
RESEARCH Open Access

A new world malaria map: Plasmodium falciparum
endemicity in 2010
Peter W Gething1*†, Anand P Patil1†, David L Smith2,3†, Carlos A Guerra1, Iqbal RF Elyazar4, Geoffrey L Johnston5,6,
Andrew J Tatem2,7 and Simon I Hay1,2*

Abstract

Background: Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria
on human populations. Maps of transmission intensity are necessary to identify populations at different levels of
risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be
updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this
paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first
global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary
questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR).

Methods: Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to
define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys
were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of
malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and
PfR and these were fitted to field data. These models were combined with the PfPR map to create new global
predictions of PfEIR and PfR. All output maps included measured uncertainty.

Results: An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum
malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a
median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty
described in both PfEIR and PfR was substantial in regions of intense transmission.

Conclusions: The year 2010 has a particular significance as an evaluation milestone for malaria global health
policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve
as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at
2015.

Background
Malaria transmission intensity affects almost all aspects
of malaria epidemiology, including community preva-
lence and age-profile of infection, the incidence and
type of disease syndromes, and total malaria mortality
[1,2]. It also modulates the expected outcome of malaria
control. Because transmission intensity varies geographi-
cally, maps that describe this variation are necessary to
identify populations at different levels of risk, to

compare and interpret malaria interventions conducted
in different places, and to evaluate objectively options
for disease control.
The most commonly measured metric of malaria

transmission is the parasite rate: the proportion of indi-
viduals infected at a given point in time. In 2009, the
Malaria Atlas Project (MAP) assembled all available data
from Plasmodium falciparum parasite rate (PfPR) sur-
veys, and used model-based geostatistics (MBG) to gen-
erate a global map of estimated PfPR for the year 2007
[3]. That map provided new insights into global patterns
of malaria endemicity and, through the careful handling
of uncertainty, a framework for assessing those areas
where knowledge of endemicity is inadequate. To
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remain useful, however, these maps must remain con-
temporary. The year 2010 has a particular significance
as an evaluation milestone for malaria global health pol-
icy [4-6] and a huge expansion in the availability of
parasite rate surveys since 2007, as well as ongoing
refinement in spatial modelling techniques, including
the use of environmental covariates, has provided an
opportunity to carry out a major revision of the map for
this benchmark year.
The global ubiquity of PfPR surveys means that they

are the only feasible data source for large-scale malaria
mapping [1,2]. Other metrics of malaria transmission,
however, have distinct and crucial roles in informing
control decisions. The basic reproductive number for
malaria, PfR0, quantifies the potential for the disease to
spread within a naive population [7,8]. The same metric
for scenarios moderated by malaria control has been
termed PfRc [9]. These metrics underpin mathematical
models of transmission that are central to contemporary
questions in malaria control [10]: identifying optimal
intervention suites and coverage levels, predicting time-
lines of declining endemicity, and assessing the regional
feasibility of elimination [2,11-17]. If these values exceed
one, infection prevalence increases to a steady state, and
if less than one, prevalence declines. Thus, if sustained
disease control reduces transmission intensity by a fac-
tor that exceeds PfR0, the parasite will eventually be
eliminated. PfR0 is, therefore, an index of both how well
malaria spreads and the effort required to eliminate it.
Although central to epidemiological theory, PfR0 is

almost impossible to measure directly [8,9]. When
mathematical models of malaria are fitted to real data,
this is generally via a third metric of transmission: the
entomological inoculation rate (EIR) which describes the
number of expected bites from infected mosquitoes per
person per unit time and can be measured in the field,
albeit laboriously [18-20]. EIR has, therefore, become a
key metric for modelling interactions between transmis-
sion intensity and, for example, intervention impact
[21-25], acquired immunity [26,27], and morbidity and
mortality [28-31]. The causal relationships between
PfPR, PfR0 and PfEIR formed the basis of the earliest
malaria transmission models [32,33]. These models have
subsequently been augmented and diversified to capture
greater complexity in the transmission system, and such
refined models provide a mechanism to estimate PfR0

and PfEIR based on the more readily measured PfPR
[9,20].
Here, a suite of transmission models are presented

that link these three fundamental metrics of malaria
transmission. They include the key mechanisms of
super-infection and heterogeneous biting [9] and are
validated with existing data. These models are used in
conjunction with an updated 2010 PfPR map to create

new global predictions of both PfEIR and PfRC

[12,14,34] that include an enumeration of the uncer-
tainty in the underlying prevalence map and in the rela-
tionships between the different transmission metrics.
The suite of maps presented here provide a rich land-
scape of data that can be used to help address some of
the urgent needs for planning malaria control and elimi-
nation defined by the international community
[11-15,35].
This study also marks a landmark release of malario-

metric data into the public domain, via the MAP web-
site [36]. Along with all the modelling output presented
here, the underlying MAP database of PfPR surveys is
made public for the first time. It is hoped that the open
access release of this major malariometric dataset, via a
low-bandwidth and user-friendly interface, will enhance
malaria research and control worldwide.

