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Abstract

This article presents a brief survey on some of the latest developments in the area of reliability-based
design optimization of structural systems under stochastic excitation. The contributions are grouped
into three main categories, namely, sequential optimization approaches, stochastic search based tech-
niques, and schemes based on augmented reliability spaces. The different approaches are described
and summarized. In addition, remarks are provided about their range of application, advantages,
disadvantages, relevance, and potential research directions. The literature review indicates that com-
putational aspects play a key role in the solution of this class of optimization problems. Besides, this
overview suggests that methods for optimal design in stochastic structural dynamics are no longer
restricted to academic-type of problems but they can be used as tools in a class of engineering design
problems as well.

Keywords: Metamodels, Optimization techniques, Reliability analysis, Sensitivity analysis,
Simulation techniques, Stochastic dynamical systems, Stochastic optimization.

1. Introduction1

One of the most important contributions of structural engineering to modern society is the design2

of safe and efficient systems to accomplish a wide variety of goals, including industrial requirements,3

needs of private users, and the provision of critical functions to the public. Structures are usually4

devised to be optimum in terms of a given criterion, while satisfying a number of design requirements5

under certain loading conditions [1]. Of particular importance are dynamic loads associated with6

environmental actions, such as wind effects, earthquakes, sea waves, etc. [2, 3, 4]. One of the main7
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characteristics of this class of excitations is their uncertainty, since it is not possible to accurately8

predict future loading conditions. In this context, stochastic excitation models are a viable and9

common means to represent these uncertainties in an explicit manner during the design process10

[5, 6, 7]. Moreover, proper design procedures must take into account all uncertainties associated11

with the system under consideration as they may lead to significant deviations from the expected12

behavior of final designs [8, 9, 10]. In this regard, probabilistic approaches such as reliability-based13

formulations provide a realistic and rational framework for structural optimization which explicitly14

accounts for the uncertainties during the design process [11, 12].15

In the framework of this contribution, attention is directed to reliability-based optimization (RBO)16

problems involving structural dynamical systems under stochastic excitation. In this case, the number17

of basic random variables involved in the characterization of the problem may be high (tens, hundreds18

or even thousands), and first-passage probabilities over a certain reference period are considered for19

reliability assessment [13, 14, 15]. Then, the evaluation of reliability integrals constitutes a high-20

dimensional problem that is extremely challenging from the numerical viewpoint. Even though21

some early approaches have considered approximate reliability formulations in order to circumvent22

integral evaluations [16, 17], they are mostly limited to simple systems and their accuracy is usually23

disputed. The use of simulation methods [18, 19, 20], however, is the most widely accepted approach24

for the evaluation of high-dimensional reliability integrals due to their generality and ability to obtain25

accurate and robust estimates. The application of these techniques generally requires hundreds or26

thousands of dynamic analyses, which can lead to significant computational efforts. In summary, it is27

the objective of this contribution to provide a systematic review on recent developments addressing28

reliability-based optimization problems of structures under stochastic excitation where the system29

reliability is characterized in terms of first-passage probabilities. The contributions under study have30

been categorized into three groups, namely, (i) sequential optimization approaches, (ii) stochastic31

search based techniques, and (iii) formulations in augmented reliability spaces. In each category,32

the main contributions are described and summarized. In addition, some remarks are provided on33

the range of application, relevance, general advantages, possible disadvantages, and potential future34

research efforts associated with the different techniques.35

The structure of the work is as follows. Section 2 provides the formulation of the problem and36

highlights its main challenges. A general description of the proposed categories is given in Section37

3. Section 4 describes sequential optimization approaches. Contributions based on stochastic search38

based techniques are presented in Section 5. Optimization frameworks relying on augmented relia-39

bility formulations are examined in Section 6. The paper closes with some conclusions and potential40

research directions.41

2. Problem Description42

2.1. Mechanical Modeling43

The general class of structural systems considered in the different contributions of this overview is44

characterized by a multi-degree of freedom model satisfying the equation of motion45

Mü(t) + Cu̇(t) + Ku(t) + kNL (u(t), u̇(t),y(t)) = f(t) (1)
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where u(t) denotes the displacement vector, kNL(u(t), u̇(t),y(t)) the vector of nonlinear restoring46

forces, y(t) the vector of variables that describe the state of the nonlinear components, and f(t)47

the external force vector. The matrices M, C, and K describe the mass, damping, and stiffness of48

the system, respectively. The evolution of the set of variables y(t) is described by an appropriate49

nonlinear model which depends on the nature of the nonlinearity. The equation of motion for the50

displacement vector u(t) and the equation for the evolution of the set of variables y(t) constitute a51

system of coupled nonlinear equations. Note that for linear systems the vector of nonlinear restoring52

forces verifies kNL(u(t), u̇(t),y(t)) = 0. For realistic applications the solution of Eq. (1) relies on53

complex black-box computational procedures such as the finite element method.54

2.2. Formulation55

The reliability-based design optimization problem is stated as56

min
x

c(x)

subject to rj(x) ≤ 0, j = 1, . . . , nr

gj(x) ≤ 0, j = 1, . . . , ng

x ∈ X ⊂ Rnx

(2)

where x = 〈x1, . . . , xnx〉T ∈ X ⊂ Rnx is the vector of nx design or control variables (continuous57

and/or discrete), c(x) is a general cost function, rj(x) ≤ 0, j = 1, . . . , nr correspond to nr constraints58

on the system reliability, and gj(x) ≤ 0, j = 1, . . . , ng represent ng standard constraints. The set59

X represents the constraints on the design variables. For each continuous design variable xi, the60

constraints are given in terms of its lower and upper bounds such that xLi ≤ xi ≤ xRi , whereas for61

each discrete variable xi the constraints are characterized by a finite set of possible values. The62

objective function c(x) can quantify initial, construction, maintenance, repair or downtime costs,63

structural performance, users’ comfort, cost of failure, life-cycle cost, etc. Moreover, the constraints64

gj(x) ≤ 0, j = 1, . . . , ng are associated with design conditions such as material availability, geometric65

requirements, budget restrictions, etc., that do not require structural reliability assessment. Hence, it66

is assumed that the standard constraints are relatively inexpensive to evaluate. Finally, the reliability67

constraints rj(x) ≤ 0, j = 1, . . . , nr represent structural requirements expressed in a probabilistic68

manner and can be defined in terms of different criteria such as serviceability and partial or total69

collapse failure. The reliability constraint functions are written in terms of failure probabilities as70

rj(x) = PFj(x)− P ∗Fj , j = 1, . . . , nr (3)

where PFj(x) is the probability of failure event Fj, evaluated at design x, and P ∗Fj is the corresponding71

maximum allowable value. Note that, according to the formulation of the RBO problem, failure72

probabilities can be associated with the objective function, the constraint functions, or both. As73

previously pointed out, reliability assessment (i.e., evaluation of failure probabilities) for structural74

systems under stochastic excitation is an involved task from the numerical viewpoint [13, 14, 15, 21].75

A more thorough description of the challenges arising in this context is presented in Section 2.5.76

Based on the previous formulation, it is seen that the optimization problem stated in equation (2)77
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is quite general in the sense that different formulations can be devised for the RBO of structural78

systems under stochastic excitation [11, 12]. In fact, different applications have been considered in79

this context, including the seismic design of fluid filled tanks [22], the mitigation of seismic pounding80

risk between buildings [23], the design of wind-excited cable-stayed masts [24] and high-rise buildings81

[25, 26, 27], the design of nonlinear devices for seismic protection [28, 29], the topology optimization82

of building systems [30], and the design of large-scale linear systems [31, 32]. Finally, it is noted83

that the previous formulation can be extended to multi-objective optimization problems, where84

two or more objective functions are simultaneously minimized while satisfying a number of design85

requirements [33, 34].86

2.3. Reliability Measures87

System reliability measures are usually expressed in terms of equivalent failure probability measures.88

In the context of structural systems under stochastic excitation, the probability that certain perfor-89

mance conditions are not satisfied within a given reference period provides a useful measure for the90

likelihood of failure events. This quantity is referred to as first-passage probability and quantifies the91

plausibility of occurrence of unacceptable behavior of the structural system [13]. In this framework,92

consider a vector θ ∈ Θ ⊂ Rnθ of random variables involved in the characterization of the system.93

This vector comprises the variables associated with the representation of the stochastic excitation and94

uncertain system parameters. The random variable vector follows a multivariate probability density95

function (PDF) q(θ|x), that is, θ ∼ q(θ|x). It is noted that this PDF can depend on the design96

variables x. This is the case when some distribution parameters, e.g. mean values, are associated97

with the design variables. In case no design variable influences the distribution of the basic random98

variables, they are simply distributed as θ ∼ q(θ). A failure event F that indicates if certain design99

requirements or desired performance conditions are not met within a given reference period T , can100

be written as101

F (x) = {θ ∈ Θ ⊂ Rnθ : d(x,θ) > 1} (4)

where d(x,θ) is the so-called normalized demand function evaluated at design x and at a given102

realization of θ. This function is usually defined as103

d(x,θ) = max
t∈[0,T ]

max
`=1,...,nh

|h`(t; x,θ)|
h∗`

(5)

where h`(t; x,θ), ` = 1, . . . , nh are the response functions of interest with corresponding maximum104

allowable values h∗` > 0. These responses are computed from the solution of Eq. (1) and they are time-105

dependent, due to the dynamic nature of the excitation, and also depend on the design variables,106

x, and the random variables, θ. Thus, the normalized demand function quantifies the maximum107

demand-to-capacity ratio observed during the reference period T across all the responses of interest.108

