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Abstract

Color has been widely used in content-based image retrieval (CBIR) applica-
tions. In such applications the color properties of an image are usually charac-
terized by the probability distribution of the colors in the image. A distance
measure is then used to measure the (dis-)similarity between images based on
the descriptions of their color distributions in order to quickly find relevant
images. The development and investigation of statistical methods for robust
representations of such distributions, the construction of distance measures
between them and their applications in efficient retrieval, browsing, and struc-
turing of very large image databases are the main contributions of the thesis.
In particular we have addressed the following problems in CBIR.

Firstly, different non-parametric density estimators are used to describe
color information for CBIR applications. Kernel-based methods using non-
orthogonal bases together with a Gram-Schmidt procedure and the applica-
tion of the Fourier transform are introduced and compared to previously used
histogram-based methods. Our experiments show that efficient use of kernel
density estimators improves the retrieval performance of CBIR. The practical
problem of how to choose an optimal smoothing parameter for such density
estimators as well as the selection of the histogram bin-width for CBIR appli-
cations are also discussed.

Distance measures between color distributions are then described in a differ-
ential geometry-based framework. This allows the incorporation of geometrical
features of the underlying color space into the distance measure between the
probability distributions. The general framework is illustrated with two ex-
amples: Normal distributions and linear representations of distributions. The
linear representation of color distributions is then used to derive new compact
descriptors for color-based image retrieval. These descriptors are based on the
combination of two ideas: Incorporating information from the structure of the
color space with information from images and application of projection methods
in the space of color distribution and the space of differences between neigh-
boring color distributions. In our experiments we used several image databases
containing more than 1,300,000 images. The experiments show that the method
developed in this thesis is very fast and that the retrieval performance achieved
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compares favorably with existing methods. A CBIR system has been developed
and is currently available at http://www.media.itn.liu.se/cse.

We also describe color invariant descriptors that can be used to retrieve
images of objects independent of geometrical factors and the illumination con-
ditions under which these images were taken. Both statistics- and physics-based
methods are proposed and examined. We investigated the interaction between
light and material using different physical models and applied the theory of
transformation groups to derive geometry color invariants. Using the proposed
framework, we are able to construct all independent invariants for a given phys-
ical model. The dichromatic reflection model and the Kubelka-Munk model are
used as examples for the framework.

The proposed color invariant descriptors are then applied to both CBIR,
color image segmentation, and color correction applications. In the last chap-
ter of the thesis we describe an industrial application where different color
correction methods are used to optimize the layout of a newspaper page.
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Ho6 Hoan Kiém, Lake of the Restored Sword, Ha noi, Viet Nam.

The cover page illustrates a three-dimensional RGB color histogram and a
snapshot of the color-based search engine developed in the thesis. The back-
ground picture is a side view of Hoan Kiém lake in the center of my hometown.
The name Hoan Kiém (Lake of the Restored Sword) originates from a legend.
When King Lé Lgi was taking a dragon-shaped boat on the lake after the vic-
tory over foreign invaders, the Golden Tortoise Genie came out of the water to
reclaim the sacred sword that had been given to him by the Dragon King to
save the homeland. Since then, the lake has been called the Restored Sword
Lake, or the Sword Lake for short. The Sword Lake is not only a beauty-spot,
but also a historical site representing the spiritual heart of the capital. The
tiny Tortoise Pagoda situating in the middle of the lake is often used as the
emblem of Ha noi. This is also the kilometer zero marker from which all the
roads in Viét Nam start.
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Chapter 1

INTRODUCTION

1.1 Motivation

Recent years have seen a rapid increase in the size of digital image collections to-
gether with the fast growth of the Internet. Digital images have found their way
into many application areas, including Geographical Information System, Of-
fice Automation, Medical Imaging, Computer Aided Design, Computer Aided
Manufacturing, Robotics. There are currently billions of web pages available on
the Internet using hundreds of millions (both still and moving) images (Notes,
2002). However, we cannot access or make use of the information in these huge
image collections unless they are organized so as to allow efficient browsing,
searching, and retrieval over all textual and image data.

The straightforward solution to managing image databases is to use existing
keyword or text-based techniques. Keywords are still a quite common technique
to provide information about the content of a given database, but to describe
the images to a satisfactory degree of concreteness and detail, very large and
sophisticated keyword systems are needed. Another serious drawback of this
approach is the need for well-trained personnel not only to annotate keywords
to each image (which may take up to several minutes for one single image,
and several years for a large image database) but also to retrieve images by se-
lecting good keywords. These manual annotations are highly time-consuming,
costly, and dependent on the subjectivity of human perception. That is, for
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the same image content, different (even well-trained) people may perceive the
visual content of the images differently. The perceptional subjectivity and the
annotation impreciseness may cause unrecoverable mismatches in later retrieval
processes. Furthermore, a keyword-based system is very hard to change after-
wards. Therefore, new approaches are needed to overcome these limitations.

Content-based image retrieval represents a promising and cutting-edge tech-
nology to address these needs. The fundamental idea of this approach is to
generate automatically image descriptions directly from the image content by
analyzing the content of the images. Such techniques are being developed by
many research groups and commercial companies around the world. Finan-
cially supported by the Swedish Foundation for Strategic Research (SSF), the
VISIT! (VISual Information Technology) program has been running one such
project in which we were involved.

Given a query image, a content-based image retrieval system retrieves im-
ages from the image database which are similar to the query image. In a typical
situation, all the images in the database are processed to extract the selected
features that represent the contents of the images. This is usually done auto-
matically once when the images are entered into the database. This process
assigns to each image a set of identifying descriptors which will be used by the
system later in the matching phase to retrieve relevant images. The descrip-
tors are stored in the database, ideally in a data structure that allows efficient
retrieval in the later phase.

Next a query is posted in the matching phase. Using the same procedures
that were applied to the image database the features for the query image are
extracted. Image retrieval is then performed by a matching engine, which com-
pares the features or the descriptors of the query image with those of the im-
ages in the database. The matching mechanism implements the retrieval model
adopted according to the selected metric, or similarity measure. The images
in the database are then ranked according to their similarity with the query
and the highest ranking images are retrieved. Efficiently describing the visual
information of images and measuring the similarity between images described
by such pre-computed features are the two important steps in content-based
image retrieval.

Recent efforts in the field have focused on several visual descriptors to de-
scribe images, such as color, texture, shape, and spatial information of which
color is the most widely used feature for indexing and retrieving images since
it is usually fast, relative robust to background, small distortions, and changes
of image size and orientation.

IDetailed information about our project, the VISIT (VISual Information Technology)
program, our sponsors, and partners can be found at the VISIT homepage, http://visit.
cb.uu.se.



1.2 Contributions of the Thesis

Everyone knows what color is, but the accurate description and specification
of color is quite another story. Color has always been a topic of great interest in
various branches of science. Despite this, many fundamental problems involv-
ing color, especially in human color perception where brain activities play an
important role, are still not fully understood. Low-level properties of human
color perception are, however, successfully modelled within the colorimetric
framework. In this framework, we see that statistical methods are powerful
tools for describing and analyzing such huge datasets of images. In the thesis
we describe in particular our research in the application of color-based fea-
tures for content-based image retrieval?. Other visual features such as texture
and shape, as well as other topics like multi-dimensional indexing techniques,
system design, query analysis, user interface, are beyond the scope of the thesis.

1.2 Contributions of the Thesis

The proposed techniques in this thesis can be classified as statistics-based meth-
ods to improve retrieval performance for color-based image retrieval (CBIR)
applications. Specifically, the following four problems are discussed in the the-
sis:

Estimating color distributions: In CBIR applications the color properties
of an image are characterized by the probability distribution of the colors
in the image. These probability distributions are very often approximated
by histograms (Rui et al., 1999; Schettini et al., 2001). Well-known prob-
lems with histogram-based methods are: the sensitivity of the histogram
to the placement of the bin edges, the discontinuity of the histogram as a
step function and its deficiency of using data in estimating the underlying
distributions compared to other estimators (Silverman, 1986; Scott, 1992;
Wand and Jones, 1995). These problems can be avoided by using other
methods such as kernel density estimators. However, our experiments
have shown that straightforward application of kernel density estimators
in CBIR provides unsatisfactory retrieval performance. Using good den-
sity estimators does not guarantee good retrieval performance (Tran and
Lenz, 2003a). This explains why there are few papers using kernel den-
sity estimators in CBIR?. To improve the retrieval performance of CBIR
applications, we propose two different kernel-based methods. These new

2The CBIR abbreviation is widely used for both ”content-based image retrieval” and
”color-based image retrieval” terms. To distinguish between them, we will state the meaning
before use the CBIR abbreviation.

3We found only one paper (Gevers, 2001) using kernel-based methods for reducing noise
in CBIR. However, the experiments described in the paper used a very small database of 500
images of several objects taken under different combinations of changing light sources and
camera view points.
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methods are based on the use of non-orthogonal bases together with a
Gram-Schmidt procedure and a method applying the Fourier transform.
Our experiments show that the proposed methods performed better than
traditional histogram-based methods. Fig. 1.1 illustrates one of our re-
sults.

Histogram and Fourier transform-based methods

—— Histogram-based method
- — - Fourier transform-based method

02 ‘ ‘ ‘ ‘
1 10 20 30 40
Number of coefficients
Figure 1.1: Retrieval performance of the histogram and Fourier transform-
based method using triangular kernel. The detailed description of ANMRR
will be described in chapter 3. Briefly, the lower values of ANMRR indicate
better retrieval performance, 0 means that all the ground truth images have
been retrieved and 1 that none of the ground truth images has been retrieved.

Like other density estimators, the histograms and kernel density estima-
tors are both sensitive to the choice of the smoothing parameter (Silver-
man, 1986; Scott, 1992; Wand and Jones, 1995). This parameter in turn
influences the retrieval performance of CBIR applications. Such influ-
ences are investigated in (Tran and Lenz, 2003c) for both histogram-based
and kernel-based methods. Particularly for histogram-based methods, we
show that the previously applied strategy (Brunelli and Mich, 2001) of
applying statistical methods to find the theoretically optimal number of
bins (Sturges, 1926; Scott, 1979; Rudemo, 1982; Scott, 1985; Devroye
and Gyorfi, 1985; Scott, 1992; Kanazawa, 1993; Wand, 1996; Birge and
Rozenholc, 2002) in image retrieval applications requires further research.

Distance measures between color distributions: We investigated a new
differential geometry-based framework to compute the similarity between
color distributions (Tran and Lenz, 2001c; Tran and Lenz, 2003b). This
framework allows us to take the properties of the color space into account.
The framework is theoretically of interest since many other similarity
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measures are special cases of it. Some examples to illustrate the general
framework are also presented.

Compressing feature space: An efficient implementation of a content-based
image retrieval system requires a drastic data reduction to represent the
content of images since current modern multi-dimensional indexing tech-
niques only work efficiently when the dimension of the feature space is
less than 20 (Weber et al., 1998; Rui et al., 1999; Ng and Tam, 1999;
Schettini et al., 2001).

KLT-based methods using 16 parameters KLT-based methods using 25 parameters
07
07t
0.65¢
vd I
x 06
Z 0.55|
< M
05} Kis
0.45¢
DM
04|/ Kig | | 02 | | | | |
0 20 40 60 80 100 "0 20 40 60 80 100
Ground truth size Ground truth size

Figure 1.2: ANMRR of 5,000 queries from the Matton database of 126,604
images using different KLT-based histogram compression methods compared
to the full histogram-based method. 5,000 query images were selected randomly
outside the training set.

It is well-known that the optimal way to reduce the dimension of feature
vectors is the Karhunen-Loeve Transform (KLT). It is optimal in the
sense of minimizing the mean squared error of the Lo-distance between
the original and the approximated vectors. However, a straightforward
application of the KLT to color feature vectors gives poor results since
KLT treats the color feature vector as an ordinary vector and ignores
the properties of the underlying color distribution. Also the properties
of image retrieval applications where we are only interested in similar
images were not considered previously. Therefore we introduced sev-
eral KLT-based representation methods for color distributions (Tran and
Lenz, 2001b; Tran and Lenz, 2002b) which are based on two ideas: appli-
cation of KLLT on a metric which utilizes color properties, and KLT on the
space of local histogram differences in which only similar images are con-
sidered in the compression process. The experiments on different image
databases ranging from one thousand to more than one million images
show that the method developed using both the ideas described above
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is very fast and that the retrieval performance achieved compares favor-
ably with existing methods. Fig. 1.2 shows an example of the superior
performance of our proposed method KPM over other methods.

Color invariants: The color image (either captured by a camera or scanned
by a scanner) depends at least on the following factors: the physical prop-
erties of the scene, the illumination, and the characteristics of the camera.
This leads to a problem for many applications where the main interest
is in the content of the scene. Consider, for example, a computer vision
application which identifies objects by color. If the colors of the objects in
a database are specified for tungsten illumination (reddish), then object
recognition can fail when the system is used under the very blue illumi-
nation of blue sky. This happens because the change in the illumination
alters object colors far beyond the tolerance required for reasonable ob-
ject recognition. Thus the illumination must be controlled, determined,
or otherwise taken into account. Shadows, highlights, and other effects
of geometry changes are also sources of problems in many applications.
A typical unwanted problem in segmentation is that objects with com-
plicated geometry are usually split into many small objects because of
shadowing and highlight effects.

Color features which are invariant under such conditions are often used
in many applications. Both physics-based (Tran and Lenz, 2003d; Lenz
et al., 2003b) and statistics-based (Lenz et al., 1999; Lenz and Tran, 1999)
methods are investigated in the thesis. The proposed physics-based meth-
ods use the dichromatic reflection model and the Kubelka-Munk model.
They are derived mainly for invariants against geometry changes using
the theory of transformation groups. Using the proposed framework, all
independent invariants of a given physical model can be constructed by
using standard symbolic mathematical software packages. The invariant
features, however, are quite noisy because of the quantization error and
few unrealistic assumptions of the underlying physical processes. A ro-
bust region-merging algorithm is proposed to reduce the effect of noise in
color image segmentation application. Fig. 1.3 shows an example of the
segmented results by the proposed robust region-merging method.

The proposed statistical method is based on the normalization of mo-
ments of image. Many statistics-based color constancy methods assume
that the effect of an illumination change can be described by a matrix
multiplication with a diagonal matrix. Here we investigate the general
case of using a full 3x3 matrix. This normalization procedure is a general-
ization of the channel-independent color constancy methods since general
matrix transformations are considered.
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All these methods are then used in the following applications:

Color-based image retrieval: In order to evaluate the retrieval speed and
performance of different representation methods and similarity measures
in image retrieval, we implemented a color-based image retrieval system
for both web-based and stand-alone applications. The web-based ver-
sion is available at http://www.media.itn.liu.se/cse. An example of
the search results from the demo using a database of 126,604 images is
illustrated in Fig. 1.4.

The size of the image database is very important when comparing dif-
ferent methods in image retrieval. One algorithm might work well for a
small set of images, but totally fail when applied to a large database. For
a realistic comparison, a database of a few hundred images does not seem
good enough because the retrieval results are probably similar for differ-
ent methods. The properties of the images in the database also affect the
performance of different algorithms.

In our experiments, we have used different image databases of different
size and contents. The following four different image databases of totally
more than 1,300,000 images are used:

Corel database: consists of 1,000 color images (randomly chosen) from
the Corel Gallery.

MPEG-7 database: consists of 5,466 color images and 50 standard
queries (Zier and Ohm, 1999). The database is designed to be used
in the MPEG-7 color core experiments.

Matton database: consists of 126,604 color images. These images are
low-resolution images of the commercial image database* maintained
by Matton AB in Stockholm, Sweden.

TV database: consists of 1,058,000 color images, which are grabbed
from over 2 weeks video sequences of MTV-Europe and BBC-World
TV channels (one frame is captured every second). Fig. 1.5 shows
an example of the search results on the TV database.

Babylmage project: The investigated color constancy and color normaliza-
tion methods are applied in an industrial color correction project. This
project was done in cooperation with the ” Ostgt')ta Correnspondenten”
daily newspaper published in Linkoping in which we show that a sim-
ple application of conventional, global color constancy and color normal-
ization algorithms produces poor results. Segmenting the images into

4Text-based search of the image database is available at http://www.matton.se, and color-
based search is at http://www.media.itn.liu.se/cse. The color-based search on the TV
database using more than one million images is also available here.



Introduction

relevant regions and applying local correction algorithms lead to much
better results. In Fig. 1.6 some of these results of the new method are
illustrated. The figure shows two color images taken under two different
conditions, corresponding to the left and the middle image. The middle
one was then corrected resulting in the right image so that it should look
similar to the left one.

COLOR IMAGES

Statistica Chapter 7 | Chapter 8
Methods Physicd | Statistical
Invariants descriptors
SN2 1 =
Chapter 4 2
Density Estimation §
55
~ =~ 5 B
Chapter 5 3 E
Distance Measure §~ S
25
N~ 58
Chapter 6 5
Compact Representation 8
Applications ll
PP N2
Chapter 3: Color-based Chapter 9
Image Retrieval Babylmage Project

Figure 1.7: Thesis outline.



1.3 Thesis Outline

1.3 Thesis Outline

The thesis consists of 10 chapters. The background information and litera-
ture review are briefly covered in the next two chapters. Basic facts about
color are summarized in chapter 2. The chapter provides a background on how
color images are formed, how colors are described in digital images, and which
factors influence the color properties of images. Chapter 3 reviews some back-
ground material on content-based image retrieval. It describes features useful
for content-based image retrieval and investigates similarity measures between
color images based on such pre-computed features.

The contributions of the thesis are presented from chapter 4 to chapter 9.
Briefly, chapter 4 presents our investigations in estimating color distributions
for image databases. The topic of how to measure the distances between such
distributions is discussed in chapter 5, in which we develop a new similar-
ity measure of color distributions based on differential geometry. Chapter 6
presents several new KLT-based compression methods for representing color
features in CBIR. Chapter 7 deals with physics-based color invariants using
different physical models while the moment-based color image normalization,
is presented in chapter 8. Chapter 9 describes the Babylmage project, which is
an application of the color correction, color constancy and color normalization
methods discussed in chapter 8.

Finally, conclusions and future work is presented in chapter 10. A summary
of the thesis layout is illustrated in Fig. 1.7






Chapter 2

FUNDAMENTALS ON
COLOR

Perhaps everyone knows what color is, but the accurate description and
specification of color is quite another story. Color as a science is still fairly
young however it involves many different branches of science such as material
science, physics, chemistry, biological science, physiology, psychology. This
chapter presents a very brief description on fundamentals of color which are of
interest for the rest of the thesis.

2.1 Physical Basis of Color

Objects are visible only because light from them enters our eyes. Without
light nothing can be seen. However, ”"The rays, to speak properly, are not
colored; in them there is nothing else than a certain power and disposition to
stir up a sensation of this or that color” — as Sir Isaac Newton said. Thus it
is important to understand that color is something we humans impose on the
world. The world is not colored, we just see it that way. This entails that the
task of defining the word color provides interesting challenges and difficulties.
Even the most dedicated color scientists who set out to write the International
Lighting Vocabulary could not write down a very satisfactory definition®.

IDetails of the definition from the International Lighting Vocabulary and discussion about
it can be found in (Fairchild, 1997)
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A simple and reasonable working definition of color which is used in the
thesis is the following: Color is our human response to different wavelengths of
light?.

In everyday language we speak of ”seeing”? objects, but of course it is not
the objects themselves that we see. What we see is light that has been reflected
from, transmitted through, or emitted by objects. For instance, though it is
something of a simplification, one can say that an object that appears blue
reflects or transmits predominately blue light. The object may be absorbing
other wavelengths of light, or the available light may be primarily in the wave-
lengths we recognize as blue, but the final result is that the object appears blue.
Color, therefore, can be seen as the result of the interaction of three elements:
an illuminant (a light source), an object, and an observer (the person who ex-
periences the color). The following sections discuss the above mentioned three
elements as well as other factors that influence the process of forming color.

2.2 Light Sources

As we have mentioned earlier, without a light source, there is nothing to see. So
what is light? There are several ways to think of light. The classical description
says light is an electromagnetic wave. This means that it is a varying electric
and magnetic field, which spreads out or propagates from one place to another.
This wave has amplitude, which tells us the brightness of the light, wavelength,
which tells us about the color of the light, and an angle at which it is vibrating,
called polarization. The modern quantum mechanical description, however,
says that light can also be considered to be particles called photons. These
carry energy and momentum but have no mass. Both descriptions are correct
and light has both wave-like and particle-like properties.

Light covers a broad range of phenomena with sound and radio waves at
one end and gamma rays at the other. Visible light which is our main interest,
is somewhere towards the middle of this spectrum tucked in between infrared
waves and ultra violet waves ranging from about 380nm to 780nm, see Fig. 2.1.

Light can be produced by a variety of methods. The most widely occurring
light sources are incandescence, which is the method of emitting light by heating

20ne should note the corollary of this definition that we ”can not” really measure color
itself. When we talk about "measuring color” what we are really measuring is not any
inherent quality or even our response to various wavelengths of light (someday we may be
able to measure the electro-chemical signals in the brain and directly connect them with color
term, but that days seems far off), but rather the stimulus that creates it

3Perception is not only a passive measurement of the incoming signals. New results
from brain research show that perception is a process in which the brain actively analyzes
information. It is probably more accurate to say that we see with our brain than to say we
see with our eyes. A recent overview over some relevant facts is (Zeki, 1999).
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an object. It has been known that solids and liquids emit light when their
temperatures are above about 1000K. The amount of power radiated depends
on the temperature of the object. Correlated color temperature, CCT#, of the
object can be used to describe the spectral properties of the emitted light. For
example, direct sunlight has a CCT of about 5500K. Typical indoor daylight has
a CCT of about 6500K. Some examples of daylights are illustrated in Fig. 7.13.

Tungsten lamps are other examples of incandescent light sources, but their
CCTs are much lower than that of daylight. Typical tungsten filament lamps
have a CCT of about 2600-3000K. Light can also be produced by letting electric
current pass through gases, or certain semiconductors, phosphors.

Frequency, Hz
10° 10? 10* 10° 108 10%° 10% 10% 10% 10%® 10% 10%
A I S I S I S I SO A A M | I)
Subsonic Sound AM Radio  TV&FM Infrared Ultraviolet Gammaray

Xray Cosmic ray

SM Radio  Radar
Visiblelight

780 nm Wavelength 380 nm

Figure 2.1: Classification of the electromagnetic spectrum with frequency and
wavelength scales.

Fig. 2.2 shows the spectral power distributions of three light sources: a
Sylvania Cool White Fluorescent tube light®, which is a typical white neon light,
the CIE (Commission International de I'Eclairage or International Commission
on Illumination) illuminant D65, which is a mathematical representation of a
phase of daylight having a CCT of 6504 K, and the CIE illuminant A, which
is a mathematical representation of tungsten halogen (incandescent) having a
CCT of 2856K. Clearly the CIE illuminant A has more radiant power in the
red region compare to the CIE illuminant D65, thus its color should be warmer
than the color of the CIE illuminant D65.

4Correlated color temperature is the temperature of the Planckian radiator whose per-
ceived color most closely resembles that of a given stimulus seen at the same brightness and
under specified viewing conditions

5The spectral data of the Sylvania Cool White Fluorescent tube light source was mea-
sured at the Computer Science Laboratory, Simon Fraser University, Vancouver, Canada,
http://www.cs.sfu.ca/research/groups/Vision/, see (Funt et al., 1998) for a detailed descrip-
tion.
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2.3 Objects

When the illumination light reaches an object (or surface), many complicated
processes will occur. These processes can basically be divided into two different
classes. The first class is related to the discontinuities of optical properties at
the interface such as reflection, surface emission, etc. and the second class is
volume-related and depends on the optical properties of the material of the
object. A brief summary of the most important processes are given below.
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Figure 2.2: The relative spectral power distributions for a Sylvania Cool White
Fluorescent (dash line), the CIE illuminant D65 (solid line) and the CIE illu-
minant A (dash-dot line) light sources. The curves describe the relative power
of each source’s electromagnetic radiation as a function of wavelength.

Reflection : When light hits the surface of an object, it must pass through
the interface between the two media, the surrounding medium and the
objects. Since the refractive indices of the two media are generally dif-
ferent, part of the incident light is reflected at the interface. It behaves
like a mirror, meaning that the angle of reflectance is equal to the an-
gle of incidence. The reflected ray and the normal of the surface lie in
one plane. The ratio of the reflected radiant flux to the incident at the
surface is called the reflectivity and it depends on the angle of incidence,
the refractive indices of the two media meeting at the interface and the
polarization state of the radiation.
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Figure 2.3: When a ray of light hits the interface between two optical media
with different index of refraction, part of the incident light is reflected back.
The other part transfers into the medium, and its direction is changed at the
interface.

Refraction, Absorption, Scattering : For many materials such as dielec-
tric materials, not all incident light is reflected at the interface, part of
it penetrates into the object. See Fig. 2.3. When travelling inside the
medium, the light hits pigments, fibers or other particles from time to
time. It is either absorbed and converted into different energy forms, or
scattered in different directions. The light keeps hitting particles and is
increasingly scattered until some of it arrives back at the surface. Some
fraction of the light then exits from the material while the rest is reflected
back, see Fig. 7.6.

Thermal Emission : Emission of electromagnetic radiation occurs at any
temperature. The cause of the spontaneous emission of electromagnetic
radiation is thermal molecular motion, which increases with temperature.
During emission of radiation, thermal energy is converted to electromag-
netic radiation and the object cools down.

Depending on the chemical and physical properties of the object and other
factors, the amount of light that is reflected back (which, in this case, might
consist of reflected light directly from the interface, reflected light inside the
object, or light emitted from the objects) will vary at different wavelengths.
This variation is described in terms of the spectral reflectance (or the spectral
transmittance) characteristics of the object. The color of the object can be
defined on the basic of such spectral properties.



18

Fundamentals on Color
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Figure 2.4: Spectral reflectance of a green leaf and a violet flower.

As examples, the spectral reflectance of a green leaf and a violet flower® are

shown in Fig. 2.4. The green leaf reflects the light mainly in the green region
while the violet flower reflects the light in the red and blue regions.

The light that enters a sensor is called a color stimulus. For example,
when the violet flower characterized by the spectral reflectance in Fig. 2.4 is
illuminated with the Sylvania Cool White Fluorescent or the CIE standard C
light sources as shown in Fig. 2.2, the color stimuli will have the spectral power
distributions shown in Fig. 2.5 and Fig. 2.6. The spectral power distribution
of this stimulus is the product of the spectral power distribution of the light
source and the object. It is calculated by multiplying the power of the light
source and the reflectance of the object at each wavelength.

2.4 Human Color Vision

To be able to describe color, we need to know how people respond to light. Our
eyes contain two types of sensors, rods and cones, that are sensitive to light.
The rods are essentially monochromatic, with a peak sensitivity at around
510nm. They contribute to peripheral vision and allow us to see in relatively
dark conditions. But they do not contribute to color vision. You have probably
noticed that on a dark night, even though you can see shapes and movement,
you see very little color.

6The spectral data of two objects, a green leaf and a violet flower, was measured at the
Department of Physics, University of Kuopio, Finland, see (Parkkinen et al., 1988) for a
detailed description.
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The sensation of color comes from the second set of photo-receptors in our
eyes, the cones. Our eyes contain three different types of cones, which are most
properly referred to as the L, M, and S cones, denoting cones sensitive to light
of long wavelength (having maximal sensitivity at 575nm), medium wavelength
(535nm), and short wavelength (445nm), respectively.
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Figure 2.5: Spectral power distributions of a violet flower, illuminated with
two difference light sources: the Sylvania Cool White Fluorescent and the CIE
standard C light source.
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Figure 2.6: Spectral power distributions of a green leaf, illuminated with two
difference light sources: the Sylvania Cool White Fluorescent and the CIE
standard C light source.

The cones respond to light in a complex manner in which our brain is ac-
tively involved. This process does not only simply receive the signal from each
cone, but also compares each signal to that of its neighbors, and assigns feed-
back weighting to the raw signals. One reason why such weighting is necessary
is that we have many more L and M cones than S cones. The relative population
of the L, M, and S cones is approximately 40:20:1. Many other complicated
processes have happened before the concept of color is formed in our brain.
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Many of such processes are still not fully understood (Fairchild, 1997). More
facts and information about the human vision system can be found in many
books, for example (Wyszecki and Stiles, 1982; Zeki, 1999)

2.5 Color Image Formation

The process of how digital color images, which are taken by a digital camera, or
scanned by a scanner, are formed, however, much more easier to understand.
The color stimulus reaches the sensors of the camera and is recorded here.
The spectral characteristics of the sensors inside the camera, or the sensitivity
functions of the sensors are the most important properties of the camera.

Mathematically, we could formulate (in a simplified way) the process of
how a color image is formed inside a camera as follows: We denote the light
energy reaching a surface by E(\) where A is the wavelength. For a given scene
and viewing geometry, the fraction of total light reflected back or transmitted
through the object is denoted by R(A). A vision system then samples image
locations with one or more sensor types. In our case, the locations are simply
image pixels, and the sensor types are the red, green, and blue camera channels.
The response of the i‘" sensor, p;(z,y), is often modelled by (given the sensor
response functions f;(\))

piley) = k A FOVR(z, g, \VE(A)dA (2.1)

where k is a normalization factor.

Here we assumed that the optoelectronic transfer function of the whole
acquisition system is linear. This assumption based on the fact that the CCD
sensor is inherently a linear device. However, for real acquisition systems this
assumption may not hold, due for example to electronic amplification non-
linearities or stray light in the camera. Appropriate nonlinear corrections may
be necessary (Maitre et al., 1996).

This model can also be assumed for the human visual system, see for exam-
ple (Wyszecki and Stiles, 1982), and forms the basis for the CIE colorimetry
standard. Fig. 2.7 shows a (simplified) example of how the sensor responses
are computed using Eq. 2.1.

Eq. 2.1 describes a very simple model of how the recorded image depends
on the physical properties of the scene, the illumination incident on the scene,
and the characteristics of the camera. This dependency leads to a problem
for many applications where the main interest is in the physical content of the
scene. Consider, for example, the color-based image retrieval application to
search similar objects by color. If the images in a database are taken under
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tungsten illumination (reddish), then the search could fail when the system is
used under the very blue illumination of sunlight. Such a change in the illumi-
nation affects colors of images far beyond the tolerance required for retrieval
methods based on raw color comparison. Thus the illumination must be con-
trolled, determined, or at least taken into account in this case. This topic will
be discussed in more detail in chapters 7 and 8.

CIE Standard Observer
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Figure 2.7: How colors are recorded.

2.6 Color Spaces

The space of color spectra reaching a point on the retina is high-dimensional.
However the color vision system of most human beings consists of three in-
dependent color receptors. The visual system thus maps a high-dimensional
input, the spectral distribution of light, onto a low-dimensional (three dimen-
sions) output where each point in the visual scene is assigned one color. Ob-
viously, information is being lost in the process, but it seems reasonable that
the visual system is attempting to preserve as much of the information (in
some sense) as possible. A discussion of this topic (the connection between the
statistics of natural scenes and the properties of human perception) is beyond
the framework of this thesis. Interested readers can find a good introduction
to the current discussion in (Willshaw, 2001). Here we just discuss properties
of some projection methods, or color spaces, which are used in the thesis.

RGB Color Space: The most popular color space is RGB which stands for
Red-Green-Blue. This is a device-dependent color space’ and normally

"Recently, Hewlett-Packard and Microsoft proposed the addition of support for a standard
color space, sSRGB which stand for standard RGB (Stokes et al., 2000). The goal of sRGB
is to develop a simple solution that solves most of the color communication problems for
office, home and web users, by which sRGB is a device-independent color space. More
information can be found on (Siisstrunk et al., 1999), http://www.srgb.com or http://www.
w3.org/Graphics/Color/sRGB.html
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used in Cathode Ray Tube (CRT) monitors, television, scanners, and digi-
tal cameras. For a monitor the phosphor luminescence consists of additive
primaries and we can simply parameterize all colors via the coefficients
(a, B,7), such that C' = aR+ BG + vB. The coefficients range from zero
(no luminescence) to one (full phosphor output). In this parametrization
the color coordinates fill a cubical volume with vertices black, the three
primaries (red, green, blue), the three secondary mixes (cyan, magenta,
yellow), and white as in Fig. 2.8.