Methods
Generating an updated global map of Plasmodium
falciparum endemicity in 2010
Each component of the original 2007 global map [3] has
been completely updated and revised. The modelling
process is displayed schematically in Figure 1 and full
details on all aspects of the methodology and input data
are included in Additional Files 1, 2, 3, 4 &5. In brief,
85 countries were first identified as endemic for P. falci-
parum in 2010. From these, P. falciparum annual para-
site incidence (PfAPI) routine case reports were
assembled from 13,449 administrative units, represent-
ing a 53% increase in the number of mapped units over
the 2007 assembly [37]. These PfAPI and other medical
intelligence data were combined with remote sensing
surfaces and biological models [38] that identified areas
where extreme aridity or temperature regimes would
limit or preclude transmission. Following procedures
described previously [37], these components were com-
bined to classify the world into areas likely to experience
zero, unstable (PfAPI < 0.1‰ per annum), or stable
(PfAPI ≥0.1‰ per annum) P. falciparum transmission
(Additional File 1).
To map endemicity within the boundaries of stable

transmission, the global assembly of georeferenced PfPR
surveys held by MAP was first updated. Data assembly
has been a continuous activity of MAP since 2005 [39]
and the volume of malariometric data now available to
inform estimates of risk worldwide has grown markedly
in the last two years, driven in part by national sample
surveys that include malaria biomarkers. The updated
assembly, completed on 1 June 2010, consisted of 22,212
quality-checked and spatiotemporally unique data points,
a near threefold increase over the 7,953 used previously
[3] (Additional File 2). Of the additional data, 5,259 arose
from surveys post-dating 2007. Figure 2A maps the
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spatial distribution of the updated dataset and Table S2.3
in Additional File 2 summarizes these data by survey ori-
gin, georeferencing source, time period, age group, sam-
ple size, and type of diagnostic used. The endemic world
was divided into eight contiguous regions with broadly
distinct biogeographical, entomological and epidemiolo-
gical characteristics, and within each a MBG space-time
modelling framework was constructed to predict PfPR
for the year 2010, age-standardized [40] to the two to 10
year age-range (thus, PfPR2-10) for every 5 × 5 km pixel
(Additional File 3). This regionalization was implemented
in part to retain computational feasibility given the very
large increase in data points but also to allow model
parameterizations to vary to better capture regional
endemicity characteristics.
In the MBG framework, PfPR2-10 values were mod-

elled as a function of nearby survey data - which were
weighted in each prediction according to their spatial
and temporal proximity - and of a large suite of

environmental covariates. Candidate spatial covariates
were chosen based on factors known to interact with,
and influence, the epidemiology of P. falciparum includ-
ing climatology surfaces interpolated from networks of
meteorological stations [41] and remotely sensed data
from Earth observation satellites in their raw form and
used as input into categorical global land cover products
[42]. Where remotely sensed imagery was available as
multi-temporal data, temporal Fourier analysis (TFA)
was used to ordinate the data by decomposing the tem-
poral signal into an additive series of harmonics of dif-
ferent seasonal frequencies [43,44]. The TFA algorithm
[43] generated seven products for each temporal vari-
able: the overall mean, maximum and minimum of the
data cycles; the amplitude (maximum variation of the
cycle around the mean) and the phase (the timing of the
cycle) of the annual and bi-annual cycles. An additional
covariate was incorporated that classified the urban/
rural status of each pixel according to the Global Rural

Figure 1 Schematic overview of the mapping procedures and methods for Plasmodium falciparum endemicity. Blue boxes describe
input data. Orange boxes denote models and experimental procedures; green boxes indicate output data; dashed lines represent intermediate
outputs and solid lines final outputs. U/PU/R = urban/peri-urban/rural; UNPP = United Nations Population Prospects. Labels A1-5 denote
supplementrary information in Additional files 1, 2, 3, 4 &5.
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Urban Mapping Project (GRUMP) urban extents pro-
duct [45,46]. A model selection procedure was imple-
mented to identify an optimal subset of these covariates
to include in the final model, and this is described in
detail in Additional File 4.
One potential source of heterogeneity in observed pre-

valence stems from differences in the procedure used to
identify individuals as positive or negative for P. falci-
parum. All collated surveys used either some form of
slide examination via microscope or rapid diagnostic
test (RDT) kits, or in some cases both. Although studies
have investigated the theoretical sensitivity and specifi-
city ranges associated with these alternative diagnostic
methods (e.g. [47-49]), the actual reliability of diagnoses

made in individual surveys will be affected by a wide
range of factors - including the quality and condition of
equipment or test kits being used and the expertise of
the operator - that are impossible to reconstruct retro-
spectively across the entire database. Because data from
both microscopy and RDT-based surveys were used
together in the modelling of PfPR it was important to
investigate the presence of any systematic differences in
prevalences observed in surveys using the two diagnostic
methods. This was done using a matched-pair analysis
that compared parasite rates measured using both tech-
niques. After controlling for location, time of survey,
and a number of other potential confounders, no sys-
tematic difference was observed and thus no a priori