It is noted that, however, alternative definitions of the normalized demand function can also be109

considered. In the previous setting, the failure probability function PF (x) measures the plausibility110

of unacceptable structural behavior at the design x according to given performance criteria or design111

requirements. The first-excursion probability can be written in terms of a multidimensional integral112

as113
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PF (x) =

∫
d(x,θ)>1

q(θ|x)dθ =

∫
θ∈Θ

IF (x,θ)q(θ|x)dθ (6)

where IF (x,θ) is the indicator function, with IF (x,θ) = 1 if d(x,θ) > 1 and IF (x,θ) = 0 otherwise.114

As previously pointed out, θ is high-dimensional for the type of systems under consideration. There-115

fore, the previous integral represents a high-dimensional problem whose evaluation at each design116

constitutes a demanding task from the numerical point of view [13, 14, 15]. Although some sim-117

plifications can be made in order to obtain approximate expressions that reduce the computational118

cost of evaluating the previous multidimensional integral, they are mostly limited to simple linear119

systems subject to stationary white noise excitation [16, 17]. Thus, the evaluation of (6) relies on the120

use of advanced stochastic simulation techniques for realistic and practical cases. Finally, it is noted121

that reliability measures can also be defined in terms of time-varying reliability. Such formulations,122

in the context of RBO problems, are not considered in the present overview.123

2.4. Stochastic Simulation Methods124

Stochastic simulation techniques are widely accepted as an effective means for the reliability assess-125

ment of general structural systems subject to stochastic excitation [14, 15]. This class of approaches126

relies on the generation of samples of the basic random variables θ, and the evaluation of the corre-127

sponding normalized demand function values d(x,θ) in order to populate the important regions of128

the failure domain F . The most well known stochastic simulation technique is Monte Carlo simula-129

tion (MCS) [18]. Generally, a large number of samples is required by MCS in order to reach a certain130

level of accuracy. Thus, the corresponding computational burden can be prohibitive for involved131

structural systems in which a single analysis requires significant computational effort. This difficulty,132

which is the main drawback of MCS for reliability assessment, has motivated the development of133

alternative simulation tools.134

Several advanced simulation methods have been developed to address the reliability assessment of135

involved systems. The distinctive feature of these approaches is the implementation of specialized136

sampling strategies that allow to obtain sufficiently accurate estimates of the failure probability with a137

reduced number of samples. Examples of these techniques in the context of complex high-dimensional138

reliability problems include Subset simulation [35, 36], Subset simulation based on hidden variables139

[37, 38], Importance sampling [39], Line sampling [40], Horseracing simulation [41], Domain decom-140

position method [42], Directional importance sampling [43], and the Probability density evolution141

method [44, 45]. It is noted that even though advanced simulation methods provide improved effi-142

ciency for reliability assessment, a significant number of system re-analyses (usually in the order of143

hundreds or thousands) are still required to obtain failure probability estimates.144

2.5. Challenges145

As indicated in previous sections, the RBO of structural systems under stochastic excitation is a146

challenging task. The difficulties arising in this type of problems are associated with the compu-147

tational cost, noisy behavior and sensitivity evaluation of the functions involved in the problem.148

In fact, as already pointed out, the high dimension of the uncertain parameter space for the type149
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of systems under consideration leads to the use of advanced simulation techniques in order to es-150

timate failure probabilities. Thus, a large number of dynamic analyses should be carried out, in151

principle, at any given design during the optimization process. As a consequence, the correspond-152

ing computational efforts can be significantly high specially for involved structural systems where153

a single dynamic analysis can take significant computational time. In this regard, parallelization154

techniques or existing computational power can be exploited to increase the computational efficiency155

of the overall design process. In addition, the estimation of failure probability functions relies on156

stochastic simulation procedures and, therefore, these estimates exhibit some variability. In other157

words, any simulation-based failure probability estimate inherently possesses some variability that158

must be taken into account. Finally, it is noted that several optimization procedures make use of159

the gradients (i.e., the sensitivities) of the objective and constraint functions in order to explore the160

design space in an effective manner [1, 46]. However, sensitivity evaluation of failure probability161

functions is a challenging task [47, 48]. The previous difficulties must be properly addressed by any162

RBO approach. In fact, the inadequate treatment of these features could lead to the identification163

of sub-optimal solutions or to choose final designs that are actually unfeasible.164

3. General Classification of Approaches165

The contributions studied in this work have been classified based on the search strategy and the type166

of information required during the optimization process. In particular, three general categories are167

considered: sequential optimization schemes, stochastic search based techniques, and formulations168

based on augmented reliability spaces. Sequential optimization schemes (see Section 4) consider iter-169

ative schemes in which surrogates for the failure probability functions are introduced at each stage.170

Then, based on these surrogates, an ordinary optimization problem is solved using any standard171

search technique to obtain a new candidate solution. In general, these methods require the full as-172

sessment of only few designs during the entire design process. The corresponding failure probability173

surrogates usually require the evaluation of both the failure probability functions and their deriva-174

tives. On the other hand, techniques based on stochastic search schemes (see Section 5) rely on175

randomized search in the design space. The randomization principle is known to be, in general, an176

effective means to escape a local optimum as well as to make the design process less sensitive to the177

noisy nature of failure probability functions. These approaches commonly require only information178

on the failure probability function values, avoiding sensitivity evaluation procedures. Finally, for-179

mulations based on augmented reliability spaces (see Section 6) simultaneously consider the design180

variables and the basic random variables. An instrumental variability is artificially introduced to181

the design variables. Failure probability functions are then replaced by marginal probability density182

functions in the augmented space, avoiding nested reliability assessment.183

4. Sequential Optimization Schemes184

As previously pointed out, one of the challenges of solving RBO problems involving structural systems185

under stochastic excitation is the high computational cost. One strategy that has gained consider-186

able attention for circumventing this issue is the formulation of sequential optimization approaches.187

During each optimization cycle, the failure probability functions are replaced by surrogates that are188
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relatively inexpensive to evaluate and make use of information gathered around the current solution189

[12]. Then, the new approximate problem is solved by means of a suitable search technique in order190

to identify a new candidate solution. The process is repeated until some convergence criterion is191

verified.192

4.1. Exponential-Type of Approximations193

In this class of approaches, the original optimization problem is replaced by a sequence of approximate194

sub-optimization problems. Each sub-optimization problem involves explicit closed-form approxima-195

tions for the reliability constraints in terms of the design variables and, therefore, it can be efficiently196

solved by any suitable standard search algorithm, such as sequential quadratic programming (SQP),197

nonlinear programming by quadratic Lagragian (NLPQL), etc. In addition, move limits on the design198

variables are imposed in order to control the quality of the approximations. The problems of interest199

correspond to the minimization of a deterministic cost function subject to reliability constraints.200

As originally proposed in [49] for deterministic linear systems, the failure probability functions are201

locally approximated around the current candidate solution xk during each optimization cycle as202

PF (x) ≈ P̃F (x; xk) = exp

(
a0 +

nx∑
i=1

ai(xi − xki )

)
(7)

where ai, i = 0, 1, . . . , nx are polynomial coefficients obtained in terms of nx + 1 direct evaluations of203

PF (x) around the current candidate design. An efficient importance sampling technique [39] is inte-204

grated to assess the failure probability with reduced computational effort. The approach is extended205

to uncertain linear systems under stochastic excitation in [50]. For increased efficiency, approximate206

system responses instead of full structural analyses are considered to evaluate structural reliability207

measures. In particular, modal participation factors and the corresponding natural frequencies are208

approximated using a convex linearization scheme [51]. This requires the computation of the deriva-209

tives of the system’s eigenvectors and eigenvalues with respect to the design variables and uncertain210

structural parameters, which is carried out using an efficient method [52]. In this manner, a single211

structural and sensitivity analysis is required during each cycle of the proposed approach to formulate212

the approximate sub-optimization problem.213

The previous contributions involved the repeated evaluation of the failure probability function in214

the vicinity of the current candidate solution to compute the polynomial coefficients. An alternative215

approach is proposed in [53] for linear systems with random structural parameters subject to general216

Gaussian excitation. The sought coefficients are obtained by solving a set of nonlinear equations in217

order to match the average and first-order moments of the failure probability function in a vicinity218

Ωk of the current candidate solution xk, that is,219

P average
F =

1

|Ωk|

∫
Ωk
PF (x)dx, mi

PF
=

1

|Ωk|

∫
Ωk
xiPF (x)dx, i = 1, . . . , nx (8)

where |Ωk| is the hyper-volume of Ωk, and PF (x) is written as in Eq. (7). Moreover, the augmented220

reliability concept (see Section 6 for more details) is considered. The idea is to artificially treat221

the design variables x as uncertain. Then, a single simulation run in the joint space 〈x,θ〉 can222
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be used to estimate P average
F and mi

PF
. Moreover, similar to [50], approximate responses are used223

and, therefore, a single dynamical and sensitivity analysis of the system is required during each224

optimization cycle. A different approach is proposed in [54]. In this case, the polynomial coefficients225

are defined using information obtained from a reliability sensitivity analysis. The idea is to match the226

partial derivatives of the failure probability function with those of the exponential approximation.227

The required quantities are computed using the augmented reliability concept and direct Monte228