White [1,1,1]

Cyan[0,1,1] Magenta [1,0,1]

Blue [0,0,1]

05

Yellow [1,1,0]

Green [0,1,0]
0.

5 Red [1,0,0]

05

Black [0,0,0]

Figure 2.8: RGB Color spaces.

There are many different variations of RGB spaces; some of them were
developed for specific imaging workflow and applications, others are stan-
dard color spaces promoted by standard bodies and/or the imaging in-
dustry. However they share the following important points:

e They are perceptually non-linear. Equal distances in the space do
not in general correspond to perceptually equal sensations. A step
between two points in one region of the space may produce no per-
ceivable difference while the same increment in another region may
result in a noticeable color change.

e Because of the non-linear relationship between RGB values and the
intensity produced, low RGB values produce small changes. As
many as 20 steps may be necessary to produce a JND (Just No-
ticeable Difference) at low intensities whereas a single step at high
intensities may produce a perceivable difference.
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e This is not a good color description system. Without considerable
experience, users find it difficult to give RGB values of colors. What
is the RGB value of "medium brown”. Once a color has been chosen,
it may not be obvious how to make subtle changes to the nature of
color. For example, changing the ”vividness” of a chosen color will
require unequal changes in the RGB components.

HSV and HSL Color Spaces: The representation of the colors in the RGB
space is adapted for monitors and cameras but difficult to understand
intuitively. For color representation in user interfaces, the HSV and HSL
color spaces are usually preferred. Both models are based on the color
circle mapped on the RGB cube: the edge progression that visits the
vertices Red, Yellow, Green, Cyan, Blue, Magenta in this cyclical order.
When the RGB cube is seen along the gray direction, this edge progression
appears like a regular hexagon which has the structure of the classical
color circle. The difference between the two models is the definition of
the white points as illustrated in Fig. 2.9

Hue-Saturation-Value Hexcone

0t0255¢00t0 1.0y
Vv
Green Yellow

\H 0°to 360°
S 0to255

(0.0to1.0)

Black

Figure 2.9: A cross-section view of the HSV (left) and HLS(right) color spaces.

Still both models are perceptually non-linear. Another subtle problem
implicit in these models is that the attributes are not really themselves
perceptually independent. It is possible to detect an apparent change in
Hue, for example, when it is the parameter Value that is actually being
changed.

Finally, perhaps the most serious departure from perceptual reality re-
sides in the geometry of the models. The color spaces label those colors
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reproducible on a computer graphics monitor and this implies that all col-
ors on planes of constant V are of equal brightness. This is not the case.
For example, maximum intensity blue has a lower perceived brightness
than maximum intensity yellow.

CIE Color Spaces: We have seen in the previous section that we need the

spectral space to describe the physical properties of color. This implies
that we need a way of reducing or converting spectral space calculations.
We also saw that in many cases we are more concerned with the dif-
ference between a pair of colors. Color difference evaluation is essential
for industrial color quality control. Throughout the years, a number of
attempts have been made at developing color difference equations and
uniform color spaces.

In 1931, the CIE adopted one set of color matching functions to define
a Standard Colorimetric Observer (see Fig. 2.10) whose color matching
characteristics are representative of the human population having normal
vision.

The CIE Standard describes a color by a numeric triple (X,Y,Z). The
X,Y, and Z values are defined as:
X:k/EQﬁQﬁQMA
A
Y = k/ EM\)S(AN)g(A)dA
A

Z:k/E@wuﬁQmA
A
100

b= [y EN)F(A)dX

where X, Y, and Z are the CIE tristimulus values, F(\) is the spectral
power distribution of the light source, S(\) is the spectral reflectance
of a reflective object (or spectral transmittance of a transmissive object).
Z(A),y(N), and Z(\) are the color matching functions of the CIE Standard
Colorimetric Observer, and k is a normalizing factor. By convention, k
is usually determined such that Y = 100 when the object is a perfect
white. A perfect white is an ideal, non-fluorescent, isotropic diffuser with
a reflectance (or transmittance) equal to unity throughout the visible
spectrum.

The CIE has also recommended two other color spaces designed to achieve
more uniform and accurate models: CIE LAB for surfaces and and CIE
LUV for lighting, television, video display applications respectively. The
perceptual linearity is particular considered in these color spaces.
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Figure 2.10: CIE Standard Colorimetric Observer, 2°.

In the CIE LAB color space, three components are used: L* is the lumi-
nance axis, a* and b* are respectively red/green and yellow/blue axes,
see Fig. 2.11. Although CIE LAB provides a more uniform color space
than previous models, it is still not perfect, see for example (Luo, 1999).
CIE LAB values are calculated from CIE XYZ by

X =

1/3
116 (%) =16, if () > 0.008856
3(%). if (L) < 0.008856

where

z1/3, if z > 0.008856
f(z) = { (2.6)

7.787x 4+ 16/116, if x < 0.008856

The constants X,,,Y,,, and Z,, are the XYZ values for the chosen reference
white point. When working with color monitors good choices could be
something close to D65’s XYZ coordinates.

As CIE LAB, CIE LUV is another color space introduced by CIE in
1976. This color space has 3 components which are L*, u* and v*. The
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+ 8

Figure 2.11: CIE LAB color space.

L* component defines the luminancy, and u*, v* define chromaticities.
CIE LUV is very often used in calculations involving small color values
or color differences, especially with additive colors. The CIE LUV color
space is very popular in the television and video display industries. CIE
LUV can be computed from CIE XYZ by

1/3
e (%) —16, if (&) > 0.008856 o
x = " n .
903.3 (Yln) , if (&) < 0.008856
wk = 13L * (u' — u)))
vk = 13L x (v —v)))
AX
’_ 2.10
YT X T 15Y + 37 (2.10)
9y
= 2.11
T X T 15Y 137 (2.11)
AX
- L 2.12
Un = X 15Y, + 37, (2.12)
9Y,
V! (2.13)

" X, +15Y, + 3Z,

where the tristimulus values X,,,Y,,, and Z,, are those of the white object
color stimulus. The interested reader is referred to (Wyszecki and Stiles,
1982) for more detailed information.

Opponent Color Space: There is evidence that human color vision uses an
opponent-color model by which certain hues were never perceive to occur
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together. For example, a color perception is never described as redish-
greens or bluish-yellows, while combinations of red and yellow, red and
blue, green and yellow, and green and blue are readily perceived. Based
on this observation, the opponent color space is proposed to encode the
color into opponent signal as follows:

rg=R—-G
by=2B—R—G (2.14)
wb=R+G+ B

where R, G, and B represent red, green, and blue channels, respectively,
in RGB color space (Lennie and D’Zmura, 1988).






Chapter 3

CONTENT-BASED
IMAGE RETRIEVAL

3.1 Visual Information Retrieval

The term ”Information retrieval” was coined in 1952 and gained popularity
in the research community from 1961 (Jones and Willett, 1977). The concept
of an information retrieval system is to some extent self-explanatory from the
terminological point of view. One may simply describe such a system as one
that stores and retrieves information. As a system it is therefore composed of
a set of interacting components, each of which is designed to serve a specific
function for a specific purpose, and all these components are interrelated to
achieve a goal, which is to retrieve information in a narrower sense.

In the past, information retrieval has meant textual information retrieval,
but the above definition still holds when applied to Visual Information Retrieval
(VIR). However, there is a distinction between the type of information and
the nature of the retrieval of text and visual objects. Textual information is
linear while images are bi-dimensional, and videos are three dimensional (one
dimension is time). More precisely, text is provided with an inherent starting
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and ending point, and with a natural sequence of parsing. Such a natural
parsing strategy is not available for images and videos.

There are generally two approaches to solutions for the VIR problem based
on the form of the visual information: attribute-based and feature-based meth-
ods. Attribute-based methods rely on traditional textual information retrieval
and Rational Database Management System (RDBMS) methods as well as on
human intervention to extract metadata about a visual object and couple it
together with the visual object as a textual annotation. Unfortunately, manual
assignment of textual attributes is both time-consuming and costly. More-
over the manual annotations are very much dependent on the subjectivity of
human perception. The perception subjectivity and annotation impreciseness
may cause unrecoverable mismatches in later retrieval processes.

Problems with text-based access to images and videos have prompted in-
creasing interest in the development of feature-based solutions. That is, in-
stead of being manually annotated by text-based keywords, images would be
extracted using some visual features such as color, texture, and shape, and be
indexed based on these visual features. This approach relies heavily on results
from computer vision. In this thesis our discussion will focus on some specific
features, particularly color-based features for general image searching applica-
tions or content-based image retrieval applications. However, there is no single
best feature that gives accurate results in any general setting. Usually a cus-
tomed combination of features is needed to provide adequate retrieval results
for each content-based image retrieval application.

3.2 Functions of a Typical CBIR System

A typical Content-based Image Retrieval (CBIR) system deals not only with
various sources of information in different formats (for example, text, image,
video) but also user’s requirements. Basically it analyzes both the contents of
the source of information as well as the user queries, and then matches these
to retrieve those items that are relevant. The major functions of such a system
are the following:

1. Analyze the contents of the source information, and represent the contents
of the analyzed sources in a way that will be suitable for matching user
queries (space of source information is transformed into feature space for
the sake of fast matching in a later step). This step is normally very time
consuming since it has to process sequentially all the source information
(images) in the database. However, it has to be done only once and can
be done off-line.

2. Analyze user queries and represent them in a form that will be suitable
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for matching with the source database. Part of this step is similar to the
previous step, but applied only to the query image.

3. Define a strategy to match the search queries with the information in the
stored database. Retrieve the information that is relevant in an efficient
way. This step is done online and is required to be very fast. Modern
indexing techniques can be used to reorganize the feature space to speed
up the matching processing.

4. Make necessary adjustments in the system (usually by tuning parameters
in the matching engine) based on feedback from the users and/or the
retrieved images.
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Figure 3.1: Broad outline of a Content-based Image Retrieval System.

It is evident from the above discussion that on the one side of a Content-
based Image Retrieval system, there are sources of visual information in differ-
ent formats and on the other there are the user queries. These two sides are
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linked through a series of tasks as illustrated in Fig. 3.1. Some of these tasks
(such as user query analysis, multi-dimensional indexing) are briefly discussed
here while the two most important tasks: ” Analyze the contents of the source
information” (Feature extractions) and ” Define a strategy to match the search
queries with the information in the stored database” (similarity measures), will
be described in more detail later in dedicated sections in which color is empha-
sized.

User Query

There are many ways one can post a visual query. A good query method is
the one which is natural to the user as well as capturing enough information
from the user to extract meaningful results. The following query methods are
commonly used in content-based image retrieval research:

Query by Example (QBE): In this type of query, the user of the system
specifies a target query image upon which the image database is to be
searched and compared against. The target query image can be a normal
image, a low resolution scan of an image, or a user drawn sketch using
graphical interface paint tools. A prime advantage of this type of system
is that it is a natural way for expert and general users to search an image
database.

Query by Feature (QBF): In the QBF type system, users specify queries
by explicitly specifying the features they are interested in searching for.
For example, a user may query an image database by issuing a command
to "retrieve all images whose left quadrant contains 25% yellow pixels”.
This query is specified by the use of specialized graphical interface tools.
Specialized users of an image retrieval system may find this query type
natural, but general users may not. QBIC (Flickner et al., 1995) is an
example of an existing content-based image retrieval system that uses
this type of query method.

Attribute-based queries: Attribute-based queries use the textual annota-
tions, pre-extracted by human effort, as a primary retrieval key. This
type of representation entails a high degree of abstraction which is hard
to achieve by fully automated methods because an image contains a large
amount of information which is difficult to summarize using a few key-
words. While this method is generally faster and easier to implement,
there is an inherently high degree of subjectivity and ambiguity present
as we have mentioned previously.

Which query method is most natural? To the general user, probably attribute-
based queries are, with QBE systems a close second. A typical user would
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probably like to query content-based image retrieval systems by asking natu-
ral questions such as ”Give me all my pictures from two years ago.” or ”Find
all images on the Internet with a computer keyboard.” Mapping this natural
language query to a query on image database is extremely difficult to do using
automated methods. The ability of computers to perform automatic object
recognition on general images is still an open research problem. Most research

and commercial efforts are therefore focused on building systems that perform
well with QBE methods.

Multi-dimensional Indexing

To make content-based image retrieval truly scalable to large image databases,
efficient multidimensional indexing techniques need to be explored. There are
three major research communities contributing in this area: computational ge-
ometry, database management, and pattern recognition. The existing popular
multidimensional indexing techniques include the bucketing algorithm, k-d tree,
priority k-d tree, quad-tree, K-D-B tree, hB tree, R-tree and its variants R™
tree and R* tree.

The history of multidimensional indexing techniques can be traced back to
the mid 1970s, when cell methods, quad-tree, and k-d tree were first introduced.
However, their performances were far from satisfactory. Pushed by the urgent
demand of spatial indexing from GIS and CAD systems, Guttman proposed
the R-tree indexing structure (Guttman, 1984). Based on his work, many
other variants of R-tree were developed (Sellis et al., 1987; Greene, 1989). In
1990, Beckmann and Kriegel proposed the best dynamic R tree variant, R*
tree in (Beckmann et al., 1990). However, even the R* tree is not scalable to
dimensions higher than 20 (Faloutsos et al., 1993; Weber et al., 1998; Rui et al.,
1999; Ng and Tam, 1999).

3.3 Feature Extraction

Feature (content) extraction is the basis of content-based image retrieval. In
a broad sense, features may include both text-based features (key words, an-
notations) and visual features (color, texture, shape, faces). Within the visual
feature scope, the features can be further classified as low-level features and
high-level features. The former include color, texture, and shape features while
the latter is application-dependent and may include, for example, human faces
and fingerprints. Because of perception subjectivity, there does not exist a
single best presentation for a given feature. As we will soon see, for any given
feature there exist multiple representations which characterize the feature from
different perspectives.
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3.3.1 Color

Color is the first and most straightforward visual feature for indexing and
retrieval of images (Swain and Ballard, 1991; Rui et al., 1999; Schettini et al.,
2001). It is also the most commonly used feature in the field.

A typical color image taken from a digital camera, or downloaded from the
Internet normally has three color channels (Gray images have only one channel,
while multi-spectral images could have more than three channels). The values
of this three-dimensional data from the color image, however, do not give us
an exact colorimetric description of the color in the image, but the position
of these pixels in the color space. Pixels having values of (1,1,1) will appear
differently in color in different color spaces. Thus a full description of a typical
color image should consist of the two-dimensional spatial information telling
where the color pixel is in the spatial domain, the color space we are refereing
to, and the three-dimensional color data telling where the color pixel is in this
color space.

Here the color space is assumed to be fixed, the spatial information in the
image is ignored, and the color information in a typical image can be considered
as a simple three-dimensional signal.

One- or two-dimensional color signals are also widely used in CBIR espe-
cially in applications where robustness against image capturing conditions is
important. Chromaticity information in the form of the xy- or ab-coordinates
of the CIE XYZ and CIE LAB systems can be used in intensity independent
applications. Hue information was used in applications where only the differ-
ences between materials of objects in the scene are important. It has been
shown (Gevers and Smeulders, 1999; Geusebroek et al., 2001) that the hue is
invariant under highlights, shadowing, and geometry changes of viewing and
illumination angles.

If we consider color information of an image as a simple one-, two-, or
three-dimensional signal, analyzing the signal by using multivariate probabil-
ity density estimation is the most straightforward way to describe the color
information of the image. The histogram is the simplest tool. Other ways of
describing color information in CBIR include the use of dominant colors, or
color signatures, and color moments.

Color histogram

Statistically, a color histogram is a way to approximate the joint probability of
the values of the three color channels. The most common form of the histogram
is obtained by splitting the range of the data into equally sized bins. Then for
each bin, the number of points from the data set (here the colors of the pixels
in an image) that fall into each bin are counted and normalized to total points,
which gives us the probability of a pixel falling into that bin.
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Details of color histograms will be discussed in Chapter 4 when different
ways of describing the underlying color distributions are presented. For the
sake of simplicity, given a color image I(x,y) of size X x Y, which consists of
three channels I = (Ig, Ig, Ip), the color histogram used here is

1 = [1 ifI(x,y) in bin m,

he = 3.1
(m) XY 0 otherwise (3-1)
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Figure 3.2: A color image and its over-smoothed three-dimensional RGB color
histogram.

The regions in the color space can be defined in a non-parameterized way by
non-parametric clustering algorithms, or simply given by fixed borders in some
color space. For example in RGB color space, if we divide each channel R,G,
and B into 8 equally intervals with a length of 32: 0-31,32-63,---,224 - 255,
we will have an 8 by 8 by 8 color histogram of 8 x 8 x 8 = 512 color bins. An
example of how a color histogram looks is shown in Fig. 3.2, in which the three-
dimensional histogram was made in RGB color space. The left side of Fig. 3.3
shows another example of a one-dimensional hue histogram! of the same image
as in Fig. 3.2 in which we divided the hue information into 32 equal bins. The
right side of Fig. 3.3 is the estimated hue distribution given by a kernel-based

LOne important property of hue is its circular nature as an angle in most color coordinate
systems. This is important for the selection of the processing method. Ignoring this constraint
leads to misleading results as demonstrated in Fig. 3.3. This figure shows an example of the
estimated hue density distribution. The histogram method on the left results in an estimation
of the hue distribution which is wrong in the red area since it does not take into account the
circular nature property of the hue. This problem can be solved by using a kernel density
estimator with an extended support. The estimated density using a kernel density estimator
is depicted on the right of Fig. 3.3.
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method. Details of the kernel-based method in describing color distributions
will be discussed in chapter 4.

Hue histogram using 32 bins Kernel density estimator
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Figure 3.3: The hue density distribution of the parrots image in Fig. 3.2 esti-
mated by histogram and kernel-based methods. The histogram fails to describe
the circular nature of the hue in the red region.

There are two important parameters that need to be specified when con-
structing a histogram in this way: the bin width and the bin locations. It
is not very difficult to see that the choice of the bin width has an enormous
effect on the appearance of the resulting histogram. Choosing a very small bin
width results in a jagged histogram, with a separate block for each distinct
observation. A very large bin width results in a histogram with a single block.
Intermediate bin widths lead to a variety of histogram shapes between these
two extremes. The positions of the bins are also of importance to the shape of
the histogram. Small shifts of the bins can lead to a major change in the shape
of the histogram.

Considering that most color histograms are very sparse, see Fig. 3.2, and
thus sensitive to noise, Stricker and Orengo (Stricker and Orengo, 1996) pro-
posed using the cumulated color histogram. Their results demonstrated the
advantages of the proposed approach over the conventional color histogram ap-
proach. However the approach has the disadvantage in the case of more than
one dimensional histograms, that there is no clear way to order bins.

The color histogram is the most popular representation of color distributions
since it is insensitive to small object distortions and is easy to compute. For
example, Fig. 3.4 shows images of the same ball but taken under five different
viewing positions? and their corresponding color histograms, which are very
similar.

2The images of the ball were taken at the Computer Science Laboratory, Simon Fraser
University, Vancouver, Canada, http://www.cs.sfu.ca/research/groups/Vision/.
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Figure 3.4: Color images of the same object taken under different views and
their color distributions.

Dominant Colors

Based on the observation that the color histograms are very sparse and normally
a small number of colors are enough to characterize the color information in
a color image, dominant colors are used to characterize the color content of
an image. A color clustering is performed in order to obtain its representative
dominant colors and its corresponding percentage. Each representative color
and its corresponding percentage form a pair of attributes that describe the
color characteristics in an image region.

The dominant color histogram feature descriptor F is defined to be a set of
such attribute pairs:

where N is the total number of color clusters in the image, ¢; is a 3-D color
vector, p; is its percentage, and ) . p; = 1. Note that N can vary from image
to image.
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Color Moments

Color moments are the statistical moments of the probability distributions of
colors. In (Stricker and Orengo, 1996) color moments are used; only the first
three moments of the histograms of each color channel are computed and used
as an index, and the image is represented only by the average and covariance
matrix of its color distribution. Detailed descriptions of color moments can be
found in section 8.2.

Color Correlogram

Huang and colleagues (Huang et al., 1997) use color correlograms, which con-
siders the spatial correlation of colors. A color correlogram of an image is a
table indexed by color pairs, where the k' entry for (i,j) specifies the proba-
bility of finding a pixel of color j at a distance k from a pixel i in the image.
Due to the high complexity of this method, the autocorrelogram is used instead
which captures spatial correlation between identical colors only.

3.3.2 Texture

Texture is widely used and intuitively obvious but has no precise definition due
to its wide variability. One existing definition states that "an image region
has a constant texture if a set of its local properties in that region is constant,
slowly changing, or approximately periodic”.

There are many ways to describe texture: Statistical methods often use
spatial frequency, co-occurrence matrices, edge frequency, primitive length etc.
From these many simple features such as energy, entropy, homogeneity, coarse-
ness, contrast, correlation, cluster tendency, anisotropy, phase, roughness, di-
rectionality, flames, stripes, repetitiveness, granularity are derived. These tex-
ture description methods compute different texture properties and are suitable
if texture primitive sizes are comparable with the pixel sizes.

Syntactic and hybrid (combinations of statistical and syntactic) methods
such as shape chain grammars, or graph grammars are more suitable for tex-
tures where primitives can easily be determined and their properties described.
There are many review papers in this area. We refer interested readers to
(Weszka et al., 1976; Ohanian and Dubes, 1992; Ma and Manjunath, 1995;
Randen and Husoy, 1999) for more detailed information.

3.3.3 Shape

Defining the shape of an object is often very difficult. Shape is usually repre-
sented verbally or in figures, and people use terms such as elongated, rounded.
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Computer-based processing of shape requires describing even very complicated
shapes precisely and while many practical shape description methods exists,
there is no generally accepted methodology of shape description.

Two main types of shape features are commonly used: boundary-based and
region-based features. The former uses only the outer boundary of the shape
while the latter uses the entire shape region. Examples of the first type in-
clude chain codes, Fourier descriptors, simple geometric border representations
(curvature, bending energy, boundary length, signature), and examples of the
second include area, Euler number, eccentricity, elongatedness, and compact-
ness. Some review papers in shape representation are (Li and Ma, 1995; Mehtre
et al., 1997)

3.3.4 High-level Features

The vast majority of current content-based image retrieval research is focused
on low-level retrieval methods. However, some researchers have attempted to
bridge the gap between low-level and high-level retrieval. They tend to con-
centrate on one of two problems. The first is scene recognition. It can often be
important to identify the overall type of scene depicted by an image, both be-
cause this in an important filter which can be used when searching, and because
this can help in determining whether a specific object is present. One system of
this type is IRIS (Hermes, 1995), which uses color, texture, region and spatial
information to derive the most likely interpretation of the scene, generating
text descriptors which can be input to any text-based retrieval system. Other
researchers have identified simpler techniques for scene analysis, using low-
frequency image components to train a neural network (Oliva, 1997), or color
neighborhood information extracted from low-resolution images to construct
user-defined templates (Ratan and Grimson, 1997)

The second focus of research activity is object recognition, an area of interest
to the computer vision community for many years. Techniques are now being
developed for recognizing and classifying objects with database retrieval in
mind. The best-known work in this field is probably that of (Forsyth, 1997),
who has attracted publicity by developing a technique for recognizing naked
human beings in images, though his approach has been applied to a much wider
range of objects, including horses and trees. All these techniques are based
on the idea of developing a model of each class of objects to be recognized,
identifying image regions which might contain examples of the objects, and
building up evidence to confirm or rule out the object’s presence.
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3.4 Similarity Measures

Once features of images in the database are extracted and the user’s query is
formed, the search results are obtained by measuring the similarity between the
pre-extracted features of the image database and the analyzed user’s query.

The similarity measure should ideally have some or all of the following basic
properties:

Perceptual Similarity: The feature distance between two images is large
only if the images are not ”similar”, and small if the images are ”simi-
lar”. Images are very often described in feature space and the similarity
between images is usually measured by a distance measure in the feature
space. Taking into account the properties of this space for human percep-
tion and the underlying properties of the feature vectors representing the
images is very important in improving the perceptual similarity property
of the proposed similarity measure.

Efficiency: The measure should be computed rapidly in order to have fast
response in the search phase. Typical CBIR applications require a very
fast response, not longer than a few seconds. During that short period of
time, the search engine normally has to compute thousands of distances
depending on the size of the image database. The complexity of the
distance measure is therefore important.

Scalability: The performance of the system should not deteriorate too much
for large databases since a system may search in databases containing
millions of images. A naive implementation of CBIR computes all the dis-
tances between the query image and the images in the databases. These
distances are then sorted to find out the most similar images to the query
image. The complexity of the search engine is therefore proportional to
the size of the image database (or O(N) if we say N is the number of
images). Multi-dimensional indexing techniques (as mentioned in sec-
tion 3.2) could be used to reduce the complexity to O(log(N)). However
it has been reported that the performance of current indexing techniques
is reduced back to a sequential scanning (Weber et al., 1998; Rui et al.,
1999) when the number of dimensions that need to be indexed is greater
than 20. So one has to consider this factor when dealing with very large
image databases.

Metric: The problem of whether the similarity distance should be a metric
or not is not decided yet since human vision is very complex and the
mechanisms of the human visual system are not fully understood. We
prefer the similarity distance to be a metric since we consider the following
properties as very natural requirements.
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e Constancy of self-similarity: The distances between an image to it-
self should be equal to a constant independent to the image (prefer-

able to be zero).
d(A, A) = d(B, B)

e Minimality: An image should be more similar to itself than to other
images.

d(A, A) < d(A,B);

e Symmetry: It is unreasonable if we say image A is similar to image
B but image B is not similar to image A.

d(A, B) = d(B, A);

e Transitivity: It is also unreasonable if image A is very similar to
image B, and B in turn very similar to C, but C is very dissimilar

to A.

However this transitivity property may not hold for a series of im-
ages. Even if image I; is similar to image I;y; for all ¢ = 1..N
this does not mean that image I; similar to image I. In a video
sequence, for example, each frame is similar to its neighbor frames
but the first and the last frame of the sequence can be very different.

Robustness: The system should be robust to changes in the imaging condi-
tions of the database images. For example if images in the database are
taken under tungsten illumination (reddish), the retrieval system should
be able to find these objects even if the query object was taken under
daylight illumination (blueish).

Many (dis)similarity measures have been proposed, but none of them has
all the above properties. We list here some of the most commonly used.

e Histogram intersection (Swain and Ballard, 1991):

This is one of the first distance measures in color-based image retrieval.
The distance defined is based on the size of the common part of two color
histograms. Given two color histograms h; and ho as in Eq. 3.1, the
distance between them can be defined as

N
diStH[ =1- me(h”, hgz) (33)

=1

This distance measure is fast since it is based on a very simple formula.
However it is not a metric and no color information is used when deriving
the distance. This may lead to undesirable results.
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o Lidistance (Stricker and Orengo, 1996), the Minkowski-form distance
L,: The Minkowski-form distance L, between two histograms is defined

as
1/p
diStMp = (Z | hlz‘ — hgi |p> (34)

e Quadratic form (Hafner et al., 1995): the distance between two N-dimensional
color histograms hy and hs is defined as

distor = (hy — hs) A(hy — hs) (3.5)
where A = [a;;] is a matrix and the weights a;; denote the similarity
between bins ¢ and j. A popular choice of a;; is given by

Q5 = 1— (dij/dmaw)k (36)

where d;; is the distance between color i and color j (normally d;; is the
Euclidean distance between the two colors in some uniform color spaces
like La*b* or Lu*v*) and dpaz = max;j(d;;). k is a constant controlling
the weight between neighboring colors.

Alternatively, another common choice for a;; is (Hafner et al., 1995)
Q5 = exp(_k(dij/dmaw)Q) (37)

e The Earth Mover Distance (EMD) (Rubner et al., 1998) is based on the
minimal cost to transform one distribution to the other. If the cost of
moving a single feature unit in the feature space is the ground distance,
then the distance between two distributions is given by the minimal sum
of the costs incurred to move all the individual features. The EMD can
be defined as the solution of a transport problem which can be solved by
linear optimization:

> i 9ii i

diStEMD: Z i (3.8)
17 JUI

where d;; denotes the dissimilarity between bins ¢ and j, and g;; > 0 is
the optimal flow between the two distributions such that the total cost

diStEMD = Zgijdij (39)
ij

is minimized, subject to the following constraints:
Z 9ij < hi;
i
Zgij < hy; (3.10)
J

Z gij = min(hii, ha;)

]
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for all ¢ and j. The denominator in Eq. 3.8 is a normalization factor
that permits matching parts of distributions with different total mass.
If the ground distance is a metric and the two distributions have the
same amount of total mass, the EMD defines a metric. As a key advan-
tage of the EMD each image may be represented by different bins that
adapt to their specific distribution. When marginal histograms are used,
the dissimilarity values obtained for the individual dimensions must be
combined into a joint overall dissimilarity value.

Other distance measures which are also of interest are

e The Kolmogorov-Smirnov distance was originally proposed in (German,
1990). It is defined as the maximal discrepancy between the cumulative
distributions

distyrp, = max | h{; — hs; | (3.11)
where h°¢ is the cumulative histogram of histogram h

e A Statistics of the Cramer/Von Mises type based on cumulative distri-
butions is defined

distc =Y _ (h§; — hs,)° (3.12)

1

e The y? statistic is given by
N2
(hu — hz’)
disty = 1) (5.13)
where

denotes the joint estimate.
e The Kullback-Leibler divergence is defined by

hyi

it L 14
ol (3.14)

distigr = Z hy;log

e The Jeffrey-divergence is defined by

ha; ha;
distyp = Z (hlilogﬁ—l + ho;log ; ) (3.15)

i i )
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e The Weighted-Mean-Variance was proposed in (Manjunath and Ma, 1996).
This distance is defined by

H1— M2 01— 02
o(u) o(o)

diStWMV = (316)

where p1, po are the empirical means and 01,05 are the standard de-
viations of the two histogram hi, hs. o(.) denotes an estimate of the
standard deviation of the respective entity.

e Bhattacharyya-distance (Fukunaga, 1990) is defined

d2B(N(M17 21)’N(M27 22)) -

1 s 1 det ¥ (3.17)
S (g — 1e)'S _ 21

gl = ) X7 (i — pi2) + 5 In J/dot 57 det 5y

where ¥ = 0.5 x (X1 + X2)

e Mahalanobis distance (Fukunaga, 1990) is given by
dir (N (p1, %), N(p2, %)) = (1 — p2)' 7 (g1 — pa2) (3.18)

For more detailed descriptions, we refer to the cited papers. (Puzixha et al.,
1999) provides a comprehensive comparison over many different distance mea-
sures.

3.5 Evaluating Retrieval Performance for CBIR

Once a content-based image retrieval application had been developed, the next
crucial problem is how to evaluate its performance, both retrieval performance
and complexity (or the time for searching and for creating the pre-computed
feature database). For evaluating the retrieval performance, many papers in
the field were often ignored or restricted simply to printing out the results of
one or more example queries which are easily tailored to give a positive im-
pression. Some other papers either used performance measures borrowing from
information retrieval (TREC, 2002), or developed new measures for content-
based image retrieval (Gunther and Beretta, 2001; Manjunath et al., 2001;
Benchathlon, 2003)3.