Figure 2 The spatial distribution of Plasmodium falciparum malaria endemicity in 2010. Panel A shows the 2010 spatial Limits of P.
falciparum malaria risk defined by PfAPI with further medical intelligence, temperature and aridity Masks. Areas were defined as stable (dark grey
areas, where PfAPI ≥0.1 per 1,000 pa), unstable (medium grey areas, where PfAPI < 0.1 per 1,000 pa) or no risk (light grey, where PfAPI = 0 per
1,000 pa). The community surveys of P. falciparum prevalence conducted between January 1985 and June 2010 are plotted. Of the 23,612
surveys collected, 22,212 satisfied the inclusion criteria for modelling (see Methods and Additional File 1, 2) and are shown here. The survey data
are age-standardized [40] (PfPR2-10) and presented as a continuum of blue to red from 0%-100% (see map legend), with zero-valued surveys
shown in white. Panel B shows the MBG point estimates of the annual mean PfPR2-10 for 2010 within the spatial limits of stable P. falciparum
malaria transmission, displayed on the same colour scale. Areas of no risk or unstable risk are as in (A).
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adjustment was made within the model. This analysis is
presented in full in Additional File 4.
The model was fitted via Bayesian inference using a

bespoke Markov chain Monte Carlo (MCMC) algorithm.
This framework allowed the degree of uncertainty in
predicted endemicity values to vary geographically,
depending on the observed variation, density and sample
size of surveys in different locations and the predictive
utility of the covariate suite. Most MBG infectious dis-
ease models are spatial-only and either disregard varia-
tion through time or include a simple temporal trend
term [50-59]. The full space-time model form used here
has the important advantage of allowing older survey
data to appropriately inform the predicted surface for
2010. In an equivalent way to the handling of variation
through space, the model uses the patterns present in
the dataset to determine how informative older surveys
are of the present, and down-weights them accordingly.
This means newer surveys are given much greater influ-
ence on the predicted surface and, where mainly older
surveys are available, uncertainty will be large. Predicted
uncertainty was represented at each pixel in the form of
distribution functions for PfPR2-10 that were summar-
ized to generate a continuous endemicity map repre-
senting the mean of each posterior distribution. The
cartography of this map over the earlier version was
refined by using a higher contrast colour scale allowing
better visual interpretation of local detail. A risk-strati-
fied map was also generated that assigned each pixel to
either a low (PfPR2-10 ≤5%), intermediate (PfPR2-10 5-
40%), or high (PfPR2-10 ≥40%) control-related endemicity
class [2] based on the predicted probabilities of class
membership. A third map represents the uncertainty
associated with these class assignments. An updated
2010 population surface [45,46] derived from the
GRUMP product (see Additional File 3) was combined
with the stratified map to determine populations at risk
within each endemicity stratum, and was further used to
determine a population-weighted index of prediction
uncertainty. The predictive accuracy of the model was
validated via a random hold-out procedure (Additional
File 5).

Generating global maps of PfEIR and PfRc in 2010
First, an algorithm was developed to predict PfEIR based
on PfPR. Using an assembly of 123 pairs of co-measured
PfPR and PfEIR (Additional File 6), several candidate
models were compared and an empirical (log-linear)
model was selected with a correction term for the PfEIR
estimation method (Additional File 7) [20,60,61]. Sec-
ond, a malaria transmission model was utilized to
describe the relationship between PfPR and PfRc

[9,17,20]. The transmission model assumes that infec-
tions by different parasite types can accumulate in a

single human host (super-infection), and that they clear
independently. The model also assumes that exposure
risk is distributed unevenly in the population (heteroge-
neous biting) but that this heterogeneity can be repre-
sented by a simple statistical distribution model (a one-
parameter family of Gamma distributions). The model
ignores acquired immunity and its effects on incoming
infections, which is adequately explained by heteroge-
neous biting [62]. The steady state assumption implies
that a population has been exposed for some time, so it
is consistent with and most suitable for describing
malaria prevalence in older children, i.e. for PfPR2-10 [9].
The model can be written so that each of the three
transmission metrics can be predicted as a function of
the other two (Additional File 7). This, combined with
the different candidate models linking PfPR with PfEIR,
means numerous formulations can be defined for pre-
dicting PfRc [12,16,34]. Sampling issues mean that the
reliability of estimates of PfPR and PfEIR, several trans-
mission parameters, and the model itself are also
expected, a priori, to vary with underlying transmission
intensity. The various formulae for estimating PfRc

either directly from PfPR or indirectly from PfPR after
transforming it to the PfEIR are, therefore, useful at dif-
ferent points along the transmission intensity spectrum.
An overarching algorithm was developed to estimate
PfRc from PfPR that weighted each function along the
spectrum by a priori considerations. All constituent
functions and further details on parameter estimation
and sampling variance are provided in Additional File 7.
These final algorithms were used to convert the pre-

dicted probability distribution of PfPR2-10 at each pixel
into equivalent distributions of PfEIR and PfRc. These
distributions encapsulate uncertainty in both the under-
lying prevalence estimates and in the parameterization
of the malaria transmission model. Maps of PfEIR and
PfRc were generated showing the central tendency of
predictions (posterior median). Additional maps were
made showing summaries of the posterior distribution
to illustrate prediction uncertainty in different ways.

Results
Model validation
Full validation results are presented in Additional File 5.
In brief, examination of the mean error in the genera-
tion of the P. falciparum malaria endemicity point-esti-
mate surface (Figure S5.1) revealed minimal overall bias
in predicted PfPR with a global mean error of -0.56
(Americas 2.57, Africa -0.90, CSE Asia 0.09), with values
in units of PfPR on a percentage scale (Table S5.1). The
global value thus represents an overall tendency to
underestimate prevalence by just over half of one per-
cent. The mean absolute error, which measures the
average magnitude of prediction errors, was 10.23
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(Americas 4.62, Africa 11.98, CSE Asia 5.93), again in
units of PfPR (Table S5.1). The global correlation coeffi-
cient between predicted and observed values was 0.86,
indicating excellent linear agreement at the global level
and this was further illustrated in the scatter-plot (Fig-
ure S5.1A; Table S5.1).

