple to single messages 

 Multiple message Single message 

Channels One block One block 

Start of message For every message a block One bit 

Delay For every message a block One block 

Size of payload One block One block 

Number of message One block No data 

Number of headers One header  Number of message 

Table 1 shows the difference in total header size. Number of message is used for limiting 

the amounts of fields for delay and start of message when not all are used. 

4.2.5  Fragmentation of large input messages 

In mostly of the in formats studied fragmentation is supported in different ways. 

Fragmentation is the concept of dividing a packet into multiple smaller packets.  GSE 

tells if start or end of fragmented data is present in a packet and gives all parts of the 

fragment a single ID to be able to tell different fragments apart.  In TS for comparison 

there is a start bit but no end bit, an ID and continuity counter to determent the order. 
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Another aspect is the BB-frames ability to contain more than one frame and is addressed 

in 4.2.4 . 

Pros and cons: 

There are two main ways for solving fragmentation. Fragments that have a fixed size 

similar to TS packets and fragments with dynamic size for example GSE. Fragments 

with fixed size performs best for known input data where their size can be adapted to the 

data. If unknown in data is coming it is better to have dynamic size to be able to adapt to 

small and large inputs. If dynamic frame size is used the header will need to describe its 

size to let the receiver know how much data to collect. A bigger header will have a 

negative impact on the systems throughput but because of the dynamic size it is better to 

have larger packets that gives higher throughput. 

The size of the fragments will have an impact on large parts of the system. If a large 

fragment size is used the delay in the system will be larger and larger buffers will be 

 

 needed. This is because it will take more time to send a fragment and the next fragment 

to send will have to wait longer. 

The throughput on the other hand is better the higher fragment size because it is 

dependent on fragment size compared to header size, see Figure 6, and increasing 

fragment size have a weary low impact on the header size. Nevertheless, variable 

fragment size gives the possibility that just small amounts of data will be sent in a packet 

and giving a bad throughput. A way of avoiding this is to have a minimum fragment size 

to send if possible. The good thing is it gives a guarantee of a higher minimum 

throughput. But it can increase the delay because small amounts of data from a silent 

source never will be sent until more data arrives. 

 

 

Figure 6 - Comparison between fragmentation or not 
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Reasoning about pros and cons: 

Deciding to have the fragment size that gives the delay closest to the maximum allowed 

delay will give the best throughput. The throughput need to be greater than the sum of 

all average input bitrates if not the buffers will fill up and data will be lost. If limited 

memory is a constraint an allowed delay from the possible buffer size will need to be 

compared to the delay constraint and the worst of the two will be used to guarantee that 

both constraints are met. 

If max one message is allowed in a single fragment, fragment size bigger than max 

message size will never be used. Leading to small messages size giving low throughput 

and is needed to verify the possibility of getting throughput grater then average input 

rate of all channels together for the smallest fragment size.  

Choosing fragment size can be done by setting up the equations Eq.3 to Eq.7 and 

compare them. For throughput a minimum fragment size will be decided by looking for 

the point where throughput is equal to the input using the minimum message size.  

In the delay equation the limitation will be the maximum allowed delay giving a max 

fragment size. The maximum delay can come from a design constraint in delay or from a 

limitation in buffer size. The maximum fragment size will never need to be larger than 

maximum message size. If the maximum fragment size is lower than the minimum 

fragment size this makes the system not possible to implement with the current 

constraints. If message size is unknown the worst case is to be assumed. This leads to 

problems implementing the protocol for GSE that have unknown message size where 

max and min message size is far from each other.  

4.2.6  When to send message 

Because when a message is received and when it is sent in not synchronized, it is 

possible to have not received a full message when the channel is allowed to send. The 

decision the system will need to take is if it is better to send or wait. 

If sent there is no risk of a large delay because more than one fragment can be in the 

buffer next time it is allowed to send and it lowers the requirements on the buffer size 

for the same reason. The drawback is if just a small amount of data was present or a full 

message in a size smaller then maximum frame size was to be received a packet extra 

will be sent. This resulting in more header and lower throughput. If the size of the 

message is known it can be used to calculate if waiting is a good option or not. Known 

message size can be used to always use the minimum amount of fragments possible and 

giving an optimal throughput. 
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4.2.7  Buffer size  

In this application a big buffer size does not affect the system performance in a bad way 

but as a cost to have a large memory. To guarantee having enough buffer size a buffer 

size that can store the maximum allowed delay is enough.  