In this section, basic problems in evaluating performance of content-based
image retrieval systems are addressed briefly. Then a more detailed description

3The Benchathlon network is a non-profit organization that aims at gathering CBIR
people under a single umbrella to create a favorable context for developing a new CBIR
benchmarking framework. More information can be found on their website at http://www.
benchathlon.net/



3.5 Evaluating Retrieval Performance for CBIR

of the MPEG-7 Color/Texture Core Experiment Procedures is given. These
are used widely in evaluating the retrieval performance of our experiments
described in the thesis.

Basic Problems in CBIR performance Evaluation

In order to evaluate a CBIR application, an image database and a set of queries
with ground truth are needed. The queries are put to the CBIR application to
obtain the retrieval results. A performance method is then needed to compare
these retrieved results with the ground truth images.

A common way of constructing an image database for CBIR evaluation
is to use Corel photo CDs, each of which usually contains 100 broadly sim-
ilar images. Most research groups use only a subset of the collection, and
this can result in a collection of several highly dissimilar groups of images,
with relatively high within-group similarity. This can lead to great apparent
improvement in retrieval performance: e.g. it is not too hard to distinguish
sunsets from underwater images of fish. Another commonly used database
is the VisTex database at MIT, Media Lab, which contains more than 400
primarily texture images. Some other candidates includes the standard col-
lection of 5466 color images from MPEG-7 (Zier and Ohm, 1999), the im-
age database from University of Washington at http://www.cs.washington.
edu/research/imagedatabase/groundtruth/ and the Benchathlon collection
at http://www.benchathlon.net/img/done/.

One of the problems in creating such an image collection is that the size
of the database should be large enough, and the images should have enough
diversity in different domains. For text-based retrieval, it is quite normal to
have millions of documents (TREC, 2002) whereas in CBIR most systems work
with only few thousand images, some even with fewer. Ways to get a huge
collection of images include collecting them from the Internet and sampling
image frames from TV channels.

Once images are collected, the next task in evaluating performance of CBIR
application is to define a set of queries and their ground truth based on the
input image database. It can be done by:

e Using these collections with a pre-defined subset: A very common tech-
nique is to use sets of images with different topics such as the Corel
collections. Relevant judgements are given by the collection itself since
it contains distinct groups of annotated images. Grouping is not always
based on the visual similarity but often on the objects contained.

e Simulating a user: The ground truth images are simulated from the query
image using some model. A very common way to generate ground truth
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from a query image is by adding noise, down-sampling, or up-sampling
the query image.

e User judgements: The collection of real user judgements is time-consuming
and only the user who knows what he or she expects as a retrieval result
of a given query image. Experiments show that user judgements for the
same image often differ (Squire and Pun, 1997).

When the image database is collected and the queries and their ground
truth are selected, the query images are presented one by one to the search
engine of the CBIR application, the retrieved results are then compared to
the ground truth of the corresponding query image. Several different methods
can be applied here to compare the two sets: the ground truth and the actual
retrieved images.

e The straightforward way is by asking users to judge the success of a query
by looking at the two sets.

e A single value is computed from the two sets telling us how well the query
was retrieved by the system. Examples are: rank of the best match,
average rank of relevant images, precision, recall, target testing, error
rate, retrieval efficiency, correct and incorrect detection.

e A graph can be used to illustrate the relation of two of the above values,
for example the precision vs. recall graph, the precision vs. number of
retrieved images, recall vs. number of retrieved images graph or retrieval
accuracy vs. noise graph.

The MPEG-7 Color/Texture Core Experiment Procedures

Under the framework of the MPEG-7 standardization process, procedures for
color and texture core experiments are defined so that different competing
technologies can be compared. It consists of the description of the input image
database, the standard queries and their corresponding ground truth images,
and the benchmark metric.

e CCD, The Common Color Dataset, consists of 5466 color images, 56 KB
for each image on average, and the average size is 260x355 pixels.

e CCQ, The Common Color Queries, consists of 50 queries and their ground
truth images all selected from the image database. The length of the
ground truth ranging from 3 to 32 images with average length is 8 images.

e ANMRR, The Average Normalized Modified Retrieval Rank, is defined
as follows:
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Consider a query ¢ with its ground truth of G(gq) images. Invoking the query
q against the image database causes a set of images to be retrieved. In the
best case, all images in the ground truth set G(q) of the query ¢ would be
returned as an exact match of the ground truth vector sequence and would
thus correspond to a perfect retrieval score.

However, most image retrieval algorithms are less than perfect, so images
that are member of G(¢q) may be returned either out of order, or in correct
sequence but interspersed with incorrect images, or as an incomplete subset
when not all the images of G(q) are found, or even none of the ground truth
images is found in the worst case.

A ranking procedure is used to take into account all such possibilities. A
scoring window W (q) > G(q) is associated with the query ¢ such that the
retrieved images contained in W (q) are ranked according to an index r =
1,2,--- W as depicted in Fig. 3.5.

WindowW(q)

r{x@xxxx@xxx}ooo
1 2 3 4 ..5 6 7 &8 9 10

Figure 3.5: Retrieved images with scoring window W (q) and two correct images
of rank 2 and 7. ANMRR = 0.663.

A step function € is defined as

1 iffrw=g

0 otherwise (3.19)

O(w —g) = {
which is zero unless there is a match (denoted by ~) between the retrieved

image of index w and any ground truth image g.

The number of correct images returned in the window W (q) is given by

Rcorrect(Q) = Z 0(’(1) - g) (320)

w=1

and the number of missed images is

Rmissed(q) - G(Q) - Rcorrect(Q) (321)
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Now the average retrieval rank AV R(q) can be defined as

W(a) . . Pen
AVR(q) = % > w-fw—g)p+ Rm““déq()q)P @ (3.22)

The first term Zy:(({) w - 0(w — g) is the sum of the ranks of the correct images
and Pen(q) is a penalty for the missed images. Since the missed images lie
outside the scoring window W(q), the value of the penalty must exceed the
rank of the last entry in W(q): Pen(q) > W(q).

It is important to note that the value of the retrieval rank is affected only
by the position of the correct images in the scoring window, not their order
with respect to the sequence specified by the ground truth vector. If A and B
are correct images in the ground truth set, then the retrieved sets {A, B} and
{B, A} have equal retrieval rank.

In the case of perfect score, all images in the ground truth set are found
with rank from 1 to G(q) and the number of missed images R,,isseq = 0. The
best average retrieval rank is given by

1+ G(q)

AV Ry(q) = 5

(3.23)
In the worst case, no ground truth images are found in the window W (q), so the
number of incorrect images Rissed(q) = G(q), and the worst average retrieval

rank is given by
AV R,,(q) = Pen(q) (3.24)

These extremes define an interval [AV Ry(q), AV Ry, (q)], within which any
average retrieval rank AV R(q) must lie. For the purpose of comparisons, it
is preferable to normalize this interval onto the unit interval [0---1] via the
normalized modified retrieval rank (NMRR) given by:

B AV R(q) — AV Ry(q) B AVR(q) —0.5-(14+ G(q))
NMRRW@) = g (= AVRyq) ~ Pen(q) —05-(1+Glq)

(3.25)

It is then straightforward to define the average normalized modified retrieval
rank (ANMRR) as average NMRR over all N@Q queries.

NQ
ANMRR(q) = NLQ > NMRR(q) (3.26)
q=1

Specifically in this thesis, we used the window size equal to two times the
ground truth size W(q) = 2 - G(q) and the penalty function Pen(q) = 1.25 -
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W(q) = 2.5-G(q). Under such conditions, the ANMRR can be reduced to the
following form:

1 2 2612 5G(g) — wib(w — g)

w=1

NQZ  G@){2G(g) - 05)

ANMRR(q) =1 — (3.27)

Some examples may help to give a feeling for this measure: The ANMRR
of the retrieval result in Fig. 3.5 is 0.663. Suppose that we have a query
with 30 ground truth images; if only one ground truth image is missed in the
retrieval result, the ANMRR is 0.055 if the incorrect image is found as 1st
rank, and ANMRR is 0.011 if it is found in the last rank. If we missed the first
five images, we get ANMRR=0.262, and if the last 5 images were wrong then
ANMRR=0.072.

3.6 CBIR Systems

In recent years, content-based image retrieval has become a highly active re-
search area. Many image retrieval systems, both commercial and research
systems, have been built. In the following discussion, we briefly describe some
of the well-known CBIR systems that have been developed.

IBM’s QBIC

QBIC, standing for Query By Image Content, is the first commercial content-
based image retrieval system. Its system framework and techniques had pro-
found effects on later image retrieval systems. QBIC supports mainly queries
based on example images, user-constructed sketches and drawings, and selected
color and texture patterns.

In the process of image indexing, QBIC has used fully automatic unsu-
pervised segmentation methods along with a foreground/background model to
identify objects in a restricted class of images. Robust algorithms are required
in this domain because of the textured and variegated backgrounds. QBIC also
has semiautomatic tools for identifying objects. One is an enhanced flood-fill
technique. Flood-fill methods start from a single object pixel and repeatedly
add adjacent pixels whose values are within some given threshold of the orig-
inal pixel. Another outlining tool to help users track object edges is based on
the "snakes” concept developed in computer vision research. This tool takes a
user-drawn curve and automatically aligns it with nearby image edges. It finds
the curve that maximizes the image gradient magnitude along the curve.

After object identification, QBIC will compute the features of each object
and image. They are as following.
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e Color:

The color feature used in QBIC are the average (R,G,B), (Y,[,Q), (L,a,b),
and MTM (Mathematical Transform to Munsell) coordinates, and a k-
element color histogram (Faloutsos et al., 1993).

o Texture:

QBIC’s texture feature is an improved version of the Tamura texture rep-
resentation (Tamura et al., 1978); i.e. combinations of coarseness, con-
trast, and directionality (Equitz and Niblack, 1994). For color images,
these measures are computed on the luminance band, which is computed
from the three color bands. The coarseness feature describes the scale of
the texture and is efficiently calculated using moving windows of different
sizes. The contrast feature describes the vividness of the pattern, and is
a function of the variance of the gray-level histogram. The directional-
ity feature describes whether or not the image has a favored direction,
or whether it is isotropic, and is a measure of the "peakedness” of the
distribution of gradient directions in the image.

e Shape:

Shape features in QBIC are based on a combination of area, circularity,
eccentricity, and major axis orientation, plus a set of algebraic moment
invariants (Scassellati et al., 1994; Faloutsos et al., 1993). All shapes
are assumed to be non-occluded planar shapes allowing each shape to be
represented as a binary image.

e Sketch:

QBIC allows images to be retrieved based on a rough user sketch. The
feature needed to support this retrieval consists of a reduced resolution
edge map of each image. To compute edge maps, QBIC converts each
color image to a single band luminance, computes the binary edge image
and reduces the edge image to size 64 x 64.

Once the features are described, the similarity measures are used to get
similar images. In the search step, QBIC distinguishes between ”scenes” (or
images) and ”objects”. A scene is a full color image or single frame of video
and an object is a part of a scene. QBIC computes the following features:

e Objects: average color, color histogram, texture, shape, location.

e Images: average color, color histogram, texture, positional edges (sketch),
positional color (draw)

QBIC is one of the few systems which takes into account the high dimen-
sional feature indexing. In its indexing subsystem, KLT is first used to perform
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dimension reduction and then R*-tree is used as the multidimensional indexing
structure (Lee et al., 1994; Faloutsos et al., 1994). In its new system, text-based
keyword search can be combined with content-based similarity search. The on-
line QBIC demo is at http://wwwgbic.almaden.ibm.com.

Virage

Virage is a content-based image search engine developed at Virage Inc. Similar
to QBIC, Virage (Bach et al., 1996) supports visual queries based on color,
composition (color layout), texture, and structure (object boundary informa-
tion). But Virage goes one step further than QBIC. It also supports arbitrary
combinations of the above four atomic queries. The users can adjust the weights
associated with the atomic features according to their own emphasis. Jeffrey et
al. further proposed an open framework for image management. They classi-
fied the visual features (primitive) as general (such as color, shape, or texture)
and domain specific (face recognition, cancer cell detection, etc.). Various use-
ful primitives can be added to the open structure, depending on the domain
requirements. To go beyond the query by example mode, Gupta and Jain pro-
posed a nine-component query language framework in (Gupta and Jain, 1997).
The system is available as an add-on to existing database management systems
such as Oracle or Informix.

RetrievalWare

RetrievalWare is a content-based image retrieval engine developed by Excal-
ibur Technologies Corp. From one of its early publications, we can see that its
emphasis was the application of neural nets to image retrieval (Dow, 1993). Its
more recent search engine uses color, shape, texture, brightness, color layout,
and aspect ratio of the image, as query features. It also supports the combi-
nations of these features and allows the users to adjust the weights associated
with each feature. Its demo page is at http://vrw.excalib.com/cgi-bin/
sdk/cst/cst2.bat.

VisualSeek and WebSeek

VisualSEEk (Smith and Chang, 1996) is a visual feature search engine and
WebSEEk (Smith and Chang, 1997) is a World Wide Web oriented text/image
search engine, both of which have been developed at Columbia University.
Main research features are spatial relationship query of image regions and vi-
sual feature extraction from compressed domain. The visual features used
in their systems are color sets and wavelet transform-based texture features.
To speed up the retrieval process, they also developed binary tree-based in-
dexing algorithms. VisualSEEk supports queries based on both visual fea-
tures and their spatial relationships. This enables a user to submit a sunset
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query as red-orange color region on top and blue or green region at the bot-
tom as its ”sketch”. WebSEEk is a web-oriented search engine. It consists of
three main modules, i.e. image/video collecting module, subject classification
and indexing module, and search, browse, and retrieval module. It supports
queries based on both keywords and visual content. The on-line demos are at
http://www.ee.columbia.edu/sfchang/demos.html.

Photobook

Photobook (Pentland et al., 1996) is a set of interactive tools for browsing
and searching images developed at the MIT Media Lab. Photobook consists
of three subbooks from which shape, texture, and face features are extracted,
respectively. Users can then query on the basic of the corresponding features in
each of the three subbooks. In its more recent version of Photobook, FourEyes,
Picard et al. proposed including the human users in the image annotation and
retrieval loop. The motivation for this was based on the observation that there
was no single feature which can best model images from each and every domain.
Furthermore, human perception is subjective. They proposed a ”society of
models” approach to incorporate the human factor. Experimental results show
that this approach is effective in interactive image annotation.

Netra

Netra is a prototype image retrieval system developed in the UCSB Alexandria
Digital Library (ADL) project (Ma and Manjunath, 1997). Netra uses color,
texture, shape, and spatial location information in the segmented image regions
to search and retrieve similar regions from the database. Main research features
of the Netra system are its Gabor filter-based texture analysis, neural net-based
image thesaurus construction and edge flow-based region segmentation. The
on-line demo is at http://maya.ece.ucsb.edu/Netra/netra.html.



Chapter 4

ESTIMATING COLOR
DISTRIBUTIONS FOR
IMAGE RETRIEVAL

In content-based image retrieval applications, the color properties of an im-
age are very often characterized by the probability distribution of the colors in
the image. These probability distributions are usually estimated by histograms
although the histograms have many drawbacks compared to other estimators
such as kernel density methods.

In this chapter we investigate whether using kernel density estimators in-
stead of histograms could give better descriptors of color images. Experiments
using these descriptors to estimate the parameters of the underlying color distri-
bution and in color-based image retrieval (CBIR) applications were carried out
in which the MPEG-7 database of 5466 color images with 50 standard queries
are used as the benchmark. Noisy images are also generated and put into the
CBIR application to test the robustness of the descriptors against noise. The
results of our experiments show that good density estimators are not necessarily
good descriptors for CBIR applications. We found that the histograms perform
better than simple kernel-based method when used as descriptors for CBIR ap-
plications. Two modifications to improve the simple kernel-based method are
proposed. Both of them show a better retrieval performance in our experi-
ments.

In the second part of the chapter, optimal values of important parameters
in the construction of these descriptors, particularly the smoothing parameters
or the bandwidth of the estimators, are discussed. Our experiments show that
using over-smoothed bandwidth gives better retrieval performance.
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4.1 Introduction

Color is widely used for content-based image retrieval. In these applications the
color properties of an image are characterized by the probability distribution
of the colors in the image. These probability distributions are very often ap-
proximated by histograms (Rui et al., 1999; Schettini et al., 2000). Well-known
problems of histogram-based methods are: the sensitivity of the histogram to
the placement of the bin edges, the discontinuity of the histogram as a step
function and its deficiency in using data in estimating the underlying distribu-
tions compared to other estimators (Silverman, 1986; Scott, 1992; Wand and
Jones, 1995).

These problems can be avoided by using other methods such as kernel den-
sity estimators. To the best of our knowledge there are, however, only a few
papers (Gevers, 2001) that use kernel density estimators in image retrieval. So
the question is thus why methods like kernel density estimators are not more
widely used in estimating the color distributions in image retrieval applications;
even though they have theoretical advantages in estimating the underlying color
distributions? Is it because kernel density estimators are time-consuming or
are kernel based methods unsatisfactory for image retrieval?

In this chapter we first compare the performance of histograms and different
kernel density estimator methods in describing the underlying color distribution
of images for image retrieval applications. Our experiments show that simple
kernel-based methods using a set of estimated values at histogram bin centers
give bad retrieval performance. We therefore propose two different kernel-based
methods to improve the retrieval performance. These new methods are based
on the use of non-orthogonal bases together with a Gram-Schmidt procedure
and a method applying the Fourier transform.

Like other density estimators, the histograms and kernel density estimators
are both sensitive to the choice of the smoothing parameter (Silverman, 1986;
Scott, 1992; Wand and Jones, 1995). This parameter in turn influences the
retrieval performance of CBIR applications. Our experiments show that the
proposed methods do not only lead to an improved retrieval performance but
that they are also less sensitive to the selection of the smoothing parameter. In
particular the retrieval performance of the Fourier-based method for hue distri-
bution is almost independent of the value of the smoothing parameter if it lies in
a reasonable range. For histogram-based methods, we investigate the selection
of the optimal number of histogram bins for CBIR. This parameter was previ-
ously often chosen heuristically without explanation (Rui et al., 1999; Schettini
et al., 2000). We will also show that the previously applied strategy (Brunelli
and Mich, 2001) of applying statistical methods to find the theoretically opti-
mal number of bins (Sturges, 1926; Scott, 1979; Rudemo, 1982; Scott, 1985;
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Devroye and Gyorfi, 1985; Scott, 1992; Kanazawa, 1993; Wand, 1996; Birge
and Rozenholc, 2002) to image retrieval applications requires further research.

The chapter is organized as follows: in the next section, histogram and
kernel-based methods are briefly described. Their performance in CBIR appli-
cations are compared in section 4.3. Section 4.4 presents our proposed kernel-
based methods to improve the retrieval performance. The discussion of the
optimal bin-width of the histogram is continued in Section 4.5 with emphasis
on color-based image retrieval applications.

4.2 Non-parametric Density Estimators

Methods to estimate probability distributions can be divided into two classes,
parametric or non-parametric methods. Parametric density estimation requires
both proper specification of the form of the underlying sampling density fg(z)
and the estimation of the parameter vector . Usage of parametric methods
has to take into account two types of bias: the estimation of # and incorrect
specification of the model fy. Non-parametric methods make no assumptions
about the form of the probability density functions from which the samples are
drawn. Non-parametric methods require therefore more data than parametric
methods because of the lack of a ”parametric backbone”. A typical color image
contains 100,000 color pixels, and the structure of its underlying distribution
can (and will) vary from image to image. Therefore non-parametric methods
are more attractive in estimating color distributions of images.

4.2.1 Histogram

The oldest and most widely used non-parametric density estimator is the his-
togram. Suppose that {Xi,..., Xy} is a set of continuous real-valued random
variables having common density f in an interval (a,b). Let I = {I,,} be
a partition of (a,b) into M disjoint, equally sized intervals, often called bins,
such that a=ty<t; <...< tpyr =b,t;p1 = t; + (b —a)/M. Let h denote the
length of the intervals, also called the smoothing parameter or the bin-width,
and H,, = #{n : X, € I,,1 < n < N} be the number of observations in
bin I,,. The histogram estimator of f, with bin-width h and based on the
regular partition I = {I,,} s at a point = € I,,, is given by:

A 1
x,h)=—" H 4.1
One of the main disadvantages of histograms is that they are step functions.

The discontinuities of the estimate originate usually not in the underlying den-

sity but are often only artifacts of the selected bin locations. To overcome

this limitation the frequency polygon was proposed in (Scott, 1992). It is the
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continuous version of the histogram which is formed by interpolating the mid-
points of a histogram. Still, both the histogram and the frequency polygon
share their dependency on the choice of the positioning of the bin edges, es-
pecially for small sample sizes. For multivariate data, the final shape of the
density estimate is also affected by the orientation of the bins. For a fixed
bin-width, there is an unlimited number of possible choices of placements of
the bin edges. Further information about the effect of the placement of bin
edges can be found in (Simonoff and Udina, 1997). In (Scott, 1985) Scott pro-
posed averaging over shifted meshes to eliminate the bin edge effect. This can
be shown to approximate a kernel density estimator which is described in the
next section.

4.2.2 Kernel Density Estimators

We define a kernel as a non-negative real function K with [ K(z)dz = 1.
Unless specified otherwise, integrals are taken over the entire real axis. The
kernel estimator fx at point x is defined by

n=1 (4.2)

As before, h denotes the window width, also called the smoothing parameter
or the bandwidth, and N denotes the number of sample data and the scaled
kernel is Kj(u) = h= 1K (u/h).

The kernel K is very often taken to be a symmetric, unimodal density such
as the normal density. There are many different kernel functions but in most
applications their performance is comparable. The choice between kernels is
therefore often based on other grounds such as computational efficiency (Wand
and Jones, 1995). Multivariate densities can also be estimated by using high
dimensional kernels.

The analysis of the performance of estimators requires the specification of
appropriate error criteria for measuring the error when estimating the density
at a single point as well as the error when estimating the density over the whole
real line. The mean squared error (MSE) and its expected value, mean inte-
grated squared error (MISE) are widely used for this purpose. Scott shows the
deficiency of the histogram method over the kernel density estimator (Scott,
1979). The mean integrated squared error (MISE) of the histogram is asymp-
totically inferior to the kernel density estimator since its convergence rate is
O(n~2/3) compared to the kernel estimator’s O(n~%/?) rate.
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Naturally the superior performance of kernel density estimators in estimat-
ing the underlying probability distributions over the histogram-based method
suggests that the application of kernel based methods in CBIR instead of his-
tograms might improve the retrieval performance. In the next section we will
examine whether better estimators always give better retrieval performance or
not.

4.3 Density Estimators for CBIR

Our aim is to describe the color information of images by a set of numbers and
use these numbers for indexing the image database. For histograms, we can
use the histogram values as the descriptors of the images. For kernel density
estimators there are many more options to choose such a set of numbers. A
straightforward way is to sample them at points on a grid such as the centers of
the corresponding histogram bins. These descriptors, derived from histograms
and kernel-based methods, are compared in the following experiments.

In the experiments we first computed the hue values from RGB images using
the conversion in (Plataniotis and Venetsanopoulos, 2000, p.30). The following
sets of 16 numbers are computed to represent the hue distribution in an image:

e The histogram-based method uses 16 bins of one-dimensional hue his-
tograms with bin-width = 1/16. The bin centers are located at X1 =
{1/32:1/16 : 31/32} (in Matlab-notation).

e The kernel-based method uses the normal density as the kernel to esti-
mate the values of the hue distributions at the 16 positions Xi4. The
bandwidths are chosen by using either a constant bandwidth for all color
images in the database, or using different bandwidths for different images.
In this case the bandwidth is optimized for each image and a normaliza-
tion process is needed to compensate the differences between bandwidths.
Here we normalized the coefficients by a factor so that their sum equals 1.

There are many methods of automatically selecting an ”Optimal” value of
the bandwidth h for kernel density estimators but none of them is the over-
all "best” method. Wand and Jones (Wand and Jones, 1995) suggest that
the Solve-The-Equation (STE) method offers good overall performance. We
chose STE to find the optimal bandwidth in this set of experiments (it should,
however, be mentioned that the STE method is worst when the underlying dis-
tribution has large peaks, which is not the case for hue and color distributions
of images).

For each of the kernel-based methods mentioned above, an optimal band-
width value is chosen together with an over-smoothed, (10% of the optimal
value), and an under-smoothed, (10 times the optimal value) value. In total
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seven methods are compared. The histogram-based estimation is denoted by H
and the kernel-based methods by K. In detail the experiments are denoted as
follows:

H  Histogram method using bin centers at X6 = {1/32:1/16 : 31/32}

K; Kernel-based method using Eq. 4.2 to estimate hue density at 16
positions Xi4. Optimal bandwidths are computed for each image
using the STE algorithm.

Ky The same as K except using an undersmoothed bandwidth, which
is 10% of the optimal bandwidth for the image.

Kio Bandwidth is oversmoothed, ie. 10 times the optimal bandwidth for
the image.

Kp Bandwidth is the mean value of the optimal bandwidths for all im-
ages in the database.

Kpy Bandwidth is undersmoothed, ie. 10% of the value used in Kp

Kpo Bandwidth is oversmoothed, ie. 10 times the value used in Kp

These descriptors are then used to describe color images in an image re-
trieval application. The MPEG-7 database with 5466 color images and 50 stan-
dard queries is used to compare the retrieval performance of different methods.
The average results are shown in Table 4.1.

Method ANMRR
H 0.38
Koy 0.57
K 0.47
Ko 0.43
Kpy 0.54
Kp 0.45
Kpo 0.38

Table 4.1: Compare histogram and standard kernel-based method in CBIR.
ANMRR of 50 standard queries.

In all our CBIR experiments, the Euclidian distance of their descriptors is
used to compute the distance between images. The retrieval performance is
measured using the Average Normalized Modified Retrieval Rank (ANMRR).
The detailed description of ANMRR has been presented in section 3.5. Just
mentioned briefly that the lower values of ANMRR indicate better retrieval
performance.

We also did the same experiments for the two-dimensional chromaticity
descriptors xy (from the CIEXYZ system). In this case we used 8 x 8 = 64
numbers as descriptors. For three-dimensional RGB color distributions we
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computed an 8 x 8 x 8 = 512 dimensional description of all images in the
MPEG-7 database. The results are collected in Table 4.2.

Method (x,y) | RGB
H 0.38 | 0.23
Ky 0.69 | 0.77
Ky 0.62 | 0.70
Kro 0.64 | 0.54
Kpu 0.69 | 0.79
Kp 0.56 | 0.71
Kpo 0.41 | 0.45

Table 4.2: Retrieval performance of different methods in CBIR using estimated
chromaticity density (xy) and RGB density as the color descriptors of images.

In the next experiment, we selected a set of 20 images, 10 of them from
standard queries, and the other 10 were standard image processing images
such as Lenna, Peppers, Mandrill, Parrots, etc. From each of these 20 images
a new set of 20 images was generated by adding noise and sub-sampling the
images. This resulted in a set of 420 images. The parameters that control the
generated images are:

e the percentage of sampled pixels
e the percentage of pixels with added noise and
e the range of the noise magnitudes

The noise is uniformly distributed. Each set of 20 generated images is intended
to have similar color distributions as the original image. We then take these
20 images as the ground truth when retrieving the original image. The average
results of 20 different queries are collected in Table 4.3.

Our experiments show that histogram-based methods outperform simple
kernel-based methods in color-based image retrieval applications. This may be
one of the reasons why we found only one paper (Gevers, 2001) using kernel-
based methods for image retrieval (in this paper kernel-based methods are
shown to be robust against noise in image retrieval application using a small
dataset of 500 images). Another reason is that kernel-based methods are very
time-consuming. Using the KDE toolbox (Baxter et al., 2000) each kernel-
based method takes about two days of computation with a standard PC to
estimate the color distributions at 512 points of all images in the MPEG-7
database.
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Method Hue desc. | (a,b) desc. | RGB desc.
H 0.36 0.20 0.16
Ky 0.64 0.68 0.66
K; 0.44 0.53 0.68
Ko 0.52 0.52 0.32
Kpu 0.53 0.63 0.67
Kp 0.42 0.53 0.65
Kpo 0.31 0.28 0.25

Table 4.3: Compare histogram and standard kernel-based method in CBIR.
ANMRR of 20 queries based on 420 noise-generated images.

4.4 Series Expansions and Kernel-based Descrip-
tors in CBIR

Computational complexity and low retrieval performance are the two main
reasons that suggest that histograms are better for CBIR than kernel-based
descriptors. The features are, however, only computed once when the images
are entered into the database and they can therefore be computed off-line. The
limited retrieval performance is more critical. In this section we present two
applications of kernel density estimators in CBIR and show that they improve
the retrieval performance in CBIR and make them superior to the histogram
method.

4.4.1 Basis expansions

Instead of simply using the estimated values of the underlying distribution
at only few specific values, one could expand the full distribution using M
coefficients {a,, }s in a series expansion (in some predefined system given by
basis functions {b,,(z)} )

A M
@)~ fx(@) = Y aumbn() (4.3)

If the basis functions {b,,(x)} s is orthogonal, the coefficients {a,, } s can
be computed simply as

Oy = <fK, bm> (4.4)

If the basis functions {b,,(z)} s is not orthogonal, the Gram-Schmidt algorithm
can be used to compute the coefficients {a,, }rr as follows:
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a1 = <fK,b1>
g = <fK —aq - bl,bz>
= <fK,bz> — oy - (b1, b2)
om = ficsbm) — mz_:l ot (b, b (4.5)
=1

Here (f,g) denotes the scalar product of the functions f(x ) and g(z). In the
following it is mainly defined as the integral (f,g) = [ f(x ) dx but other
definitions are possible and useful. Since both the functlons {b (x)}ar and
the kernel K are known the coefficients {c, } s can be analytically computed
using Eq. 4.5. For the case where the kernel is a Gaussian and the basis
functions are shifted Gaussians centered equally at {Y,,} using the same

standard deviation s:
1 (1’ - )m)Q
m B — - - _ & 4-
b (x) = NeT: exp{ 552 } (4.6)

they are computed with the help of the following derivations:

= % Y Kn(z—Xp) =) mbm(z) (4.7)

Here the first equation is the definition of the density estimate and the sec-
ond equation describes the fact that the estimate is expanded in the shifted
Gaussians. We thus have:

<fKabm> = | fr(@)bm(x)da
%Nh é/ { 2};’2@1)2 (@ ;:;m)z}dx

—

(4.8)

and

by, br) = /bk(x)bl(x)dx _ 23% exp {—%} (4.9)
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The Gram-Schmidt procedure in Eq. 4.6 can be easily extended to higher
dimensions. The following is the solution for the d-dimensional case:

A _ ZnNle(xl_Xlia---axd_Xdi)

Tiyeooy T 4.10
fre (21 d) NI (4.10)
bm(xla ,J/'d) -
1 — Ym 24+ Qj‘d—Ymd)Q (411)
(27r) a/2 exp{ _ ( 1 1) o ( }
< AK(xla 7:Ed)7bm(x17 7=Td)> -
d N d
Xz - Ym' 2 (412)
% H : ZeXp _2(222 ;)
j=1 277'(]1? + 52) n=1 j=1 ( J +s )
d d 2
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We tested these algorithms in an experiment using the hue distributions
from the MPEG-7 database. Here we have to specify two parameters: the
smoothing parameter h and the width s of the Gaussian. Table 4.4 presents
some of the results with different values of h and s.

s | R/hopt | ANMRR || s | h/hop | ANMRR
0.01 | 0.1 0410 [l 005 | 0.1 0.388
0.0l | 0.3 0409 || 0.05 | 0.3 0.388
0.01 1 0.406 || 0.05 1 0.389
0.01 3 0.397 || 0.05 3 0.391
0.01 10 0.370 || 0.05 10 0.403
0.025 | 0.1 0.373 || 0.1 0.1 0.480
0.025 | 0.3 0.373 || 0.1 0.3 0.480
0.025 | 1 0.373 || 0.1 1 0.480
0.025 | 3 0371 || 0.1 3 0.481
0.025 | 10 0.374 || 0.1 10 0.491

Table 4.4: Gram-Schmidt method for hue distributions of MPEG-7 database.

