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Abstract. ElGamal cryptosystem is one of the oldest public-key cryp-
tosystems. It is known to be semantically secure for arbitrary messages in
the random oracle model under the decisional Diffie-Hellman assumption.
Semantic security also holds in the standard model when messages are
encoded as elements in the group for which the decisional Diffie-Hellman
assumption is defined. This paper introduces a setting and companion
cryptosystem where semantic security can be proved in the standard
model without message encoding. Extensions achieving security against
chosen-ciphertext attacks are also provided.

1 Introduction

The classical ElGamal cryptosystem [7,8] is closely related to the Diffie-Hellman
key exchange protocol. It was introduced by Taher ElGamal in 1984. In retro-
spect, it is somewhat surprising that this scheme was not discovered before the
RSA cryptosystem.

The original scheme goes as follows. Let p be a large prime and let g be a
primitive element modulo p, that is, g generates all of F∗p. The public key is
pk = {g, y, p} where y = gx mod p for a random integer r with 0 ≤ x < p.
The secret key is sk = {x}. The encryption of a message m, with 1 ≤ m < p,
is given by the pair (c1, c2) where c1 = gr mod p and c2 = myr mod p for a
random integer 0 ≤ r < p. Message m is then recovered using secret key x as
m = c2 · c1−x mod p.

As already pointed out in [7], breaking the above scheme and the Diffie-
Hellman key exchange protocol are equally difficult. Using modern terminology,
ElGamal showed that his cryptosystem is one-way against chosen-plaintext at-
tacks (OW-CPA) under the computational Diffie-Hellman (CDH) assumption .
Informally, the CDH assumption says that given two random elements A = ga

and B = gb in F∗p the value of gab ∈ F∗p cannot be recovered. It is now easy
to see that an attacker against the one-wayness of the ElGamal cryptosystem
can be used to solve a CDH problem in F∗p; namely, obtaining gab (mod p) from

(p, g, ga, gb). One gives the attacker the public key pk = {g, ga, p} and the chal-
lenge ciphertext c = (gb, c2) for some random value c2 ∈ F∗p. The attacker answer

with the corresponding message m = c2 · (gb)−a (mod p), which yields the value
of gab as c2/m (mod p). The other direction is immediate.



Semantic security [10] captures a stronger notion of data privacy. Basically,
it requires that an adversary should not learn anything about a plaintext given
its encryption beyond the length of the plaintext. An equivalent notion is that
of indistinguishable encryptions. ElGamal cryptosystem is known to meet the
IND-CPA security level (i.e., indistinguishability against chosen-plaintext attacks)
under the decisional Diffie-Hellman (DDH) assumption [15]. Formal definitions
are given in the next section.

Unfortunately, the DDH assumption does not hold in F∗p. If F∗p = 〈g〉 (that

is, g is a generator of F∗p) then it follows that
(
g
p

)
= −1, where

(
g
p

)
denotes the

Legendre symbol of g modulo p. Hence, for any 0 ≤ x < p−1,
(
gx

p

)
= (−1)x leaks

the value of x mod 2. A more sophisticated attack against the original ElGamal
cryptosystem is presented in [3, Section 4].

These issues can easily be circumvented by working in a (large) prime-order
subgroup G of F∗p. The ElGamal encryption proceeds exactly in the same way
except that g is now an element of order q where q is a large prime factor of
p−1. Messages being encrypted must also be elements of the subgroup generated
by g; i.e., the message space is M = G with G = 〈g〉. Representing messages as
group elements is known as message encoding.

In [15], Tsiounis and Yung propose the following message encoding when G
is the subgroup of quadratic residues modulo p and (p− 1)/2 is prime. Let ε be
a security parameter (typically ε = 64). A κ-bit message m (with κ = |p|2−ε) is
encoded as m̂ = ρ 2κ+m for ρ = 0, 1, 2, . . . until m̂ is a quadratic residue so that
m̂ ∈ G. Note that message m can be obtained from m̂ as m = m̂ mod 2κ. There
are several drawbacks in this approach. First, it requires computing Legendre
symbols to test the quadratic residuosity. Second, the potential message space is
not fully exploited as several bits are provisioned to store ρ. Third, as presented,
the message encoding is not time-constant and so may reveal information on m
(timing attack).