Global Plasmodium falciparum endemicity and
populations at risk in 2010
The 2010 transmission limits are shown in Figure 2A.
The continuous surface of P. falciparum malaria ende-
micity, predicted within the limits of stable transmission,
is shown in Figure 2B. The most likely control-related
endemicity class is shown in Figure 3A. The probability
of predicting each class correctly is given in Figure 3B,
and the population weighted uncertainty index in Figure
3C.
An estimated 2.57 billion people lived in regions of

the world at any risk of P. falciparum transmission in
2010 (Table 1). Of these, 1.13 billion lived in areas of
unstable transmission where risk is very low and case
incidence is unlikely to exceed one per 10,000 per
annum. The vast majority of people at this low risk level
lived in Asia (91%) with much smaller numbers in the
Americas (5%) and Africa (4%). The remaining 1.44 bil-
lion people at risk lived in areas of stable transmission,
representing a huge diversity of endemic transmission
levels. Nearly all populations at stable risk were located
in either Africa (52% of the global total) or Central,
South and East (CSE) Asia (46%), with a much smaller
proportion in the Americas (2%) (Table 1). In America
and CSE Asia, children under 15 years approached a
third (30%, in both regions) of the total PAR, whilst in
Africa this proportion rose to 43% (Table 1).

Stable Plasmodium falciparum endemicity in the Americas
The stable P. falciparum transmission area of the Amer-
icas region was characterized by uniformly low endemi-
city (PfPR2-10 ≤5%) (Figure 2B and 3A). This stable risk
area was home to 31 million people (Table 1), mostly
covering the Amazon basin and adjoining tropical
forested areas, although generally low population density
in these regions means the pockets of stable transmis-
sion found west of the Andes in Ecuador and Colombia,
along the Central America isthmus and on Hispaniola,
represented the majority of the population at risk. The
median predicted prevalence was 6.7% with the lowest
and highest predicted PfPR2-10 values 0.8% and 21.0%,
respectively. These summary statistics are indicative of
higher endemicity predictions in some regions compared
to the 2007 map, which largely resulted from the dou-
bling of input data for the Americas region, including
much better coverage in the more intense transmission
foci of northern Amazonia.

The probability of correct endemicity class assign-
ments was high in the Americas (Figure 3B), due mainly
to the relative uniformity of the low PfPR2-10 value sur-
vey data [37,63]. This, combined with the relatively low
population density of the region, led to the lowest values
of the population-weighted index of uncertainty (Figure
3C).

Stable Plasmodium falciparum endemicity in Africa,
Yemen and Saudi Arabia (Africa+)
The stable P. falciparum transmission area in the Africa
+ region was home to 753 million people in 2010 (Table
1) and spanned a wide range of transmission intensities
(Figure 2B). Areas of low stable transmission (PfPR2-10

≤5%) housed 228 million people and spanned most of
the Horn of Africa, Sudan and Kenya; upland areas of
Tanzania, Rwanda, Burundi, the Democratic Republic of
the Congo and Madagascar; and across the southern
extents of the stable transmission zone in Angola, Zam-
bia, Namibia, Botswana, and South Africa. Additional
pockets of low stable transmission were located in the
far West African states, and wherever stable transmis-
sion was predicted within the Sahelian fringe (Figure 2B
and 3A). This endemicity class was relatively confidently
predicted (Figures 3B and S8.2A): the high transmission
regions where PfPR2-10 ≥40% dominated West Africa
and large areas of Central Africa and extended through-
out much of Mozambique and Madagascar, incorporat-
ing 327 million people at risk. The probability of correct
prediction to this endemicity class was high in West
Africa and much lower in Central Africa (Figures 3B
and S8.2C). Despite the substantial data increases in this
revised version, the latter region remained relatively
data-poor with no modern national survey data available
in Chad, Central African Republic, Democratic Republic
of the Congo (DRC), or Republic of the Congo (Figure
2A). The remaining area of stable transmission in Africa
experienced intermediate endemicity, PfPR2-10 > 5%-<
40%, and contained 199 million people at risk. This
endemicity class was predicted with the least confidence
(Figures 3B and S8.2B).
The median predicted prevalence for the stable ende-

micity area of the continent was 32.7%, with the lowest
and highest predicted PfPR2-10 values 0.5% and 76.1%,
respectively. The population-weighted index of uncer-
tainty showed pronounced differences across the region,
with high values evident wherever large populations and
relatively poor data coverage coincided, such as Nigeria
and DRC (Figure 3C).