Our experiments show that with good choices of the smoothing parameter
h and the width of the Gaussian s, the Gram-Schmidt-based method gives
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a better retrieval performance than the histogram and simple kernel-based
methods. For example if h is chosen as 10 times the optimal value given by
the STE algorithm and s = 0.01, then the ANMRR is 0.37 which is smaller
than values given by both histogram and simple kernel-based method given in
Table 4.1

The experiments also show that the Gram-Schmidt method is less sensitive
to the choice of the smoothing parameter A compared to the simple kernel-
based methods. However, it is still sensitive to the choice of the basis which is
the width s of the Gaussians in this example.

4.4.2 Fourier transform-based method

Using the Fourier transform is another way to describe the estimated hue distri-
butions. It is well-known that the Fourier transform is the optimal transform
for many problems that are (like the hue distributions) defined on a circle.
In our application it is especially interesting that the Fourier transform of
shift-invariant processes is closely related to the Karhunen-Loéve transform of
these processes. Computing the Fourier coefficients of the hue-distributions
and keeping only the most important coefficients is thus a promising approach
to obtaining a compressed description of hue distributions. This approach will
be developed in the following.

Given the estimated hue distribution
fr(z,h) ZK {(z = Xn)/h}

as in Eq. 4.2, its Fourier transform Fg (y, h) is computed as the follows:

Tic(y,h) = / fic(, ) - exp(~izy)dr
/ZK{ x— X,)/h} - exp(—iyx)dx
= % Z /K(t) -exp{—iy(ht + x,,) }dt (4.14)
{Zexp — YTy, }/K - exp(—iyht)dt
N
{Z p(—iyzy, }f](f(yh)

2|H

ZIH
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where X is the Fourier transform of the kernel K. It should be noted here
that the factor Zi:;l exp(—iyx,) of the Fourier transform F (y, h) in Eq. 4.14
is independent of the kernel and the smoothing parameter h. It can thus be
computed from the data once and then new estimates with different kernels
and smoothing parameters can be computed without accessing the data again.

The distance between two images I, I5 is defined as the distance between
the two corresponding hue distributions fi(x,h) and fa(x, h). Using Parseval’s
formula it is given by

d<117[2) = d(fl(xvh)’f2(xa h)) = <f1(x,h),f2(l’,h)>

1 (4.15)
=5 < F1(y,h),Fa(y, h) >

In our case the Fourier transform is actually a Fourier series since the func-
tions are all defined on the circle. We can thus describe the two Fourier trans-
forms by selecting the coefficients of the most important frequencies

{n(l,m), n(27m)} With m = 0, oM

and approximate the distance between the two images by the inner product of
two low dimensional vectors:

d(Ii,12) = % Zn(l,m) “T(2,m) (4.16)
Method ML MD
Biweight kernel, h = 0.2 0.4786 | 0.4954
Biweight kernel, h = 0.05 0.4749 | 0.4946
Biweight kernel, h = 0.008 0.4748 | 0.4945
Biweight kernel, h = 0.0056 0.4748 | 0.4945
Biweight kernel, h = 0.001 0.4748 | 0.4945
Biweight kernel, h = 0.0002 0.4748 | 0.4945
Triangular kernel, h = 0.001 0.4748 | 0.4945
Normal kernel, A = 0.001 0.4748 | 0.4945
Epenechnikov kernel, h = 0.001 0.4748 | 0.4945

Table 4.5: The retrieval performance improvement of the My method over Mp
method of selecting the coefficients of the most three important frequencies for

CBIR.

The straightforward way (we call this method Mp) of selecting the coeffi-
cients of the most important frequencies is to take the lowest frequencies, which
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gives us the best solution to reconstruct the underlying density. However, it
has been shown in (Tran and Lenz, 2001b) that for image retrieval applica-
tions where only similar images are of interest, the retrieval performance can
be improved by choosing the frequencies which give the best solution for recon-
structing the differences between similar densities. We call this method M.
In detail the coefficients of the most important frequencies in Mj;, method are
obtained as follows:

e 100 images are randomly chosen from the image database, called set S.
Take each image in set S as the query image and find the 50 most similar
images from the database.

e Estimate the differences between the query image and the 50 most similar
images, and their Fourier coefficients. Totally 100 x 50 = 5000 entries are
computed.

e The coefficients of the most important frequencies are selected as the
frequencies which give the biggest mean of the magnitude for the whole
set of the above 5000 entries.

Histogram and Fourier transform-based methods

1 T T T T
—— Histogram-based method
-— Fourier transform-based method

ANMRR

0.2 1 1 1 1

Number of coefficients

Figure 4.1: Retrieval performance of histogram and Fourier transform-based
method using triangular kernel, the smoothing parameter A = 0.0056.
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Our experiments show that only small improvement is achieved by using the
M7, method. The most clear case is when 3 coeflicients are used. Some of the
comparisons are presented in Table 4.5. This method, too, can be generalized to
higher dimensional spaces of chromaticity (2-D) and color distributions (3-D).
In the following we select a few results obtained in our experiments.

We evaluated the performance of the method with the MPEG-7 database.
Fig. 4.1 shows an example of the retrieval performance of the Fourier transform
method using a triangular kernel with smoothing parameter A = 0.0056. It
shows that the Fourier Transform method has a better performance than the
histogram method, especially for a small number of parameters. The next
figure, Fig. 4.2, illustrates the dependency of the retrieval performance of the
Fourier transform-based method on the smoothing parameter h. The different
curves correspond to different numbers of Fourier coefficients used.

Fourier transform based method using triangular kernel

6 coefficients

7 coefficients

8 coefficients

0.36 .
m . .
% 10 coefficients
Z
<

20 coefficients
032F | - _ o e e e e e e e e e e 5
30 coefficients
50 coefficients
0.28

0.2 0.008 0.002 0.001 0.0005 0.0003
Smoothing parameter h

Figure 4.2: Retrieval performance of Fourier transform-based method using
triangular kernel with different smoothing parameters.

From the results of our experiments we draw the following conclusions:

e Using the same number of coefficients, the Fourier transform-based method
gives a better retrieval performance than the histogram and the Gram-
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Fourier transform methods using very smoothed kernels

05
Logistic
Normal
—— Epanechnikov
Laplace
0.45 Re_ctangular
— — Triangular
— Biweight
— Triweight
0
74
= 04
Z
< Logistic
Normal
0.35f

Epanechnikov

Laplace
. Rectangular

Biweight

Triweight

0.3 1 1 1 1 1
2 10 20 30 40 45

Number of coefficients

Figure 4.3: Retrieval performance of Fourier transform-based method using
different kernels with smoothing parameter h = 0.05.

Schmidt method. For example using 10 Fourier coefficients gives a re-
trieval performance as good as using 23 coefficients from a histogram.
This is illustrated in Fig. 4.1.

e Using a larger smoothing parameter h gives a better retrieval perfor-
mance. However the performance does not change for h below 0.005.
We tested 30 different smoothing parameters ranging from 0.0001 to 0.2.
Fig. 4.2 shows how the retrieval performance depends on both the number
of coefficients and the smoothing parameters.

e Using different kernels gives comparable retrieval performance when the
kernel is not over-smoothed. When h < 0.01 all kernels had identical re-
trieval properties. Seven different kernels (Epenechnikov, Biweight, Tri-
weight, Normal, Triangular, Laplace, Logistic, detailed definition of ker-
nels can be found in (Wand and Jones, 1995)) were tested. Fig. 4.3 illus-
trates the retrieval properties of different kernels when an over-smoothed
kernel with A = 0.05 is used. For values of h below 0.01 there is no
difference between the different kernels.
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4.5 Optimal Histogram Bin-width

For very large image databases it is computationally very expensive to use the
kernel density estimators to estimate the color distributions for all images in
the database. Thus the histogram method, which is much faster and gives
comparable retrieval performance, is still an attractive alternative in many
cases. We saw earlier that the most important, freely selectable parameter
is the size of the bin width. It is often selected by rules of thumb or using
statistical methods. In this section we investigate the retrieval performance of
several rules to select the bin width. We will show that these existing statistical
methods are not very useful in image database retrieval applications since their
goal is the faithful description of statistical distributions whereas the goal of
the database search is a fast comparison of different distributions.

Finding an optimal number of bins of histograms is an active research prob-
lem in statistics. There are many papers in the field describing how to find this
optimal number of bins in order to estimate the underlying distribution of
given generic data (Sturges, 1926; Akaike, 1974; Scott, 1979; Rudemo, 1982;
Scott, 1985; Devroye and Gyorfi, 1985; Scott, 1992; Kanazawa, 1993; Wand,
1996; Birge and Rozenhole, 2002). It is optimal in the sense of minimizing
some statistics-based error criteria (such as the MSE or MISE). In most CBIR
papers, however, this parameter is selected without further comment. One pa-
per that investigates this problem is (Brunelli and Mich, 2001) in which two
algorithms (Sturges, 1926; Scott, 1979) have been applied to find the optimal
number of bins of histograms. The reason why they are appropriate for CBIR
applications is also discussed in this paper.

The first, and oldest, method they used is a rule of thumbs suggested by
Sturge (Sturges, 1926). It is given by:

A

- Tont (4.17)

where A is the range of the data, n is the number of data entries and it
gives 1 4 logy(n) bins. Such methods are still in use in many commercial soft-
ware packages for estimating distributions although they do not have any type
of optimality property (Wand, 1996). The optimal number of bins (Sturges,
1926) given by Sturges depends mainly on the number of data entries, which
is the size of the image in this case. For small sized images of around 200x160
pixels, it always gives around 16 bins independently of the properties of the
underlying color distribution.

The second method they used was introduced by Scott (Scott, 1979) with
an optimal bin-width:
RSeort = 3.496n /3 (4.18)
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where ¢ is an estimate of the standard deviation. This method is similar to
some other methods like (Devroye and Gyorfi, 1985; Kanazawa, 1993; Freedman
and Diaconis, 1981). They are all based on the evaluation of the optimal
asymptotic value of the bin-width. In such methods, unfortunately, the optimal
bin-width is asymptotically of the form Cn~'/3 where C is a function of the
unknown density to be estimated and its derivative. Since an estimation of C
involves complicated computations, most authors suggest a rule of thumbs to
evaluate it, typically pretending that the true density is normal. Some optimal
bin width of the estimators in these classes are given below:

hDevroye = 2.726m1/3 (4.19)
hianazawa = 2.296n~ /3 (4.20)
where & is an estimate of the standard deviation. A more robust version is

given by Freedman and Diaconis (Freedman and Diaconis, 1981) using the
Inter-Quartile Range (IQR) value:

hFreedman = QIQRn_l/?’ (421)
Method hue | x y R G B
Scott as in Eq. 4.18 68 | 170 | 231 | 65 | 67 | 67
Freedman in Eq. 4.21 87 | 293 | 559 | 78 82 81
Devroye in Eq. 4.19 87 | 118 | 297 | 83 | 86 | 86
Kanazawa in Eq. 4.20 103 | 259 | 353 | 098 | 102 | 102
Scott in Eq. 4.23 68 67 | 89 14 15 15
Akaike in Eq. 4.22 749 - - - - ,
Birge [Birge 2002] 681 - - - - -

Table 4.6: Theoretically optimal number of bins.

There are other classes of methods for estimating the optimal number of
bins. Methods based on cross-validation have the advantage of avoiding the
estimation of an asymptotic function and directly provide a bin-width from the
data (Rudemo, 1982). Different penalties like the ones in (Akaike, 1974; Birge
and Rozenholc, 2002) can also be used to improve the results, see (Birge and
Rozenholc, 2002) for a comparison of different methods in estimating probabil-
ity distributions. The optimal number of bins estimated by Akaike’s method
is given by

nb
- N,
nbAkaike = SUP { E N, 10g(nbn By 41— nb} (4.22)
k
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Figure 4.4: Average value of ANMRR of 50 standard queries on the MPEG-7
database. Images are described by one-dimensional hue histograms using differ-
ent numbers of bins ranging from 8 to 64 and different down-sampling methods
to test the effect of image size on retrieval performance. For each image, 4 hue
histograms are computed from: 1-the original image, 2-the down-sample image
with sampling factor k = 1/2 = 0.5 in both vertical and horizontal directions,
3-the down-sample image with £ = 1/4 = 0.25, and 4-the down-sample image
with £ =1/8 = 0.125.

There are few investigations of multivariate histograms. Scott (Scott, 1992)
has proposed an algorithm for estimating the optimal bin-width of multivariate
histograms as follow:

hscortns = 3.496n~ 7 (4.23)
where d is the number of dimensions of the underlying multivariate histograms.

Using the above procedures, we computed the theoretical optimal bin-width
for the estimation of the hue, (x,y), and (R, G, B) distributions of the images
in the MPEG-7 database. The results are collected in Table 4.6.

In order to evaluate the optimal number of bins given by statistics-based
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method for CBIR, We did some experiments using different bin-width for
color image retrieval. These results will then be compared to the results ob-
tained from the statistical methods shown in Table 4.6. We used the MPEG-7
database with 50 standard queries. Images are described by hue, (x,y), and
RGB color histograms using different bin-widths. The results are collected in
Fig. 4.5, 4.6, and 4.7. They showed that the empirical methods give much
smaller values than the values given by statistical methods (Akaike, 1974;
Scott, 1979; Rudemo, 1982; Scott, 1985; Devroye and Gyorfi, 1985; Scott,
1992; Kanazawa, 1993; Wand, 1996; Birge and Rozenholc, 2002).

Retrieval performance of hue histogram method
1 T T T T T T T

1 50 100 150 200 250 300 350 400

Figure 4.5: Average of ANMRR of 50 standard queries on the MPEG-7
database. Images are described by one-dimensional hue histograms using dif-
ferent numbers of bins ranging from 1 to 400. A closer look at values between 1
and 50 is shown in Fig. 4.1. Values between 20 and 30 seem to be the best num-
ber of bins of one-dimensional hue histograms since the retrieval performance
does not increase significantly when the number of bins gets over 20.

The statistical methods all recommend that the number of bins increases
with the sample size. This is reasonable from a statistical estimation point of
view but it is a drawback for CBIR applications since those applications require
descriptions with as few parameters (bins) as possible for efficient search. The
next experiment also shows that the empirical retrieval performance is almost
independent of the image size suggesting a different strategy to select the bin
number. In Fig. 4.4 we measure the retrieval performance for 50 standard
queries on the MPEG-7 database using different image sizes: original size, 1/4,
1/16, and 1/64 image size. It shows that the performance is almost independent
of the size of images. The results in (Brunelli and Mich, 2001) (based on
Eq. 4.18) are valid only for small images (which is the case for their video and
image databases).

The reason why all the statistical methods (Sturges, 1926; Akaike, 1974;
Scott, 1979; Rudemo, 1982; Scott, 1985; Devroye and Gyorfi, 1985; Scott,
1992; Kanazawa, 1993; Wand, 1996; Birge and Rozenholc, 2002) fail when
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Retrieval performance of (x,y) histogram method

1 T T T T T

ANMRR

0.2 ! ! ! ! !
1 10 20 30 40 50 64

Figure 4.6: Average of ANMRR of 50 standard queries on the MPEG-7
database. Images are described by two dimensional (x,y) chromaticity his-
tograms using different numbers of bins ranging from 1 to 64 in each dimension
x and y making the number of bins in two-dimensional space range from 1 to
642 = 4096. Using 8 to 10 intervals in each direction x and y seems to be
the best value for the number of bins in each dimension in this case since the
retrieval performance does not increase significantly when the number of bins
exceeds 10.

applied to CBIR applications is that they all define their own cost functions
which is integrated over the whole support (the mean integrated squared er-
ror, MISE, is very often used) in order to optimize the bin-width h. CBIR
applications, however, use only a few estimated values from the data set as a
compact description of the image, not all the data. Another important issue is
that CBIR applications require fast response, a compact descriptor using only
few parameters and giving a reasonable retrieval performance in many cases is
more useful than a very complicated descriptor with just a slightly better re-
trieval performance. This is seen in Fig. 4.5, Fig.4.6, and Fig.4.7 which present
results from our experiments using hue, (x,y), and RGB histograms. They all
show that the improvement in retrieval performance is very small when the
number of bins increase more than some threshold. Particularly for 3-D RGB
histogram, the retrieval performance decreased when too many bins were used.
So there is definitely a clear difference between the optimal number of bins
given by the best value based on statistical criteria and the optimal bins for
color-based image retrieval. Also we see that over-smoothed bin-width works
better for image retrieval. This explains why a good estimator does not always
give good descriptors for image retrieval as our experiments have confirmed in
the previous sections.

A very simple way to take into account the influence of the deficiency of
using too many bins in CBIR is to define a penalty as the number of bins
increases. For example, a modified version of Akaike’s method (Akaike, 1974)
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RGB histograms
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Figure 4.7: Average of ANMRR of 50 standard queries on the MPEG-7
database. Images are described by three-dimensional RGB histograms using
different numbers of bins ranging from 2 to 16 in each dimension. 8 seems to be
the best value for the number of bins in each dimension of the three-dimensional
RGB histograms.

given below shows more reasonable results when applying statistical methods
of finding the optimal number of bins of histograms in CBIR applications:

CBIR __
nbAkaike -

nb
. N 4.24
sup {Z Ng log(nbn k) +1—nb— Penalty(nb)} (4.24)
k

where Penalty(nb) is a penalty function of the number of bins nb. Different
penalty functions give different results when optimizing the number of bins.
Table 4.7 shows some of the results of our experiments for hue distributions (See
the second column of Table 4.6 and Fig.4.5 for comparison). By introducing
the penalty function which take into deficiency of using too many bins in CBIR,
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the number of bins we got from optimization process is closer to the empirical
numbers in Fig. 4.5, Fig.4.6, and Fig.4.7.

Penalty function Optimal bins
Penalty(nb) = 1 - (nb)!® 38
Penalty(nb) = (nb)!> 24
Penalty(nb) = 2 - (nb)1> 17

Table 4.7: Theoretically optimal number of bins using Akaike’s method to-
gether with a penalty function on the number of bins as described in Eq. 4.24.

4.6 Summary

In color-based image retrieval, images are assumed to be similar in color if
their color distributions are similar. However this assumption does not mean
that the best estimator of the underlying color distributions always gives the
best descriptors for color-based image retrieval. Our experiments show that
the histogram method is simple, fast, and outperforms simple kernel-based
methods in retrieving similar color images.

In order to improve the retrieval performance of kernel-based methods, two
modifications are proposed. They are based on the use of non-orthogonal
bases together with a Gram-Schmidt procedure and a method applying the
Fourier transform. Experiments were done to confirm the improvements of our
proposed methods both in retrieval performance and simplicities in choosing
smoothing parameters.

In this chapter we also investigated the differences between parameters that
give good density estimators and parameters that result in good retrieval per-
formance. We found that over-smoothed bin-widths of density estimator, for
both histogram and kernel-based methods, gives better retrieval performance.



Chapter 5

DIFFERENTIAL
GEOMETRY-BASED
COLOR DISTRIBUTION
DISTANCES

In this chapter, a differential geometry
framework is used to describe distance
measures between distributions in a fam-
ily of probability distributions. The way
to incorporate important properties of
the underlying distributions into the dis-
tance measures in the family is also dis-
cussed. Examples of simple distances be-
tween color distributions of two families
of distributions are derived as illustrations
of the framework and a theoretical back-
ground for the next chapter.
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5.1 Measuring Distances Between Color Distri-
butions

Almost all image database retrieval systems provide color as a search attribute.
This can be used to search for images in the database which have a color
distribution similar to the color distribution of a given query image. In most
systems the color histogram is used to represent the color properties of an
image.

Once a description of the color distribution has been chosen, the next prob-
lem in color-based image retrieval applications is the definition of a distance
measure between two such distributions and its computation from their de-
scriptions. Ideally the distance measure between color distributions should
have all basic properties mentioned in section 3.4 such as perceptual similarity,
efficiency, scalability, robustness, etc.

0.2 En -1
~—  Histogram p(l)
— Histogram p(z)
— — Histogram p(3)
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Figure 5.1: Shifted histograms.

Many histogram-based distance measures, however, are derived heuristi-
cally and may violate some of these properties. A very simple example, when
correlation-based similarity measures give undesirable results, is illustrated in
Fig. 5.1. Here many distance measures which do not take into account the
color properties of the underlying distributions would assign the same distance
to histograms p(*) and p® as to histograms p(*) and p®. Although it seems
to be reasonable to require dist(pM), p(?)) < dist(pY), p®)).
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In this chapter we propose a framework to compute the distance between
color distributions based on differential geometry. In the framework of Rieman-
nian geometry the distance between points on the manifold is defined as the
length of the geodesic curve connecting these points. This is a generalization
of the Euclidean distance and has the advantage that it only depends on the
geometrical properties of the manifold. It is thus independent of the coordi-
nate system used to describe this geometry. This approach gives a theoretically
convincing definition of a distance and many existing distance measurements
fall within this framework.

In the next section, the basic idea of a distance measure in a paramet-
ric family of distributions is presented briefly together with the connection to
some existing distance measures. Some limitations when applying this method
in measuring the distance between color distributions are also pointed out. A
framework with an example of how to overcome the limitations is introduced
in section 5.3. As illustrations for the new framework, distances between dis-
tributions are computed for two families of distributions: the family of normal
distributions (as a simple example), and the family of linear representations of
color distributions (as the theoretical background for the next chapter).

5.2 Differential Geometry-Based Approach

Comparing probability distributions is one of the most basic problems in prob-
ability theory and statistics. Many different solutions have been proposed in
in the past. One of the, theoretically, most interesting approaches uses meth-
ods from differential geometry to define the distance between distributions of
a parametric family, all of whose members satisfy certain regular conditions.
This approach was introduced by Rao (Rao, 1949) and is described briefly in
the following (for detailed descriptions see (Amari, 1985; Amari et al., 1987)).

5.2.1 Rao’s Distance Measure

We denote by 0 = (61, 6a, ..., 0,.) a vector of r (r > 1) parameters in a parameter
space © and by {p(z | 0),0 € ©} a family of probability density functions of
a random variable X. Each distribution in the family is described by a point
in parameter space ©. We want to measure the distance d(6;,602) between the
distributions which are identified by the parameter values 6; and 6, in the
parameter space O.

In order to compute the distance d(61,62), the metric at each point in
the space © should be defined. Considering the metric locally around point
0 = (01,02,...,0,), let 0 = (01 + dbfy,05 + dbs, ..., 0, + d,.) be a neighboring
point of € in the parameter space ©. To the first order, the difference between
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the density functions corresponding to these parameter points 6 and 0 is given
by
5 — Ip(z | 0)
P 0) = pla|6) = Y = —db; (5.1)
i=1 ¢
and the relative difference by
p(z | 0) —p(x | 6)
p(z | 0)

xw12WM (5.2)

dX =

Nzalnpxw 0,

These distributions summarize the effect of replacing the distribution 6 =
(01,02, ...,0,) by 0 = (01 +dby,05+4dbs, ...,0,.+db,.). In particular, Rao consid-
ers the variance of the relative difference dX in Eq. 5.2 to construct the metric
of the space ©. The distance between the two neighboring distributions is then
given by

— dlnp(X | §) dlnp(X | 6)
2 _ § : E ' E . .
"o i=1 j=1 { 00, 00, A0uh;

' ' (5-3)
i=1j=1
This is a positive definite quadratic differential form based on the elements of

the information matrix g;;(#) for © which is defined as the variance-covariance
matrix of

iy _ [ Olnp(X | 0) Olnp(X | 6) L
gi(0) = E{ 00, 20, with i,7 =1,2,...r (5.4)

Let
Q(t) : 01 = Gi(t), 1= 1,2, ey T (55)

denote an arbitrary parametric curve joining the two points #; and 6, in
space ©. Suppose t; and to are values of t such that

O1s = 0;(t1),00; = 05(t2), i =1,2,...,r (5.6)

In Riemannian geometry, the length of the curve in Eq. 5.5 between 6; and 65
is given by

| < 90, 00 ;
m@:/ > s 05 52t (5.7)

ta i,j=1
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The distance between the two distributions is then defined as the distance along
the shortest curve between the two points #; and 6.

dist(01,02) = minimize(s(61,05))
all 6(t)

o to r 8‘91‘ 393’ (5.8)
= migime | [ 2 9O 5

Such a curve is called a geodesic and is given as the solution to the Euler-
Lagrange differential equations (Courant and Hilbert, 1989):

igijé + iirwkez% =0, withk=1.n
1 1 1

where

.. —l[i ) _|_i ‘_|_i } (59)
ijk — 9 89@.9]]6 89] ki 89k92]

and
O(t1) = 01,0(t2) = 02

5.2.2 Rao’s Distance for Well-known Families of Distri-
butions

Although Rao’s approach provides a theoretically convincing definition of a
distance, its application has been difficult since the differential equations in
Eq. 5.9 are generally very difficult to solve analytically. In (Atkinson and
Mitchell, 1981) two other methods are described that can be used to derive
geodesic distances for a number of well-know distributions. The distances ob-
tained are given below (many of them are used widely in computer vision and
image processing)

A simplest example is the case of the family of normal distribution N (u, o).
The metric of this family is given by

(O | 2(80)°

ds® = 5 5
o o

and the distance between two normal distributions is given by:
dn, (N (py,01), N(p2,02)) = 2 x tanh™6 (5.10)

where ¢ is the positive square root of

(1 — p2)? 4+ 2(01 — 02)?

(1 — p2)? + 2(01 + 02)?
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For n-dimensional independent normal distributions the distance has the same
form as in Eq. 5.10

dn, (N (p1,01), N(pi2,02)) =2 tanh™'6; (5.11)
k=1
where
pn1 = (Mllvﬂ’Qla"'vﬂnl)
Ho = (M127N22>'--7ﬂn2)
01 = (0117021,---70711)
= (01270227~--70n2)
and

(i — pa2)? 4 2(0i — 042)?
0; =
‘ (pi1 — pi2)? + 2(o41 + 042)?
For the case of two multivariate normal distributions with common covariance

matrix, the distance is given by the Mahalanobis distance (for an application
in image database search see (Carson et al., 1997))

dir(N(p1, %), N(p2, %)) = (1 — p2)' 7 (i — ) (5.12)

and for multivariate normal distributions with common mean vector it is known
as the Jensen distance and given by

d3(N (1, S1)N (1, 52)) Zlog A (5.13)

where \; are the roots of the equation det(3; — A¥s) = 0.

In the general case when the two normal distributions of the family differ
in both mean vectors and correlation matrices, there is no analytical solution.
Other measures have to be used in this case. Simple ways are to combine the
Mahalanobis and Jensen distances or use the Bhattacharyya distance (Fuku-
naga, 1990, p.99)

dQB(N(:ul, 21)7N(:u2, 22)) =

1 o 1 det & (5.14)
Sy — p1a)'S ) 4 =1

gl = ) B (i — pi2) + 5 In e S, dot s

where ¥ = 0.5 x (X1 + X9).

The intrinsic mathematical difficulties involved in applying the differential
geometry framework to a particular family of distributions is not the only
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problem with this approach. A more fundamental problem is the negligence of
the "meaning” of the underlying distributions. In the case of color distributions,
for example, it does not consider the properties of the color space and the
relation between different colors and their similarities.

As an example consider the application of this method to compute the
distance of two color histograms in the space of all histograms of a certain size.
Following the above framework, the geodesic distance in this parameter space
can be computed analytically and is given by the arccos of the scalar product
of the histogram entries:

d(p(l)’p@)) = arccos (Zpl(.l)pf)) (5.15)

This distance is not a good measure between color distributions since it
does not take into account the similarity of the colors represented by the bins
(Sharing the problem mentioned previously in Fig. 5.1).

5.2.3 Color Distributions and Scale Spaces

One way to improve the distance measure in Eq. 5.15 is by using ideas from
the theory of kernel density estimation (Fukunaga, 1990) and scale-space the-
ory (Geusebroek et al., 2000) to define a range of similarity measures.

A kernel-based density estimation describes an unknown probability distri-
bution as the convolution of the data with a suitably chosen kernel K;(z) of
width s : ps(x) = p(x) * Ks(x) where p is the histogram. We now define the
similarity of two histograms p(!), p(?) at scale s as:

8,0, p®) = (pV(@) x Ky(2),p? () % K, (w)) (5.16)

Using the Parseval identity (Wolf, 1979) we can compute the scalar product in
the Fourier domain instead of in the time domain.

5.0, p?) = ()« Kol), 1 ) Ko )
o (V)R (), 5 1)K ())
= o= (VW) 1P WK ()

T (5.17)
= (p(@),p? (@) * Kfa) )

where p(y) and K,(y) are the Fourier transforms of p(z) and K, (), and K, ()

52
is the inverse Fourier transform of K (y).
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When the kernel K(x) is a Gaussian

Ks(x) = N(0,%) = e 2 (5.18)

K(y) = e v/ (5.19)

K3 (z) = \/g e /s (5.20)

and the similarity is then given by

N N
T —(k—1)?
So(p™M,p?)) = \/gZ Yoemw pln? (5.21)

=0 k=0

In an implementation it is important to note that the weight factor of the

B 2
product p,(:)pl@) (given by e~ 4 ) depends only on the distance (I — k)? of

the indices. For a fast computation of the distance at different scales it is thus
not necessary to store all the products p,il) pl(z) but it is possible to pre-compute

the partial sums
ma =3 (rpia + 0 p0 s ) (5.22)
k

_ A2
which are combined with the weights e to produce the distance value. This

metric is a special case of the histogram techniques described in (Hafner et al.,
1995) where fast implementations for image database searches are described.

We used the Vistex! database from MIT Lab to test the distance Eq. 5.21 at
different scales. Fig. 5.3 shows the search results for the color patch in Fig. 5.2
at three different scale factors. In this extreme example the histogram of the
query image consists of only one isolated peak. Smoothing this peak will result
in increasing intersection with nearby color regions as shown in Fig. 5.3.

The above method is an improvement for this special case, when color
distributions are described as color histograms. For the general case, when a set
of r parameters is used to describe a color distribution in Rao’s framework, we
have to integrate the color information into the distance measures, particularly
dealing with equations Eq. 5.1 and Eq. 5.2, where the metric is constructed
from the difference between the probabilities of the two distributions.

I'The VisTex database contains more than 400 images. Most of them contain homogenous
textures and some of the images are represented in different resolutions in the database.
Detailed information about the database is available at http://www-white.media.mit.edu/
vismod/imagery/VisionTexture/vistex.html.
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If we use the absolute difference Eq. 5.1 instead of the relative difference
Eq. 5.2, the metric of the new space is given by

050 = [[ 2GR G K .oy (5.26)

When the metric of the new space is defined, the geodesic distance between
color distributions can be computed by solving the equation systems Eq. 5.9
with the new metric {g;;} given in Eq. 5.25 and Eq. 5.26.

In the following we will illustrate the whole framework by two examples:
the family of normal distributions, and the family of linear representations of
color distributions. The first example is an illustration of the framework, while
the result of the second example will be used in the next chapter.

5.3.1 Space of Normal Distributions

An example is the space of normal distributions N(u, o, z). Each distribution
in this family is described by two parameters p and o.

p(p,0,2) = N(u,0,z)
_ V2 (s (5.27)

- 2o

In order to characterize the weights between parameters x and y, we use the
Gaussian type kernel K(z,y), which has a form similar to Eq. 3.7

K(z,y) = e (@v° (5.28)
The framework in Eq. 5.25 gives us
op(u, o, x) 1l 2—p _@w?
= (& 20
8,& 2 o3
_M 1 _M

op(p, o) 1 (x—p) et 1 e

0o B Vor ot V2mo?