An alternative message encoding for the previous setting is mentioned in [6,
§ 5.1]. The messages being encrypted are restricted to be elements in the set
{1, . . . , q} with q = (p− 1)/2 prime. A message m is then encoded by squaring
it modulo p, yielding m̂ = m2 mod p in G. For the decryption, message m can
be recovered from its encoding m̂ by computing its unique square root in the
set {1, . . . , q} —observe that since q is an [odd] prime, it follows that p ≡ 3
(mod 4). On the down side, the total decryption time to get plaintext (decoded)
message m is longer.

In [5], Chevallier-Mames et al. suggest a modification to the classical ElGa-
mal cryptosystem so as to avoid message encoding. The semantic security of
the resulting cryptosystem relies on a new, specifically introduced assumption;
namely, the decisional class Diffie-Hellman assumption. However, its connection
with the standard DDH assumption is unclear and was left as an open problem
in [5].

Another way to avoid message encoding is to invoke the random oracle
model [1] when proving the security. The second part of an ElGamal ciphertext
is modified as c2 = m⊕H(yr mod p), where H : G→M andM = {0, 1}κ. The



random oracle model assumes that the hash function H behaves as a random
function. While the resulting cryptosystem can be shown to achieve semantic
security, the security proof only stands in the idealized random-oracle model. In
particular, there are no guarantees that the proof holds in the standard model
when functionH is concretely instantiated, as demonstrated by Canetti et al. [4].

This paper presents a variation of the ElGamal cryptosystem meeting the
IND-CPA security notion without message encoding, nor random oracles. Exten-
sions to deal with stronger scenario attacks are also presented. Unlike [15] the
message space is optimal and unlike [6] the decryption time is roughly the same
as for the original ElGamal cryptosystem. Further, the ciphertext components
are one bit shorter, which can be useful for super-encryption. The security of all
presented schemes relies on a standard DDH assumption.

2 Background

In this section, we review well-known definitions and notions for public-key en-
cryption. We also introduce some useful notation.

Public-key encryption A public-key encryption scheme [10] is a tuple of three
algorithms (KeyGen,Enc,Dec):

Key generation The key generation algorithm KeyGen is a randomized algo-
rithm that takes as input some security parameter 1λ and returns a matching

pair of public key and secret key for some user: (pk, sk)
R← KeyGen(1λ). The

message space is denoted by M.
Encryption The encryption algorithm Enc is a randomized algorithm that

takes as input a public key pk and a plaintext m ∈M, and returns a cipher-
text c. We write c← Encpk(m).

Decryption The decryption algorithm Dec takes as input secret key sk (match-
ing pk) and ciphertext c and returns the corresponding plaintext m or a
special symbol ⊥ indicating that the ciphertext is invalid. We write m ←
Decsk(c) if c is a valid ciphertext and ⊥ ← Decsk(c) if it is not.

We require that Decsk(Encpk(m)) = m for any message m ∈ M, where

(pk, sk)
R← KeyGen(1λ).

Complexity assumptions Let G = 〈g〉 denote a (multiplicatively written)

cyclic group of order q. Given ga, gb
R← G, the computational Diffie-Hellman

(CDH) problem is to compute gab. Likewise, the decisional Diffie-Hellman (DDH)
problem is to distinguish between the two distributions (g, ga, gb, gab) and (g, ga,

gb, gc) for a, b, c
R← Z/qZ.

More formally, the DDH assumption is defined as follows.



Definition 1. The DDH assumption in G requires that for any probabilistic
polynomial-time adversary A the advantage∣∣∣Pr

[
A(G, q, g, ga, gb, gab) = 1

]
− Pr

[
A(G, q, g, ga, gb, gc) = 1

]∣∣∣
is negligible in the security parameter λ, where the probabilities are taken over
the experiment of generating a group G = 〈g〉 of order q on input 1λ and choosing

a, b, c
R← Z/qZ.

Examples of groups G for which the DDH problem is hard include a prime-
order subgroup of F∗p or a prime-order subgroup of the points of an elliptic curve
over a finite field. An excellent survey on the DDH problem is provided in [2].

Security notions In order to properly define the notion of indistinguishability
of encryptions, we view an adversary A as a pair (A1,A2) of probabilistic al-
gorithms. This corresponds to adversary A running in two stages. In the “find”
stage, algorithm A1 takes as input a public key pk and outputs two equal-size
messages m0 and m1 ∈ M and some state information s. In the “guess” stage,
algorithm A2 receives a challenge ciphertext c which is the encryption of mb

under pk and where b is chosen at random in {0, 1}. The goal of A2 is to recover
the value of b from s and c.