Carlo simulation.229

4.2. Convex and Conservative Approximations230

The contributions presented in the previous subsection are based on linear estimations for the log-231

arithm of the failure probability and move limits to control their accuracy. A different class of232

methods considers the implementation of convex global approximations of all functions involved in233

the optimization problem. During each optimization cycle, an approximate optimization problem is234

generated by replacing the objective and constraint functions with expansions around the current235

candidate design in terms of direct and reciprocal variables. No move limits are imposed on the236

design variables. Due to the simple explicit algebraic structure of each sub-optimization problem,237

it can be efficiently solved with standard search techniques to find a new candidate solution. The238

process is repeated until a certain stopping criterion is verified. The sequential optimization frame-239

work based on convex global approximations is initially proposed for the RBO of dynamical systems240

under stochastic excitation in [55]. In this setting, each function f(x) involved in the optimization241

problem is approximated around the current candidate solution xk during each optimization cycle as242

f(x) ≈ f̃(x; xk) = f(xk) +
∑
(i+)

∂f(xk)

∂xi
(xi − xki ) +

∑
(i−)

∂f(xk)

∂xi

xki
xi

(xi − xki ) (9)

where
∑

(i+) and
∑

(i−) indicate summation over the variables belonging to the groups (i+) and (i−),243

respectively. Group (i+) contains the variables for which ∂f/∂xi(x
k) is positive, and group (i−)244

includes the remaining variables. This expansion corresponds to a linearization in terms of the direct245

variables (xi) for group (i+) and of the reciprocal variables (1/xi) for group (i−). An attractive246

property of this mixed linearization, which is also referred to as convex linearization, is that it247

yields the most conservative approximation among all possible combinations of direct/reciprocal248

variables [51]. Moreover, the expansion is a convex and separable function, which is beneficial from249

the optimization viewpoint. However, this linearization is not guaranteed to be conservative in an250

absolute sense. In other words, the approximations of the different functions involved in the RBO251

problem are not necessarily more conservative than the original ones. In this regard, conservatism252

of the approximations can be forced by including second-order terms in Eq. (9) [56]. The use of253

convex and conservative approximations has been demonstrated in RBO problems involving complex254

structural systems equipped with nonlinear devices. In addition, the approach has been also applied255

to handle mixed discrete-continuous design variables [56, 57]. In this case, a dual formulation is256

introduced at each optimization cycle and then solved by means of a standard first-order algorithm257

to obtain a new candidate solution.258

The optimization framework based on convex and conservative approximations requires the evalua-259

tion of the objective and constraint functions at the current candidate solution as well as their partial260
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derivatives. In particular, failure probability functions and their sensitivities must be computed. In261

[55, 57] linear approximations for the logarithm of the failure probability functions are considered,262

where the corresponding coefficients are obtained by matching the average and first-order moments263

of the failure probability function in a vicinity of the current design (see [53]). On the other hand,264

in [56, 58, 59], reliability sensitivities are estimated using a two-level approximation framework em-265

bedded in subset simulation [60, 61]. The main features of this framework are discussed in the next266

subsection. Alternatively, the approach proposed in [62] integrates conservative approximations with267

the probability density evolution method (PDEM) [44, 45] and the change of probability measure268

(COM) technique [63], allowing to obtain the required sensitivity information as a by-product of the269

reliability assessment step.270

4.3. Line Search Methods271

The integration of approximation schemes for the failure probability functions into well established272

line search methods is a promising research venue for the RBO of stochastic dynamical systems under273

stochastic excitation. The main idea of this class of approaches, initially proposed in [60, 61], is that274

failure probability functions are only required along the search direction during each optimization275

cycle. Thus, failure probability surrogates need to be formulated only in one dimension instead of an276

nx-dimensional space. This feature can certainly help to obtain high-quality approximations without277

excessive computational efforts. In this context, each cycle of the optimization process considers278

the following steps [64]. First, a search direction is identified based on the values of the objective279

function, standard constraints and reliability constraints, as well as their sensitivities. This step280

generally involves the solution of a system or systems of linear equations associated with first-order281

optimality conditions [46, 65]. Then, one-dimensional surrogates for the reliability constraints along282

the search direction are initially established. After that, a new candidate solution is identified by283

means of a standard line search procedure based on these approximations. During this process,284

new information on the actual failure probability functions and their sensitivities along the search285

direction is gathered. This is used to adaptively improve the metamodels and provide more accurate286

approximations for the failure probability functions along the search direction. The one-dimensional287

surrogate of any failure probability function formulated about the current candidate solution xk and288

along the search direction vk, as originally introduced in [60], is given by289

PF (xk + τvk) ≈ P̃F (τ) = exp
(
a0 + a1τ + a2τ

2
)
, τ ≥ 0 (10)

where τ ≥ 0 is a step size along vk. The coefficients a`, ` = 0, 1, 2 are computed by means of a290

least squares problem that takes into account information on the failure probability functions and291

their directional derivatives [66]. These coefficients are continuously updated during the line search292

process as new candidate designs are evaluated.293

The implementation of this framework requires the computation of the gradients of the failure prob-294

ability functions. As already pointed out, this is a challenging task especially in nonlinear stochastic295

dynamics. An efficient approach for reliability sensitivity estimation embedded in the framework of296

subset simulation [35, 36] has been considered to this end [60, 61]. The most salient feature of this297

technique is that it requires a single subset simulation run plus some additional structural analyses298

in order to estimate reliability sensitivity. First, the failure probability is expressed as a function of299
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a threshold d∗ for the normalized demand, that is,300

P [d(x,θ) ≥ d∗] = PF (d∗) ≈ exp [ψ0 + ψ1(d∗ − 1)] (11)

where d∗ ∈ [1 − ε, 1 + ε], ε represents a small tolerance, and ψ0 and ψ1 are real constants. These301

coefficients are obtained by means of a least squares fit based on the relationship between PF and302

the normalized demand threshold d∗, which is obtained from subset simulation. In addition, a linear303

surrogate of the normalized demand function in the vicinity of the current candidate solution xk is304

defined as305

d(x,θ) ≈ d̃(x,θ) = d(xk,θ) +
nx∑
i=1

δi(xi − xki ) (12)

where the coefficients δi, i = 1, . . . nx, are computed by means of a least squares fit. The corresponding306

training points are generated by perturbing the design variables and reusing samples drawn from307

subset simulation that are near the failure boundary. In this manner, improved accuracy for the308

limit state surface is expected in the vicinity of xk. Based on the previous approximations, the309

gradient of the failure probability function can be estimated as [60, 61]310

∂PF (x)

∂xi

∣∣∣∣
x=xk

≈ ψ1δiPF (xk), i = 1, . . . , nx (13)

Generally, relatively few additional model evaluations are required to obtain sufficiently accurate311

estimates of the reliability sensitivities [60, 61]. The strategy is further developed in [67] by including312

uncertain structural parameters as well as an explicit quantification of the effects of the uncertainty in313

system properties on the final design. An alternative approach based on an interior point algorithm314

together with the integration of the PDEM [44, 45], metamodels at the structural response level and315

a finite difference scheme has been proposed in [68]. Interior point schemes were also applied to316

multi-objective optimization problems in [69]. In particular, the efficient determination of specific317

compromise solutions (Pareto solutions) is carried out by a compromise programming approach [34].318

The application of reduced-order models based on substructure coupling for dynamic analysis [70, 71]319

is demonstrated in [72] as a means of additional efficiency improvement in the context of interior320

point methods.321

4.4. A Threshold Based Local Approximation322

The idea of the approach proposed in [73] is to avoid the evaluation of failure probabilities during323

each optimization cycle by reusing the reliability analysis results at the previous candidate design xk.324

To this end, a linear representation similar to the one given in Eq. (12) is considered to approximate325

the normalized demand function. Then, the failure probability function is written as326

PF (x) = P [d(x,θ) ≥ 1] ≈ P

[
d(xk,θ) ≥ 1−

nx∑
i=1

δi(xi − xki )

]
(14)
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which is estimated using the results obtained from a subset simulation run at xk. In other words, each327

approximate sub-optimization problem replaces PF (x) with the failure probability at the previous328

candidate design corresponding to the threshold (1 −
∑nx

i=1 δi(xi − xki )). Move limits on the design329

variables are imposed to control the quality of the approximations. Any appropriate search technique330

can be implemented to solve the sequence of sub-optimization problems. In particular, genetic331

algorithms [74] are considered in [73]. The method is demonstrated in linear and nonlinear examples332

involving few discrete design variables.333

4.5. Heuristic Framework Based on Operator Norm Optimization334

This approach deals with reliability optimization subject to standard constraints, where the main
idea is to heuristically replace the original objective function, i.e. the failure probability func-
tion, with a function defined in terms of a matrix norm [75]. The contribution is tailored to
linear systems subject to stochastic excitation where all model parameters are deterministic. In
this framework, a vector containing nt discrete values of the `th normalized response of interest,
h̃`(x,θ) = 〈h`(t1; x,θ), . . . , h`(tnt ; x,θ)〉T

/
h∗` (see Section 2.3), is computed and written as

h̃`(x,θ) = Ã`(x)θ, ` = 1, . . . , nh (15)

where the matrices A`(x) ∈ Rnt×nθ , ` = 1, . . . , nh, are constructed in terms of response thresholds,
Karhunen-Loève representations, and convolution integrals. Hence, all matrices involved in the
dynamical characterization of the system must be available. Then, the original RBO problem is
heuristically replaced with the auxiliary optimization problem

min
x

max
`=1,...,nh

‖Ã`(x)‖p1,p2

subject to gj(x) ≤ 0, j = 1, . . . , ng

x ∈ X ⊂ Rnx

(16)

where ‖ · ‖p1,p2 denotes the induced (p1, p2)-norm of a matrix, which is defined as