, (5.29)
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and the metric {g;;} in the new parameter space can be computed as follows:

8 ,O’ZZ? 8 , 0, —x— 2
(o // (1 p(/gu Y) (z—y) drdy

// X — — )6— (12_;;)2 _ (1/2—0%)2 _(w_y)dedy
27r06

(1 + 40-2)3/2

Ip( ,JJ@ , o~ (e=1)”
s, // p(p, 0,2) Op(p, 00 y) 9 dndy

oo
(5.30)
Op(p,o,x) Op(1, 0,Y) _(ne?
o1 (1,0 // (1 p(l(; Z/) @=9)° gy
n
3 , 0, .I' 8 , 0, (p—)2
. // p(p p(;g Y) ~a—y) drdy
o
(1 + 40 )5/2
Eq. 5.30 gives the metric in this space as
2
(1+ 402)372 0
GNorm = lgw:| = 120-2 (531)
(1 + 402)5/2
This leads to the distance ds(u, o) at point 0(u, o) as
i,j=1
2(du)2 120’2(d0)2 (532)

T (11 402)372 " (14 402)5/2

_ (2w R0
(14 402)3/2 (14 402)5/2

Suppose now we have two color distributions which are represented by the
two points 01 (u1,01) and 6a(ug,02). Let 6(t) be an arbitrary curve connect-
ing 0(t1) = 01(u1,01) and O(t2) = O2(u2,02). In Riemannian geometry, the
geodesic distance d(61,62) is given by
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d(01,05) = minimize ( / ” ds(e(t>)>

to 2(/1/)2 120.2(0./)2
= minimi dt 5.33
miffl?aﬂze(/tl \/(1+402)3/2+(1+402)5/2 ) (533)

to
= minimize (/ F(t)dt)
all 0(t) .

B 2(p’)? 1202(0”)?
o= \/<1 T4 T (11 109

where

From the Calculus of Variation (see in (Courant and Hilbert, 1989, p.202))
the minimization problem in Eq. 5.33 is equivalent to the systems

OF
F—yu o const, say C, 550

F
F— O,F = const, say O},
o

or

2u/2
F- ~C,
F(1 + 402)3°

120202
F- =C
F(1+402)52 — 7"

(5.35)

where

e [ 22 120202
TN 40202 T (1 1 d02)52

=C,+

First we reduce Eq. 5.35 to

2(u')?
(1+ 4(5)2)(3/2 = (Co +Cp)Cy = Oy

2+(Z>(a()z/)>5/z = (Gt G)Ca =0

(5.36)

1
1
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Solving Eq. 5.36 gives us the solution of the geodesic curve

_3 1
7T\ P — gyt

(5.37)
3C1V3C 0, 5
=—F(t-0C3)"+C
a 2\/§ ( 3) 4
and
d(01(p1,01),02(p2,02))
(5.38)

— /311 + 407) /4 — (1 +403) /12 + 2V/2[ /iy — ri]?

which is the distance between the two normal distributions 6;(u;,01) and
02 (12, 02)).

5.3.2 Linear Representations of Color Distributions

The second example investigates linear representations of color distributions.
For a given set of N basis vectors b;, a histogram p can be parameterized by
the N parameters {6;}y defined by the description

p(k,0) = p(k,6:..0n)

= 0ibi(k)

=1

(5.39)

Different ways to compute the basics b;(k) define different linear represen-
tation methods of color distributions.

Applying the framework in the previous section for the new representation
in Eq. 5.39 we have
Ip(k)

00,

and the metric {g;;} of the histogram space in Eq. 5.25 can be computed as

follows
gi; = Y Y bi(D)bj(m)aim
l m

= b} Ab;

= b;(k) (5.40)

(5.41)

where A = [a;,,] is a symmetric, positive definite matrix defining the properties
of the color space. Each entry a;,, captures the perceptual similarity between
colors represented by bins [ and m as described in section 3.4.
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Suppose two color distributions p*) and p(*) in this general space are rep-
resented by two set of N parameters {9§1)} ~ and {92(2)} N

N
PV (k) =30V bi (k)
=1

N
PP (k) =30 b (k)
=1

Then the distance between the two distributions p*) and p(?) in this space is
given by

N N
d(p(l),p(z)) = Z Z gijAGiAﬁj (542)
g
where
Ab; =6 — ) (5.43)

The distance can be written in matrix form as

A, p®) = (o - p)TG D — p?)

(5.44)
= (Ap)"G(Ap)

where G

is the metric in the new N dimensional parameter space which is expanded by
the basics {b;}n. G can be pre-computed in advance since all the basics {b;} n
and the weight matrix A are pre-defined.

The new distance Eq. 5.44 will be used in the next chapter for a new compact
representation of color features.






Chapter 6

KLT-BASED
REPRESENTATION OF
COLOR DISTRIBUTIONS

In many color-based image retrieval systems the color properties of an im-
age are described by its color histogram. Histogram-based search is, however,
often inefficient for large histogram sizes. Therefore we introduce several new,
Karhunen-Loeéve Transform (KLT) based, methods that provide efficient rep-
resentations of color histograms and differences between two color histograms.
The methods are based on the following two observations:

e Ordinary KLT considers color histograms as signals and uses the Eu-
clidian distance for optimization. KLT with generalized color distance
measures that take into account both the statistical properties of the
image database and the properties of the underlying color space should
improve the retrieval performance.

e The goal of compressing features for image retrieval applications is to
preserve the topology of feature space as much as possible. It is therefore
more important to represent the differences between features than the
features of the images themselves. The optimization should be based
on minimizing the approximation error in the space of local histogram
differences instead of the space of color histograms.

Experiments were performed on three image databases containing more than
130,000 images. Both objective and subjective ground truth queries were used
in order to evaluate the proposed methods and to compare them with other ex-
isting methods. The results from our experiments show that compression meth-
ods based on a combination of the two observations described above provide
new powerful and efficient retrieval algorithms for color-based image retrieval.
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6.1 Introduction

Color has been widely used for content-based image retrieval, multimedia in-
formation systems and digital libraries. In many color-based image retrieval
(CBIR) applications, the color properties of an image are characterized by the
probability distribution of the colors in the image. The color histogram remains
the most popular representation of color distributions since it is insensitive to
small object distortions and since it is easy to compute. However, it is not
very efficient due to its large memory requirement. For typical applications a
color histogram might consist of N = 512 bins. With such a large number of
bins N (ie. N > 20), the performance of current indexing techniques is re-
duced to a sequential scanning (Weber et al., 1998; Rui et al., 1999). To make
color histogram-based image retrieval truly scalable to large image databases
it is desirable to reduce the number of parameters needed to describe the his-
togram while still preserving the retrieval performance. Approaches to deal
with these problems include the usage of coarser histograms (Pass and Zabih,
1999; Mitra et al., 1997), dominant colors or signature colors (Deng et al.,
2001; Androutsos et al., 1999; Rubner et al., 1998; Ma, 1997) and application
of signal processing compression techniques such as the Karhunen-Loeve Trans-
form, Discrete Cosine Transform, Handamard Transform, Haar Transform, and
Wavelets etc. (Hafner et al., 1995; Ng and Tam, 1999; Berens et al., 2000; Man-
junath et al., 2001; Albuz et al., 2001). Some of them are also suggested in the
context of MPEG-7 standard (Manjunath et al., 2001).

It is well known that the optimal way to map N-dimensional vectors to
lower K-dimensional vectors (K < N) is the Karhunen-Loéve Transform
(KLT) (Fukunaga, 1990). KLT is optimal in the sense that it minimizes the
mean squared error of the Euclidian distance between the original and the ap-
proximated vectors. However, a straightforward application of the KLT (as
well as other transform-based signal processing compression techniques) to the
space of color histograms gives poor retrieval performance since:

e The technique treats the color histogram as an ordinary vector and ig-
nores the properties of the underlying color distribution. The usage of the
structure of the color space and the color distributions should improve
the retrieval performance.

e The goal of ordinary compression is to describe the original signal by a
given number of bits such that the reconstruction error is minimized. The
ultimate goal of color-based image retrieval is, however, not to recover
the original histogram but to find similar images. Therefore it seems rea-
sonable that the topology of the color histogram space locally around the
query image should be preserved as much as possible while reducing the
number of bits used to describe the histograms. The optimal representa-
tion of the differences between color histograms is therefore much closer
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to the final aim of image retrieval than the optimal representation of the
color histograms themselves.

In this chapter we use KLT together with a generalized color-based distance
in two different spaces: the space of color histograms P and the space of local
histogram differences D, in which only pairs of histograms with small differ-
ences are considered. Using the KLT-basis computed from the space of local
histogram differences D gives an optimum solution in the sense of minimizing
the approximation error of the differences between similar histograms. This so-
lution results in a better estimation of the distances between color histograms,
and consequently better retrieval performance in CBIR applications.

The chapter is organized as follow: basic facts from color-based image
retrieval, particularly the problem of measuring the distances between color
distributions, are reviewed in the next section. Our proposed methods are
presented in section 6.3. Section 6.4 describes our experiments in which both
objective and subjective ground truth queries are used to evaluate our methods
and to compare them with other existing methods.

6.2 Distances between Color Histograms

In color-based image retrieval we want to find all images I which have similar
color properties as a given query image (). In this chapter we describe the
color properties of images by their color histograms and we define the similarity
between images as the similarity between their color histograms. If the color
histograms of the images I and @) are given by h; and hg we represent the
two images I and () by two points h; and hq in the color histogram space P
and define the distance between the images as the distance between the two
points h; and hq in this space:

d(I,Q) = d(hr, hg) (6.1)

Popular choices for computing the distances in the color histogram space are
histogram intersection (Swain and Ballard, 1991), L, norm, Minkowski-form,
quadratic forms (Hafner et al., 1995; Ng and Tam, 1999), the Earth Mover
Distance (EMD) (Rubner et al., 1998) and other statistical distance mea-
sures (Puzixha et al., 1999; Rui et al., 1999) as mentioned in section 3.4.
The EMD and the quadratic form methods are of special interest since they
take into account the properties of the color space and the underlying color
distributions.

The EMD is computationally demanding. Basically it computes the mini-
mal cost to transform one histogram into the other. An optimization problem
has to be solved for each distance calculation which makes the EMD less at-
tractive in terms of computational speed.



KLT-Based Representation

The quadratic form distance between color histograms is defined as:
d3;(hi,ha) = (hy — ha)' M (hy — hy) (6.2)

where M = [m;;| is a positive semi-definite matrix defining the properties of
the color space. Each entry m;; captures the perceptual similarity between
colors represented by bins ¢ and j. A reasonable choice of m;; is (Hafner et al.,
1995):

ms; = 1-— dij/dmax (63)

Here d;; is the Euclidean distance between color ¢ and j in the CIELAB color
space and dp,qp = maxz{d;j}. (The CIELAB color space is used since its
ij

metrical properties are well adapted to human color difference judgments.)

The quadratic form distance tends to overestimate the mutual similarity of
color distributions (Stricker and Orengo, 1996; Rubner, 1999). Several sugges-
tions have been made to reduce the mutual similarity of dissimilar colors. One
example is

mi; = exp(—o(dij/dmaz)®) (6.4)

described in (Hafner et al., 1995). It enforces a faster roll-off as a function of d;;,
the distance between color bins. Another method uses a threshold for similar
colors so that only colors which are similar will be considered in contributing
to the distance. For example, m;; in Eq. 6.3 can be redefined as (Manjunath
et al., 2001):

(6.5)

1 —dij/dmaer if dij < Ty
mi; = .
0 otherwise

where Ty is the maximum distance for two colors to be considered similar. The
value of d,,q. is redefined as aTy where « is a constant between 1.0 and 1.5.

The quadratic form-based metric is computationally demanding. In a naive
implementation, the complexity of computing one distance is O(N?) where N
is the number of bins. Efficient implementations are, however, as fast as simple
bin-by-bin distance methods such as histogram intersection or the L, norm. It
has also been reported that these metrics provide more desirable results than
bin-by-bin distance methods (Hafner et al., 1995). The quadratic form-based
distances are thus commonly used as distance in content-based image retrieval.

6.3 Optimal Representations of Color Distribu-
tions
Using the full histogram to compute the distances in Eq. 6.2 is unrealistic for

large image databases because of computational and storage demands. Meth-
ods for estimating the distances using fewer parameters are needed in order
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to speed up the search engine and to minimize storage requirements. Thus
compression techniques could be used to compress the description of color his-
tograms. The Karhunen-Loeve transform (KLT) provides the optimal way to
project signals from high-dimensional space to lower dimensional space.

6.3.1 The Discrete Karhunen-Loéve Expansion

Let X be an N-dimensional random vector. Then X can be represented without
error by the summation of N linear independent vectors ®; as

N
X =) y® =2V (6.6)
=1
where
P = [Dy,..., Dy] (6.7)
and
Y = [y1,....,yn]" (6.8)

The matrix ® is deterministic and consists of N linearly independent column
vectors. Thus

det(®) £ 0 (6.9)

The columns of & span the N-dimensional space containing X and are called
basic vectors. Furthermore, we may assume that the columns of ® form an
orthonormal set, that is,

U tor i
oo, =y ek 610

If the orthonormality condition is satisfied, the components of Y can be calcu-
lated by
yi = @] X (6.11)

Therefore Y is simply an orthonormal transformation of the random vector X
and is itself a random vector.

Suppose that we choose only K (with (K < N)) ®,’s and that we still
want to approximate X well. We can do this by replacing those components
of Y, which we do not calculate, with pre-selected constants c¢; and form the
following approximation:

K N
X(K) = Zyiq)i + Z vi P (6.12)
i=1 i=K+1
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We lose no generality in assuming that only the first K y;’s are calculated. The
resulting representation error is

AX(K)=X — X(K)

K N
=X - <Z yi®; — Z Ciq)i>
i=1

i=K+1 (6.13)

N

= Y (- )

i=K+1

Note that both X and AX are random vectors. We will use the mean squared
magnitude of AX as a criterion to measure the effectiveness of the subset of
K features. We have

&(K) = E{| AX(K) ||}

N N
=Eq¢ Y ) (wi—a)y — )],

=K1 j=K+1 (6.14)
N
= Z E{(yi — )’}
=K1

For every choice of basis vectors ®; and constant terms c¢;, we obtain a value
for €2(K). We want to make the choice which minimizes €?(K)

The optimum choice, in the sense of minimizing the mean squared magni-
tude of AX, is obtained when

ci = E{y;} = o/ E{X} (6.15)
and ®; are the first K’s eigenvectors ®; of
Sx=E{X-E{X}HX-E{X}H"} (6.16)

corresponding to the first K largest eigenvalues of ¥x. The minimum €(K)
is thus equal to the sum of the N — K smallest eigenvalues of ¥ x.

6.3.2 Compact Descriptors for Color-based Image Retrieval

In the following we consider a histogram h as a vector in N —dimensional space.
Selecting K —basic functions ¢y, (k = 1,..., N) we describe h by K numbers x
as follow:

K
hK = Zl‘k@k (6.17)
k=1
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The approximation error is given by:

K N
ex(h) = h—hg = h—Zxkgok = Z TPk (6.18)
= k=K+1

Ordinary KLT in the histogram space P selects the basis functions ¢y such
that the mean squared error in the Euclidian norm, €z, is minimized:

e =E{|lex(h)?’ |} =E{ex(h)Tex(h)} (6.19)

Instead of using the Euclidian distance, a color-based distance can be used
where relations between different regions in color space are taken into account.
This results in a better correspondence to human perception.

The basis functions ¢y, are then selected such that the mean squared error
using the color-based distances, €7, is minimized:

gy =E{llex(h)?|m} = E{ex(h)" Meg(h)} (6.20)

The computation of the coefficients and the basis functions in this new
metric is done as follows:

The matrix M given above is positive semi-definite and can therefore be
factored into
M =UTU (6.21)

with an invertible matrix U. Next we introduce the modified scalar product
between two vectors as:

(h1,ha) ;= hi Mhy = h{UTUhy = (Uhy)™ (Uhy) (6.22)

Then we introduce an orthonormal basis ¢j with respect to this new scalar
product: (¢;,;),; = dij. A given histogram can now be approximated using
only K numbers:

K
hah=>Y (h ok MSOk—kaQOk (6.23)
k=1

Once the basis vectors ¢ are given, the coefficients fi in the expansion of
Eq. 6.23 are computed by.

fr = (h, o)y = K" Moy (6.24)

The new basis functions ¢ can be found by imitating the construction for
the Euclidean case. The squared norm of the approximation of a histogram h
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is given by
‘thw - <}~”~l> = <<Z 1) Msoz) (Z <h790k>M§0k>>
=1 k=1 M
K
= D> {or P b i)y = Uer) TURRTUT (Ugy,) (6.25)
k=1

Computing the mean length and using the notation X3 = E(URhTUT) we
see that the basis vectors with the smallest approximation error can be found
by solving the Euclidean eigenvector problem X 5;v, = cip¥,. From them the
basis vectors are computed as ¢ = Uy.

Ordinary KLT technique is a special case where the relations between color
bins are ignored (M = identity). When the correlations between the input
images in the database are ignored (E{hhT} = identity) the solution is identical
to the QBIC approach in (Hafner et al., 1995).

Given two color images I, and @) their histograms can be approximated by
using only K coefficients as follows:

K K
hi =Y (heon)vr = ) fien
i = (6.26)
) K K
hq = Z (hq: Pr) arpn = Zf/.?%pk
k=1 k=1
The distance between the two histograms is:
(1, Q) = (hr — hq)" M (hs — hq)
) ~ <2
= llhs = el ~ | o
—{h;—ho.hy—h >
< 1—hohi —hg)
(6.27)

K
= el 23 (), (o,
K K K
=S UDP YU - 2) - £R
k k k

The first two terms are computed only once and the distance computation
in the retrieval phase involves therefore only K multiplications.

We now have an optimal color histogram compression method in the sense
that it minimizes the mean squared error of the color-based distances between
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the original color histograms and the approximated histograms. Application
of the method to color-based image retrieval relies on the assumption that a
better reconstruction of color histograms from the compression step implies a
better retrieval performance.

The ultimate aim of compressing features in an image retrieval applications
is, however, not to reconstruct the feature space but, as mentioned before,
to preserve the topology of the feature space locally around the query image
feature points. In this sense, image retrieval is not primarily concerned about
the features of the images, but more about the (dis-)similarity or the differences
between features. In Eq. 6.2 the distance was defined as

d2;(h1,ha) = (hy — ha)T M (hy — hy)

It seems reasonable to expect that a KLT designed to provide the best re-
construction of the differences between color histograms may lead to a better
retrieval performance. Since we care only about similar images, only pairs of
similar color histograms are taken into account in the compression.

We therefore define for a (small) constant § the space Ds of local histogram
differences as:

Ds = {Ah =hy — hg: hl,hg € ]P, dM(hl,hQ) < 5} (628)

Another way to define the space of local histogram differences is based on
the set of nearest neighbors. For each color histogram hy, we define the local
differences space at every hy; € P as

ID)Zl = {Ah =hy — hg : hy € P,d(h1, h2) are the n smallest distances} (6.29)

The space of local histogram differences is then defined as the union of all such
DM at every hy € P
D, = | Dk (6.30)
hy€P

After the construction of the spaces of local histogram differences, KLT-
techniques are used as before with the only difference that now they operate
on the space Dy given in Eq. 6.28 or the space D,, given in Eq. 6.30 instead of
the histogram space IP. The basis obtained from applying KLT on Ds and D,,
are then used for compressing the features in the space of color histograms P.

Summarizing we can say that the KLT-based methods described here are
based on the following two observations:

e Statistical properties of the image database and the properties of the
underlying color space should be incorporated into the distance measure
as well as the optimization process.
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e The optimization should be based on minimizing the approximation error
in the space of local histogram differences instead of the space of color
histograms.

6.4 Experiments
The following methods have been implemented and tested in our experiments:
Hy : Full color histogram with K bins.
Dx : Dominant color-based method (Deng et al., 2001; Ma, 1997).
K8 . KLT-based method described in QBIC™ (Hafner et al., 1995).
Kk : Ordinary KLT in the space of histograms P.
KP? : KLT in the space of differences of neighboring histograms D, .
M. KLT in P with color metric M.
KPM . KLT in D,, with color metric M.

The approximation order (or the dimension of the compressed feature space)
used in the experiments is given by the subscript K and this notation will be
used in the rest of this section.

The following image databases of totally more than 130,000 images are used
in our experiments:

Corel database: 1,000 color images (randomly chosen) from the Corel Gallery

MPEG-7 database: 5,466 color images and 50 standard queries (Zier and
Ohm, 1999) designed to be used in the MPEG-7 color core experiments

Matton database: 126,604 color images. These images are low-resolution
images of the commercial image database maintained by Matton AB in
Stockholm (the average size is 108x120 pixels)

In all our experiments, the retrieval performance is measured based on the
Average Normalized Modified Retrieval Rank (ANMRR). The detailed descrip-
tion of ANMRR is described in chapter 3. Here we recall briefly that the lower
values of ANMRR indicate better retrieval performance, 0 means that all the
ground truth images have been retrieved and 1 that none of the ground truth
images has been retrieved.
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6.4.1 Properties of color histogram space vs.
retrieval performance

The retrieval performance of histogram-based methods using quadratic form
distances depends on the construction of the color histogram and the metric M
defining the properties of the histogram space. In the first set of experiments,
the following four different methods of defining the metric M are evaluated in
order to find a good matrix M for the next sets of experiments:

M; : The method as described in Eq. 6.3

M5 : The exponential function as in Eq. 6.4

M3 : Color threshold T, as in Eq. 6.5

M, : Combination of color threshold and exponential roll-off

There are several parameters in the construction of each method used to
define M. Changing these parameters affects the distance measure between
color histograms and consequently the retrieval performance of the color-based
image retrieval.

For example in Eq. 6.4, increasing o will reduce the influence of neighboring
color bins and vice versa. Fig. 6.1 shows the ANMRR of the 50 standard queries
for the MPEG-7 database when the metric is defined as My and o is varying.
For the sake of simplicity in parameterizing M, parameter p was introduced as
a simple normalized version of ¢ for the case k = 2 as:

g
= 6.31
P d?,.. % standard deviation of all histograms (6:31)
M HSV 256 bins | RGB 512 bins | Lab 512 bins
M, 0.237 0.229 0.226
Mo, k=2 0.214 0.174 0.188
M3 0.215 0.174 0.198
My 0.216 0.176 0.183

Table 6.1: Best retrieval performance (measured by ANMRR of 50 standard
queries in the MPEG-7 database) of different methods of defining the metric
M for the color histogram space in HSV 16x4x4 bins, RGB 8x8x8 bins, and
CIELAB 8x8x8 bins.

The experiment is repeated for other methods of defining metric M. Ta-
ble 6.1 summaries the best retrieval performance of each method for different
color spaces.
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Retrieval performance vs. p for HSV colour space.
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Figure 6.1: Properties of metric My in Eq. 6.4: ANMRR of 50 standard queries
from the MPEG-7 database for different color spaces when constants o and p
are varying. T; = 30, a = 1.2, dypqe = 36.

The results show that the distance measure in Eq. 6.3 overestimates the
mutual similarity of dissimilar colors. The retrieval performance is improved
using the distance measures in Eq. 6.4 and Eq. 6.5. However when p in Eq. 6.4
increases too much and/or the value Ty in Eq. 6.5 decreases too much, the
retrieval performance is getting worse. The experimental results show also
that the optimum retrieval performance of methods Ms, M3, and My (which is
a combination of both) are comparable.

The optimal parameters depend on both the color perception of the and the
application at hand. Finding such an optimal metric M can be done experimen-
tally and its estimation in not discussed here. Instead we ran our experiments
(See Fig. 6.1 and Table 6.1) to determine a set of reasonable parameters for
the remaining experiments.
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6.4.2 Experiments with the Corel database

In the second set of experiments, we estimate the influence of the different
approximation methods including the usage of coarser histograms (Pass and
Zabih, 1999; Mitra et al., 1997), dominant colors or signature colors (Deng
et al., 2001; Androutsos et al., 1999; Rubner et al., 1998; Ma, 1997), the
standard KLT, the method used in (Hafner et al., 1995; Ng and Tam, 1999)
and the proposed KLT-based methods as presented in the previous section.
We compare the retrieval results of the approximation-based methods to the
retrieval result achieved when the full histogram is used.

Figure 6.2: A color image and its segmented regions computed by the Mean
Shift Algorithm.

A database of 1,000 images randomly chosen from the Corel Gallery was
used in the experiments. In the first processing step we compute different
descriptions of the color distribution of an image. The CIELAB color space
and the distance measure using the metric M5 as in Eq. 6.4 were chosen for these
experiments. In the second step we use these descriptions to approximate the
quadratic form-based distance measure from Eq. 6.2. In the retrieval simulation
we use every image in the database as a query image and search the whole
image database. The result is then compared to the standard method based
on the full histogram of 512 bins. This allows us to evaluate the approximation
performance of different methods in the context of color-based image retrieval.
Again ANMRR is used in the evaluation.
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ANMRR
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Figure 6.3: ANMRR of 1,000 queries in the Corel database using different
histogram compression methods compared to the full histogram-based-method.

In the dominant color-based method, images are segmented into several
homogenous regions. The clustering method we used was the Mean Shift Algo-
rithm (Comaniciu and Meer, 1999b). Three different parameter settings were
used to cluster each image in the database. The resulting clustered images
consisted on average of 8, 25.5 and 44.5 segmented regions. The dominant
color of each region is then quantized to one of 512 CIELAB values in the
original method in order to speed up the search algorithm. Each region is then
described by two parameters: the probability of a pixel lying in this region
and the index of the dominant color of the region. An image which is seg-
mented into n dominant color regions is then described by 2 x n parameters.
An example of segmented image by the Mean Shift Algorithm! is shown in
Fig. 6.2.

Tmplementation of the Mean Shift Algorithm in MatLab can be downloaded from http:
//www.itn.liu.se/~lintr/www/demo.html. Detailed of the algorithm and the original source
code can be found at the homepage of the Robust Image Understanding Laboratory, Rutgers
University, http://www.caip.rutgers.edu/riul
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Figure 6.4: ANMRR of 1,000 queries in the Corel database using different KLT-
based histogram compression methods compared to the full histogram-based
method.

p (normalized o) K5QB K K? KM | KPM | Dyg Hyg

0.08 0.418 | 0.575 | 0.561 | 0.154 | 0.116 | 0.259 | 0.640
0.15 0.441 | 0.542 | 0.526 | 0.237 | 0.204 | 0.275 | 0.643
0.3 0.484 | 0.519 | 0.500 | 0.373 | 0.308 | 0.310 | 0.661
0.7 0.545 | 0.513 | 0.482 | 0.441 | 0.409 | 0.374 | 0.693

p (normalized o) || K9P | Ko | KB | KM | KPM | D5y | He

0.08 0.131 | 0.303 | 0.336 | 0.027 | 0.021 | 0.123 | 0.466
0.15 0.203 | 0.269 | 0.275 | 0.055 | 0.051 | 0.135 | 0.471
0.3 0.290 | 0.254 | 0.254 | 0.116 | 0.106 | 0.159 | 0.489
0.7 0.257 | 0.533 | 0.248 | 0.189 | 0.183 | 0.208 | 0.524

Table 6.2: Mean values of ANMRR of 1,000 queries in the Corel database when
the ground truth size varies from 10 to 40 for different histogram compression
methods compared to the full histogram-based method. Different metrics M
were used.
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For KLT-based methods operating on space D, we used for every image its
40 nearest neighbors to estimate the space of local histogram differences.

Fig. 6.3 and Fig. 6.4 show some of the comparison results with different
lengths of query windows for the case where the metric Ms is defined as in
Eq. 6.4 using p = 0.3. Different KLLT-based methods are compared in Fig. 6.4.
Results with other choices of p are collected in Table 6.2.

The results from these experiments show that:

e Incorporating information from the structure of the color space and ap-
plying KLT in the space of differences between neighboring histograms
make the search results in the approximated feature space better corre-
lated to the original full histogram method. The proposed method KPM
which combines the two ideas described above, gives the best perfor-
mance compared to the other methods in all experiments. For example
in Fig. 6.3 KPM using only 5 parameters, gives the same retrieval per-
formance as the dominant color-based method using 16 parameters. It is
superior to the full histogram-based method using 64 parameters. K137
using only 12 parameters gives about the same retrieval performance as
the dominant color-based method using 89 parameters.

e When o is small, the K?® method described in QBIC (Hafner et al.,
1995) is also comparable to the standard full histogram-based method.
This is, however, the case when the mutual similarity between dissimilar
colors is overestimated. When o is increased, or the metric M becomes
more diagonally dominant, the retrieval performance of the K %2 method
decreases, compared to other KLLT-based methods which are not solely
based on the matrix M.

e For large values of K(K > 15), results of KPM methods which incorpo-
rate the color metric M converged to the standard method faster than
KQB,

e The dominant color-based method is fairly good while simple KLT and
coarse histogram-based methods show poor results. Performance of the
coarse histogram with 64 parameters is inferior to using only 4 parameters
in our KPM method.

In order to test these conclusions, experiments with the larger databases
were carried out.

6.4.3 Experiments with the MPEG-7 database

In the third set of experiments, KLT-based methods are investigated further
with the MPEG-7 databases of 5,466 color images. Both objective and subjec-
tive queries are used.
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Figure 6.5: ANMRR of 5,466 queries in the MPEG-7 database using different
KLT-based histogram compression methods compared to the full histogram-
based method.

First the same experiments as in the previous section were performed with
the MPEG-7 database. The only different setting was that the number of
neighboring images of each image used when constructing the space of local
histogram differences is 100 images. Several color spaces, including HSV, RGB
and CIELAB, are used in these experiments. Fig. 6.5 and Table 6.3 show the
results for different color spaces.

We also used 50 standard queries as subjective search criteria to compare
the retrieval performance of these KLLT-based methods. The results are shown
in Table 6.4.

In another experiment, we select a set of 20 images, where 10 of them are
from standard queries, and the other 10 are famous images in image processing
such as Lena, Peppers, Mandrill, Parrots, etc. From each of these 20 images a
new set of 20 images are generated by adding noise and sub-sampling the im-
ages. There are totally 420 images. The parameters that control the generated
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Color space and Desc. of the method KQ@B K KM | gMD
HSV 16x4x4, # of parameters K = 5 0.673 | 0.628 | 0.491 | 0.490
HSV 16x4x4, K = 8 0.544 | 0.544 | 0.386 | 0.365
HSV 16x4x4, K = 16 0.377 | 0.414 | 0.197 | 0.182
HSV 16x4x4, K = 25 0.266 | 0.314 | 0.114 | 0.107
RGB 8x8x8, K = 5 0.775 | 0.576 | 0.436 | 0.419
RGB 8x8x8, K = 8 0.729 | 0.405 | 0.268 | 0.243
RGB 8x8x8, K = 16 0.546 | 0.227 | 0.102 | 0.091
RGB 8x8x8, K = 25 0.450 | 0.153 | 0.044 | 0.041
CIELAB 8x8x8, K = 5 0.558 | 0.579 | 0.475 | 0.455
CIELAB 8x8x8, K = 8 0.505 | 0.453 | 0.319 | 0.292
CIELAB 8x8x8, K = 16 0.425 | 0.251 | 0.151 | 0.137
CIELAB 8x8x8, K = 25 0.345 | 0.165 | 0.075 | 0.072

Table 6.3: Different KLT-based methods compared to the full histogram
method. Mean values of ANMRR of 5,466 queries in the MPEG-7 image
database when the ground truth size varies from 10 to 40

Color space and Desc. of the method K@B K KM | gMD
HSV 16x4x4, # of parameters = 8 0.422 1 0.337 | 0.337 | 0.333
HSV 16x4x4, K = 16 0.352 | 0.247 | 0.257 | 0.263
HSV 16x4x4, K = 25 0.297 | 0.238 | 0.248 | 0.247
RGB 8x8x8, K = 8 0.487 | 0.381 | 0.311 | 0.316
RGB 8x8x8, K = 16 0.347 | 0.283 | 0.232 | 0.229
RGB 8x8x8, K = 25 0.288 | 0.275 | 0.200 | 0.200
CIELAB 8x8x8, K = 8 0.336 | 0.383 | 0.322 | 0.301
CIELAB 8x8x8, K = 16 0.287 | 0.298 | 0.251 | 0.233
CIELAB 8x8x8, K = 25 0.266 | 0.256 | 0.224 | 0.222

Table 6.4: Different KLT-based methods are compared using the 50 standard
queries in the MPEG-7 image database.
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images are: P; = percentage of sampled pixels, P,, = percentage of pixels with
added noise, and R,, = the range of the noise magnitudes. Noise is uniformly
distributed. Only the RGB color space is used in this experiment. Each set of
20 generated images is intended to have similar color distributions as the orig-
inal image. We then take these 20 images as the ground truth when retrieving
the original image. The average results of 20 different queries are collected in

Table 6.5.