Max buffer size= allowed delay × input bit rate 

To calculate how much data can be present in the buffer is a more accurate way of 

determine buffer size. How much data needs to be stored in the buffer is dependent on 

the in jitter and the message size. In the worst case, throughput for the system is equal to 

the input rate of the system. If the jitter is zero, a constant input rate can be assumed. 

The output rate in average for a channel will be equal to its input rate giving a behaviour 

where a message will be sent before the next arrives. The buffer size will always be less 

than two messages. Figure 7 has a constant in rate of one and will send out data on even 

intervals if there is at least five in the buffer. The data out is when the system wants to 

send out data not when it does. The first data out is missed because not enough data in 

buffer to send leading to no decrease in buffer. 

If jitter is present it will result in bursts of data. The worst jitter is a period of maximum 

silence on the input follow by a burst and then average in rate. If the average in rate is 

equal to the out rate only the average rate will be handled and the burst will be stored in 

the buffer. This gives a needed buffer size less than max burst plus two messages. Figure 

8 has burst in data at time 1 then constant in rate. In reality, the burst will last a short 

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23

Data In

Data In Buffer

Data Out

Figure 7 - Used buffer during constant in bitrate 
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time and not be momentarily but approximating it in only one-time instance gives a 

possible worse scenario guaranteeing the system will not be under designed. 

 

4.2.8  System jitter 

Solving system jitter by using a de-jitter buffer has a drawback on the systems delay. 

The de-jitter buffer will need to make all packets evenly delayed. The packet with the 

lowest delay will have same delay like the one with the highest. If this is achieved the 

system jitter of the system is zero. The maximum delay can be two things, a design 

limitation that is not allowed to be overstepped or the worst-case scenario possible of 

inputs compared to the throw put. In any of the cases a maximum delay is given and the 

de-jitter buffer can be sized accordingly. One limitation is how good the system is on 

calculating the delay and in what precision it sends it to the de-jitter buffer. It will not be 

able to be better than the clock rate and because of that, the minimum jitter is the clock 

rate and will be seen like zero for computations. 

The main reason for not have a dynamic delay is that the max delay is a fixed value for 

the system. Using it leads to less system jitter than adapting the time in the de-jitter 
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buffer and makes the system more robust to bursts of in-jitter. This because it is always 

ready for the maximum jitter it can solve. 

4.2.9  In-Jitter 

The in-jitter will be the limitations in buffer size and when it bursts, the buffers will be 

filed up and delays will be high. In-Jitter is the maximum allowed relative delay from a 

stream of packets evenly delayed. The worst scenario is data is coming in the normal bit 

rate and then maximum jitter. This will give a burst of data. 

𝐵𝑢𝑟𝑠𝑡 = 𝑖𝑛 𝑗𝑖𝑡𝑡𝑒𝑟 × 𝑖𝑛 𝑏𝑖𝑡 𝑟𝑎𝑡𝑒 

Eq. 2 

The burst can be seen like extra data in the buffer compared to a system running on 

average input. Table 2 is an example with blue data arriving and burst calculated using 

Eq. 2. 

Table 2 - Amount of burst from jitter 

normal 1  2  3  4  5  6  7  8  9  10  11  12 

Jittered 
signal 1  2  3 4 5 6 7 8 9 10 11  12         

Burst 0  0  0 1 1 2 2 3 3 4 4  4         

 

4.3  FPGA Implementation 

The first step of the implementation is to take the protocol from the protocol design and 

apply a requirements specification on it. This to make sure the system is possible to 

implement and to get the design parameters.  

4.3.1  Design parameters 

From the design specification throughput and fragment size will be decided. The goal 

will be to get the maximum number of input channels and still have enough throughput 

and keep the buffer size within the size of the memories. If memory is not a limited 
recourse, the buffer sizes will be dimensioned by input jitter. 
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4.3.2  Encapsulation layer 

Two parts like in Figure 9 need to be implemented, an in part that takes the input data 

and store it in a buffer and sends it to the system when the system is ready. The second 

part is the out part that solves the jitter from the input and reconstructs all signals to 

make an identical output like the input. 