Stable Plasmodium falciparum endemicity in Central,
South and East Asia (CSE Asia)
Areas of stable P. falciparum transmission in CSE Asia
were home to 658 million people (Table 1), mostly
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Figure 3 The Spatial distribution of Plasmodium falciparum malaria PfPR2-10 in 2010 stratified by endemicity class [2], and associated
uncertainty. Panel A shows predictions categorized as low risk PfPR2-10 ≤5% light red; intermediate risk PfPR2-10 > 5% to < 40%, medium red;
and high risk PfPR2-10 ≥40%, dark red. The map shows the class to which PfPR2-10 has the highest predicted probability of membership. The rest
of the land area was defined as unstable risk (medium grey areas, where PfAPI < 0.1 per 1,000 pa) or no risk (light grey). Panel B shows the
probability of PfPR2-10 being in the class to which it was assigned as a yellow to blue continuum from 0.3̇− 1 . Any value above 0.3̇ is
better than a chance allocation. Panel C shows the population-weighted index of uncertainty. This index shows the likely importance of
uncertainty assessed by the product of the log of population density and the reciprocal of the probability of correct class assignment, rescaled
from 0-1 to correspond to Panel B so that least uncertain areas have higher values in blue and most uncertain have lower values in yellow. The
index is shown for the most probable PfPR2-10 endemicity class.
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located in India and Indonesia, of which the over-
whelming majority (97%) was subject to low stable
transmission risk (PfPR2-10 ≤5%). The remaining 3%
were dispersed across a series of pockets of intermediate
(PfPR2-10 > 5-< 40%) and high (PfPR2-10 ≥40%) endemi-
city, most notably those predicted in north-eastern
India, Myanmar, and the island of New Guinea (Figure
2B and 3A). The median predicted prevalence was
12.8%, with the lowest and highest predicted PfPR2-10

values 0.5% and 47.0% respectively. The probability of
correct endemicity class assignments was relatively high
in the CSE Asia region, but with considerable uncer-
tainty in the transition areas between endemicity classes
(Figure 3B). This, combined with the high population
density of the region, led to the highest global values of
the population-weighted index of uncertainty, which
was particularly pronounced in India and Myanmar
(Figure 3C).

Improvements over the 2007 PfPR2-10 map
Figure 4 shows a comparison of the new PfPR2-10 mean
map for 2010 versus the 2007 version [3] for three
countries: Myanmar, Madagascar, and Tanzania; selected
as examples of countries with highly heterogeneous

endemicity. Viewing countries at this finer scale allows
the differences between the two map versions to be
scrutinized more closely. The three maps from the 2007
iteration (Figure 4A-C) are characterized by very smooth
predictions of risk, with gentle gradients separating areas
of high and low endemicity. In contrast, the updated
2010 maps (Figure 4D-F) resolve a much greater level of
local detail. The larger volumes of data and the incor-
poration in the modelling framework of environmental
covariates have meant that risk gradients can be defined
with substantially more precision, capturing abrupt
changes in endemicity driven by the underlying patterns
of, for example, altitude, moisture availability or land
cover (Additional File 4). Separate maps for every P. fal-
ciparum endemic country, along with a selection of use-
ful regional groupings, are made available with this
publication via the MAP website [36].

PfEIR in 2010
Figure 5A shows a predicted global map of PfEIR in
2010. This map shows the median value of the predicted
posterior distribution for each pixel, and therefore
represents a prediction of the central tendency, of PfEIR
at each location given the associated uncertainty. The
majority of the endemic world is predicted with a med-
ian PfEIR of less than one. Values above 10 are pre-
dicted exclusively in Africa. The highest predicted
values, corresponding to the pockets of highest PfPR2-10

in northern Mozambique and the Cameroon/Nigeria
and Burkina Faso/Mali border areas, exceed 100. The
non-linearity of the fitted relationship between PfPR and
PfEIR means areas of high and low transmission are
more starkly differentiated for the latter quantity, with
predicted values rising several orders of magnitude in
some places over relatively short distances. Uncertainty
in predicted PfEIR is considerable, since these predic-
tions combine uncertainty in the underlying PfPR2-10

values and in the relationship linking PfEIR to PfPR2-10.
This uncertainty is fully described at each pixel by the
predicted posterior distribution, and no single mapped
surface can provide an adequate summary of this infor-
mation. One illustration of this uncertainty is provided
by the two smaller maps in Figure 5: Figure 5B shows
areas where the predicted posterior median PfEIR value
is less than one, but the 90th percentile value exceeds
10. Such areas are widespread, and include large tracts
of malaria endemic Asia. In a similar way, Figure 5C
shows areas where median PfEIR is less than 10, but
where there is at least a 10% chance that PfEIR exceeds
100. Such areas are widespread in Africa, and are also
found in high-transmission regions of Asia including
parts of India, Myanmar, and the island of New Guinea.
Additional maps showing the predicted 25th and 75th

percentiles for PfEIR are provided in Figure S8.4.