The results from the simulation of the search process on both objective and
subjective queries of the MPEG-7 database containing 5,466 images, all agreed
with the results obtained from the previous section.

P, P, | R, | # of Dim. | K@B K KM | gMD
20 20 | 20 5 0.0181 | 0.0119 | 0.0111 | 0.0060
20 20 | 20 8 0.0098 | 0.0084 | 0.0059 | 0.0049
20 20 | 20 16 0.0111 | 0.0051 | 0.0042 | 0.0035
20 20 | 20 25 0.0046 | 0.0033 | 0.0032 | 0.0031
20 20 | 40 5 0.1225 | 0.0429 | 0.0403 | 0.0346
20 20 | 40 8 0.0458 | 0.0200 | 0.0235 | 0.0206
20 20 | 40 16 0.0215 | 0.0142 | 0.0181 | 0.0172
20 20 | 40 25 0.0139 | 0.0134 | 0.0173 | 0.0172
40 20 | 20 5 0.0181 | 0.0116 | 0.0121 | 0.0063
40 20 | 20 8 0.0098 | 0.0084 | 0.0060 | 0.0051
40 20 | 20 16 0.0111 | 0.0048 | 0.0043 | 0.0035
40 20 | 20 25 0.0041 | 0.0031 | 0.0030 | 0.0029
60 10 | 50 5 0.0302 | 0.0110 | 0.0144 | 0.0111
60 10 | 50 8 0.0192 | 0.0090 | 0.0071 | 0.0068
60 10 | 50 16 0.0115 | 0.0045 | 0.0053 | 0.0040
60 10 | 50 25 0.0038 | 0.0030 | 0.0029 | 0.0028

Table 6.5: ANMRR of 20 generated queries for the MPEG-7 image database.

6.4.4 Experiments with the Matton database

Finally we extend the comparison to the large Matton image database contain-
ing 126,604 images. The experiment setup is as in the second set of experiments
described in Section 4.1. The color histograms were computed in the HSV color
space with 16x4x4 bins. A set of 5,000 images was selected randomly, the basis
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of different KLT-based methods are then computed from this set. For KLT-
based methods operating on the space DD, we used for every image its 100
nearest neighbors to represent the local histogram differences.

Fig. 6.6 shows the average results when all 5,000 images in the training
set were used as query images. We also selected another 5,000 images not in
the training set as query images in the image retrieval simulation, the average
results for this set are collected in Fig. 6.7

20 queries from the set of 420 generated images as described in section 4.3
are also used to evaluate KLT-based methods in the Matton database. The
results are shown in Table 6.6

P, P, | R, | # of Dim. | K@B K KM | KMD
40 30 | 60 5 0.317 | 0.520 | 0.050 0
40 30 | 60 8 0.336 | 0.083 | 0.014 | 0.001
40 30 | 60 16 0.507 | 0.007 0 0
40 30 | 60 25 0.174 | 0.001 0 0
40 30 | 50 5 0.312 | 0.445 | 0.045 0
40 30 | 50 8 0.305 | 0.068 | 0.007 | 0.001
40 30 | 50 16 0.442 | 0.005 0 0
40 30 | 50 25 0.135 | 0.001 0 0
40 25 | 50 5 0.240 | 0.353 | 0.032 0
40 25 | 50 8 0.232 | 0.054 | 0.002 0
40 25 | 50 16 0.332 | 0.003 0 0
40 25 | 50 25 0.093 | 0.0030 0 0

Table 6.6: ANMRR of 20 generated queries for the Matton database.

As we expected, the results done on large database also agreed with earlier
results of the small-scale experiments on the Corel database of 1,000 images.

6.5 Summary

We applied KLT-based approximation methods to color-based image retrieval.
We presented different strategies combining two ideas: Incorporating informa-
tion from the structure of the color space and using projection methods in the
space of color histograms and the space of differences between neighboring his-
tograms. The experiments with three databases of more than 130,000 images
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Figure 6.6: ANMRR of 5,000 queries in the Matton database using different
KLT-based histogram compression methods compared to the full histogram-
based method. 5,000 query images were selected from the training set.

show that the method which combines both the color metric and the differ-
ence of histograms space gives very good results compared to other existing

methods.

The general strategy of using problem-based distance measures and differ-
ences of histograms outlined above is quite general and can be applied for other
features used in content-based image retrieval applications.
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Figure 6.7: ANMRR of 5,000 queries in the Matton database using different
KLT-based histogram compression methods compared to the full histogram-
based method. 5,000 query images were not selected from the training set.



Chapter 7

PHYSICS-BASED COLOR
INVARIANTS

In this chapter we investigate applications
of physical models to determine homoge-
neously colored regions invariant to geom-
etry changes such as surface orientation
change, shadows and highlights. Many of
the earlier results were derived heuristi-
cally, and none of them provide a solu-
tion to finding all possible invariants and
the dependency between them. Using in-
variant theory, we can systematically an-
swer such questions. Physical models that
have been used are the Kubelka-Munk, the
Dichromatic Reflection Model and its ex-
tended version. We also propose a robust
region-merging algorithm utilizing the pro-
posed color invariant features for color im-
age segmentation applications.
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7.1 Introduction

The information in a color image depends on many factors: the scene illumina-
tion, the reflectance characteristics of the objects in the scene, and the camera
(its position, viewing angle, and sensitivity of sensors). In many applications,
for example in color image segmentation or color object recognition, the main
interest is however the physical content of the objects in the scene. Deriving
features which are robust to image capturing conditions such as illumination
changes, viewing angles, and geometry changes of the surface of the objects is
a crucial step in such applications.

The interaction between light and objects in the scene is very complicated.
Usually intricate models such as the Transfer Radiative Theory or Monte-Carlo
simulation methods are needed to describe what happenes when light hits ob-
jects. Previous studies of color invariance are, therefore, mostly based on sim-
pler semi-empirical models such as the Dichromatic Reflection Model (Shafer,
1985), or the model proposed by Kubelka and Munk (Kubelka and Munk,
1931). In such methods (Brill, 1990; Klinker, 1993; Gevers and Smeulders,
2000; Stokman, 2000; Finlayson and Schaefer, 2001; Geusebroek et al., 2001;
Tran and Lenz, 2002a) invariant features are usually derived heuristically based
on assumptions on the physical processes to simplify the form of the underly-
ing physical model. None of them discuss questions such as the dependency
between invariance features, or how many of such invariants are really indepen-
dent, etc. These questions can be answered by using invariant theory (Olver,
1995; Eberly, 1999).

In this chapter, we concentrate on deriving color invariants using different
physical models. Invariant theory is used to systematically derive all indepen-
dent invariants with the help of symbolic mathematical software packages like
Maple™. In the next section, a brief introduction to invariant theory is pre-
sented using simple examples for illustration. In section 7.3 the Dichromatic
Reflection Model (Shafer, 1985), its extended version, and the application to
derive color invariants are described. A review of previous studies summarizing
the assumptions that have been used is also included in this section. Section 7.4
investigates the Kubelka-Munk model (Kubelka and Munk, 1931) and its ap-
plication in deriving color invariants to color invariant problems. We clarify
under which assumptions the model is applicable. Based on the analysis of
the model, both previous results and our proposed model are derived. Under
simplified illumination conditions, we also show that most of the proposed in-
variant features are also invariant to illumination changes. This is discussed
in section 7.5. Color invariant features are then used for color image segmen-
tation. A robust region-merging algorithm is proposed to deal with the noisy
feature vectors in section 7.6 before conclusions are drawn in the last section.
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Figure 7.1: Vector field V = (x,y) as in Eq. 7.3

7.2.1 Vector Fields

Let R™ denote an n-tuple of real numbers. A vector field is defined as a function
V : R® — R™. Denoting the k*"* component of V as v;, : R® — R, the vector
field can be written as an n-tuple:

V= (vi(z),...,00(2)),z € R" (7.1)

or can be thought of as a column vector when used in matrix calculations. We
can also write the vector field as a linear combination as follows:

V= ka(x)aim (7.2)

where the symbols 0/0x are place-keepers for the components. In this form,
a vector field V' can be seen as a directional derivative operator and can be
applied to functions f: R” — R

An example of vector field V' = (z,y) is illustrated in Fig. 7.1
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7.2.2 Invariants

Given a vector field V' : R® — R", an invariant is a function f : R” — R such
that the directional derivative satisfies

szzvk(x)a% =0 (7.4)

k=1

That is f remains constant as you walk in the direction of V.

For example, considering the vector field V' = (z,y) in Fig 7.1 and Eq. 7.3,
a function f(z,y) is an invariant if

of (z,y) N yﬁf(fr,y)

0=Vf=x 9 Iy

(7.5)

Solving the above differential equation gives us the solution f(z,y) = F(y/z)
which means that all functions of y/x have constant value when going along
the direction of vector field V = (z,y).

The differential equation Eq. 7.5 can be solved by using a symbolic mathe-
matical software package such as Maple™. Fig. 7.2 shows a very simple Maple
script to solve Eq. 7.5. Maple will be used throughout this chapter to solve
differential equations.

> pdsolve ({x*diff (f(x,y),x)+y*diff (f(x,y),y)=0}, [£]1);

{tw, y) = F1(2)}

Figure 7.2: A simple Maple script to solve the differential equation Eq. 7.5

We can also look for invariants with respect to more than one vector field.
Let Vi, : R® — R™ for k =1,..., K be K vector fields. A function f: R” - R
is an invariant for the vector fields if Vi f = 0 holds for all k. For example,
consider the vector fields on R?,

Vi= 9 + 22
Ox oy (7.6)
Vo = ZQ - 33
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A function f(z,y, z) is an invariant if

0=V, f = 8f(fg,y,2) +25f(:g,y,2)
5 v 8f(y ) (7.7)
0=TVyf =2 f(g,xy,Z) _3 a(;,zy,z

Fig. 7.3 shows the Maple program to solve the above system of differential
equations. The solution is f(z,y,x) = F(x/3 —y/6 + 2).

> eql:=1*xdiff(f(x,y,z),x)+2xdiff (f(x,y,2),y)=0;
>  eq2:=2*diff (f(x,y,z),x)-3*diff (f(x,y,z),2)=0;

eql = (L f(z, y, 2)) +2 (a% f(x,y,2)) =0
eq2 :=2 (& f(z, y, 2)) — 3(Z f(x, y, 2)) =0

> pdsolve({eql,eq2}, [f]);

{f(e,y,2) = Fi(z+3 - )

Figure 7.3: A simple Maple script to solve the differential equations Eq. 7.7

7.2.3 Number of Independent Invariants

Given K vector fields Vi : R® — R" for k = 1,..., K, the previous section
discussed how to derive the invariants. They are the solutions of the system
of differential equations Vi f = 0. The next question is how many functionally
independent invariants there are for given vector fields. This question can be
answered without solving any differential equation.

Look at the example in Fig. 7.3, the two functions fi(z,y) = y/x and
fo(z,y) = 3 + sin((z + y)/x) are both invariants of the vector field V' = (z,y)
in Fig. 7.1. In fact, for any differentiable function g : R — R, the function
g(y/x) is another invariant of the vector field. But they all depend on the
quantity y/x and provide no really new solution.

Let fr : R® — R" for k = 1,..., K (where K < n) be K differentiable
functions. These functions are said to be functionally independent at z € R"
if and only if the K x n matrix of first derivatives [0f;/0z;] has full rank K.
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For the above example

_yx—2 -1
rank ([0 f; /0x;]) = rank =1 7.8
B R i T I

8

Therefore the two functions f; and f, are dependent.

By definition, an invariant f must be the solution of K differential equa-
tions: Vi f =0 for k =1,..., K. One might expect that there will be n — K
independent invariants since there are only n— K degrees of freedom left. How-

ever, this is not always true. Look at the following example with the two vector
fields (K = 2)

0 0
Vl =$1—+CE3—

81'2 8x4 (79)
27 28[81 46:[33

acting on the four-dimensional space R*. We find only one independent invari-
ant as can be seen in the Maple implementation in Fig. 7.4. The reason is that
the Lie product of the two vector fields [Vy, Vo] = V1 Vo — V4V is another vector
field

Vi, Vol f = Vi(Vaf) = Va(Vif) =0

The Lie product vector field, in this particular case, is independent of both V;
and VQ.

V1, V2] = Vi(V2) — Va(W1)
9 9 9 P (7.10)

=T17— — T2 + x3 — X4
2 Oy

0x1 ox

8333

This gives a new differential equations and, therefore, we have only one inde-
pendent invariant.

Given K vector fields Vi : R®™ — R"” for £k = 1,..., K with K < n, the
Lie algebra of the vector fields is obtained by constructing the smallest vector
space which contains all sums, scalar multiples, and Lie products of the Vj.
We write this vector space L(Vi,...,Vk). The dimensions of this vector space
L(Vi,..., V) can be different from K. Invariant theory shows that the number
of functionally independent invariants is not n— K but n-dim(L), where dim(L)
is the number of dimensions of the Lie algebra.
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> df := proc(i,y) option inline;
> y*D[1i] (£) (x[1],x[2],x[3],x[4]) end proc;
df := proc(i, y) option inline; y * D;(f)(x1, x2, T3, T4)
end proc

> eql:=df(2,x[1])+df (4,x[3]1)=0;
eq2:=df (1,x[2])+df (3,x[4])=0;
> eq3:=df(1,x[1])-df(2,x[2])+df (3,x[3])-df(4,x[4])=0;

eql = x1 Do(f)(x1, x2, 23, x4) + 3 Du(f) (21, 22, 23, 24) =0
eq2 = 12 D1(f)(x1, w2, 3, T4) + 14 D3(f) (21, T2, T3, 74

(F)( ) (
6(]3 =T Dl(f)<117 To, T3z, T 4) — T2 DQ(
+£U3 Dg(f)(wl, o, I3, .CI?4) — X4 D4(

\Y

)( ) =
)(x1, T2, T3, T4)
)( )=0

T1, T2, T3, T4

> pdsolve({eql,eq2}, [f]);

{t(z1, 2, 3, 4) = Fl(zg21 —2322)}

> pdsolve({eql,eq2,eq3}, [f]);

{t(z1, 2, 3, 4) = Fl(zg21 —x322)}

Figure 7.4: The Maple program to solve the differential equations Eq. 7.9. As
in the last line, adding one more vector field into the system does not change
the result since the added vector field is the Lie product of the two vector fields.

7.2.4 Examples of One-Parameter Subgroups

We recall that a one-parameter subgroup is a subgroup that depends on only
one-parameter. We will only consider cases where the group elements are 2 x
2 matrices and the space on which they operate is the two-dimensional real
Euclidean vector space R?. Particularly, in this section, the following four
one-parameter subgroups are addressed: rotation, isotropic scaling, anisotropic
scaling, and shearing. Such groups are particularly useful for our derivation in
the coming sections.

The one-parameter subgroup of rotations with angle a in two-dimensional
space R? can be defined in matrix form as:

m ) Ra) m — [CO,S(‘” Sm(o‘)] m (7.11)

Yy Yy —sin(a) cos(a)| |y
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A function f is an invariant under the group of rotations R(«) if for all angles
o we have:
df

f(R(a)(z,y)") = f(x,y) or -~ la=o=0 (7.12)

The corresponding vector field V, and solution for f of this one-parameter
subgroup is given by:

_, 9 _,9
Yor Jy (7.13)
f=F (x2 + y2)

Va

The procedure to find an invariant is rather simple. It consists of three steps
as shown in Fig. 7.5:

e Define equation(s) describing the underlying process,

e Differentiate the equation(s) with respect to the variable of the given
problem at the origin point to find the vector field(s) V.

e Solve the differential equations Vi f = 0

Describing the underlying process

> roteq:=f(cos(a)*x+sin(a)*y,-sin(a)*x+cos(a)*y);
roteq := f(cos(a) x + sin(a) y, —sin(a) z + cos(a) y)

Deriving the vector field
> rotvf:=map(simplify,eval(subs(a=0,diff(roteq,a))));

rotof := D1(f)(x, y)y — Dao(f) (2, y) =

Solve the differential equation Vi f =0
> pdsolve({rotvf}, [f]);

{f(z, y) = F1(2®+4?)}

Figure 7.5: The Maple program to find invariants for the rotation one-
parameter subgroup.

Invariants of the one-parameter subgroups of scaling and shearing oper-
ations can also be solved in a similar way. Their transformations in two-
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dimensional space R? are:

: .|z Si(s) z|  [exp(s) 0 x
Isotropic scaling: y — S1(s) y| = o exp(s)| |y (7.14)
. . . [x] Sa(s) 2] [1 0 x
Anisotropic scaling: Sl B S = 7.15
nisotropi ing v 2(s) y 0 exp(s)] [y] ( )
. (2] Ss(s) (2] 1 s] [z
Shearing: |*| 2% g — ] [ ] 7.16
ring y — S3(s) | 0 1] [y ( )

Their corresponding vector fields and the invariants for each one-parameter
subgroup are given by:

0 0 T
0

Vo = Z/a—y, fa=F(x) (7.18)
0

Vimy fs= F ) (7.19)

7.3 Methods using the Dichromatic Reflection
Model

When light strikes a surface, it may pass through the interface and the medium.
Many complicated interactions will take place. Because the medium’s index of
refraction differs from that of the air, some of the light will be reflected at the
interface producing interface reflection, while another part will transfer through
the medium. Transfer of light through a medium includes several fundamen-
tal processes such as absorption, scattering, and emission. Absorption is the
process by which radiant energy is transformed into another form of energy,
e.g. heat or light of different wavelength as in fluorescent materials. Scattering
is the process by which the radiant energy is diffused in different directions.
Emission is the process by which new radiant energy is created. A result of
such processes is that some part of the incoming light will go back from the
medium as illustrated in Fig. 7.6. The Dichromatic Reflection Model describes
the relation between the incoming light to the interface of the surface and the
reflected light which is a mixture of the light reflected at the material surface
and the light reflected from the material body.

7.3.1 Dichromatic Reflection Model

The Dichromatic Reflection Model (Shafer, 1985) assumes that the light re-
flected L(x, \) from a surface of an inhomogeneous object can be decomposed
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Interface reflection

Macroscopic perfect Incident light
specular di rect|on
Body reflection
AIR /
<2©iz> ° <§>
o VA ° A 0 \ qudb
. o o ;@} o \\ o T
ﬁ {Q} \‘
MEDIUM 7 ° Yo
s o N __3%F INTERFACE
~ Colorants 0 0

Figure 7.6: The light reflection of inhomogeneous material consists of two parts:
interface reflection and body reflection. Note that most materials are optically
rough with local surface normals differ from the macroscopic surface normal.
The interface reflection will, therefore, be scattered at the macroscopic level as
the body reflection part.

into two additive components, an interface (specular) reflectance and a body
(diffuse) reflectance under all illumination-camera geometries.

L(z,A\) = mg(z)Ls(A) + mp(x)Lp(AN) (7.20)

The terms Lg(\) and Lp(A) describe the spectral power distributions of the
specular and diffuse components. The subscript S denotes the Specular and D
the Diffuse distribution. The parameter x denotes geometry changes including
the angle of incidence light, the angle of remittance light, the phase angle, etc.

To express the model in terms of the surface reflectance, let Rg(\) and
Rp (M) be the specular and diffuse reflectance respectively, and let E(\) be the
spectral power distribution of the incident light. The reflected light is then
given by:

L(z,\) = ms(z)Rs (N EQ) + mp(z)Rp(\)E) (7.21)
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and, equivalently, the total reflectance is described by
R(z,\) =mg(z)Rs(\) + mp(z)Rp(N) (7.22)

Consider an image of an infinitesimal surface patch, using N filters with
spectral sensitivities given by fi(A)...fn(A\) to obtain an image of the surface
patch illuminated by an incident light with spectral power distribution given
by E()A). The measured sensor values C,(x) at pixel z in the image will be
given by the following integral over the visible spectrum:

- / fa(N) [ms(@)Rs (A E(A) +mp(z) Rp(A)E(X)]dA

= mg(z /fn AN Rs(\)d\ + mp(z /fn EONRp()dx (7-23)

=mg(x)S, + mp(x)D,

If we collect the values mg(x), mp(z) in the vector g and the values S,,, D,, in
the vector h

g(x) = g=(ms(z),mp(x))
he = h=(SwD,) (7.24)

and denote the scalar product of two vectors g, h by (g,h) then we can write
Eq. 7.23 as:

Cn(z) = (g,h) (7.25)

From this equation we see that the dichromatic model factors the measured
pixel value C,(x) into two factors g and h. The factor h depends on the
spectral properties of the sensor, the illumination source and the reflectance
of the object, whereas the factor g depends only on the geometry features.
A geometry invariant must be independent of the values mg(z) and mp(z),
ie. the vector g. A feature which is invariant to illumination changes must
be independent of E(\). The functions f,(\), Rs(A) and Rp(A) describe the
dependency of the color measurement on the characteristics of the sensors and
the material of the object in the scene.

The Dichromatic Reflection Model as presented above depends on the as-
sumption that the illumination at any point comes from a single (point or
extended) light source. It is more realistic to model the illumination as con-
sisting of a light source plus an ambient or diffuse light L#(\). Moreover, if
the above equations hold locally, we could also extend the model to an illumi-
nation changing condition where the illumination E(z, A) is a function in both
the spectral and the spatial variables. The extended model is thus given by:

L(z,\) = mg(z)Rs(N\)E(z,\) + mp(z)Rp(N)E(z, \) + LA(\)

= mg(x)Ls(x, ) + mp(x)Lp(x, \) + LAN) (7.26)
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where both Lg(z,A), Lp(x,\), and E(x,\) are functions of  and A, the posi-
tion of the pixel in the scene and the wavelength, respectively.

The measured sensor values C),(z) at pixel z in the image will be given by
the following integral over the visible spectrum:

— / Fo V) [ms(@) Rs(N E(z, A) + mp(2)Rp (V) E(z, A) + LAN)]dA

. / £V E(2, A)Rg(\dA + mp (@ / £V E(z, AR (\)dA

+ / Frn (N LAN)dN

= mg(z)Sn(z) + mp(z)D, () + L2
(7.27)

The Dichromatic Reflection Model in Eq. 7.23 and its extended version in
Eq. 7.27 are more general than typical models used in computer vision and
computer graphics, and include most of these models as special cases (Shafer,
1985). Since it is general, consisting of two terms as in the standard model,
and three terms in the extended model, it is quite difficult to directly use it for
deriving color features which are invariants to either geometric or photometric
terms.

Previous investigations used only the standard model and required addi-
tional assumptions in order to make Eq. 7.21 and Eq. 7.23 easier to deal with.
Often it is reduced to only one term. Some of the assumptions (Klinker, 1993;
Gevers and Stokman, 2000; Gevers and Smeulders, 2000; Stokman, 2000; Fin-
layson and Schaefer, 2001; Tran and Lenz, 2002a) that have been used are:

e Objects in the scene are all matte or dull, ie. there is only a body (diffuse)
reflection term, Rg(A) = 0 leading to:

Co(z) = mp (= / FaOVE(@, AR (\)dA (7.28)

e The color distribution has a skewed L or dog-leg shape, meaning that
there are only two cases: either mp(z) = 0, or mg(z) = 0.

e The illumination of the scene is white and constant over the scene:
E(x,\) = e = constant.

e The illumination of the scene is daylight and can be well approximated
using the Planck locus of the black-body radiator.

e The surfaces of the objects follow the Natural Interface Reflection (NIR)
model, ie. Rg(\) =rg is independent of the wavelength.
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e The filters f,,()\) are narrow band. Then Eq. 7.23 becomes much easier
since the integration is eliminated.

(7.29)

e The images are assumed to be white-balanced

In the next section, we will relax these assumptions and systematically de-
rive geometric color invariants using the framework presented in the previous
section.

7.3.2 Geometric Invariants from the Dichromatic Reflec-
tion Model

We first look at the standard dichromatic reflection model in Eq. 7.23. The color
values C),(x) can be measured, the mg(x) and mp(z) are unknown geometric
terms, S,, and D,, are also unknown but independent of geometric properties.
A geometric invariant, therefore, is a function f of color values and should not
be dependent on the geometric terms mg(z) and mp(x).

We consider first the simplest case when the color information comes from
only one pixel z.

Cpn = Cp(z) = mg(x)S, + mp(x)D,

Each channel has one measurement C,,, but two unknowns S,, and D,, and
two variables mg(x) and mp(z) from which all the invariants should be inde-
pendent. All invariants, if they exist, will depend at least either on S,, or D,,.
Therefore, this case gives no invariant which is a function of only the measure-
ment C,. Using information from neighboring pixels is necessary in order to
derive geometry invariants based solely on color measurement values.

We consider next the case of using 2 pixels, say 1 and z5. Each pixel has
N channels. Totally there are 2N values C,,(x,) collected in a system of 2N
equations. In matrix notation we have

P et ot A R A

The color values (C},C2)T are obtained by multiplying the matrix M (con-
taining the geometry terms) with the vector (S,, D,)? which is independent
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of geometry changes. An invariant function f is a mapping from the 2/N-
dimensional space of real numbers to a real number:

fiRY SR

This function should be constant under the transformations M. It is well-known
that the 2 x 2 matrix M can be factored into four one-parameter group actions:
a rotation with angle «, an isotropic scaling with scale factor s;, an anisotropic
scaling with scale factor ss, and a shearing with shift s3. To be invariant
under the transformations M, a function f should be invariant along the vector
fields of the four one-parameter subgroups described above. The action of each
one-parameter group and its invariants have been discussed individually in
section 7.2.4. This case is a combination of the four transformations of the
above one-parameter subgroups and it can be solved as follows.

The number of independent invariants, as discussed in section 7.2.3, is ob-
tained as the dimension of the space on which the invariants operate minus the
dimension of the Lie algebra of the four vector fields. Since these four vector
fields are independent, the Lie algebra has at least 4 dimensions leading to the
maximum of possible independent invariants as

maximum number of invariants = 2N — 4 = 2(N — 2) (7.31)

In order to have an invariant, this number should be positive: 2(N — 2) > 0,
or the number of channels N should be at least 3.

With 3 channels (as in an RGB image), there will be at most 2 independent
invariants. For two pixels x1 and x5 and three channels, say R, G, B, we change
the notation to

] =[] = [ty mole] [Se] . [50]
&) = [Glen] = [tz moten] [Sa] . [56]
sl-Be] =Bt ] -] e

The four vector fields Vi,ot, Visos, Vanis, Vshear along the directions of the
four one-parameter subgroups: rotation, isotropic scaling, anisotropic scaling,
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and shearing, respectively, are given by

Vot = RQagl _Rlafz +G2agl Glagg +B2agl _Blagz
Visos = Rlagl +R2a§z +Glagl +G28?¥2 +Bla§3 +B2a?32
Vinis = Ry 82 e 822 i 326%2

Vinear = Ro ale er a?; B 8?5,1 (7.33)

It can be shown that the four vector fields are functionally independent and
their Lie products do not create any new independent vector field which means
that the dimensions of the Lie algebra of the four vector fields equals 4. There
must be 2 independent invariants in this case.

Following the framework in the previous section, a function f is an invariant
if it satisfies:

Vif =0 for all k = {rotaton, scalings, and shearing} (7.34)

Solving the above systems of differential equations gives us the following in-
variants:

7.35
R1G2 — GlRQ’ R1G2 — G1R2 ( )

B1Gy —G1Bs B1R; — R1B
f=F ( 1Ga2 1b2 Dyl 1 2>
All the invariants for the dichromatic reflection model in Eq. 7.20 for two pixels
of an RGB image are functions of the two invariants. Fig. 7.7 shows how the
above analysis can be done automatically in Maple™

The result for the case of using two pixels of RGB images can be extended
to multichannel images. The four vector fields are, in this case, given by

2 1
Vrot Z Cn 6(]1 ~COngen

B
Z Cn 301 +Cioem
anzs Z n 802

shem“ Z "86’1 (736)




128

Physics-Based Color Invariants

> roteq:=f(cos(x)*R[1]+sin(x)*R[2],-sin(x)*R[1]+cos(x)*R[2],
> cos(x)*G[1]+sin(x)*G[2] ,-sin(x)*G[1]+cos(x)*G[2],
> cos(x)*B[1]+sin(x)*B[2],-sin(x)*B[1]+cos(x)*B[2]);

> rotvf:=map(simplify,eval (subs(x=0,diff(roteq,x))));

req := f(cos(x) R1 + sin(x) Re, —sin(x) R1 + cos(z) Rz,
cos(x) G1 + sin(z) G2, —sin(x) G1 + cos(z) G2,
cos(x) B1 + sin(x) B2, —sin(z) By + cos(z) Bs)
rof =
+ D1(f)(R1, Ra, G1, G2, Bi, B2) R2 — Da(f)(R1, Rz, G1, G2, Bi, B2) Ra
+ Ds(f)(R1, Rz, G1, G2, B1, B2) G2 — Du(f)(R1, Rz, G1, G2, By, B2) Ga
+ Ds(f)(R1, R2, G1, G2, B, B2) Ba — Dg(f)(R1, R2, G1, G2, B1, B2) B:
> iseq:=f(exp(x)*R[1],exp(x)*R[2],exp(x)*G[1],
> exp(x)*G[2] ,exp(x)*B[1],exp(x)*B[2]);
> isvf:=map(simplify,eval(subs(x=0,diff (iseq,x))));
iseq := f(e” R1, €” Ra2, €” G1, €® G2, € B1, € Bs)
wsuf =
+ Di(f)(R1, Rz, G1, G2, B1, B2) Ri + D2(f)(R1, Rz, G1, G2, B1, B2) R>
+ D3(f)(R1, Rz, G1, G2, B1, B2) G1 4+ Da(f)(R1, R2, G1, G2, B1, B2) G2
+ Ds(f)(R1, R2, G1, G2, B1, B2) B1 + D¢(f)(R1, Rz, G1, G2, B1, B2) B>

> aseq:=f(R[1],exp(x)*R[2],G[1],exp(x)*G[2],B[1],exp(x)*B[2]);
> asvf:=map(simplify,eval(subs(x=0,diff(aseq,x))));
aseq := f(R1, €” Ra, G1, €* G2, B1, €” Bs)

asvf := Da(f)(R1, Rz, G1, G2, B1, B2) R
+ Da(f)(R1, Rz, G1, G2, B1, B2) G2 + De(f)(R1, Rz, G1, G2, B1, B2) B2

> sheq:=f(R[1]+x*R[2],R[2],G[1]+x*G[2],G[2],B[1]+x*B[2],B[2]);
> shvf:=map(simplify,eval (subs(x=0,diff (sheq,x))));
sheq = f(Rl + QTRQ, RQ, G+ IGQ, GQ, B1 + :L‘BQ, BQ)

shvf := D1(f)(R1, R2, G1, G2, B1, B2) R2
+ D3(f)(R1, R2, G1, G2, B1, B2) G2 + D5(f)(R1, Rz, G1, G2, B1, B2) B2

> pdsolve({rotvf,isvf,asvf,shvf}, [f]);

—G2B1+B2G1 B2Ri — R2 By >}
—RoG1+ R1 G2’ —R2G1 + R1 Go

{f(Rl, RQ, Gl, Gz, Bl, BQ) = _F1 <

Figure 7.7: The Maple script to find the invariants for the dichromatic reflection
model in the case of using two pixels of RGB images.
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The four vector fields are functionally independent and their Lie products also
do not create any new independent vector field. The number of independent
invariants in this case is

number of invariants = 2N — 4 = 2(N — 2) (7.37)

Using the same framework as in the previous section, the following 2(N — 2)
invariants are obtained

C’%CJZ—C'ELC; ' .
f=F cIcT—cacr [ withn=3...N,j=1,2 (7.38)

Fach added channel will generate two new invariants.