The input needs a buffer that can store the input data and compensate for bursts. For 

large jitter it will be large and because of that block RAMs will be used for it. It will be a 

circular buffer that pushes in data and pops it out operating like a FIFO. 

Time stamps for when a message is received will be stored in a separate register that will 

be able to hold one time stamp for every possible message in the buffer. Time stamps 

will be stored when an end of packet signal is received that can be generated from start 

of packet and knowing the size of the packet.  

A control block will be deciding on when to send and if delay or data is to be sent. Delay 

will be calculated from the time when it is to be sent minus the time stamp plus the time 

it takes to send one message. 

On the output side a block will analyse the in stream and extract the header to be able to 

get the delay and message length. It will also remove the header from the data stream 

and make a new valid that is only when data is sent. 

A buffer in same size like in the input will be needed. It will work in much same way 

like the in buffer but its goal is to compensate for system jitter made by the system. 

The delay of a packet will be used to calculate a time stamp when to send out the data 

from the packet. The time stamp will be set according to the de-jitter buffer design to 

make all data equally delayed. 

Buffer
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Buffer

Time 
Stamp

Control

Control

In part Out part

 

Figure 9 – Encapsulation layer layout 
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4.3.3  Data link layer 

Like in the Encapsulation layer the data link layer have an input side and an output side. 

The data link layer will multiplex the streams from the encapsulation layer together to a 

single connection and on the outside back up to multiple connections. It will allow have 

logic for deciding what buffer to receive and send data to. 

The main part of the data link layer is a multiplexer. It will be in the size of the amount 

of supported channels and will need a control block to decide what channel to send. 

The control block in the input side will be a priority protocol decided from 4.2.2 . It will 

give the different in channels priority and they will respond with a done when they have 

set data or if they have no data to send. 

On the output side, the control block needs to read the header to be able to get to which 

channel to send the data packet it receives. 

4.3.4  Physical layer 

The physical layer is the interface between the input side and the output side. It will be 

specified in the design specification and is a hard ware based part of the system.  

4.3.5  Testing the implementation 

To be able to validate the system, tests need to be designed. Because VHDL is based on 

blocks each block can be tested before they are combined. Blocks are to be designed 

resulting in the need to do small fast tests. This can be done using a simulator and 

writing a script that makes inputs that gives known outputs.  

To test the systems overall performance a test bench is needed. To make input signals a 

file containing a TS stream can be used and read by the test bench. If the test bench 

writes down the output of the system in file, the two files can be compared and if same 

the system worked correctly. Some more aspects to simulate are bursts and calculating 

the delay between different packages. Bursts can be generated by reading the in file in 

bursts. The delay is easiest found by comparing Start of Packet (SoP) from the input to 

the output in a simulator. The important part of the SoP is that the difference between 

input SoP and output SoP for the same data then comparing this difference between 

different packets. 
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5  
Results 

5.1  Introduction 

A protocol for sending data is produced that encapsulates the data with header 

containing metadata. With the help of the header, the receiving side is able to recreate 

the signals from input side. The FPGA implementation validates the functionality of the 

protocol by showing during simulations that the input is equal to the output. 

5.2  Protocol design 

The protocol design is using the components from the method and evaluate them to 

decide if needed and how to best make use of them. Following is the results from the 

evaluation of the components. 

Using a layer model encapsulation and jitter is solved in the encapsulation layer and 

handling that there is more the one channel is done in the data link layer. 
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Data and a start of packet is received and stored until it is ready to be sent. There are 

multiple input channels and a Round Robin algorithm decides what one that is allowed 

to send. A maximum fragment size is needed to be decided by the on implementing the 

protocol and the fragment size decides if fragmentation will be used or not and if enough 

data is received to be ready to send. When the system sends a message it is not allowed 

to contain data from more than on packet and if it contains the first part of the packet it 

will be indicated in the header. The header will contain how much data it has and an 

address to what output it is supposed to be sent on. To be able to eliminate relative delay 

the protocol will make a time stamp every time end of a packet is received. From the 

time stamp it will calculate the delay time from when the packet is received until it is 

sent. This information is also put in the header. When a channel is allowed to send it will 

send if it is ready to send. If it sends it sends a message containing a header followed by 

data. On the receiving side, the header is decoded and the ID decides to what channel the 

message will go to. Then the receiver takes the delay from the message and calculates a 

new timestamp based on the buffer size divided by the transmission speed and the 

received delay. This timestamp is stored and when the time is equal to the timestamp the 

data related to the timestamp is sent. 