Table 1 Populations at risk of Plasmodium falciparum
malaria in 2010 (millions)

Region Unstable
Risk

Stable
Risk

PfPR2-
10

≤5%

PfPR2-10
> 5 to <
40%

PfPR2-
10

≥ 40%

Total

America

0-4 5.77 3.19 3.19 0.00 0.00 8.96

5-14 11.80 6.41 6.41 0.00 0.00 18.21

15+ 42.35 21.81 21.81 0.00 0.00 64.16

Total 59.92 31.41 31.41 0.00 0.00 91.33

Africa+

0-4 6.56 125.01 35.38 34.21 55.42 131.57

5-14 11.19 200.88 59.92 53.51 87.45 212.06

15+ 27.30 427.49 132.35 111.36 183.77 454.79

Total 45.04 753.38 227.66 199.08 326.64 798.42

CSE
Asia

0-4 106.47 67.65 65.51 0.50 1.64 174.12

5-14 205.43 132.28 128.14 0.97 3.18 337.71

15+ 714.28 458.10 443.65 3.37 11.08 1172.38

Total 1026.18 658.04 637.30 4.84 15.90 1684.21

World

0-4 118.79 195.86 104.08 34.71 57.07 314.65

5-14 228.41 339.57 194.47 54.48 90.62 567.99

15+ 783.93 907.40 597.82 114.73 194.85 1691.33

Total 1131.14 1442.83 896.37 203.91 342.54 2573.97

Unstable risk (PfAPI < 0.1 per 1,000 people pa) and stable risk (PfAPI ≥0.1 per
1,000 people pa). Stable risk is sub-divided into three age-standardized [40]
and control related PfPR2-10 endemicity classes [2]. For each region PAR is
further subdivided by 0-4 year, 5-14 year and 15+ age groups.
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PfRc in 2010
Figure 6A shows a predicted global map of PfRc in 2010.
Again, this map shows the predicted median value for
each pixel. The distinction between areas of high and
low transmission intensity is even more pronounced for
PfRc than for PfEIR. The significant majority of mapped
pixels (82%) have a predicted median value of less than
two. Of the remaining 18% of higher value pixels, nearly
all are in Africa. Around 10% exceed a PfRc of 10, and a
tiny handful (< 1%) exceed 100. As with PfEIR, these
median values represent only the central tendency of
predictions at each location, and the associated uncer-
tainty is an equally important component of the

prediction. Areas with a median PfRc value of less than
two but where the probability of the real value exceed-
ing 10 is 10% or more are widespread (Figure 6B) and
include most areas of intermediate transmission in
Africa, India and South East Asia. Median PfRc exceeds
10 in only the areas of highest transmission but, again,
this must be considered in the context of the predicted
uncertainty, since substantial swathes of the endemic
world with a predicted median PfRc below 10 have a
10% or greater chance of exceeding 100, including much
of West and Central Africa and Madagascar, and smaller
foci in India, Myanmar, and Indonesia (Figure 6C). As
with PfEIR, additional maps showing the predicted 25th,

Figure 4 National-level comparisons between the current and previous predicted PfPR2-10 endemicity surfaces. Panels A, B and C are
extracts from the earlier 2007 mapping study [3] whilst panels D, E, and F are from the current study for 2010. The example countries shown
are Myanmar (northern part), (A, D), Madagascar (B, E) and Tanzania (C, F). The colour scale for panels A, B, C is that used in the 2007 study. The
scale shown in panels D, E, F corresponds to that used in Figure 2. Medium grey areas indicate a classification of unstable transmission risk and
light grey as risk-free. The geographic scale varies between countries.
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75th and 95th percentiles for PfRc are presented in Figure
S8.5.

Discussion
The year 2010 has a particular significance for malaria
global health policy, having been defined as an evalua-
tion milestone: first by African heads of state in the
Abuja declaration [4], subsequently reaffirmed by the
Roll Back Malaria/World Health Organization Global
Strategic Plan 2005-2015 [5] and later endorsed in their
Global Malaria Action Plan (GMAP) [6]. This study pre-
sents a substantially revised and updated model of P.
falciparum malaria endemicity for 2010 that draws on
three times more data and enhanced techniques to
replace the earlier 2007 version [3] and provide the
most robust contemporary representation of global risk.
Additionally, simple models have been used to extend
this work to include global predictions of the two other
P. falciparum malaria transmission metrics required to
form a rational basis for control and elimination deci-
sions: PfEIR and PfRc. These new maps can serve as a
baseline assessment as the global health community
looks ahead to the next series of milestones targeted at

2015 within the GMAP and linked to the United
Nations Millennium Development Goals.

Malaria endemicity and populations at risk in 2010
The geographical patterns of endemicity presented here
reinforce, at the continental-scale, those identified in the
earlier 2007 map [3]. The risk of P. falciparum malaria
in 2010 varies dramatically across its range and this het-
erogeneity has fundamental implications for regional
disease control and longer-term ambitions for elimina-
tion. The highest levels of P. falciparum transmission
risk are overwhelmingly associated with the continent of
Africa, which constitutes 99% of the global area and
95% of the population experiencing greater than or
equal to 40% PfPR2-10. This risk class poses the largest
technical and financial obstacles to effective disease con-
trol, with the threshold endemicity value of PfPR2-10 =
40% proposed [17] as a realistic maximum level of
transmission intensity above which the mass distribution
of insecticide-treated nets (ITNs) alone [64,65] is unli-
kely to reduce infection prevalence below a target 1%
level for effective stable endemic control [66-68]. That
342 million people remain exposed in 2010 to these