For two pixels x1 and x5 of an RGB image, we have the two invariants, see
Eq. 7.35 of the previous case. If we substitute the RGB values in Eq. 7.32 into
the invariants, it can be shown that their values are independent of both the
geometry terms mg, mp and the spatial terms.

_ B1Ga—G1By  SpDg — SgDp
/= RG> =GR~ SnDe —ScDn
. B1Rs — R1Bs . SBDR — SRDB

(7.39)

2

Using derivatives instead of color values

All the derivations also work if, instead of using two color pixel values as in
Eq. 7.30, we use one color pixel value C¥ at pixel x;, and its derivative in a
given direction W |z=z,, or the derivatives at two different pixels, or even
for only one pixel using its derivative in two different directions. Eq. 7.30 then

has one of the following forms

Ch(xr) B ms(Tk) mp(xy) S, 1
M| = | d(ms(=)) | d(mp(z)) | "Ip (7.40)
dr T=x} dr T=x] dx T=x n
and
d(C;(:C)) ‘m:x w ’x:m d(md;%x)) |w:m S,
d(C(2)) | = | d(ms(x)) | d(mp(x)) | [Dn} (7.41)
dx LT=T2 dx LT=T2 dx LT=T2

The extended dichromatic reflection model

We now consider the extended dichromatic reflection model. For a set of neigh-
boring pixels, it is reasonable to assume that there is no illumination change

locally:
E(x1,\) = E(z2,\) = E(x,\)
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where x1 and x5 are the two neighboring pixels. This leads to S, () = Sy, (x1) =
Sp(z2) and D, (x) = D,(z1) = D, (x2) and we have the following model

Cn(xp) = ms(xp)Sn(x) +mp(2y) D) + Ly} (7.42)

The difference is only that there is another term L7 = [ f,,(A\)L*(A)dA which is,
however, independent of both geometric and illumination factors. Considering
the color values at two neighboring pixels x1 and x5, taking the difference of
the color values we get

Cn(21) — Cnla2) = (ms(21) — ms(22))Sn(x) + (mp(x1) — mp(x2))Dn(x)
(7.43)
It has a form similar to the standard model in Eq. 7.23. Thus all the above
derivations will still be valid if we take the differences between color values
instead of its value. This, however, requires another pixel in the process. For
example the first invariant in Eq. 7.35 becomes

(B1 — B2)(G2 — G3) — (G1 — G2)(B2 — Bs)
(R1 — R2)(G2 — G3) — (G1 — G2)(R2 — R3)

(7.44)

We used the invariant derived above in a segmentation application in which
we want to segment an object having difficult geometry changes from the back-
ground. We computed the color invariant feature

_ B1Gy — ByGy
~ RiGs — ReG,

1

for the image of a paprika as shown in Fig. 7.8. The original image is on
the left side, on the right is the computed invariant feature image, and the
bottom image is the result of a simple thresholding of the feature image. The
paprika can be distinguished from the background, especially in the shadow
region where even the human eye has difficulty in recognizing the real border.
Here the invariant feature value of a pixel = is estimated as the median value
of the feature computed between the pixel x and its 8 connected neighbors.
At the border between the background and the paprika, the assumption that
the two neighboring pixels should come from the same material does not hold.
Therefore we see a noisy border around the paprika in the feature image. Also in
the feature image there are some errors in the highlight regions, where the color
values are cut because of quantization error. This cutting error in highlight
regions was not taken into account when we derived the model.

7.4 Methods using the Kubelka-Munk Model

The dichromatic reflection model as described in the previous section is a gen-
eral model and it does not consider physical processes once the light enters
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Figure 7.8: An RGB image (top left), the color invariant feature using I =
(B1G2—B2G1)/(R1G2— R2G1) (top right), and the segmented image (bottom)
resulting from a simple threshold of the top right image. The color version of
the original image is in Fig. 5.4 on page 83.

into the medium. These processes include absorption, scattering, and emission.
Radiative Transfer Theory (Chandrasekhar, 1950) can be used to describe the
propagation of the light inside the medium. However solving the integro differ-
ential equations which describe light propagations in a medium is very difficult.
It has been shown that there is no analytic solution except for a few simple
cases. Many methods are proposed to solve the problem numerically. For ex-
ample one can divide the direction of incoming light into sub spaces (called
channels) and have much simpler equations of light propagating in such small
channels as in the Discrete-Ordinate-Method Radiative Transfer or the Multi-
flux Radiative Transfer Method. The Kubelka-Munk model is a special case
assuming that the light propagation inside the medium is uniformly diffused
and the properties of the medium such as scattering and absorption coefficient
are isotropic. Under such assumptions, only two fluxes of light propagation
inside the medium are enough to approximately describe the whole process.
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7.4.1 Kubelka-Munk Model

As mentioned earlier, the Kubenka-Munk model deals only with two fluxes
as illustrated in Fig. 7.9, one proceeding downward and the other upward.
Consider the downward proceeding flux ¢ during its propagation through an
elementary layer with thickness dr at . As seen in Fig. 7.9, the downward
flux will be decreased by an amount of Kidx because of absorption and another
amount of Sidr because of scattering where K and S are the fraction of the
downward flux lost by absorption and scattering, respectively, in the elementary
layer. K and S are known as the absorption and scattering coefficients of the
material.

Similar for the upward flux j, it is reduced by an amount of K jdx because of
absorption and Sjdx because of scattering. The total change, dj, of the upward
flux thus consists of two parts: the loss because of absorption and scattering
of the upward flux and the amount added back to the upward flux because of
scattering of the downward flux:

—dj = —(S + K)jdx + Sidx (7.45)
The total change, di, of the downward flux is
di = —(S + K)idz + Sjdx (7.46)
If the medium has optical contact with a backing of reflectance R,, we have
the following boundary condition at x = 0:
Jo = Rgig (7.47)

If the external and internal surface reflectance at the interface of the medium is
denoted as rg and rq, respectively (see Fig. 7.10), and Iy denotes the incoming
light to the interface, then the following boundary conditions can be obtained
at the interface, x = D.

ip = Io(l — 7“0) + jpr1 (7.48)
IQR:I()?“Q —l—jp(l—T’l) (749)

Solving the differential equations Eq. 7.45 and Eq. 7.46 with the boundary
conditions Eq. 7.47, Eq. 7.48, and Eq. 7.49, we obtain the reflectance of the

medium
_ (1 =70)(1 = 71)[(1 = RgRoo)Roo + (Rg — Roo) exp(—AD)]
B =m0 TRy o) (1~ o) — (e — 1) (e — Ry) oxp(—AD) V)
where
K K2 K
R = 145 -\ +23% (7.51)
P2
4 25(1 — R2) (752)

R
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Sidx j — (StK)jdx
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i — (S+K)idx ~ Sjdx
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Backing of Reflectance Ry

Figure 7.9: Basic of the Kubelka-Munk model.

A is a positive constant and if the medium is thick enough, i.e. D — oo then

(7.53)

clearly, R is equal to Rs when the interface reflections are zeros, rq = rq =

0. R is the reflectance of the medium layer when the surface reflection is
omitted (Nobbs, 1985).

The external and internal surface reflectance at the interface of the medium
ro and 71 describe how much of the incident light is reflected at the surface.
They depend on many factors: the incident angle of the light, the geometric
properties of the surface, the reflective indices of the media, the polarization
state of the light beam, and also the wavelength (Judd and Wyszecki, 1975).
However, its dependency on the wavelength is very small and can be neglected.

The Kubelka-Munk coefficients K and S are the absorption and scattering
coefficients of the medium along the direction in which the model is developed;
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N2

I’1J

Figure 7.10: The internal reflection r; and the external reflection rg.

we call this the normal direction. When a light beam travels inside the medium
in a direction different from the normal direction (which is used by Kubelka-
Munk model), it will be absorbed and scattered more in each elementary layer
dx since it has to travel a longer distance. Let o denote the angle between the
direction of light propagation and the normal direction. Instead of travelling
dz the light has to pass a path of length dx/cos(«). Therefore K and S in this
direction will be 1/cos(a) times larger than in the normal direction and they
depend on the angle of the light beam to the normal direction.

Their ratio K/S, however, does not depend on the angle a of the light
beam to the normal direction, but only on the absorption and the scattering
coefficients per unit path length of the medium. Thus R, as in Eq. 7.51
depends only on the material, but not on the direction of the light beam.

Summarizing, the Kubelka-Munk model shows that the reflectance of the
medium can be estimated as in Eq. 7.53 in which R, is the reflectance of
the medium layer when the surface reflection is omitted and rg and r; are the
external and internal surface reflectance at the interface of the medium. R
is independent of geometric properties while ry and r; are not.

7.4.2 Approximation Models for Color Invariants
Geusebroek and his colleagues (Geusebroek et al., 2001; Geusebroek et al.,

2002) used the Kubelka-Munk model and proposed a number of color invariants.
All their derivations are based on the formula

R=p+ (1 -p)?Rs (7.54)
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which can be derived directly from Eq. 7.53 using the assumptions:

re R T (7.55)
rmBRe ~ 0 (7.56)

Eq. 7.55 holds only for small incident angle o and small ratio ny/ny of the
reflection index between the two media. As we can see in Fig. 7.11 the difference
ry — 1o is rather big in most cases violating Eq. 7.55. The assumption in
Eq. 7.56 is also unrealistic since it holds only for materials which have very
high absorption, and low scattering so that R, is small.

Eq. 7.54, however, is still difficult to work with. Aiming to simplify the
form of Eq. 7.51 (mainly reducing from two terms to one term), Geusebroek
et al. use several other assumptions and consider separately several different
cases such as:

e Invariants for equal energy but uneven illumination

Invariants for equal energy but uneven illumination and matte, dull sur-
faces

Invariants for equal energy and uniform illumination and matte, dull
surfaces, and planar objects

Invariants for colored but uneven illumination

Invariants for a uniform object

It can be shown that most of the above assumptions could be relaxed. Look
at Eq. 7.53. If we assume that

1-— rlRoo ~1-— 1 (757)

or in case this is unrealistic, we could have some compensation factor which
could be a constant or even a function of R,

1-— TlRoo ~ (1 — Tl)g(Roo) (758)

Then Eq. 7.53 become

R=rog+ (1—19)g(Rs) (7.59)

The color value at pixel z under illumination F(z, \) measured by the camera
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Reflective index ratio n=n2/n1 Incident angle o

Figure 7.11: The theoretical differences between the internal reflection r; and
the external reflection ry against the angle of the incident light o and the ratio
of the reflection index between the two media n = ng/n; according to Fresnel’s
equations (Chandrasekhar, 1950)

having sensitivity function f,(A) can be computed as
r) = / PN E(, ) [ro(2) + (1 = ro(2)g(Rec)]dX

(x /fn E(x,N)d\+ (1 —ro(z /fn E(z,\)g(Roo)dA

ro(z)Sn(z) + (1 —ro(z))Dp(x)
D, l’)+7“o( )(Sn(z) — Dy (2))

(7.60)

where ro(z) depends on geometric factors but S, (x) and D,,(z) do not. This
approximation model will be investigated in the next section.

Although the form of Eq. 7.60 looks very similar to the form of Eq. 7.23, it
is not correct to say that Eq. 7.60 is a special case of Eq. 7.23 as in (Geusebroek
et al., 2001; Geusebroek et al., 2002). The reason is that in the dichromatic
reflection model (Shafer, 1985), Shafer assumed that the geometric terms mg(x)
and mp(x) are independent of the material properties while this assumption
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does not hold in the Kubelka-Munk model since both ry and r; are dependent
on the material properties.

7.4.3 Geometric Invariants Using the Kubelka-Munk Model

A geometric invariant feature is a function of the color values C),(z) and it
should be independent of ro(x). From Eq. 7.60 we find that the n'” channel
color value of pixel z is given by:

Co(@) = ro(@)Su (@) + (1 = ro(2)) Du (@)
= Dy(@) + ro(2)(Sa () — Du(2)) (7.61)
= Dy (@) + ro(2)On (a)

We consider P neighboring pixels x1,25...xp, each pixel with N channels.
Totally there are P x N values C,(x,) from P x N equations. Since all the
pixels are neighbors, it is reasonable to assume that there is no illumination
change locally around these pixels. Thus the D,,(x) and O, (z) terms for each
channel are identical.

Ch = Cn(zp) = Dy(xp) + ro(zp) - On(x)p)

» i (7.62)
=D, +r;-0, withn=1...N,p=1...P

We use the same strategy as in the previous section to solve the invariant
problem for the Kubelka-Munk model.

For one pixel the situation is similar to the previous section. Since there is
only one pixel to consider, each channel has only one measurement C,,(x), but
two unknowns S,, and D,,. All invariants, if they exist, will depend on at least
either S,, or D,,. It can be seen easily from the following example of using two
channels. We have two equations to describe color values C'; and C5 of pixel x:

Ci1 = D1+ ro(z)Oy

7.63
02 = D2 + T’o(w)OQ ( )

There is only one invariant
_Ci—Dy
/= Cy — Do
but it depends on the unknown Dq, Dy. Therefore, using information from
neighboring pixels is necessary.

We consider next the case of using 2 pixels, say ;1 and z5. Each pixel has
N channels. Totally there are 2N values C,,(x,) collected in a system of 2N
equations as in Eq. 7.62. We change to a shorter notation and compute the
differences between the color values between two pixels in the same channel:

Cl = Cn(zy) = D,(z) +ro(21)On(x) = D, + p10, (7.64)
Cp? = Cp(w1) — Cn(x2) = (ro(w1) — 70(22))On(x) = p20n
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or in matrix form
C,ll . 1 P1 Dy, _ D,
i) =lo 6] =[] (769

The color values (C}, C2)T are obtained by multiplying the matrix M (con-
taining geometry terms) with the vector (D,,,0,)T which is independent of
geometry changes. An invariant function f in this case is a mapping from the
2N-dimensional space of real numbers to a real number:

f:]R2N—>R

This function should be independent under the transformation M. The trans-
formation matrix M is can be seen as a combination of an anisotropic scaling
with scale factor po with a shearing action p;. To be invariant under the trans-
formation M, a function f should be invariant along the vector fields of the two
anisotropic scaling and shearing one-parameter subgroups described above.

The number of independent invariants, as discussed in section 7.2.3, is ob-
tained as the dimension of the space on which the invariants operate minus
the dimension of the Lie algebra of the vector fields. Since in this case, the
two vector fields are functionally independent, the Lie algebra has at least 2
dimensions leading to the maximum of possible independent invariants

maximum number of invariants = 2N — 2 = 2(N — 1) (7.66)

In order to have an invariant, this number should be positive: 2(N — 1) > 0,
or the number of channels N should be at least 2.

With 2 channels such as Red and Green channels in an RGB image, there
will be at most 2 independent invariants. For two pixels x1 and x5 we change

the notation to
Riy| _ |1 pi| |Dr
Ry 0 p2| |Or
G 1 pi| |Da
— 7.67
Gl =10 ] loc] o

The two vector fields Vyniscaie, Vshear @long the directions of the anisotropic
scaling, and shearing one-parameter subgroups are given by

0 0

Vaniscale - RlQW12 + G12 aG12 (768)
0 19,

V;hear = R12_ + G12_ (769)

OR, oG,
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Following the framework in the previous section, a function f is an invariant if
it satisfies:

Vi.f =0 for all k = {anisotropic scaling and shearing} (7.70)

Solving the above system of differential equations gives us the following the
invariants.

71
R1—-R2" RI1-R2 (7.71)
All the invariants for the Kubelka-Munk model in Eq. 7.59 for two pixels of
an RGB image are a function of the two invariants described above. Fig. 7.12
shows how the above analysis can be done automatically in Maple™

o <G1 - G2 G1R2 — G2R1)

> aseq:=f(R1,exp(x)*R12,G1,exp(x)*G12);
> asvf:=map(simplify,eval(subs(x=0,diff (aseq,x))));
aseq :=f(R1, e* R12, G1, e* G12)

asvf == Do(f)(R1, R12, G1, G12) R12 + D4(f)(R1, R12, G1, G12) G12
> sheq:=f (R1+x*R12,R12,G1+x*G12,G12) ;
> shvf:=map(simplify,eval(subs(x=0,diff(sheq,x))));

sheq :=f(R1 +x R12, R12, G1 +x G12, G12)

shof :=D1(f)(R1, R12, G1, G12) R12 + D3(f)(R1, R12, G1, G12) G12
simplify(subs(R12=R1-R2,G12=G1-G2,pdsolve({asvf,shvf}, [£f])));

Gl — G2 —G1R2+RIG2
R1 — R2’ R1 — R2

Vv

{f(R1, R1 — R2, G1, G1 — G2) = F1(

)}

Figure 7.12: The Maple script to find the invariants for the Kubelka Munk
model in the case of using two channels of two pixels.

The above result can be extended to the case of having more than two
channels, for example as in RGB or multichannel images. The two vector fields
are, in this case, given by

al 0
o 2
Vanzscale nzl Cn 802
N
shear g n ac,l (772)

The two vector fields are functionally independent and their Lie product does
not create any new independent vector field. The number of independent in-
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variants in this case is
number of invariants = 2N — 2 = 2(N — 1) (7.73)

Using the same framework as in the previous section, the following 2(N — 1)
invariants are obtained

cl—c? clct - et :
f:F({Cll_C%, 011_012 1} Wlthn:2...N> (7.74)

It is very similar to the dichromatic reflection model described in the previous
section that the values of the invariants derived for any arbitrary pixels x; and
xo of the same material are independent of both the geometry and the spatial
terms.

cl—c? On

fi= o= =0, (7.75)
clc; -c?c}  0,D) - D,0,

fo = o cr - o (7.76)

In this case, each added channel will generate two new invariants.

7.5 Illumination Invariants

It is interesting to observe that most of the invariants proposed in the above
framework are also invariant to illuminations under certain conditions.

It has been shown that many illuminants can be well described as linear
combinations of a low-dimension basis set (Hernandez-Andrés et al., 2001; Judd
et al., 1964).

E(z,A) =Y en(2)ER()) (7.77)

k=1

where Fji(\) is a basis vector and e(z) is a K-dimensional vector of weights
parameterizing the illumination at x.

For a normal scene where there is a dominant light source (such as outdoor
illuminations) or when the spectral properties of the illuminations are mainly
caused by intensity changes, the illumination F(z,\) can be described by only
one basis function (K = 1) as

E(z,)\) = e (z)E;(\) (7.78)

This assumption is generally unrealistic, but for color image segmentation ap-
plications where we want to segment an image into regions, it is quite reasonable
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Figure 7.13: Outdoor illuminations measured at different places on campus
during a short period of time.

to assume that inside that small region, illumination changes can be described
by one-parameter. Under such an assumption, all the invariants which are
based on a ratio (such as angle, ratio of length, ratio of area, etc.) are also
invariant to illumination since e; (z) will cancel in the ratio-based invariants.

In order to examine the assumption which has been made in Eq. 7.78, ex-
periments were carried out with a spectrometer SpectraScan PR 705. Fig. 7.13
shows some of the spectra of outdoor illuminations we have measured at differ-
ent places (direct sunlight, shadow, close to different objects) on our campus
during a short period of time. The PCA of this data set shows that 99.84
% of the energy of the spectral data is in the first principal component. In
another set of data, in which we measure illuminations at different places in
an office room illuminated by six lamps, two PC monitors, and daylight from
two windows, 98.68 % of energy is in the first principal component. These
examples illustrate that Eq. 7.78 is a reasonable assumption for many normal
illuminations.

This is the simplest example where the illumination spectra can be de-
scribed by one-parameter, in this case the intensity of the illumination source.
In another investigation we showed that also the chromaticity properties of
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illumination sources can (to a large extend) be described by a single param-
eter (Lenz et al., 2003a). Together with the intensity changes this gives a
transformation group with two parameters and invariants can be derived using
the framework described above.

Regions: 1 -3 Regions: 3-5

1200

180

160
1000

140
120} 800
100}
600
80

60 400

200

0.48 0.5 052 054 056 0.58 0.6 0.62 -6 -4
Invariant features Invariant features

Figure 7.14: Analysis the invariant feature distribution for each pair of regions.
Regions are numbered as in Fig. 7.15.

7.6 Robust Region-Merging Algorithm

In the previous sections, we saw that physics-based color image understanding
using physical models require quite unrealistic assumptions. This explains why
features computed using physical models are noisy. Also most of the invariants
have the form of a ratio of two small numbers, for example

R1 — R2 R1G2 — R2G1 or RlBQ — R2B1
G1 — G27 G1 — GQ ’ GlBQ — GgBl

The invariant feature is therefore sensitive to noise, especially when each chan-
nel has only 8 bits, or 256 different levels. Robust methods are needed to deal
with this situation. In this section, we propose a robust region-merging al-
gorithm for color image segmentation applications using physics-based models
described in the previous sections.

The basic idea of the proposed algorithm is that instead of a point-wise
clustering decision, we will first over-segment the input color image into ho-
mogenous regions, then try to merge them based on the similarity between the
feature distributions of regions. The algorithm works as follows:
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1. Over-segment the input image into homogenous color regions
Rl,RQ,...,RN

2. Compute invariant features for a number of pixels in each region using
one of the invariants described above.

3. Estimate the distributions of the invariant features f1, fo,..., fn for each
region based on the above computed samples.

4. For all pairs of regions R; and R;, compute the distance between their
feature distributions d;; = dist(f;, f;)

5. Merge the two regions which have most similar feature distributions:
Sorting all the computed distances and merge the two regions correspond-
ing to the smallest distance d. This gives a new region R;;

6. Update the new region R;; instead of the two regions R; and R;

7. If the number of remaining regions is still greater than a predefined num-
ber, continue with step 4. Otherwise stop.

An example of the algorithm is illustrated in Fig. 7.15, where we first use
the Mean Shift Algorithm (Comaniciu and Meer, 1999a) to over-segment the
paprika image into seven homogenous color regions. The original image is
shown in the left-lower part of Fig. 7.15. For each region, a fixed number of
pairs of pixels are randomly selected. The invariant feature

_ B1Gy — ByG

=
R1G2 — R2G1

is then computed for all the pairs. Based on these computed invariant feature
values, we estimate the feature distributions of the seven regions. Fig. 7.14
shows two examples of joint distributions of regions (1,3) and (3,5). Clearly
regions 3 and 5 come from the same material, therefore their joint distribution
has only one peak. The joint distribution of regions 1 and 3 has two peak
because the two regions belong to different material. Which regions should be
merged first is decided on the basis of the similarity between feature distribution
of the regions. Distances between these distributions are compared using Lo
metric. The result of the merging process is shown in the right part of Fig. 7.15.

Another more complicated example is done with the color image in Fig. 7.16.
The left image is the original image and the right one is the result after over-
segmenting the image. Fig. 7.17 presents the result of our proposed algorithm
after 160 steps. Most of the regions coming from the same material have been
merged. However, the shadow of the cup could not be merged.
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Paprika Background
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Figure 7.15: The left side shows the original paprika image and its over-
segmented image. The right side shows the steps of the robust region-merging
algorithm applied to the left images. A color version of the original image is
presented in Fig.5.4 on page 83.

7.7 Summary

In this chapter we applied the invariant theory to derive geometry color invari-
ants using different physical reflection models. We concentrated on the problem
of how to systematically construct all the independent invariants for a given
model. We showed that using the framework all the independent invariants of
a given physical process can be constructed. Most of the work can be done by
few lines of coding with the help of symbolic mathematical software packages
like Maple™. The dichromatic reflection model, its extended version, and the
Kubelka-Munk model were then investigated within the framework. Experi-
ments were done and illustrated that the invariants provide useful information
to discriminate between shadow and object points in the scene. For more real-
istic applications further analysis of the underlying physical processes and an
error analysis of the models are needed.
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Figure 7.16: Original cup image. A color version of this image is presented in
Fig.5.4 on page 83.

Figure 7.17: The left image shows the result of over-segmenting the image in
Fig. 7.16. The right image shows the result of the robust region-merging on
the left image after 160 steps. A color version of the two images is presented
in Fig.1.3 on page 7.






Chapter 8

MOMENT-BASED
NORMALIZATION
OF COLOR IMAGES

Many conventional computational color constancy methods assume that the
effect of an illumination change can be described by a matrix multiplication
with a diagonal matrix. In this chapter we introduce a color normalization algo-
rithm which computes the unique color transformation matrix which normalizes
a given set of moments computed from the color distribution of an image. This
normalization procedure is a generalization of the independent channel color
constancy methods since general matrix transformations are considered. We
compare the performance of this normalization method with conventional color
constancy methods in color correction and illuminant color object recognition
applications. The experiments show that diagonal transformation matrices pro-
vide a better illumination compensation. This shows that the color moments
also contain significant information about the color distributions of the objects
in the image which is independent of the illumination characteristics.

In another set of experiments we use the unique transformation matrix as
a descriptor of the set of moments which describe the global color distribu-
tion in the image. Combining the matrices computed from two such images
describes the color differences between them. We then use this as a tool for
color-dependent search in image databases. This matrix-based color search is
computationally less demanding than histogram-based color search tools.

This work was done before we started our investigation on general color-
based methods. The method is therefore only compared with the histogram
intersection method.
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8.1 Introduction

It is often assumed that the effect of a change in illumination on an RGB image
can be described by a linear transformation, i.e. a 3 x 3 matrix, see (Finlayson
et al., 1994; Kondepudy and Healey, 1994; Drew et al., 1998) for some appli-
cations in image processing and computer vision and section 5.12 in (Wyszecki
and Stiles, 1982) for a related discussion of color adaptation. Studies of the
human visual system suggest that color adaptation is obtained by indepen-
dent adjustments of the sensitivities of the sensors. This corresponds to a
diagonal transformation matrix and is known as von-Kries adaptation. In this
paper we will assume that the general model involving a full 3 x 3 matrix
is approximately correct and we will describe a method to compute a unique
color transformation matrix which normalizes the probability distribution of
the color image. Two examples in which such a normalization is useful are
image database search and color mapping. In image database applications it is
useful to separate the illumination from the scene properties to allow search for
objects independent of the properties of the imaging process. In color mapping
the transformation matrix is used to characterize the overall color distribution
of an image. Combinations of these matrices can then be used to simulate
different color effects.

If we denote by x( the color vector (usually containing RGB-values) pro-
duced by an object point under illuminant Ly and by x; the color vector
produced by the same object point under illuminant .; then the linear trans-
formation model assumes that there is a 3 x 3 matrix T such that

X1 = TXO. (81)

Here we will not assume that the relation in Eq. 8.1 is known for each image
point separately. Instead we will only require that it holds in the following
statistical sense:

Denote by p;(x) the probability distribution of a scene under illumina-
tion L;. Then we assume that the color distributions are connected by a linear
transformation as follows:

p1(x) = po (Tx) (8.2)

In this setting the equation incorporates three components:
1. The illumination, represented by T
2. the sensors producing the x-vector and
3. the object, or rather the statistical properties of the scene.

Whether the relation in Eq. 8.1 or Eq. 8.2 is valid depends of course on all of
the factors involved.
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In the following we assume that we have a pair of images. The goal is to
compute for this pair of images the transformation matrix T such that Eq. 8.2
holds. Here we will not solve the problem directly but we will use a two-
step procedure instead. In the first step we will compute for every image I a
unique matrix T such that the probability distribution transformed according
to Eq. 8.2 has a unique set of moments. The required transformation matrix
which maps image Iy to image I; is then given by

T="T;'T (8.3)

Note that the role of T as a description of the illumination effect was mainly to
motivate the approach. In general the matrix T will depend on both the illumi-
nation characteristics and the scene properties. The same illumination change
(say from daylight to indoor illumination) will lead to different matrices T
depending on the scene from which it is computed.

8.2 Moments of Color Image

Let now x = (a:l,:vg,mg) be a vector and p(x) be a probability distribution.
For a multiindex ¢ = (il, 19, 753) we define the moment as:

m; = /xilx?ac?p(x) dx (8.4)

and call 71 + 79 + i3 the order of the moment. First order moments are expec-
tations. We will denote the expectation of component k by 7y :

= / 2p(x) do (8.5)

Second-order moments will be denoted by o;; :

oij = /:Uixjp(x) dx (8.6)

The matrix consisting of the second-order moments is denoted by 3 :

011 012 013
3= 012 0922 023 (87)
013 023 033

We also need third-order moments in the variables x5 and x3 and write:

T = /x%a:g_jp(x) dx (j=0...3) (8.8)
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In the following series of theorems we will investigate expectations and second-
order moments. Assume p(x) is a probability density of the random vari-
able x = (x1,22,r3)" with correlation matrix 3 and suppose the correlation
matrix ¥ has full rank. Then:

Theorem 1 There is a 3 x 3 matrix T such that the transformed random
variable Tx has second-order moment matrix 37 = E, the identity matrix.

The second-order moment matrix of the transformed variable Tx is given
by X7 = TXT'. Using the singular value decomposition % = V'DV with an
orthonormal matrix V and a diagonal matrix D (with positive entries in the

diagonal) we get Xp = TXT' = TV’ DVT . Since the correlation matrix 3
has full rank, we can always define D through the relation:

DxD=D"1 (8.9)

The required solution, which is defined as T = DV, will normalize the second-
order moment matrix to the identity matrix E.

In the following theorem we will normalize the expectation vector:

Theorem 2 There is a 3 x 3 matrix T such that the transformed random
variable Tx has second-order moment matrix 37 = E and the expectation
vector (r,0,0)".

Using the last theorem we can assume that the matrix of second-order
moments is the unit matrix: 3 = E. Since the moment matrix of Tx is equal
to TET’ = E we find that the transformation T has to be a three-dimensional
rotation or a reflection. From geometry it is clear that given any vector y there
is a three-dimensional rotation T such that Ty = (r,0,0)" where r is the length
of y. Using F(Tx) = TFE(x) and y as the expectation vector y = E(x) proves
the theorem.

The last two theorems ensure that we can find a linear transformation T
such that the expectation vector points in the x-direction and the matrix of
second-order moments is the unit matrix. In the next theorem we will investi-
gate to what extent these properties determine T

Theorem 3 Assume the random processes x and Tx have expectation vec-
tors (r,,0,0)" and (r7,0,0)" respectively. Assume further that the matrix of
second-order moments is the unit matrix for both processes. Then the ma-
trix T must be either a 3-D rotation matrix around the x-axis or a reflection

matrix of the form:
60 0 0

0 & 0 (8.10)
0 0 &
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where 0y, is either 1 or -1.

From the requirement that the second-order moment matrices of both pro-
cesses are the unit matrix we get: E = TET’ = TT’ from which we conclude
that T must be an orthonormal matrix. T is not necessarily a rotation, it can
also be a reflection or a combination of both.

Writing the matrix T as a product of a rotation followed by a reflection
it can be seen that the requirement that the expectation vectors are given
by (7,0,0) and (rr,0,0)" = T (,,0,0) shows that T has the x-axis as fixed
axis. Therefore it must be a rotation around the x-axis or a reflection or a
combination of the two. If r, > 0 and rr > 0 then §; = 1.