 

5.2.1  Priority between input buffers 

In Appendix B, simulation data from the simulations of different priority orders are 

presented. It shows that round robin has the lowest maximum delay. Priority is worst 

mainly because it does not prioritize the worst scenario. Largest buffer first tries to keep 

all buffer sizes the same size but not trying to send the last part of a packet. Lowest 

maximum delay and a balanced behaviour make round robin the best priority order and 

it will be used in the system. 

5.2.2  Multiple messages in one packet 

To get an approximation of how the overhead changes depending on number if messages 

all addresses are assumed to be one byte long. The size is calculated of Table 3 using 

Table 1. 
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Table 3 - Size comparison between single and multiple messages 

Number of messages Multiple message header size Single message header size 

1 5 bytes 3bytes + 1bits 

2 7 bytes 6 bytes + 2bits 

3 9 bytes 9 bytes + 3bits 

4 11 bytes 12 bytes + 4bits 

5 13 bytes 15 bytes + 5bits 

This shows that multiple message is better to use if many message fit in a frame and 

there are many of them ready to send. But if the messages are bigger or there are not that 

many messages ready to be sent single message will perform better. To get a low delay 

the best would be to just send one message every time and do it that often that newer are 

any messages waiting. This idea will be the goal in the protocol. 

 

5.2.3  When to send message 

Message size known gives the opportunity to try to optimise throughput. All messages 

will be sent in the minimum possible fragments determined by the max and min 

fragment size. If a message is smaller than max fragment size it will only be sent when 

all of it is received. If it is larger it can be sent when at least message size minus an 

integer number of max fragments are received. The integer is the largest value that still 

returns a positive number. 

5.2.4  Content of the header 

From the decision to send only single messages the complexity of the header is reduced 

and for different fields is needed in the header. The size of them needs to be working for 

general solutions because the header in not intended to be changed. 

Channels are how many channels are possible to have on the input depending on 

applications this can vary from some few to hundreds. Setting the field to 1 byte gives 

the possibility to have 256 channels. 



 

29 
 

Start of msg is just one bit that tells if the fist bit in the data is the first in a message. 

Used for be able to send start of packet on the output. 

Size of payload is the size of the header + the payload that is sent. 13 bits gives the 

possibility to have fragment size bigger than the maximum size of a GSE packet. 

Delay is the time in the input buffer and need to be able to give the maximum delay 

from it. 

18 bits gives a possibility for delay of 262144 time units. If the clock rate is 100 MHz 

and one time unit is one clock pulse, it is a maximum delay of approximately 0.26s. 

This sums up in a header of 5 bytes in total that looks like Figure 10. 

Figure 10 - Header field layout 

 

Revaluating if multiple or single message is to be used using the decided header values 

is given in Table 4. The decided header is put into Table 1. 

The number of messages supported is assumed 256 for multiple messages. 

Table 4 - Size of multiple and single messages using header 

Number of messages Multiple message header Single message header 

1 60 bits 40 bits 

2 91 bits 80 bits 

3 122 bits 120 bits 

4 153 bits 160 bits 

5 184 bits 200 bits 

The advantage of single message is improved.  

 

5.2.5  Fragmentation of large input messages 

 

There are two problems that have impact on fragmentation, throughput and delay. 
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Throughput needs to be good enough for the system to work. That means the throughput 

need to be equal or greater than the average input rate. Three parameters are needed to 

decide the throughput and they are header size, transition speed and fragment size. 

Header size is already determined. Transmission speed is a hardware parameter from the 

environment of the system and it is the lowest speed inside the system. Fragment size is 

not predetermined. To be able to guarantee that the throughput is enough minimum 

fragment size will be used to get the lowest throughput. The minimum fragment size is 

the smallest message size because only one message is sent in single packet.  

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 throughput =
𝑚𝑖𝑛 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒

𝑚𝑖𝑛 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 + ℎ𝑒𝑎𝑑𝑒𝑟 𝑠𝑖𝑧𝑒
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 

Eq. 3 

If fragmentation is used it can lower the throughput by sending a message in two or 

more fragments to not get these fragments smaller than min fragment size the max 

fragment size need to be two times the min fragment size. It is also possible to achieve 

by having max fragment size greater or equal to the max message size because no 

fragments will be needed. 