‖Ã`(x)‖p1,p2 = sup
θ 6=0

‖Ã`(x)θ‖p1
‖θ‖p2

= sup
θ 6=0

‖h̃`(x,θ)‖p1
‖θ‖p2

(17)

where ‖ · ‖p denotes the p-norm of a vector. The (p1, p2)-norm can be interpreted as the maximum335

amplification of the response’s measure (according to the p1-norm) with respect to the measure of the336

basic random variables vector (according to the p2-norm). The solution of the original RBO problem337

is replaced by the solution of (16) with p1 =∞ and p2 = 2. The proposed solution scheme involves338

a single deterministic optimization problem followed by a single reliability analysis. The previous339

approach has been also demonstrated in cases involving discrete design variables [76]. Concerning the340

solution of the auxiliary optimization problem, any appropriate strategy can be adopted, including341

sequential optimization schemes, interior point algorithms, and evolutionary strategies [1, 46, 74].342
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4.6. Summary and Comparison: Sequential Optimization Schemes343

The contributions presented in this section rely on three main concepts: (i) the introduction of344

surrogates for the failure probability functions, (ii) the formulation of approximate optimization345

problems in terms of those surrogates, and (iii) the implementation of suitable search techniques to346

solve such approximate optimization problems. In this manner, subsequent reliability assessment and347

standard optimization steps are carried out to obtain candidate solutions with reduced computational348

efforts. The distinctive feature of each class of sequential optimization techniques corresponds to the349

type of failure probability surrogate under consideration. In order to provide a general outlook of350

sequential optimization approaches, Table 1 compares the optimization strategies described in each351

subsection based on the types of problems that have been addressed and relevant implementation352

aspects.353

The contributions reported in Sections 4.1 to 4.4 address cost optimization subject to reliability354

constraints involving a low to moderate number of continuous or discrete design variables. They355

rely on the introduction of metamodels for the failure probability functions based on information356

gathered near each candidate solution. The methods reported in Section 4.1 propose linear surrogates357

for the logarithm of the failure probability functions, whereas those in Section 4.2 are based on358

convex/conservative expansions of all functions involved in the RBO problem. The approaches359

presented in Section 4.3 formulate one-dimensional surrogates of the failure probability functions360

coupled with line search strategies. A threshold-based technique that reuses reliability analysis results361

at the previous candidate design is described in Section 4.4. The previous approaches can be applied362

to a wide class of structural systems since they have been coupled with general simulation methods363

such as subset simulation and the PDEM. However, some of them require the computation of failure364

probability gradients, which has been addressed with ad-hoc approaches embedded in the reliability365

assessment technique under consideration. Regarding the class of search algorithms considered to366

solve the approximate sub-optimization problems, the general rule is that it should exploit the367

specific characteristics of the approximate problem in order to solve it most efficiently. All previous368

contributions can be regarded as successive decoupling strategies due to the local nature of the369

approximations. A different scheme was introduced by the operator norm optimization framework370

(see Section 4.5), whose scope is the reliability optimization of deterministic linear systems subject371

to Gaussian excitation. The operator norm of the structural system is used as a global proxy for372

the failure probability function, which allows the total decoupling of the RBO problem. As a final373

remark, it is noted that most of the approaches described in this section have been demonstrated in374

realistic applications, including complex finite element models and nonlinear structural systems.375

5. Stochastic search based techniques376

Optimization algorithms based on stochastic search techniques introduce randomization in the ex-377

ploration of the design space as a means to avoid local minima [77]. Generally, these methodologies378

are quite flexible and general. In addition, they do not usually require information about the sensi-379

tivity (i.e., derivatives) of the functions involved in the optimization problem and most of them can380

directly deal with discrete design variables. Nevertheless, a common drawback of these approaches381

is that they require a large number of function evaluations, i.e. failure probability estimations. Re-382

cently, several stochastic optimization algorithms based on advanced simulation methods have been383
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Criterion Approaches Approaches Approaches Approach Approaches
(Section 4.1) (Section 4.2) (Section 4.3) (Section 4.4) (Section 4.5)

Role of failure Constraints Constraints Constraints Constraints Objective
probabilities

Nature of design Continuous Continuous Continuous Discrete Continuous
variables or discrete or discrete

Dimension of design Intermediate Intermediate Intermediate Low High
space (nx = 2− 7) (nx = 2− 10) (nx = 2− 10) (nx = 3− 4) (nx = 3− 20)

Structural Linear Nonlinear Nonlinear Nonlinear Linear
behavior

Failure probability Exponential Convex or Quadratic Local-type Operator
surrogates function conservative one-dimensional approximation norm

expansion approximation
Failure probability Not required Required Required Not required Not required

sensitivities
Optimization SQP and Dual methods and Line search Genetic Genetic algorithms,

method NLPQL Genetic algorithms techniques algorithms Interior point
Simulation method Importance Subset Subset Subset Directional

sampling simulation simulation simulation importance
and MCS and PDEM and PDEM sampling

Decoupling strategy Successive Successive Successive Successive Total

Table 1: Comparison of the different types of approaches based on sequential optimization schemes.

developed specifically in the context of structural systems under stochastic excitation.384

5.1. Asymptotically Independent Markov Sampling Based Approach385

The asymptotically independent Markov sampling method for global optimization (AIMS-OPT) is a386

stochastic optimization method proposed in [78], which is based on a sampling technique originally387

developed for Bayesian inference problems [79]. Three main concepts are involved in the formulation388

of the optimization approach: annealing, importance sampling, and Markov chain Monte Carlo389

(MCMC). The optimization approach is targeted to the unconstrained global optimization of general390

expected performance measures and, in particular, to unconstrained global reliability optimization391

problems.392

Based on the concept of annealing (or tempering), the problem of finding the minimum value of PF (x)393

is equivalent to find the maximum value of exp (−PF (x)/T ) for any given annealing temperature394

T > 0. Next, treating the design variables as uncertain and uniformly distributed over the feasible395

domain, a non-normalized tempered distribution is defined as [80]396

pT (x) ∝ exp

(
−PF (x)

T

)
IX(x), T > 0 (18)

where IX(x) represents the indicator function on the set X = {x ∈ Rnx : xLi ≤ xi ≤ xUi }, which397

defines the side constraints of the design variables. It is observed that limT→∞ pT (x) = UX(x), where398

UX(x) is a uniform distribution over X. On the other hand, as T decreases and tends to zero, the399

distribution pT (x) becomes spikier, and it puts more and more of its probability mass into the set400

that maximizes exp (−PF (x)/T ). Then, limT→0 pT (x) = UX∗
PF

(x) , where X∗PF is the optimal solution401
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set. In other words, if T is close to zero, then a sample drawn from pT (x) will be in a vicinity of X∗PF402

with very high probability. The idea is to generate a sequence of tempered distributions {pTj(x), j =403

0, 1, . . .} according to (18) with monotonically decreasing temperatures ∞ = T0 > T1 > . . . > Tj >404

. . ., where the initial distribution is uniform over X, that is, pT0(x) = UX(x). The samples at each405

level are generated based on samples from the previous one using importance sampling concepts406

and standard MCMC procedures [81, 82]. For improved efficiency, the sequence of temperatures is407

defined to ensure a smooth transition between subsequent distributions based on an effective sample408

size criterion [83]. The initial Markov chain state at each stage is randomly drawn near the best design409

obtained during the previous level. In addition, the corresponding proposal distribution for MCMC410

depends only on samples from the previous level. Thus, at each stage, AIMS-OPT explores local411

neighborhoods of the samples generated at the previous annealing level. Moreover, all samples can412

be generated independently and, therefore, the corresponding computations can be fully scheduled in413

parallel to improve the computational efficiency. The approach has been demonstrated in the RBO414

of a nonlinear structure subject to stochastic seismic excitation involving few design variables.415

5.2. A Transitional Markov Chain Monte Carlo Based Approach416

The approach introduced in [84] is tailored to deterministic linear structural systems under Gaussian417

excitation. Cost minimization subject to a single reliability constraint and standard constraints is418

addressed, where continuous design variables are considered. The contribution integrates (i) the419

Domain Decomposition Method (DDM) [42] for efficient reliability assessment, (ii) the transitional420

Markov chain Monte Carlo (TMCMC) method [85, 86] for exploration of the design space, and421

(iii) subset simulation [35, 36] to obtain an initial set of feasible designs. Similar to AIMS-OPT422

(see Section 5.1), the fundamental idea is to replace the optimization problem with the equivalent423

problem of obtaining a sample from the distribution424

pT (x) ∝ IXfeasible
(x) exp

(
− ln (c(x)/c0)

T

)
, T → 0 (19)

where c(x) is a cost function, c0 is a scaling factor, T is the annealing temperature [80], and IXfeasible
(x)425

is the indicator function corresponding to the feasible set Xfeasible given by426

Xfeasible = {x ∈ X ⊂ Rnx : PF (x) ≤ P ∗F ∧ gj(x) ≤ 0, j = 1, . . . , ng} (20)

In order to draw samples from pT (x), T → 0, the TMCMC method [85, 86, 87] is implemented. The427

corresponding sequence of non-normalized intermediate distributions is given by428

pTj(x) ∝ IXfeasible
(x) exp

(
− ln (c(x)/c0)