Figure 5 The spatial distribution of Plasmodium falciparum entomological inoculation rate (PfEIR) in 2010. Panel A shows the point
estimate (posterior median) PfEIR prediction for each pixel within the stable limits of transmission in 2010. The colour scale is logarithmic to
allow better differentiation across the heavily positively skewed distribution of values. Areas of unstable transmission (medium grey areas, where
PfAPI < 0.1 per 1,000 pa) or no risk (light grey, where PfAPI = 0 per 1,000 pa) are also demarked. Panels B and C provide two indicators of the
uncertainty associated with predictions, showing areas with a median prediction less than one or less than ten but where the 90th percentile is
at least an order of magnitude larger.
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very high transmission risks, necessitating large-scale
deployment of integrated intervention suites, underlines
the critical importance of sustained major investment
[69,70] to reduce malaria morbidity and mortality in
these regions, distinct from the parallel agenda of
elimination.
However, whilst these high stable endemic areas of

Africa present the most serious challenges to control, it
is vital to avoid the simplistic notion that this level of
risk characterizes Africa as a whole when, in reality, the
continent displays highly diverse endemicity within its
limits of transmission. Some 203 million people live in
regions at intermediate stable risk (between 5% and 40%
PfPR2-10), where the interruption of malaria transmission
has been proposed as a realistic objective if universal
ITN coverage can be achieved [14]. The remaining 273
million Africans at risk of P. falciparum occupy regions
of low stable or unstable transmission where rapid and
pronounced reductions in transmission are most feasible
under realistic intervention coverage targets [16]. Most
important is the recognition of the presence in Africa of
very different malaria ecologies, each requiring distinct
intervention suites to maximize disease control efficacy.

A spatially tailored approach to optimising national con-
trol strategies is at odds with aspects of current guide-
lines promoting universal coverage, but may become
increasingly important as international financing for
control comes under pressure.
The stratification of risk outside Africa is more

straightforward. Whilst the locally important pockets of
intermediate or high transmission in Asia demand con-
certed and specific efforts for control appropriate to
these higher transmission intensities, the vast majority
of the continent (95% of the area and 99% of the popu-
lation at risk) experiences either low stable (where
PfPR2-10 is less than 5%) or unstable endemicity. As in
Africa, the epidemiological feasibility of significant
reductions in transmission in these lowest endemicity
regions is established, but the technical, logistical and
economic challenges associated with scaling up interven-
tion coverage across more than a billion people at risk
are self-evident. The Americas region is universally clas-
sified to these two lowest risk strata, but both here and
in Asia any assessment of options and feasibility for
control or elimination for P. falciparum must also be
cognisant of the parallel exposure of populations to

Figure 6 The spatial distribution of Plasmodium falciparum basic reproductive number under control (PfRc) in 2010. Panel A shows the
point estimate (posterior median) PfRc prediction for each pixel within the stable limits of transmission in 2010. The colour scale is logarithmic
to allow better differentiation across the heavily positively skewed distribution of values. Areas of unstable transmission (medium grey areas,
where PfAPI < 0.1 per 1,000 pa) or no risk (light grey, where PfAPI = 0 per 1,000 pa) are also demarked. Panels B and C provide two indicators of
the uncertainty associated with predictions, showing areas with a median prediction less than two or less than ten but where the 90th
percentile is at least an order of magnitude larger.
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Plasmodium vivax [71-73]. Work is ongoing within
MAP to provide an equivalent cartographic resource for
this less well studied malaria parasite [74].

Interpreting uncertainty
The extension in this study from maps of endemicity to
global scale predictions of PfEIR and PfRc provides new
insight into transmission intensities worldwide. In con-
trast to PfPR2-10, both the methodological developments
and interpretation of these maps are at a relatively early
stage. The predicted surfaces allow insights gained from
mathematical models to be scaled up from locally vali-
dated studies to much larger scale inferences about con-
trol, disease outcomes, and epidemiology within a
coherent mathematical and biological framework. By tri-
angulating in this way with modelling and decision
thresholds, these new predictions can begin to bridge
the gap between maps that simply describe variation in
risk and the conversion of these maps into evidence-
based and geographically explicit guidelines for optimal
control. Of paramount importance in this process is the
appropriate interpretation of the modelled uncertainty.
This uncertainty arises from at least three distinct, but
interacting, sources: sparsity in the underlying PfPR2-10

survey data, uncertainty in the biological relationships
between PfPR2-10, PfEIR and PfRc [9,20], and inherent
spatial and temporal heterogeneity in transmission
intensity [75] that cannot be explained or captured by
the data and modelling approaches.
Since the predictions of all three transmission metrics

are founded on parasite rate survey data, all depend on
the availability of surveys in a given region for precise
estimates. The spatial density of surveys required varies
from place to place as a function of the degree of spatial
heterogeneity in underlying transmission, with highly
diverse regions needing more surveys. An equivalent
rule applies in the temporal dimension: where endemi-
city has remained relatively constant through time, or
has changed in a predictable way, then older surveys are
more useful for contemporary predictions than in those
places experiencing rapid or unpredictable changes in
transmission intensity. Analysis of geographic variation
in data availability and uncertainty must be tempered by
a consideration of the underlying population: uncer-
tainty matters more where populations are dense. The
population-weighted index of uncertainty (Figure 3C)
brings into stark relief the dearth of robust data in the
high-endemicity and high-population regions of India,
Myanmar, Nigeria, and DRC. In some currently under-
surveyed regions, new national malaria surveys are
either planned or completed, meaning that future itera-
tions of this map will improve substantially. These
include Uganda, Malawi, and DRC [76,77]. For the
remaining high uncertainty nations however, there is