The second constraint on fragment size is delay or time in buffer. Delay gives a 

limitation in how big a fragment can be. Bigger fragments lead to greater delay. If all 

channels want to send a max fragment size packet it cannot take more than the 

maximum delay time. 

If fixed message size is used fragmentation will be done either always or never. It can be 

used to overcome restrictions in delay and buffer size but at significant cost in 

throughput because it will multiply the amount of header by amount of fragments a 

message is needed to be divided into. Optimal for throughput if the delay or buffers are 

not limited the fragment size is equal to the message size. 

 

5.2.6  Buffer size  

Buffer size can be used for two things, with known input jitter a minimum needed buffer 

can be determined or a limited buffer can give the systems toleration of in-jitter.  

𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 = 2 × 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 + 𝑏𝑢𝑟𝑠𝑡 

Eq. 4 
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Fragment size in this case is the fragment size from fixed message size input and is the 

only fragment size possible for the system. If not one single fragment size is possible to 

obtain this formula might not work. Burst is equal to the in-jitter times the channels 

input rate. 

To get the jitter toleration of the system in-jitter is broken out of Eq. 4 giving Eq. 5. 

𝐼𝑛– 𝑗𝑖𝑡𝑡𝑒𝑟 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 − 2 × 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒

𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑡𝑒
 

Eq. 5 

5.2.7  System jitter 

System jitter or out jitter is the jitter the system makes and it is not the same as in-jitter. 

To address jitter a de-jitter buffer is placed in the end of the system delaying messages to 

a constant system delay. The size of the de-jitter buffer needs to be the same as the in 

buffer because it will compensate for the in buffers maximum delay. The time in the de-

jitter buffer is calculated from max delay in the input buffer.  

𝑀𝑎𝑥 𝑖𝑛𝑝𝑢𝑡 𝑑𝑒𝑙𝑎𝑦 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒

throughput
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

 

Eq. 6 

To make the delay always being max input delay the time in de-jitter buffer plus time in 

in-buffer needs to be equal to max input delay. Meaning max input delay is same like 

system delay. 

𝑇𝑖𝑚𝑒 𝑖𝑛 𝑑𝑒– 𝑗𝑖𝑡𝑡𝑒𝑟 𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑀𝑎𝑥 𝑖𝑛𝑝𝑢𝑡 𝑑𝑒𝑙𝑎𝑦 − 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑖𝑛– 𝑏𝑢𝑓𝑓𝑒𝑟 

Eq. 7 

5.3  FPGA Implementation 

The implementation did never got put in a FPGA only simulated using a test bench that 
just had one in channel. The functionality of the simulation did receive some error 

during buffer wraparounds making the system only stable for short amounts of time 

before data lost started toappear. Nevertheless, during the time it worked approximately 
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12 ms of simulation the results out of the system were exactly as expected. In both 

aspect of delay, data was delayed right time for the system to only make a constant delay 

and the data that got out was put in a file and was validated that every bit was the same 

like in the input file. 

The implementation was made using the full protocol and the implementation of it is 

described below. 

5.3.1  Design parameters 

To be able to determine design parameters the system requirements from appendix A is 

used. 

The first design parameter to calculate is throughput using Eq. 3. Deciding on not using 

fragmentation to maximise the throughput. 

188 𝐵

188 𝐵 + 5 𝐵
× 200 𝑀𝑏𝑝𝑠 = 194,81 𝑀𝑏𝑝𝑠 

Eq. 8 

From the throughput gained in Eq. 8 a limitation in possible number of input channels 

are gained by dividing by the input rate on one channel 

194,81 𝑀𝑏𝑝𝑠

32,28 𝑀𝑏𝑝𝑠
= 6,0327 ≈ 6 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

Eq. 9 

Using 6 channels given from Eq. 9 a need of 6 input buffers and 6 de-jitter buffers are 

needed. This gives a total of 12 buffers. There is a bit more than 250 memories able to 

use according to the design specification. To not divide memories between different 

buffers, 252 memories will be for the buffers. 