Tj

)
, j = 0, 1, . . . ,m (21)

where ∞ = T0 > T1 > . . . > Tm → 0. Based on the previous definition, the distribution pT0(x)429

is uniform over the feasible space. In other words, a set of uniformly distributed designs over the430

feasible design space must be generated at the initial stage of the TMCMC method. This is not431

straightforward for general systems, since the samples must satisfy the reliability constraint, PF (x) ≤432
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P ∗F , and the standard constraints. To address this task, subset simulation [35, 36] is implemented433

considering an auxiliary failure domain defined in the design space as F aux = {x ∈ Xg : PF (x) ≤ P ∗F},434

where the set Xg contains the designs that satisfy the standard constraints gj(x) ≤ 0, j = 1, . . . , ng,435

and the side constraints. The samples in Xg are obtained directly in an efficient manner since the436

deterministic constraints are easy to evaluate. In addition, the DDM [42] is implemented to evaluate437

efficiently the failure probability. Since the accuracy level of the reliability assessment step is only438

required to decide about the feasibility of each design, an adaptive scheme that exploits specific439

characteristics of the DDM to allocate the computational effort is proposed in [84]. The capabilities440

of the approach are demonstrated in a relatively simple system. Overall, the approach provides an441

effective strategy to deal with optimization problems involving deterministic linear systems subject442

to Gaussian excitation.443

5.3. Two-Phase Bayesian Model Updating Framework444

An approach based on a Bayesian model updating problem has been proposed in [88] for uncon-445

strained optimization and extended in [89, 90] to constrained optimization. The method is based446

on the formulation of an equivalent Bayesian model updating problem. In addition, an adaptive447

surrogate model for the failure probability functions is implemented to improve the computational448

efficiency of the optimization procedure. Similar to the contributions reported in the previous sub-449

sections, a non-normalized distribution is defined as450

pT (x) ∝ UXfeasible
(x) exp

(
−c(x)

T

)
, T > 0 (22)

where UXfeasible
(x) is a uniform distribution over the feasible design space Xfeasible. For unconstrained451

optimization problems, Xfeasible comprises the side constraints on the design variables. The distribu-452

tion pT (x) can be interpreted as a posterior distribution where UXfeasible
(x) is the prior distribution453

and exp(−c(x)/T ) is the likelihood function. Moreover, it is noted that limT→∞ pT (x) = UXfeasible
(x).454

In addition, a sample drawn from pT (x), T → 0, will be in a vicinity of the optimal solution set455

X∗c with very high probability [78, 84]. In other words, finding the solution to the RBO problem is456

equivalent to solve a Bayesian model updating problem with posterior distribution limT→0 pT (x).457

To solve the model updating problem, a sequence of non-normalized intermediate distributions458

{pTj(x), j = 0, 1, . . . ,m} is defined as459

pT0(x) = UXfeasible
(x) (T0 =∞)

pTj(x) ∝ UXfeasible
(x) exp

(
−c(x)

Tj

)
, j = 1, 2, . . . ,m

(23)

with annealing temperatures ∞ = T0 > T1 > . . . > Tm → 0. The initial distribution is uniform460

over the design space, whereas the probability mass of the final distribution is concentrated in a461

vicinity of the optimum solution set. The idea of the method is to iteratively generate samples462

from the intermediate distributions, as they theoretically converge to the optimum solution set.463

To this end, the TMCMC method [85, 86, 87] is adopted and implemented. The initial stage of464

the TMCMC method requires a set of designs uniformly distributed over the feasible region. For465

unconstrained optimization problems, this is a trivial task since direct Monte Carlo simulation can466
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be used. However, when general constraints are considered, standard sampling procedures such as467

the accept-reject method may be inefficient since the geometry of the feasible domain can be quite468

complex. In order to overcome these issues, an auxiliary unconstrained optimization problem is469

introduced as470

min
x

h(x) = max
{

0, g1(x), . . . , gng(x), r1(x), . . . , rnr(x)
}

subject to xLi ≤ xi ≤ xUi , i = 1, . . . , nx

(24)

The minimum value of this function, if the feasible set is not empty, is given by h(x) = 0, and the471

corresponding optimum solution set verifies X∗h = Xfeasible. Thus, solving the auxiliary optimization472

problem (24) using the TMCMC method provides a set of designs that are uniformly distributed473

over the feasible design space. In addition, it can be shown that all feasible designs generated during474

the different stages of the TMCMC method are also uniformly distributed [88]. This leads to a475

two-phase approach where the same stochastic simulation technique is implemented to successively476

explore the feasible design space and the optimum solution set. The numerical implementation of the477

optimization scheme depends on few control parameters, which is advantageous from the practical478

viewpoint. The same framework has been extended in [90] to RBO problems involving discrete-479

continuous design variables by introducing a suitable proposal distribution to explore the design480

space in the context of the TMCMC method.481

Due to its theoretical foundations, the approach has high chances of reaching a vicinity of the op-482

timum solution set. Additionally, valuable sensitivity information on the objective and constraint483

functions can be obtained. However, the population-based nature of the optimization technique484

leads to a high number of function calls in order to effectively explore the search space, which can485

be computationally very demanding for involved structural systems. Kriging-based adaptive meta-486

models have been implemented in [88, 89] to approximate the failure probability functions, providing487

a noticeable efficiency improvement to the overall design process without sacrificing the quality of488

the optimization results. The capabilities of the two-phase framework have been demonstrated in489

applications involving nonlinear structural systems under general stochastic excitation.490

5.4. Summary and Comparison: Stochastic Search Based Techniques491

Contributions based on the implementation of stochastic search techniques have been described in492

this section. Their general idea is to transform the original RBO problem into the task of obtaining493

samples following a target distribution whose probability mass is concentrated around the optimal494

solution set. In this setting, simulated annealing concepts play a key role in the formulation and495

implementation of the different approaches. In order to summarize the methods presented in the496

different subsections, Table 2 highlights some characteristics associated with their application scope497

and relevant implementation details. According to this table, the common feature of these approaches498

is that they do not require reliability sensitivity assessment. This is advantageous in cases where such499

procedures are not available or are difficult to implement, although a high number of function calls500

is usually required to explore the design space in an effective manner. At the same time, the main501

difference between these methods corresponds to the role of the failure probabilities in the problem.502

In this sense, the optimization strategies can address unconstrained global reliability optimization503

(see Section 5.1), cost optimization of deterministic linear systems subject to a single reliability504
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constraint (see Section 5.2), or general constrained RBO problems (see Section 5.3).505

The approach presented in Section 5.1 proposes the use of the Asymptotically Independent Markov506

Sampling method as stochastic search technique, in which continuous design variables and nested507

reliability assessment are considered. The method described in Section 5.2 proposes the TMCMC508

method as search technique and subset simulation to generate an initial set of feasible designs. Nested509

reliability assessment based on the DDM is considered in the formulation. In this case, the number510

of samples required by the simulation technique is adaptively tuned to obtain sufficiently accurate511

estimates while reducing the computational burden as much as possible. This type of strategy has512

proved quite effective in reducing overall computational costs and, additionally, it shows that the513

consideration of particular features of advanced simulation methods can be quite beneficial for RBO514

procedures. Finally, the two-phase framework presented in Section 5.3 proposes the use of the TM-515

CMC method as a search technique to explore both the feasible design space and the optimum516

solution set. Subset simulation has been considered as reliability analysis method, although alterna-517

tive techniques can be integrated as well. A successive decoupling strategy based on adaptive kriging518

surrogates for the failure probability functions is implemented, which can provide substantial com-519

putational savings. Furthermore, this illustrates that the integration of suitable failure probability520

surrogates into stochastic search techniques can effectively improve their efficiency by avoiding full521

reliability assessment at every new design. As in the case of sequential optimization schemes, the522

previous approaches have been employed in a number of linear and nonlinear structural models.523

Criterion Approach Approach Approach
(Section 5.1) (Section 5.2) (Section 5.3)

Role of failure Objective Constraints Objective
probabilities or constraints

Nature of design Continuous Continuous Continuous, dis-
variables crete or mixed

Dimension of Low Low Intermediate
design space (nx = 2) (nx = 2) (nx = 2− 8)
Structural Nonlinear Linear Nonlinear
behavior

Failure probability None None Kriging
surrogates metamodel

Failure probability Not required Not required Not required
sensitivities

Optimization AIMS-OPT TMCMC TMCMC
method

Simulation method MCS DDM Subset
simulation

Decoupling strategy None None Successive

Table 2: Comparison of the different types of approaches based on stochastic search techniques.