From the last theorem it follows that the requirement that the transformed
process has uncorrelated components with unit variance determines the trans-
formation matrix up to one continuous parameter, the rotation angle around
the x-axis. We could therefore add one more constraint, for example in the
form of the annihilation of another third-order moment, and fix the value of
the rotation angle by the solution of the constraining equation. We will not
follow this approach since it does not give a hint on how to find the addi-
tional constraint. Instead we will follow a more systematic, group theoretically
motivated solution. The group theoretical background is described in (Tran,
1999).

Theorem 4 Consider a two-dimensional stochastic process with variables vy, z.
Define the third-order moments 7 as in Eq. 8.8 where we use y, 2z instead
of x4, x3. Combine them to the complex third-order moment:

t(y,2) = T3 + it + 11 + 70 (8.11)

From the original process compute a new process by applying a 2-D rota-
tion with an angle o to the independent variables y, z resulting in the new
variables y’, 2’. We define the corresponding third-order moments 7;, and the
complex moment ¢(y’, z') correspondingly and get for the complex third-order
moments the relation:

ty', 2') = e"“t(y, 2) (8.12)

From this we find the following normalization procedure for the rotation angle.

Theorem 5 For a two-dimensional process with components y, z there is a
unique rotation with rotation angle « such that ¢(y’, 2’) € R and t(y/, 2’) > 0.

It now remains to investigate the influence of the reflections. Reflections on
the first coordinate axis are not possible since we normalized the expectation
of x1 to a positive number. From the definition of the complex moment #(y, z)
we get the following effects of reflections on the coordinate axis:
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Theorem 6 The complex moment function ¢(y, z) transforms as follows under
reflections:

t(~y,—2) = —t(y,2) (8.13)

If two stochastic processes given by (y, z) and (y’,z’) are related by a re-
flection and if they satisfy t(y, z) € R, t(y',2') € R,t(y,z) > 0 and t(y',2') > 0
then the reflection is around the z-axis: 2/ = +z.

Summarizing, the normalization procedure works as follows:

1.

Use principal component analysis to compute the rotation matrix T; such
that the matrix of second-order moments is diagonal.

Compute the diagonal scaling matrix T such that the transformed vari-
ables have unit variance.

Apply the rotation matrix T3 such that the expectation vector points in
the positive x-direction.

Rotate the last two components with the 2-D rotation matrix Ty such
that the complex third-order moment is real and positive.

Finally use a reflection T5 on the third component to make the lowest
odd-order moment positive.

The product T = T5T4T3T>T; normalizes the moments of the color
distributions as described above.

When the matrix of second-order moments X, is singular the matrices T+,
T, which normalize the correlation matrix are no longer unique. In this case we
select from the whole class of allowable transformation matrices one element.
Specifically we assign 1 for all undefined elements on the diagonal of T5. Each
color image defines then a unique transformation matrix but the same trans-
formation matrix may characterize different color distributions. For singular
correlation matrices the normalization algorithm is as follows. When

Rank(X) =2 : or the eigenvalues of the second-order moment matrix ¥ are

A1 > Ay > 0, A3 = 0. We choose the rotation T3 as a rotation around
the third axis such that the transformed process has correlation matrix
St = diag(1,1, \3) and expectation vector (ry", 0,75 )" with r",d* € R*.
The other matrices Ty = T5 = FE

Rank(¥) <2 :

In this case we choose the transformation matrices T3 = T4y = T5 = E.
Important examples are monochrome images.
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8.3 Implementation and Experiments

This section describes the application of the proposed normalization algorithm
in three difference applications: color correction, illumination-invariant color
object recognition, and a color indexing application.

8.3.1 Input databases

The experiments in this chapter used an image database! from the Computer
Science Laboratory, Simon Fraser University, Vancouver, Canada. We refer to
this database as the SFU-database

110‘2
- Sylvania Halogen
- Philips Ultralume
0sl — — Sylvania Cool White
' —— Macbeth 5000K + 3202 Filter
. —— Macbeth 5000K
E
E 0.6
(]
(8]
c
g 0.4
£ 0
S
-
0.2
0

550 600
Wavelength A (nm)

Figure 8.1: Spectra of five test illuminants

The images in the SFU-database show eleven different, relatively colorful
objects (Fig. 8.3 shows the objects). The pictures were taken with a Sony DXC-
930 3-CCD color video camera balanced for 3200K lighting with the gamma
correction turned off so that its response is essentially a linear function of lumi-
nance. The RGB response of the camera was calibrated against a Photoresearch

650 spectroradiometer. The aperture was set so that no pixels were clipped in
any of the three bands (i.e. R,G, B < 255).

IMore information about the data set is available at the website of Computer Science
Laboratory, Simon Fraser University, Vancouver, Canada http://www.cs.sfu.ca
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The images are taken under five different illuminants using the top section
(the part where the lights are mounted) of a Macbeth Judge II light booth.
The illuminants were the Macbeth Judge II illuminant A, a Sylvania Cool
White Fluorescent, a Philips Ultralume Fluorescent, the Macbeth Judge II
5000 Fluorescent, and the Macbeth Judge II 5000 Fluorescent together with
a Roscolux 3202 full blue filter, which produced an illuminant similar in color
temperature to a very deep blue sky. The effect created by changing between
these illuminants can be seen in Fig. 8.2 where the same ball is seen under the
different illuminants. The illuminant spectra are plotted in Fig. 8.1.

A B SR Y PR

Figure 8.2: Object Ball-2 as seen under 5 different illuminants.

Two sets of images were taken. For the "model” set, images of each object
were taken under each of the five illuminants, without moving the object. This
gave eleven groups of five registered images. The "test” set is similar, except
that the object moved before taking each image. In total, 110 images were used
in the database. These two sets of images are used to evaluate color indexing
under different scene illuminants with and without changes in object position.

We also used the VisTex (see chapter 5) database in moment-based search.

8.3.2 Color Correction

In our first set of experiments we compared the color mapping properties of the
moment-based normalization method with conventional color constancy meth-
ods. For this experiment we use the registered images in the SFU database.
The object points are in pointwise correspondence and the color mapping de-
pends only on the changing illumination conditions. We implemented and
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Ball-2

Figure 8.3: The 11 objects in the image database as seen under a single illu-
minant

tested the performance of the following color constancy methods (the methods
and implementation details are described in (Tran, 1999)).

NO: No algorithm applied

BT: Best linear transform by using a full matrix which gives minimum
least squared error (BT)

BD: Best diagonal transform by using a diagonal transform which gives
minimum least squared error

GW: Grey world algorithm
using all pixels in the image (GW1) and
ignoring background points in the image (GW2)

RET: Retinex
using all pixels in the image (RET1) and
ignoring background points in the image (RET?2)
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¢ GM: Gamut mapping
solution chosen by hull points average (GM1)
centroid of the hull (GM2)
maximum volume heuristic (GM3)

e MB: Moment-based with different outlier values
outlier = 0 (MB1)
outlier = 0.5% (MB2)
outlier = 1% (MB3)
outlier = 2% (MB4) and
Outlier = 5% (MBS5)

The implementation of the moment-based method has to take into account
that the matrix multiplication model is only an approximation and that the
matrix elements must be computed from the moments which are estimated
from the image data as described. For real images neither of them is com-
pletely fulfilled: the matrix model is only a linear approximation of the true
transformation and the moments have to be estimated from the image data.
The third-order moments in particularly are highly sensitive to statistical devi-
ations such as outliers (Rousseeuw and Leroy, 1987). This was confirmed in our
experiments and we include therefore a preprocessing step in which extreme
points are ignored in the third-order moment computations. We did several
experiments with different threshold values for outlier detection.

For each object in the database, we have five different images of this object
under five illuminants in identical position. We computed for each of the five
images the transformation matrix T to transform those images to descriptors
which are independent of illuminants. Combining two of them provides the
linear color mapping between the two images.

For example, Fig. 8.3.2 shows the images of the ball-2 object, which are
corrected by the moment-based method. Five balls in the diagonal are copied
from the original images of the object taken from the database, see Fig. 8.3.2.
The other balls are results of color constancy corrections. The ball at column
i, row j say B(i,j) is the result of mapping ball image j to the illuminant of
ball image +.

In order to measure the performance of different color constancy algorithms
we use the root mean square (RMS) difference between the mapped image and
the registered target image on a pixel-by-pixel basis taken across the entire
image . Table 8.1 summarizes the RMS error of the algorithms for the cases
were the sampling value is equal 1 (all pixels), 5, 10 and 20.

Sampling is used here to test the effect of downsizing the image. For example
sampling = 5 means that not all pixels in the image but only one of 5 x 5 pixels
are used. The motivation of using sampling is to test the algorithms in different
resolutions of the image database.
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Method Ri(HI) | Ro(HI) | R3(HI) || Ri(KL) | Ro(KL) | R3(KL)
Nothing 38.6 7.1 4.8 37.3 11.9 9.0
Perfect 100 0 0 100 0 0
GW1 88.1 4.8 2.7 86.7 5.8 2.6
GW2 95.2 2.8 0.9 95.9 2.8 0.7
RET1 80.2 7.3 1.9 81.1 8.0 2.7
RET2 80.2 7.3 1.9 81.1 8.0 2.7
GM1 82.3 6.6 1.2 85.1 5.5 1.7
GM2 80.3 4.8 3.4 82.8 5.6 3.9
GM3 81.9 4.1 2.6 83.0 5.2 2.9
MB1 65.6 10.2 5.4 64.9 10.8 5.1
MB2 67.7 12.5 5.5 64.4 11.2 6.1
MB3 67.5 14.2 7.7 60.2 14.4 8.0
MB4 79.5 8.0 3.5 69.2 11.1 6.8
MB5 71.3 10.8 5.4 66.3 9.2 5.5

Table 8.2: Color indexing results using OPP axes (Rank k matches for His-
togram intersection (HI) and Kullback-Leibler (KL) distance)

We found in these experiments that the results depend significantly on the
procedure chosen to compute the histograms. This includes the way to define
the bins and to select the number of bins used in histograming. Also in this
experiments the diagonal matrix-based methods like gray-world and retinex
color constancy algorithms provided better search results than the moment-
based method.

An interpretation of these results is that given the three response functions
of the human eye, or camera sensor, only the general model is sufficient to
map accurately color observations to descriptors. However if a visual systems
sensors are narrow band then the diagonal model is all that is required. In
our experiments, the images in the database are special. The images were
taken carefully under controlled conditions and the camera sensors are quite
sharp. That may be one reason explaining why in our experiments, the diagonal
model, which is the model of almost color constancy algorithms (Gray world,
Retinex, Gamut mapping) worked well. The moment-based method is based
on a general model. It estimates the full 3x3 transformation matrix, which has
9 parameters. It is thus more complicated than the diagonal model. One of
the reasons why the moment-based method actually is not as efficient might
be that it is a normalization algorithm, not a color constancy algorithm. It
normalizes the input images to the descriptors which have the same statistical
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properties (first, second and some third-order moments) by multiplying the
input image with a full 3 by 3 matrix M. In this process, both the information
coming from illumination as well as sensors and reflectance is normalized. But
the goal of color constancy is only to normalize the illumination.

To improve the result of this method when applying it to color constancy,
we have to somehow find a way to separate M, which has 9 parameters, into two
parts: one part depending on the illumination and the other part independent
of the illumination.

8.3.4 Color Indexing

In the last set of experiments we used the transformation matrices as descriptors
of the moments of the color distributions. Similar transformation matrices are
assumed to originate in similar color distributions and we can therefore use the
similarity dist(T7,T2) between the transformation matrices T7 and T3 as a
measure of similarity between the underlying images. Here dist(Tq,T2) can
be taken as one of the matrixnorms. In our experiments we combined T+, T2
to T = T1T2 ! and compared T to the unit matrix by defining dist(Tq, T2) =
min;; |t;; — 0;;] where ¢;; are the elements of T and d;; is the Kronecker symbol.

The image in Fig. 8.5 shows a simple example in which mainly green images
are retrieved. In this example the first image is the template image and the
other images are sorted using the similarity to the template image

An advantage of this matching algorithm is speed: computation of this
similarity measure is much faster than the histogram-based methods since it
involved only multiplication of two 3x3 matrices. This was implemented and
tested on the images in the VisTex database.

8.4 Summary

The goal of this work was to implement and compare color constancy algorithms
with emphasis on the moment-based method. Comparisons were performed
under both RMS error and performance of color-based object recognition. Two
method, Color Indexing and Kullback-Leibler distance were used in object
recognition, in which Kullback-Leibler distance performed slightly better.

The work also showed that color constancy pre-processing did a significant
improvement in object recognition performance over doing no pre-processing.
But it seems that it was not enough for object recognition although the results
of color constancy under human vision was quite good.

The moment-based method is actually a normalization algorithm, but when
apply it to solve color constancy, it showed quite good results. To apply it in
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color constancy more efficiency, we have to find a way to separate the illumi-
nation information in the normalization process.

Thus to a reasonable extent, the original goal has been achieved. But it
is worth pointing out that color constancy processing on image data is not
enough for color-based object recognition. We have to find more efficient color
constancy algorithm, probably based on a combination of existing methods.






Chapter 9

APPLICATION:
BABYIMAGE PROJECT

9.1 Overview

Most of the images used in newspaper production today will sooner or later
be converted into digital format. The images are of different quality and in
many cases some processing is needed before they can be printed. In this
project we investigated a special class of images, family images as shown in
Fig. 9.1, that fill approximately one page every week in the regional ”Ostgota
Correspondenten” newspaper.

The images on the page are scanned from the original pictures and (after a
routine pre-processing step) printed in the order they are scanned. This may
lead to a page layout in which pictures of different color characteristics are
printed side by side and it may also lead to situations in which images with
severe color distortions are printed.

In this project we tested first if standard color correction methods could
be used in this application. These studies showed that these methods might
lead to unacceptable results if they do not take into account the structure of
the images. In our experiments we found that color correction methods should
be based on information about the color distribution of the large background
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area and the face/skin pixels. We then developed a sorting algorithm based on
statistical methods that tries to put similar images near to each other. Next
we defined a quality function that takes into account the color appearance of a
whole page. This quality function can then be used to color correct the sorted
images.

We also experimented with an automatic segmentation process that extracts
the background and the skin pixels from an image. This basic color segmen-
tation method is then combined with the geometrical information about the
location of the background area to divide the image into three regions, the
background, the skin areas and the remaining image points. Based on the
statistical properties of the background and the skin pixels a two-step color
correction method is then applied to decrease the color differences between
adjoining images on a page.

9.2 Current Printing Process

In the experiments we used two different databases consisting of 30 and 38
images respectively. The 30 images in the first database were published in
one week in the year 1999 and the 38 images in the second set of images
were published on one page in the year 2000. Each of the images consisted of
approximately 350 x 540 pixels.

Currently the images come as paper prints from the photographer. These
paper copies are then scanned (not individually but in larger batches simul-
taneously) and automatically color corrected with a standard program. This
program does not analyze the images but applies the same transformation to
all the images. The control parameters for the color transformation are chosen
in a way that the average image looks good in print. Together with an image
comes a text that describes the family on the image. Since it is important that
the right image is combined with the right text it is currently not possible to
change the order in which the images are printed on the page.

In the current production process it is possible that an image with a severe
distortion of the color distribution (very red faces for example) is printed as
it is. It is also possible that images with very different color distributions are
printed side by side. Human vision has the ability to compensate automatically
for illumination changes. We know that the color of an object usually does
not change and we tend to remember colors rather than to perceive them
consciously. When we see several images side by side on one page, then the
colors of background and face regions, which we usually ignore when we look
at the images one by one, are seen as they really are. Consequently we will
perceive the page as inhomogeneous and inferior to a more homogeneous layout.
When a dark image is surrounded by light images, the page appears to have a
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dark hole. On the other hand, a page will look homogeneous, and consequently
more pleasant, if images of similar color appearance are located near each other.

The two examples in Fig. 9.3 and Fig. 9.4 illustrate the difference between
a homogeneous page and a page with very different images located side-by-
side. In the middle region of the inhomogeneous image there is a dark image
surrounded by light images which makes this page layout clearly inferior to the
first, homogeneous page.

9.3 The Proposed Methods

We have performed the following experiments:

1. Manual segmentation of the images in different regions of interest and
calculation of statistical properties of the extracted regions.

2. Development of a statistics-based quality function describing the appear-
ance of the page layout.

3. Investigation and implementation of statistics-based sorting strategies to
optimize the page layout.

4. Design of context sensitive, global, statistics based color correction meth-
ods to improve the appearance of the sorted page layout.

5. Application of automatic color segmentation and clustering techniques to
detect background and skin regions in the images.

6. Implementation of context sensitive color screening and mapping algo-
rithms.

9.3.1 Application of Conventional methods

In our first studies we tested conventional color constancy and color normal-
ization methods on the images in the first set of images. These tests showed
that a successful processing method required some form of analysis of the image
content. Since the main purpose of the study was the development of color cor-
rection and automatic page layout methods, we decided to start with a rough
manual segmentation of the images.

In the manual segmentation process we identified several regions in each
image:

1. One region for every face and

2. One region for the highlighted background points originating in the illu-
mination source
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3. One region for the remaining background pixels

4. The remaining region consisting mainly of clothes but also of other skin
regions like arms.

For each such region we computed a number of statistical parameters de-
scribing the statistical properties of the color distribution in this region such as
mean values and correlations between the color vectors in the color coordinate

systems like RGB, CIE-LAB and polar coordinates in CIE-LAB.

In a first series of experiments we tested whether conventional color correc-
tion methods could be used to improve the color appearance of the final page
layout. We tested global methods in which all color pixels undergo the same
transformation. The transformations tested included:

1. Standard methods such as the ”Grey World” approach and other von-
Kries type transformations in which the R-, G- and B-channels are scaled
with different scaling factors and

2. Our own color normalization method based on third order moments of
the color distributions as described in the previous chapter.

3. CIE-LAB based ”Grey World”-type normalization

The transformation parameters were computed from the statistical proper-
ties of

1. The complete image
2. The complete background and
3. The background without the highlighted region.

None of these experiments produced acceptable results for all the images in
the database. Some of the problems with this method are illustrated in Fig. 9.2.
All these images are obtained by using a conventional grey-world algorithm.
The color correction parameters are computed from all pixels in the image (left
image), the skin-tone pixels (middle image) and the background points (right
image). In the correction step the color of all pixels in the image are changed
based on these parameters. As a result the global statistics, the skin areas and
the background are similar but the resulting image is far from optimal.

As a result of these experiments we decided to experiment with two different
normalization strategies:

1. We still use global color mappings that transform all color pixels in an
image in the same way but we modify the distance measure between the
color properties of two images in two ways:
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e We compute the distance between the images as a linear combination
of the distance between the background color distributions and the
distance between the face-distributions

e We describe the color properties in polar coordinates in CIE-LAB.
In this system the L-component represents intensity, the radius in
the (ab)-plane measures saturation and the angle in the (ab)-plane
represents hue. For each property we can introduce a weight fac-
tor describing the cost of changing this property in the face or the
background region. We thus constrain the amount of color changes
possible in this step to eliminate the risk of extreme color changes

2. In this approach we give up the global mappings and apply two different
color mappings to the background region and to the rest of the image. In a
transition region the mapping is obtained by blending the two mappings
linearly. The transformation parameters are computed from the pixel
statistics of the background and the skin regions in the image.

The first approach is simpler since it only requires the computation of the
statistical parameters of the background and the face- or skin-regions. The
second approach is more complex since it has to compute the statistical pa-
rameters of the background and the skin regions and it also has to find the
background region and the transition region between the background and the
rest of the image.

9.3.2 Optimizing Page Layout

Analyzing the appearance of different arrangements of the images on a page we
concluded that the overall impression of a page depended mainly on the color
of the large background regions in the images. A visually pleasant arrangement
was mainly characterized by small perceptual differences between neighboring
images. A quality function capturing this homogeneity property must therefore
be based on a measure of the difference between two statistical distributions
of color vectors. The definition of a measure that takes into account both the
statistical properties of the color vectors and the perceptual relations between
the colors in the distributions is still an unsolved problem. In our application
we decided that it was sufficient to incorporate only the statistical properties
since the colors in the two relevant distributions are always in the same region
of color space.

In our first series of experiments we decided to use only globally-defined
color transformations where all pixels in an image are treated in the same
way. We first used the statistical parameters of the background regions and
computed for a pair of images the intensity-based distance between the two
distributions.
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Statistics-based layout quality function

Among the many possible distance measures between two probability dis-
tributions we selected the Bhattacharya (3.17) distance and the differential
geometry-based measure for normal distributions presented in chapter 5.

In the following we denote by distg;(Ix,I;) the Bhattacharya- and by
dist a1 (Ix, I;) the Amari-distance between image I, and image I; in the database
computed from the distribution of intensity values of all the pixels in the back-
ground. As a measure of the intensity of a color we use the L—part in the
CIE-LAB color co-ordinate system. For the case where the highlight pixels
in the background are ignored we get the corresponding distance measures
distgra (Ig, I;) and distarg (I, I;). For a complete page layout we define the
combined distance measures:

distp = Z Z dist([kl, Ik—l—l,l) + Z Z dist(IkJ, Ik:,l—H) (9.1)
l k l k

where dist is one of the distance measures dist o7, distgy, dist as;g, or distgry.
The first sum measures the accumulated distances computed over all neigh-
boring images in columns and the second sum is the corresponding measure
computed over all neighboring images in rows. If we want to emphasize that
the value of distp depends on the arrangement A of the images on that page,
we write distp(A).

Following the general rule to change the original images as little as possible
we improve the quality of a page (or decrease the value of the distance measure
distp) by sorting alone. The images on the page are thus only rearranged but
their colors are unchanged.

Finding an optimal arrangement A,,; with distp(Aept) < distp(A) for all
arrangements A is a difficult combinatorial optimization problem. We did not
attempt to solve this in general. Instead we start with a random arrangement
and improve the page layout by using the following trial-and-error procedure:

e In each iteration we select randomly a pair of images on the page

e Then we compute for each image the contribution of this image pair to
the general distp value and the contribution when these two images are
exchanged.

e If the combined contributions from the two images in the swapped posi-
tions is lower than the contributions when they are located in the current
positions, we exchange their positions. Otherwise we leave the arrange-
ment as it is.



9.3 The Proposed Methods 173

Such an iteration is very fast since it only involves the computation of 16
distance values (4 distances between the center image and its four neighbors,
for each of the two images in each of the two positions). Usually we used
5,000 such checks and found that the process had stabilized in an acceptable
rearrangement. Reversing the decision and exchanging the images when the
distp value is increased by such a change gives a way to find optimally bad
pages. These optimization processes were used to obtain the images shown in
Fig. 9.3 and Fig. 9.4.

Optimizing page layout using statistical color correction

The page obtained after the sorting consists of the original images as produced
by the scanner. After the sorting step we experimented with different tech-
niques to improve the quality of the resulting page further. As mentioned
above, we use polar CIE-LAB coordinates at this processing stage. In the
optimization procedure the color transformation matrix is modified by three
operations:

e Multiplication of the L-component (resulting in an increasing or decreas-
ing intensity value)

e Multiplication of the radial ab-coordinate (modifying the saturation prop-
erties)

e Shifting the hue variable

The quality of a given color transformation is then measured by a quality
function which incorporates the following factors:

e Cost of changing the initial distributions
e Distance between the background distributions

e Distance between the face distributions

In these experiments the distance between two distributions of color vectors
is measured by their Bhattacharya distance since the differential geometry-
based method is less well understood for higher dimensional stochastic vari-
ables. The final distance between two images is the weighted sum of the three
factors mentioned above. Given the quality of a given page layout (as measured
by this combination of distance measures) we can optimize it by changing the
intensity- and saturation scaling parameters and the hue-shift. Finding a good
page layout is an optimization problem that was solved with the help of the
MATLAB optimization toolbox. Note that this optimization process does not
actually transform the images involved, it operates only on the values of the
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Figure 9.6: A color image and its segmented skin tone area.
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Figure 9.7: Transition area between the background and the rest of the image.
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statistical parameters. The colors in an image are only changed after the opti-
mization program stabilized and the final transformation matrix for the image
is found.

An example of the results obtained with this technique is shown in Fig. 9.5.

9.3.3 Automated Color Segmentation Techniques

Manual segmentation of the images is very time-consuming and error-prone.
We therefore experimented with automatic segmentation techniques to avoid
operator intervention. We use first a clustering technique to extract the back-
ground and the skin regions. This method classifies regions according to their
color properties. It turns out that both background and skin pixels can be au-
tomatically extracted with sufficient accuracy. In contrast to the first manual
segmentation this method will only extract the skin regions in the faces, it will
therefore not select the hair and eye regions for example. It will also detect skin
regions outside the faces, such as bare arms. It turns out that the statistical
properties of the face regions extracted with the first, manual segmentation and
the corresponding skin-regions found by the second method differ significantly.

We find the background and skin regions in an image, by first using the
mean shift cluster algorithm to segment the image into several color regions
(about 20 regions for each image). The color properties of each region are then
used to decide if the region belongs to the background or the skin tone area.
Simple thresholding of the intensity, hue, and saturation gives quite robust
clustering results. Fig. 9.6 and Fig. 9.7 show the segmented skin tone region
of the right image in Fig. 9.1. We also utilized the fact that the background
region is the large homogeneous region on top of the image. Therefore it is easy
to divide the image into two regions: the background region and the rest. Once
the background is identified, it is easy to define two color transformations: one
for the background and one for the rest of the image.

As an example we show:
e First two images as they are scanned from the original pictures (Fig. 9.1)

o We modify the left image so that its global color properties become similar
to the right image.

e In the next example we modify the left image so that its skin tone pixels
become similar to the skin pixels in the right image.

e Then we modify the left image so that its background becomes similar in
color appearance to the background of the right image

e In the fourth example both the background and the skin pixels in the
left image are modified so that they have similar color appearance as
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the corresponding regions in the right image. Since two transformations
are used in this method, there will be a border effect on the corrected
image, especially when the two transformations are very different. We
therefore define a transition area between the two regions of 20 pixels
width (Fig. 9.7), and color properties of pixels in this transition area
are smoothed so that the border effect is reduced. The result of the
experiment is summarized in Fig. 9.8.

Another example is shown in Fig. 9.9. Similar to the previous experiment
one can use the results of the automatic segmentation of the skin and back-
ground regions to define color transformations of the images that optimize a
quality function describing the properties of a page layout.

9.4 Result and Discussion

We developed and investigated two strategies to optimize the color appearance
of a printed page consisting of a collection of similar images. The first method
uses only global color transformations, which transform all pixels in an image in
the same way. Finding the parameters that define the transformation requires
however an extraction of the background and the skin regions in the image.

The normalization used in the other method extracts first the skin and the
background regions in an image. The skin regions are to a large extend identical
to the face regions used in the first method but the also include other regions
like arms and they do not include non-skin face regions like hair and eyes. After
the color-based segmentation, the geometrical information about the location
of the background is used together with the color information to automatically
extract the background region. Finally the background and the remaining part
of the image are transformed with two different color transformations.

Finally we want to point out that the result of the automatic skin detection
process used in the second method cannot only be used for color normalization.
It can also be used for pre-screening, i.e. it could, for example, be used to
point out for an operator skin regions which have a color distribution which is
significantly different from the color properties of typical skin regions. In this
way a form of quality control of the analog photo-graphical process and the
scanning could be incorporated into the page layout process.



Chapter 10

CONCLUSIONS AND
FUTURE WORK

10.1 Conclusions

In the thesis we investigated a number of statistical methods for color-based
image retrieval and color correction, color normalization applications.

In the color-based image retrieval applications we first investigated the ap-
plication of different non-parametric density estimators in estimating color dis-
tributions for color-based image retrieval applications. Our experiments show
that there is a difference between the best estimator and the best descriptor
for image retrieval. We showed that a histogram-based method based on a
simple estimator gave better retrieval performance compared to the straight-
forward application of a kernel density estimator for image retrieval. In order
to improve the retrieval performance of kernel-based methods, two modifica-
tions were introduced. They are based on the use of non-orthogonal bases
together with a Gram-Schmidt procedure and a method applying the Fourier
transform. Experiments were performed that confirmed the improvements of
our proposed methods both in retrieval performance and simplicity in choosing
the smoothing parameters. The affect of different smoothing parameters on
retrieval performance was also investigated in the thesis.
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Next we derived new, compact descriptors for probability distributions of
the colors in images. These new descriptors are based on the modification of
the traditional Karhunen-Loeve Transform (KLT). The modification is based
on the following two important aspects: the geometry of the underlying color
space is integrated into the principal component analysis and the principal
component analysis operates on the space of local histogram differences and
not on the space of all histograms.

We also investigated new distance measures between these descriptors that
take into account both the probability distribution and the geometry of the
underlying color space. These distance measures are based on a differential
geometrical approach which is of interest since many existing dis/similarity
methods fall into this framework. The general framework was illustrated with
two examples: the family of normal distributions and the family of linear rep-
resentations of color distributions.

Our experiments with color-based image retrieval methods utilized several
image databases containing more than 1,300,000 color images. The experi-
ments show that the proposed method (combining both the color-based dis-
tance measures and the principal component analysis based on local histogram
differences), is very fast and has very good retrieval performance compared to
other existing methods.

In the thesis we also investigated color features which are independent of
geometry and illumination changes. Such invariant features are useful in many
applications where the main interest in the physical contents of objects such as
object recognition. Both statistics- and physics-based approaches were used.
For physics-based approaches, we concentrated on geometry invariants and used
the theory of transformation groups to find all invariants of a given variation.
Detailed descriptions were given for the dichromatic reflection model and the
Kubelka-Munk model.

Apart from the image database retrieval methods we investigated color nor-
malization, color correction and color constancy methods. Here we investigated
an algorithm to normalize color images which uses a full 3x3 matrix for color
mapping. The transformation matrix is computed from the moments of the
color distributions of the images of interest. We compared the method to
color constancy methods in color correction and illuminant invariant color ob-
ject recognition. Experiments show that simple methods such as retinex and
gray-world methods performed better than more complicated methods such as
gamut mapping and our proposed moment-based method. Moreover none of
the methods gave perfect recognition of the objects under different illumina-
tions. False alarm rates in the recognition of eleven objects ranged from 5% to
30%. Experiments on color correction provide a reasonably good result under
controlled image-capturing conditions.
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Using conventional, global color correction methods in a real color correc-
tion application produced unacceptable results. We therefore developed an
algorithm to re-arrange the layout of a printed newspaper page and a local
color correction algorithm that was specially tuned to this application.

Summarizing, we conclude that statistical methods are useful in color-based
applications, especially in applications where human perception is involved.
Combining color information and statistical methods usually improves the per-
formance of the method.

10.2 Future work

Following the investigations described in this thesis, a number of problems
could be investigated further.

We have shown that kernel density estimators provide a new efficient way
to describe color distributions in content-based image retrieval. The Gram-
Schmidt procedure and the method applying the Fourier transform described
in the thesis are examples that use kernel-based methods for image retrieval.
The method proposed in chapter 6 could clearly also be used in connection
with kernel density estimators.

The general strategy of using problem-based distance measures and differ-
ences of histograms is quite general and can be applied to other features used
in content-based image retrieval applications such as texture. Applying this
strategy to kernel-based descriptors is also another example that may improve
retrieval performance.

The Karhunen-Loeve Transform is a linear approximation method which
projects the signal onto a priori given subspace. However, better approxima-
tions can be obtained by choosing the basis vectors depending on the signal
or at least over collections of signals. Color histograms which contain isolated
singularities can be well approximated with this non-linear procedure.

Color invariants have been investigated and applied to several color-based
applications in the thesis. However, future work still requires improving the
performance in such applications. This includes a better understanding of the
underlying physical processes when light interacts with materials to be able to
decouple the influence of the physical properties of the objects, the illumination
and the sensor properties.
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