252

12
= 21 𝑚𝑒𝑚𝑜𝑟𝑖𝑒𝑠 

Eq. 10 

Twenty-one 1kB memories give 21kB buffer size. Using Eq. 5 to get the tolerance of in-

jitter for the system gives the following: 

𝐼𝑛– 𝑗𝑖𝑡𝑡𝑒𝑟 =
21𝑘𝐵 − 2 × 188𝐵

32,28𝑀𝑏𝑝𝑠
= 5111 µ𝑠 ≈ 5𝑚𝑠 

Eq. 11 

Eq. 11 gives a maximum in-jitter on 5ms using the current buffer size. Not meeting the 

requirements in Appendix A  
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5.3.2  Top level 

The top layer is the combination of all layers and describes the connections between the 

layers. Figure 5 hows a system with three in channels. It has multiple buffers where each 

of them works the same but have different channel number. Implemented in VHDL the 

top level looks the same except more well-defined connections.  

5.3.3  Encapsulation layer 

In the encapsulation layer, there are two kinds of components in buffers and out buffers. 

Figure 11 shows an in buffer and Figure 12 shows an out buffer. 

In the in buffer, both the buffer and time stamps blocks are buffers working as FIFO 

registers. The first data to get in will be the first to get out. Buffer stores the input data 

and sends it out when the control block tell it. Time stamps stores the time when end of 

packet (EoP) is received. The time stamp is then sent to make header that calculates the 

time from the current time to when the data was received. When make header is asked to 

send a heeder it combines all needed information to make a header and then sends it. 

The control is responsible for first sending header then directly followed by the 

corresponding data and when that is done tell the layer below that it is sent. Header and 

data out is sent on the same channel. 

Buffer
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Time Stamps

EOPTime

Control

Make 
Header

Time

Time Stamp
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MSG Size

Send header

Header Out

Send data

Data OutPriority Done
 

Figure 11 - Input side of encapsulation layer 
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Table 5 – Signals in Figure 11 

Signal Properties 

Time Gives the current time of the system 

EoP One when last bit of a packet is received on data in 

Time Stamp A stored time from the time stamp buffer 

Channel A ID for what channel that is to receive the data 

MSG Size How much data a packet contains 

Valid in Tells if data on data in is valid to read or not 

Data in Data that is to be sent by the system 

Send header Control signal that the system is supposed to  send a header 

Send data Control signal that the system is supposed to  send data 

Priority Tells when the system is allowed to send 

Done System tells lower layer when it have sent or if it do not have anything 

to send. 

Header out Sends its header on this channel 

Data out Sends out its data on this channel 

 

The out buffer gets a header followed by data. “Get header” is a block that sorts out all 

the components in the header and data. The data is stored in buffer that is a FIFO register 

like in the in buffer. The delay that is received is used to calculate a time stamp when the 

message is supposed to be sent and placed in the SoP buffer. The timestamp is the 

current time plus max delay minus the delay from the header. When this time is reach, 

SoP is sent and the control will send the corresponding data from the buffer. 
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Figure 12 - Output side of encapsulation layer 
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Table 6 - Signals in Figure 12 

Signal Properties 

Time Gives the current time of the system 

SoP Tells when first bite is sent out 

Delay The delay taken from the header field delay 

MSG Size How big the message is taken from header 

Valid in When to read data in 

Data in The data from lower layer encapsulated 

Valid data When data and not header is received 

Data Same like Data in but delayed to sync with Valid data 

Send Control signal to when to send data 

Valid Out When o read out data 

Data Out The data out of the system same like data in on the receiver side 

 

5.3.4  Data link layer 

The in and out multiplexers will work the same except opposite directions and different 

control blocks. It will multiplex data and valid from same source at a time.  

The inside multiplexer will have a control block that have a round robin in it and gives 

priority to the different buffers then waiting on the buffers to be done. While a buffer has 

priority, it will be the selected one in the multiplexer. 

On the outside, the control block will read the header and get what channel the data is to 

be sent to. Then select that channel until next header arrives and the channel in that 

header is selected. 
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Priority

Priority Done

Get Channel

In side MUX

Out side deMUX

Data in

Data in

Data out

Data out

 

Figure 13 – Data link layer on both in and out side 

5.3.5  Physical layer 

Because the expected hardware does not exist, another chip did become the platform to 

implement the code on. That hardware has only one FPGA and because of that, no 

physical connection is needed resulting in the physical layer is just a connection between 

the multiplexers. 