6. Augmented Reliability Space Formulations524

An alternative framework for solving reliability-based optimization problems involving structural525

systems under stochastic excitation is based on the augmented reliability concept [91, 92]. In this526

framework, the design variables x are artificially treated as random variables following an arbitrary527
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distribution p(x), that is, x ∼ p(x). This distribution is usually taken as uniform over the design528

space, although alternative distributions can be selected as well. The augmented reliability space529

simultaneously considers the design variables x and the basic random variables θ, that is, 〈x,θ〉.530

Then, the augmented reliability problem for any failure event F corresponds to the evaluation of531

P (F ) =

∫
x∈Rnx

∫
θ∈Rnθ

IF (x,θ)q(θ|x)p(x)dθdx (25)

which is a quantity that measures the plausibility of failure when the uncertainties in the basic532

random variables and the artificial uncertainties in the design variables are jointly considered. The533

definition of P (F ) is purely instrumental within the augmented reliability space framework. Then,534

according to Bayes’ theorem [93], the failure probability function PF (x) for any given design in the535

augmented reliability space is given by536

PF (x) = P (F |x) =
P (F )p(x|F )

p(x)
(26)

where p(x|F ) is the marginal distribution of x conditioned on failure event F . If p(x) is taken,537

without any loss of generality, as a uniform distribution over the design space, the failure probability538

function verifies539

PF (x) ∝ p(x|F ) (27)

since P (F ) and p(x) are constant values. Equation (26) shows that the computation of the failure540

probability function PF (x) requires the marginal probability density function p(x|F ). The different541

approaches reported in this section take advantage of this basic relationship in order to improve the542

overall efficiency of reliability-based optimization procedures.543

6.1. Stochastic Subset Optimization544

Stochastic Subset Optimization (SSO) is an iterative method to deal with global reliability optimiza-545

tion, which was initially introduced in [94, 95]. The algorithm effectively avoids nested reliability546

evaluations by iteratively shrinking the search domain in the augmented reliability space in order to547

reduce its average failure probability value. In this framework, a class of admissible subsets A ⊂ X548

is considered, where X is the set comprising the side constraints on the design variables. This class549

contains subsets with some predetermined characteristics such as size or shape. The new search550

region identified during each iteration corresponds to the optimal subset I∗ ∈ A which verifies551

I∗ = arg min
I∈A

P (F |x ∈ I) (28)

where P (F |x ∈ I) is the average failure probability on a subset I ⊂ X given by552
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P (F |x ∈ I) = P (F )
P (x ∈ I|F )

P (x ∈ I)
= P (F )

∫
I
p(x|F )dx∫
I
p(x)dx

(29)

where P (x ∈ I|F ) is the probability mass of subset I conditioned on failure event F , P (x ∈ I) is553

the probability mass of subset I, and p(x) is the uniform distribution. All these quantities can be554

estimated, in principle, by means of simulation techniques such as MCMC. During each optimization555

cycle, NT failure samples are available in the 〈x,θ〉-space, among which NI belong to each admissible556

subset I. Then, problem (28) is approximately given by557

I∗ = arg min
I∈A

NI

VI
(30)

where VI is the volume of I ∈ A. Appropriate methods for solving non-smooth optimization problems558

[96] must be implemented. The performance of the SSO algorithm highly depends on the definition of559

the admissible subsets. Hyper-rectangles and hyper-ellipses with adjustable ratio between dimensions560

have been considered [94, 95]. The correct choice of the class of admissible subsets remains one of the561

main challenges in SSO, specially for higher dimensions and disjoint regions [97]. The method has562

been demonstrated in applications involving linear and nonlinear systems, considering a relatively563

small number of design variables [98, 99].564

6.2. Non-Parametric Stochastic Subset Optimization565

The Non-Parametric Stochastic Subset Optimization (NP-SSO) method is an extension of SSO for566

solving unconstrained reliability optimization problems [100] and further developed in [101, 102].567

The method avoids the parametric description of subsets and the search for the one that has the568

smallest average value. Moreover, NP-SSO is focused on the estimation of the marginal PDF p(x|F )569

by means of boundary-corrected kernel density estimation (KDE) methods [103, 104, 105, 106]. Their570

implementation requires independent and identically distributed (i.i.d.) failure samples which are571

generated by rejection sampling [19]. An iterative framework is proposed to improve the computa-572

tional efficiency of the optimization process. The idea is to continuously shrink the search domain to573

regions with lower values of the objective function. When the updated search region is composed of574

multiple clusters, suitable techniques are implemented to characterize them [107, 108]. At the end of575

the iterative procedure, a reduced search space and a KDE approximation of the failure probability576

function are obtained. To improve the numerical efficiency of the overall procedure, the NP-SSO577

technique is coupled in [101, 102] with various soft-computing techniques [109, 110].578

The previous method has been extended in [102] to the minimization of a cost function subject to579

reliability constraints. The idea is to obtain a surrogate model PF (x) ≈ P̃F (x) that is sufficiently580

accurate near the boundaries of the feasible design space. The iterations of the NP-SSO method581

are carried out until the new search region lies within the feasible design space. Then, a refinement582

stage is implemented to improve the quality of the failure probability surrogate near the boundary583

of the feasible domain. The resulting approximate optimization problem can be solved using any584

suitable optimization technique. Although NP-SSO circumvents the main difficulties encountered in585

the original SSO formulation, the robustness of KDE approaches for density fitting decreases in high586
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dimensions [111]. Thus, the range of applications is somewhat limited in terms of the number of587

design variables.588

6.3. Approach Based on Partitioned Design Space589

The approach proposed in [112] addresses the minimization of a cost function subject to a single590

reliability constraint. A surrogate for the failure probability function is formulated in terms of an591

augmented reliability space and a partitioning of the design space. The design space X is partitioned592

into several subspacesDi, i = 1, . . . , np in an iterative manner. At the ith iteration, a sufficient number593

of failure samples within the current subdomain Di are generated in the augmented reliability space594

using MCMC. With these samples, the marginal distribution p(x|F,Di) is approximated in the595

current subdomain Di, i.e. p(x|F,Di) ≈ p̃(x|F,Di), using a rectangular binning approach and least596

squares estimates based on second-order polynomials [113, 114]. Then, a new subspace Di+1 ⊂ Di597

(D1 = X) is defined as Di+1 = {x ∈ Di : p̃(x|F,Di) ≤ p∗i }, where p∗i is adaptively chosen as in subset598

simulation [35, 36]. At the end of the iterative process, the failure probability function evaluated at599

a design x, such that x ∈ Di and x /∈ Di+1, can be estimated as600

P̃F (x) =
P (Di|F ) P̂ (F )

p(x)
p̃(x|F,Di) (31)

where P (Di|F ) is obtained as a by-product of the partitioning process and P̂ (F ) can be estimated601

from the samples obtained during the first iteration. The method provides a sequence of least602

squares estimates for each subspace rather than a unique fit over the complete design space, which603

can lead to increased accuracy. Moreover, the surrogate allows to completely decouple the reliability604

assessment cycle from the optimization process. Nonetheless, the approach seems to be restricted to605

low-dimensional design spaces due to the current limitations of density fitting procedures.606

6.4. Maximum Entropy Based Methods607

The approach proposed in [115] deals with cost minimization under a single reliability constraint.608

The main idea of the approach is to generate surrogates of the failure probability function based609

on the augmented reliability formulation and the maximum entropy (ME) method [116, 117]. The610

objective is to obtain the distribution that maximizes the entropy subject to constraints on the611

distribution’s moments. In particular, the ME estimate of p(x|F ) under first moment constraints is612

implemented and given by [115, 118]613

p̃(x|F ) = exp
(
−α− λTx

)
(32)

where α and λ = 〈λ1, . . . , λnx〉T are the optimal parameters. The formulation leads to linear surro-
gates for ln(PF (x)), as proposed in earlier works [12, 49]. However, no move limits are imposed for
the ME estimate in this case. The required failure samples for defining the surrogates are generated
by means of subset simulation [35, 36], which also provides an estimate P (F ) ≈ P̂ (F ). Then, the
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failure probability function is estimated as

P̃F (x) =
P̂ (F )p̃(x|F )

p(x)
(33)

The variability of this estimate is due to the variability in P̂ (F ) and p̃(x|F ). An approach based614

on confidence intervals (CIs) is implemented to consider this issue [115, 118, 119]. The goal of the615

approach is to solve a set of explicit approximate RBO problems. First, each approximate problem is616

defined by means of an approximate representation of P̃F (x), which is given by a realization of P̂ (F )617

and λ drawn from their corresponding CIs. Second, these approximate RBO problems are solved618

in order to obtain a set of approximate optimal designs. Finally, a screening procedure is carried619

out to identify the final solution. According to [115], it is expected that the performance of the620

approach may decrease when the number of uncertain parameters is too large or when the behavior621

of ln(PF (x)) is highly nonlinear. The method is demonstrated in several examples involving linear622

and nonlinear systems, considering few design variables.623

6.5. Scheme Based on Equivalent Safety-Factor Constraints624

The approach proposed in [120] addresses the minimization of a cost function subject to reliability625

and standard constraints. The original reliability constraints are replaced by safety-factor constraints626

in order to formulate a standard optimization problem. The equivalent safety-factor constraints are627

defined as628

η∗j d̄j(x) ≤ 1, j = 1, . . . , nr (34)

where η∗j ≥ 1 is the designated safety factor and d̄j(x) > 0 is a nominal normalized demand function629

which can be defined as d̄j(x) = dj(x, E[θ]) or d̄j(x) = Eθ [dj(x,θ)]. Under certain conditions [120],630

the functional relationship between η∗j and P ∗Fj is given by631

P
[
dj(x,θ)− η∗j d̄j(x) > 0

]
= P ∗Fj ⇐⇒ P

[
dj(x,θ)

d̄j(x)
> η∗j

]
= P ∗Fj (35)

The designated safety factor η∗j is estimated using simulation techniques. For improved efficiency, the632

values η∗j , j = 1, . . . , nr are simultaneously computed from a single simulation run in the augmented633

reliability space. To this end, direct Monte Carlo simulation and parallel subset simulation [121] are634

implemented in [120]. Finally, the original RBO problem is transformed into a nonlinear optimization635

problem which can be solved by standard optimization schemes. The applicability of the approach636

is demonstrated on the RBO of a linear system under stochastic excitation, involving relatively few637

design variables.638

6.6. Summary and Comparison: Formulations Based on Augmented Reliability Spaces639

Contributions based on augmented reliability spaces allow to treat reliability assessment in the joint640

space of random and design variables. This is possible by introducing an instrumental variability641
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to the design variables. Thus, in principle, a single simulation run could provide the necessary642

information to solve the RBO problem. The common idea is to take advantage of the relationship643

between the failure probability function and the marginal conditional PDF of the design variables.644