less immediate cause for optimism and the mandate for
substantial new investment to support national malaria
surveys in these countries is clear. In contrast, some
countries are generating abundant parasite rate data and
have a growing appetite to generate bespoke national-
level maps tailored to meet local control planning
needs. In such cases, MAP has been partnering with
countries to develop maps and work with national
malaria control programmes, with the most recent
example being Indonesia [78,79].
The presented maps of PfEIR and PfRc rely on models

that link these metrics to the underlying PfPR2-10 pre-
dictions. Independent analysis of transmission using this
same MAP database but with different mathematical
models [13,21,23,25,62,80] would inevitably lead to dif-
ferent estimates. Differences among models are often
difficult to resolve because of the intrinsic problems
with identifiability and the difficulty of obtaining the
right sorts of data, and independent modelling studies
are urgently needed for external cross-model validation.
Indeed, a recently concluded consultation to set a mod-
elling research agenda for global malaria eradication
[13] recommended model-model comparison as a way
of evaluating the robustness of the model predictions
and building a consensus for global strategic planning.
The remaining aspect of uncertainty arises from spa-

tial or temporal variation in transmission intensity that
occurs over short spatial or temporal scales. The early
cartography of malaria risk aimed to classify wide areas
into risk strata [81], and this has led to a tendency to
think of endemicity as a smoothly varying phenomenon.
In reality, however, an area considered to belong to a
particular endemicity ‘class’ will likely display a huge
amount of variation, with parasite rates sampled at
nearby villages often differing dramatically regardless of
sample size. Recognizing this unquantified heterogeneity
is vital because pockets of higher transmission may have
a disproportionate effect on the efficacy and likely popu-
lation-wide success of intervention efforts [82]. The
geostatistical model captures this component of varia-
tion as randomness, and ensures that the degree of ran-
domness is measured and incorporated in the predicted
posterior distributions at each pixel [75,83]. A further
discussion of these uncertainty outputs and their inter-
pretation is provided in Additional File 8.
This 2010 map is the second in an ongoing series by

MAP. As updated versions become available, the temp-
tation is to make direct comparisons with preceding
maps as a means of enumerating changes in endemicity.
Although likely to be broadly informative of change, a
comparison between this 2010 and the earlier 2007
maps is not the most appropriate approach for formally
quantifying change over the intervening time period.
The addition of many more input data in this new
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version, of which many pre-date 2007, along with the
refined methodology mean that the new map must be
viewed as a direct contemporary replacement of, rather
than comparator to, the earlier version.

Public release of maps, model output, and underlying
data
The maps presented in this paper are freely available
from the MAP website [36] including regional and indi-
vidual maps for every malaria-endemic country in addi-
tion to the global view presented here. Users can choose
to download individual maps images in PNG or PDF
format, or download the global GIS surface as a Geo-
TIFF or Binary float file (for raster maps) or CSV
comma delimited or Excel file (for vector maps). These
GIS surfaces will allow users to integrate this work
within their own analyses or produce bespoke data over-
lays and displays.
It is hoped that the predictions of PfPR2-10, PfEIR, and

PfRc presented here will directly promote the calibration,
scenario testing, and scale-up of malaria epidemiological
modelling. This paper has discussed the importance of
the predicted posterior distributions as being fully repre-
sentative of the encapsulated uncertainty in the model
outputs. These are also freely available for the three
transmission metrics in the form of 100-division histo-
grams for every pixel, contained within a single data file
in HDF5 format. Users who want to access the files
should contact the corresponding authors or will be
able to use the contact on the MAP website [36].
Finally, a central tenet of MAP from its foundation in

2005 has been that the global assemblies of parasite rate
data should be made freely available in the public
domain: allowing other scientists, public health officials,
and the general public to use these data to support
diverse aims in malaria epidemiology and public health
research, decision making, and education [1]. In parallel
with efforts to assemble these databases, work has been
underway to engineer an online infrastructure that will
allow users to visualize the location of all survey data
available for export and download all data used in the
models for which appropriate permissions are available.
This data explorer can also be found on the MAP
website.

Conclusions
The processes determining levels of P. falciparum ende-
micity are highly complex, spatially heterogeneous, and
temporally dynamic. Whilst the spatial variation in risk
mandates the generation of robust maps that can guide
disease control, the dynamic nature of malaria endemi-
city means that such maps must be continually updated
if they are to remain relevant. The ongoing scale-up of
major malaria control initiatives represents the largest

potential perturbation to local and regional malaria
transmission systems for many decades, and heightens
the requirement for regular assessments of risk. Whilst
this 2010 map draws on a hugely expanded evidence-
base, the distribution of information on endemicity
affecting local communities remains profoundly uneven
and, thus, so too does the capacity to precisely enumer-
ate local levels of risk. Unfortunately, it remains the case
that some of the largest populations, exposed to the
highest levels of risk, are those about which the least is
known. As resources to combat malaria increase, it is
essential that these are matched by commensurate
efforts to collect the data required to evaluate risk and
monitor how it changes. MAP remains committed to
working with partners to ensure cartographic resources
for malaria control continue to improve. The establish-
ment in this study of new baseline models for 2010
means MAP will be well placed to evaluate progress in
the control of malaria transmission and reduction of its
burden in 2015.
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