5.3.6  Simulation results 

Figure 14 shows to the left the beginning of the input file, note that a TS packet is 188 

bytes and one line has 188 bytes represented on it but the later part is cut away to be able 

to show mote then on TS packet. All data in every packet is the same except the header 

in this data. To the left in Figure 14 is the outputs file from after running the simulation 

and it is identical to the input showing that received data is equal to send data.  

Figure 15 is a picture from the simulator showing the outputs and inputs of the system. 

Valid in is in short burst because the in bit rate in is 400 Mbps and to get the average bit 

rate right it cannot send that often. In data, in and out, numbers are written but the actual 
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data is sent in short bursts between them that can be seen in Figure 16. It shows the 

header and data that can be seen in the file at line five with data “b4”. 

 

Figure 14 - Input and output data files 

 

Figure 15 - Simulation serial interface 
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Figure 16 - Zoomed in simulation serial interface 
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6  
Discussion 

6.1  Method 

Discussing design flaws in the method and how to improve the designee for future 

studies. 

6.1.1  Protocol 

The decision of what priority procedure to use is a weak point. More procedures that are 

different had been good to examine and verifying which one was the best. However, 

what priority procedure to use was not the main part of the design of the protocol. The 

impact of the priority procedure did affect the design of later parts and only changing it 

might have bad consequences for the reliability of the system. If the priority procedure 

was to be changes buffer size and system jitter will be affected and needed to be re-

designed.  

One other weakness is the verification simulation of what is the best priority procedure. 

It only takes one sort of in arguments that looks like TS data if other formats was to be 

used a simulation that included different packer size would be desirable. 

Multiple messages only take in account if a part in the header is needed and how many 
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times the parts are needed, not the size of the parts. It might be possible to go deeper in 

optimising the size of the fields in the header for multiple messages. 

To be able to do better assumptions about if to use fragmentation or not knowledge of 

how the input data actually looks had been useful. However, limitation in only knowing 

of applications using TS a general approach had to be taken. The advantage of this is 

that the protocol will be able to handle mostly formats but might not be optimized for 

how it will be used in reality. 

The way of using a de-jitter buffer in the same size like the in buffer is something that 

would be interesting to investigate if it ever is used to hundred percentage in a real 

application or if in reality a smaller buffer could be used. In theory, it is a good and easy 

assumption that the worst possible case exists but performance wise it might be better to 

look on a real system instead. 

From a replicability perspective will this method generate a protocol that solves the 

problem of a limited interface but will there be any differences? The procedure of 

declining the header does not fully define how big the different fields will be and thus 

give a possibility for variations. If more knowledge of a specific application is known, it 

might change some designee decisions like if it is known that many small messages are 

to be sent it might be a good idea to have multiple message support. 

6.1.2  Implementation 

One thing that the design of the implementation is lacking is the problem of clocking, 

the whole idea derives from the idea that all clocks are the same. However, in reality the 

in clock might not be the same like the system clock.  

A full system test including in-jitter from a real system was missing the data was true but 

how the in-jitter behaved was just a guess. The part that lacked a bit of testing because 

of this was the delay of the output buffer. Meaning the functionality of sending data and 

receiving it would not change but the delays in the buffers and how the de-jitter buffer 

would have to compensate for it. The tests did include in-jitter but constant in-jitter 

meaning that only a few cases wear tested.  

The only measurement that was done was in simulations. Because the simulator gives an 

exact value the error is weary small but it is a closed and controlled system not a real 

system. 

6.2  Results 

The results are divided up into two parts the protocol and the implementation.  
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6.2.1  Protocol 

Main part of the protocol is to get the same output like the input. All the functionality of 

the protocol does achieve this both in that the relative delay is minimized and that is 

sends the data to the right output. Because this is achieved, the protocol is working and 

the designee is a success. Secondary is that good performance and support for all 

possible protocols. This is harder to validate but it has support for different protocols but 

might not give optimal performance. 

The goal was to make a general protocol that would work for any kind of input. But 

because the implementation was for TS it is hard to say how good it will work for other 

formats. The decision of using not multiple messages is an example of this, in GSE 

small packets are supported and if only packets of the smallest size was to be obtained 

the throughput would be low. Even using multiple messages would not make a good 

throughput but better meaning an alternative solution might be required. 