To illustrate the characteristics of the different approaches reported in this section, Table 3 presents645

their main features in terms of their application range and implementation aspects. It is seen that646

all of the contributions avoid reliability sensitivity assessment. In addition, their performance has647

been demonstrated in low-dimensional design spaces involving continuous design variables.648

The different approaches reported in this section exploit in a different way the structure of the aug-649

mented reliability problem to avoid nested reliability assessment. The approach presented in Section650

6.1 focuses on improving the average failure probability value by iteratively selecting smaller subsets651

in the search domain. Building on this idea, the contributions of Section 6.2 introduce kernel density652

estimation and machine learning techniques to obtain simultaneously a failure probability surrogate653

and a reduced search space, respectively. The previous strategies allow successive decoupling, since654

the sampling and subset identification steps are sequential. The rest of contributions correspond to655

total decoupling strategies. Section 6.3 presents a method based on the partition of the design do-656

main to obtain a sequence of surrogates for the failure probability function in terms of second-order657

polynomials. The contribution in Section 6.4 proposes a maximum entropy estimate for the marginal658

conditional distribution, whereas equivalent safety-factor constraints obtained by a single simulation659

run are considered in Section 6.5. It is noted that the selection of adequate sampling schemes is one660

of the most relevant implementation aspects in the augmented reliability framework. In general, the661

chosen method must explore the augmented space to obtain the required information in a robust and662

efficient manner. Finally, approaches based on augmented reliability spaces have been demonstrated663

in several applications involving linear and nonlinear structural models.664

Criterion Approaches Approaches Approach Approach Approach
(Section 6.1) (Section 6.2) (Section 6.3) (Section 6.4) (Section 6.5)

Role of failure Objective Objective or Constraints Constraints Constraints
probabilities constraints

Nature of design Continuous Continuous Continuous Continuous Continuous
variables

Dimension of design Intermediate Low Low Low Low
space (nx = 2− 6) (nx = 2− 4) (nx = 2) (nx = 2) (nx = 3)

Structural Nonlinear Nonlinear Linear Linear Linear
behavior

Failure probability Marginal Kernel Second- Exponential Safety-
surrogates PDF density order factor

average estimates polynomials constraints
Failure probability Not required Not required Not required Not required Not required

sensitivities
Optimization SSO NP-SSO SQP Standard Genetic

method scheme algorithms
Simulation method MCS and Rejection MCMC Subset MCS or pa-

MCMC sampling simulation rallel subset
simulation

Decoupling strategy Successive Successive Total Total Total

Table 3: Comparison of the different types of approaches based on augmented reliability space formulations.
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7. Conclusions and Outlook665

This work has summarized and discussed some of the latest developments in the context of reliability-666

based design optimization of structural systems under stochastic excitation. The contributions have667

been grouped into three categories: sequential optimization approaches, stochastic search based668

techniques, and formulations based on augmented reliability spaces.669

Sequential optimization approaches involve consecutive reliability assessment, construction of failure670

probability surrogates and exploration of the search space in order to reduce the overall computa-671

tional effort. Surrogates for the failure probability functions are developed to formulate approximate672

optimization problems which are solved by means of any suitable optimization technique. Thus,673

these approaches can handle, in principle, high-dimensional design spaces. However, the quality of674

the failure probability surrogates usually tends to decrease as the number of design parameters in-675

creases. One way to circumvent this problem is the development of line search techniques, in which676

one-dimensional surrogates are required. Some of the reported methods involve the evaluation of677

both, failure probabilities and their sensitivities, which can be very challenging. In this regard, an678

important task is to develop general approaches to efficiently evaluate reliability sensitivities based679

on, for example, advanced simulation techniques. Although global optimization schemes can be used680

in the context of sequential optimization approaches, the different contributions are mainly based681

on local search due to the inclusion of move limits and the type of optimization techniques under682

consideration. As a result, they may not be appropriate for problems involving several local optima683

or disconnected feasible design regions. Thus, the use of global optimizers offers a practical and684

important extension of sequential approaches.685

The second category considers stochastic search based techniques. These techniques introduce ran-686

domization in the exploration of the design space as a means to avoid local minima. The contributions687

examined in this work are based on the combination of annealing concepts and Markov chain Monte688

Carlo methods. They present high theoretical chances of reaching a vicinity of the optimum solution689

set. In addition, the computation of the derivatives of the failure probability functions is not required690

by these algorithms. Generally, a relatively large number of function calls (failure probability esti-691

mates) is required to obtain an adequate solution and, therefore, the corresponding computational692

efforts can be significant. Several strategies have been proposed to overcome this issue, including693

the implementation of surrogates for the failure probability functions and adaptive allocation of the694

number of samples for reliability assessment. The ability to obtain a set of close-to-optimal designs695

rather than a single candidate solution can provide more flexibility to the overall design process. This696

is especially important in complex design problems involving multiple optima as well as to cope with697

the inherent uncertainty arising in reliability assessment. Some of the important challenges in the698

context of these techniques are the effective integration of sensitivity information during the design699

process, the consideration of multi-objective optimization problems, the treatment of mixed discrete-700

continuous design variables, the extension to higher-dimensional design spaces, and the reduction of701

computational efforts associated with the number of function calls or the construction of sufficiently702

accurate surrogates.703

The third category is associated with formulations based on augmented reliability spaces. In this704

framework, failure probability surrogates are constructed using failure samples associated with an705

augmented reliability problem. The reliability and optimization processes are usually combined.706
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Then, in principle, a single simulation run in the augmented space could provide the required in-707

formation to solve the optimization problem. A number of low-dimensional problems have been708

addressed, including global reliability optimization and cost minimization subject to reliability con-709

straints. The implementation of these approaches has mostly relied on the characterization of the710

marginal probability density function in terms of different quantities, including subsets in the de-711

sign space and density fitting techniques such as kernel density estimation, maximum entropy, and712

least squares estimates. Some extensions of these formulations include the consideration of higher-713

dimensional design spaces, the integration of sensitivity information, the treatment of discrete design714

variables, and the development and implementation of accurate and effective metamodels.715

From the previous discussion, it is clear that the different approaches provide different advantages716

and difficulties to carry out the optimization process. Even though they have been generally tested717

in a variety of realistic applications, including complex structural systems, the choice of a particular718

method is problem-dependent. Some characteristics that must be taken into account to choose a719

particular optimization technique include the number of design variables, available computational720

power, possibility of having multiple optima, discrete or continuous nature of the design variables,721

linearity or non-linearity of the structural system, and the role of the failure probability functions in722

the characterization of the optimization problem (as objective and/or constraint functions). The user723

must be able to carefully select the most appropriate method for the problem under consideration. In724

this manner, adequate candidate solutions can be established and, more importantly, further insight725

about the system behavior can be obtained. As previously pointed out, reliability-based optimization726

procedures for structural systems under stochastic excitation are problem-dependent. However, it727

is believed that future research efforts can provide a general improvement to these methodologies.728

For example, the use of model reduction techniques combined with parametrization schemes can729

certainly benefit optimization procedures by increasing the efficiency of basic structural analyses730

without compromising their accuracy. Another topic that is under continuous development and has731

received great attention lately corresponds to the implementation of adaptive metamodels. This can732

improve optimization procedures by reducing the computational overhead at the structural response733

or failure probability function levels. Furthermore, the development of new simulation schemes734

for reliability and sensitivity assessment provides additional opportunities to develop novel RBO735

methods that can provide further options to engineering practice. Finally, parallelization features at736

the reliability and sensitivity assessment level as well as at the physical model level can be exploited737

to increase the efficiency of the different approaches. These can be implemented either for efficient738

and effective construction of metamodels, or for direct analyses in surrogate-free schemes.739

In conclusion, the arguments presented in this brief overview suggest that computational aspects play740

a key role in designing realistic systems and structures. Moreover, the preceding sections indicate741

that more developments and research are needed in the area of reliability-based design optimization742

of structural systems under stochastic excitation. Future efforts should focus on making approaches743

in this area more efficient by providing and implementing effective and robust numerical procedures.744

This emphasizes the necessity for devising not only sound and improved theoretical algorithms but745

also the appropriate tools needed for applying such procedures. Overcoming these challenges can lead746

to significant advancements in this area and, ultimately, assist complex decision-making processes in747

real-life situations.748
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[61] M. A. Valdebenito and G. I. Schuëller Efficient strategies for reliability-based optimization888

involving non-linear, dynamical structures. Computers & Structures, 89(19):1797–1811, 2011.889

[62] J. Chen, J. Yang, and H. Jensen. Structural optimization considering dynamic reliability con-890

straints via probability density evolution method and change of probability measure. Structural891

and Multidisciplinary Optimization, 62(5):2499–2516, 2012.892

[63] Z. Wan, J. Chen, J. Li, and A. H.-S. Ang. An efficient new PDEM-COM based approach893

for time-variant reliability assessment of structures with monotonically deteriorating materials.894

Structural Safety, 82:101878, 2020.895

[64] H. A. Jensen, L. G. Becerra, and M. A. Valdebenito. On the use of a class of interior point896

algorithms in stochastic structural optimization. Computers & Structures, 126:69–85, 2013.897

[65] J. Herskovits and G. Santos. On the computer implementation of feasible direction interior point898

algorithms for nonlinear optimization. Structural optimization, 14(2):165–172, 1997.899

[66] F. van Keulen and K. Vervenne. Gradient-enhanced response surface building. Structural and900

Multidisciplinary Optimization, 27(5):337–351, 2004.901

[67] H. A. Jensen, D. S. Kusanovic, M. A. Valdebenito, and G. I. Schuller. Reliability-based design902

optimization of uncertain stochastic systems: gradient-based scheme. Journal of Engineering903