If comparing the protocol to formats discussed in the theory chapter the biggest 

difference is the system jitter support. Having a mandatory field in the header for delay 

is unique.  Other formats that not using a delay field might be to be able to have a 

smaller header or even implement multiple messages without much extra header for 

each packet. Another reason can be that the use other methods of removing jitter or 

ignoring it. If the jitter made by the protocol is used it might even help nullifying jitter 

from the transmission formats. This because DVB formats sends BB-frames containing 

multiple packets and making jitter by delaying the first more and the last least. In this 

protocol during bursts the first is delayed the least and the last the most. How wheel this 

work need to be evaluated if it is to be used but it is a possibility. 

6.2.2  FPGA implementation 

Even when the FPGA implementation is not stable for more than a short time it proves 

the functionality of the protocol designee by receiving same data on the output like the 

input and the relative delay is the same for all data. 

In Eq. 11 the fragment size is only a small part and is not that relevant in how much it 

affects the possible jitter. This meaning that the question of fragmentation or not is less 

important when the jitter is large. The delay of the system will be big when the jitter is 

large and evaluating if this is a good solution might be a good idea. 

6.3  Source criticism 

Because the project is done in an industrial environment it is mostly based of existing 
standards and not academic papers. The gain of this is that it is well suited to putting in a 

context of existing technology but it might limit the new value.  
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6.4  The work in a wider perspective 

Ethical affects are not present in a greater degree but environmental positive effect on 

that it can potentially reduce amount of products needed by increasing amount of inputs. 

The environmental effect is achieved by resulting in both reducing the need of resources 

for making products and reducing the power consumption by having fewer running at a 

time. 

With the application today no major impact on society is expected but it might be used 

in different location to reduce the amount of needed hardware that can make it more 

easily accessible. 
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7  
Conclusions 

 

7.1  Problem statements 

 How is it possible to mux together TS (transport streams) from multiple 

channels to one single channel send the TS by a serial interface and then demux 

theme back to their original state again? 

 

It is possible by having a protocol that have knowledge about important details and relay 

them to the receiver by using a header. The receiver then uses the information and 

recreates the signals.  

 

 Is it possible to take the solution for TS and apply it for other formats like GS 

and if not how to make it possible?  

 

Yes it is possible but the performance might not be optimal. Limited knowledge in how 

GS is used makes it hard to know what to expect, excepting extremes and using a 

protocol made for TS then is a limitation. The protocol is not only designed for TS, it 

has some extra functionality to be able to support different GS formats. A purely TS 

designed protocol would not work for GS but a general attitude was taken during the 
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protocol designee. 

 

 What design parameters are important and how do they impact the protocol? 

 

Se 4.2.1 , worth noting is that some are calculated like throw put and some are needed 

from a designee specification describing the physical application. 

7.2  Results 

The results of the protocol designee are what was expected a protocol that solves the 

specified problem. The implementation did not reach its intended state of being 

implemented in a physical FPGA. One reason for this was limited knowledge in how to 

implement a system in VHDL. Implementing a VHDL system differs from normal 

programing and to be able to use features of VHDL one need to think more in hard ware 

and clocking then normal programing. It took some time to get used to it and that 

resulting in problems in the first parts of the code. Limited time lead to not enough time 

to go back and fix the problems this caused. Resulting in a not stable implementation 

and because of this the decision not to put it in a FPGA was taken. 
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Appendix A 
Requirements specification 

 Each input channel has an average bit rate on 32.28 Mbps 

 In-jitter 20 ms 

 Internal transmission speed in the physical layer 200 Mbps 

 System have demodulators and serial to parallel interfaces for 
the inputs 

o 8 bits parallel data channel 
o Valid bit 
o Clk 50MHz 
o SoP 

 Buffer is limited to approximately 250 8kbits block RAMs 

 In data format will be TS 
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Appendix B 
Priority simulation results 

Plots from the mat lab simulation of priority order. Three channels in different colour 

and data have different values in them. In channel 1 data have the value one and the end 

of packet bit is two. Channel 2 has three and four and channel 3 has five and six. The 

purple circles indicate when a specific data value is sent out. The small offset in the 

purple circles are only graphical. The Y-axis is what data is sent or received the X-axis is 

time units. 
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Round robin 

 
 
 
 
 
 
Largest buffer first  
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Priority order 

 
 
 
 
 
 
 
 
 
 
 
  

 Max delay 

Round robin  619 

Largest buffer first 688 

Priority order 812 
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