Mechanics, 138(1):60–70, 2012.904

[68] J. Yang, H. Jensen, and J. Chen. Structural optimization under dynamic reliability con-905

straints utilizing probability density evolution method and metamodels in augmented input906

space. Manuscript submitted for publication, 2021.907

[69] H. A. Jensen, D. S. Kusanovic, and M. A. Valdebenito. Compromise design of stochastic dy-908

namical systems: a reliability-based approach. Probabilistic Engineering Mechanics, 29:40–52,909

2012.910

[70] H. Jensen and C. Papadimitriou. Sub-structure coupling for dynamic analysis. Springer-Verlag911

GmbH, 2019.912

[71] R. Craig. Structural dynamics: an introduction to computer methods. Wiley, New York, 1981.913

[72] H. A. Jensen, A. Mun̈oz, C. Papadimitriou, and E. Millas. Model-reduction techniques for914

reliability-based design problems of complex structural systems. Reliability Engineering & Sys-915

tem Safety, 149:204–217, 2016.916

[73] M. A. Valdebenito and G. I. Schuller. Reliability-based optimization considering design variables917

of discrete size. Engineering Structures, 32(9):2919–2930, 2010.918

[74] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with919

Applications to Biology, Control and Artificial Intelligence. MIT Press, 1992.920

[75] M. G. R. Faes and M. A. Valdebenito. Fully decoupled reliability-based design optimization921

of structural systems subject to uncertain loads. Computer Methods in Applied Mechanics and922

Engineering, 371:113313, 2020.923

[76] M. G. R. Faes and M. A. Valdebenito. Fully decoupled reliability-based optimization of linear924

structures subject to Gaussian dynamic loading considering discrete design variables. Mechanical925

28



Systems and Signal Processing, 156:107616, 2021.926

[77] J. C. Spall. Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc., 2003.927

[78] K. M. Zuev and J. L. Beck. Global optimization using the asymptotically independent Markov928

sampling method. Computers & Structures, 126:107–119, 2013.929

[79] J. L. Beck and K. M. Zuev Asymptotically independent Markov sampling: A new Markov chain930

Monte Carlo scheme for Bayesian inference. International Journal for Uncertainty Quantifica-931

tion, 3(5):445–474, 2013.932

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,933

220(4598):671–680, 1983.934

[81] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of935

state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–936

1092, 1953.937

[82] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.938

Biometrika, 57(1):97–109, 1970.939

[83] A. Kong, J. S. Liu, and W. H. Wong. Sequential imputations and Bayesian missing data940

problems. Journal of the American Statistical Association, 89(425):278–288, 1994.941

[84] J. Wang and L. S. Katafygiotis. Reliability-based optimal design of linear structures subjected942

to stochastic excitations. Structural Safety, 47:29–38, 2014.943

[85] J. Ching and Y.-C. Chen. Transitional Markov chain Monte Carlo method for Bayesian model944

updating, model class selection, and model averaging. Journal of Engineering Mechanics,945

133(7):816–832, 2007.946

[86] A. Lye, A. Cicirello, and E. Patelli. Sampling methods for solving Bayesian model updating947

problems: A tutorial. Mechanical Systems and Signal Processing, 159:107760, 2021.948

[87] W. Betz, I. Papaioannou, and D. Straub. Transitional Markov chain Monte Carlo: observations949

and improvements. Journal of Engineering Mechanics, 142(5):04016016, 2016.950

[88] H. A. Jensen, D. J. Jerez, and M. Valdebenito. An adaptive scheme for reliability-based global951

design optimization: A Markov chain Monte Carlo approach. Mechanical Systems and Signal952

Processing, 143:106836, 2020.953

[89] H. A. Jensen, D. J. Jerez, and M. Beer. A general two-phase Markov chain Monte Carlo approach954

for constrained design optimization: application to stochastic structural optimization. Computer955

Methods in Applied Mechanics and Engineering, 373:113487, 2021.956

[90] H. Jensen, D. Jerez, and M. Beer. Structural synthesis considering mixed discrete-continuous957

design variables: a Bayesian framework. Mechanical Systems and Signal Processing, 162:108042,958

2021.959

[91] S.-K. Au. Reliability-based design sensitivity by efficient simulation. Computers & Structures,960

83(14):1048–1061, 2005.961

[92] P. S. Koutsourelakis. Design of complex systems in the presence of large uncertainties: a statisti-962

cal approach. Computer Methods in Applied Mechanics and Engineering, 197(49-50):4092–4103,963

2008.964

[93] E. T. Jaynes. Probability theory: The logic of science. Cambridge University Press, 2003.965

[94] A. A. Taflanidis and J. L. Beck. Stochastic Subset Optimization for optimal reliability problems.966

Probabilistic Engineering Mechanics, 23(2):324–338, 2008.967

[95] A. A. Taflanidis and J. L. Beck. An efficient framework for optimal robust stochastic system968

design using stochastic simulation. Computer Methods in Applied Mechanics and Engineering,969

198(1):88–101, 2008.970

29



[96] P. M. Pardalos and M. G. C. Resende. Handbook of applied optimization. Oxford University971

Press, 2002.972

[97] A. A. Taflanidis and J. L. Beck. Stochastic Subset Optimization for reliability optimization and973

sensitivity analysis in system design. Computers & Structures, 87(5):318–331, 2009.974

[98] A. A. Taflanidis and J. L. Beck. Reliability-based design using two-stage stochastic optimization975

with a treatment of model prediction errors. Journal of Engineering Mechanics, 136(12):1460–976

1473, 2010.977

[99] P.-R. Wagner, V. K. Dertimanis, E. N. Chatzi, and J. L. Beck. Robust-to-uncertainties optimal978

design of seismic metamaterials. Journal of Engineering Mechanics, 144(3):04017181, 2018.979

[100] G. Jia and A. A. Taflanidis. Non-parametric stochastic subset optimization for optimal-980

reliability design problems. Computers & Structures, 126:86–99, 2013.981

[101] G. Jia and A. A. Taflanidis. Non-parametric stochastic subset optimization utilizing multi-982

variate boundary kernels and adaptive stochastic sampling. Advances in Engineering Software,983

89:3–16, 2015.984

[102] G. Jia, A. A. Taflanidis, and J. L. Beck. Non-parametric stochastic subset optimization for985

design problems with reliability constraints. Structural and Multidisciplinary Optimization,986

52(6):1185–1204, 2015.987

[103] J. Beirlant, E. J. Dudewicz, L. Györfi, and E. C. Van Der Meulen. Nonparametric entropy esti-988

mation: an overview. International Journal of Mathematical and Statistical Sciences, 6(1):17–39,989

1997.990

[104] D. W. Scott and S. R. Sain. Multidimensional density estimation. In Handbook of Statistics,991

229–261. Elsevier, 2005.992

[105] R. J. Karunamuni and T. Alberts. On boundary correction in kernel density estimation.993

Statistical Methodology, 2(3):191–212, 2005.994

[106] R. J. Karunamuni and S. Zhang. Some improvements on a boundary corrected kernel density995

estimator. Statistics & Probability Letters, 78(5):499–507, 2008.996

[107] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via997

the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),998

63(2):411–423, 2001.999

[108] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means clustering algorithm. Applied1000

Statistics, 28(1):100–108, 1979.1001

[109] J. P. Neilsen. Multivariate boundary kernels from local linear estimation. Scandinavian Actu-1002

arial Journal, 1999(1):93–95, 1999.1003

[110] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,1004

optimization, and beyond. MIT Press Ltd., 2018.1005

[111] D. W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. John Wiley1006

& Sons, Inc., 1992.1007

[112] W.-S. Liu and S. H. Cheung. Reliability based design optimization with approximate fail-1008

ure probability function in partitioned design space. Reliability Engineering & System Safety,1009

167:602–611, 2017.1010

[113] J. N. Yang and S. Lin. Identification of parametric variations of structures based on least squares1011

estimation and adaptive tracking technique. Journal of Engineering Mechanics, 131(3):290–298,1012

2005.1013

[114] S.-C. Kang, H.-M. Koh, and J. F. Choo. An efficient response surface method using moving least1014

squares approximation for structural reliability analysis. Probabilistic Engineering Mechanics,1015

30



25(4):365–371, 2010.1016

[115] J. Ching and Y.-H. Hsieh. Approximate reliability-based optimization using a three-step ap-1017

proach based on subset simulation. Journal of Engineering Mechanics, 133(4):481–493, 2007.1018

[116] D. Ormoneit and H. White. An efficient algorithm to compute maximum entropy densities.1019

Econometric Reviews, 18(2):127–140, 1999.1020

[117] A. Zellner and R. A. Highfield. Calculation of maximum entropy distributions and approxima-1021

tion of marginal posterior distributions. Journal of Econometrics, 37(2):195–209, 1988.1022

[118] J. Ching and Y.-H. Hsieh. Local estimation of failure probability function and its confidence1023

interval with maximum entropy principle. Probabilistic Engineering Mechanics, 22(1):39–49,1024

2007.1025

[119] E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–630,1026

1957.1027

[120] J. Ching and W.-C. Hsu. Approximate optimization of systems with high-dimensional un-1028

certainties and multiple reliability constraints. Computer Methods in Applied Mechanics and1029

Engineering, 198(1):52–71, 2008.1030

[121] W.-C. Hsu and J. Ching. Evaluating small failure probabilities of multiple limit states by1031

parallel subset simulation. Probabilistic Engineering Mechanics, 25(3):291–304, 2010.1032

31