A public-key encryption scheme is said indistinguishable (or semantically
secure) if

Pr

[
(pk, sk)

R← KeyGen(1λ), (m0,m1, s)← A1(pk),

b
R← {0, 1}, c← Encpk(mb)

: A2(s, c) = b

]
− 1

2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by KeyGen and over the random coins of the adversary.

As we are in the public-key setting, the adversary A = (A1,A2) is given the
public key pk and so can encrypt any message of its choice. In other words, the
adversary can mount chosen-plaintext attacks (CPA). Hence, we write IND-CPA
the security notion achieved by a semantically secure encryption scheme.

A stronger scenario is to give the adversary an adaptive access to a decryp-
tion oracle. The previous definition readily extends to this model. Adversary
A = (A1,A2) is allowed to submit any ciphertext of its choice and receives the
corresponding plaintext (or ⊥); the sole exception is that A2 may not query
the decryption oracle on challenge ciphertext c [14]. We write IND-CCA2 the
corresponding security notion; it stands for indistinguishability under adaptive
chosen-ciphertext attacks. A weaker security notion is when only A1 is given
access to the decryption oracle [13]. The corresponding security notion is writ-
ten IND-CCA1 and stands for indistinguishability under non-adaptive chosen-
ciphertext attacks.



3 A DDH-type Group

Let q 6= 2 be a Sophie Germain prime; that is, both q and 2q + 1 are prime. We
let p = 2q + 1. Consider the set {1, 2, . . . , q}. This set can be endowed with the
structure of a group under the group law ? given by

a ? b = |ab mods p|

where ab mods p represents the absolute smallest residue of ab modulo p (namely,
the complete set of absolute smallest residues are:−(p−1)/2, . . . ,−1, 0, 1, . . . , (p−
1)/2), and where |ab mods p| represents the absolute value of ab mods p. We let
Hq denote the set {1, . . . , q} equipped with the group law ?. A similar setting
was considered in [9,11] for RSA composites.

Let g be a generator of (Z/pZ)∗ (i.e., 〈g〉 = (Z/pZ)∗) and h = |g mods p|. It
is easily verified that h generates the group Hq:

Hq =
{
|hj mods p| for 0 ≤ j < q

}
.

Indeed, we have hq mods p = −1 and thus |hq mods p| = 1. Further, for 0 ≤
j1, j2 < q, |hj1 mods p| = |hj2 mods p| implies h2j1 ≡ h2j2 (mod p), which in
turn implies j1 ≡ j2 (mod q) and thus j1 = j2.

Remarkably, as will be stated, the DDH assumption in Hq is equivalent to
the DDH in the subgroup of quadratic residues in F∗p, which is believed to be
hard when p = 2q + 1 for some prime q. This latter assumption is a standard
intractability assumption that has been used in proving the security of a variety
of cryptographic schemes.

Theorem 1. Let q 6= 2 be a Sophie Germain prime and let p = 2q+ 1. Let also
g be a generator of (Z/pZ)∗, s = g2 mod p, and h = |g mods p|. Define the groups
QR(p) =

{
sj mod p for 0 ≤ j < q

}
and Hq =

{
|hj mods p| for 0 ≤ j < q

}
. Then

the groups QR(p) and Hq are isomorphic; we have

ψ : QR(p)
∼−→ Hq, x 7−→ |

√
x mods p|

and
ψ−1 : Hq

∼−→ QR(p), y 7−→ y2 mod p .

Proof. Note that the map ψ is well defined. Since q is odd, it follows that p ≡ 3
(mod 4) and thus −1 /∈ QR(p). Hence square roots exist and are unique in
QR(p): if x ∈ QR(p) then

√
x denotes the unique element z ∈ QR(p) such that

z2 ≡ x (mod p) —observe that −z /∈ QR(p).
Consider two arbitrary elements x1, x2 ∈ (Z/pZ)∗. For i ∈ {1, 2}, letting

zi =
√
xi ∈ QR(p), we have ψ(xi) = |zi mods p|.

Define x3 = x1x2 mod p and let z3 =
√
x3 ∈ QR(p). Then we obtain ψ(x3) =

|z3 mods p| = |z1z2 mods p| = ψ(x1) ? ψ(x2). Map ψ is a group homomorphism.
We have to show that ψ is bijective. Suppose that ψ(x1) = ψ(x2). This

means that |z1 mods p| = |z2 mods p| and thus z1 ≡ ±z2 (mod p). This implies
z1 = z2 since they are both elements of QR(p). Moreover, for each y ∈ Hq, there
exists an x ∈ QR(p); namely, x = ψ−1(y), and ψ

(
ψ−1(y)

)
= ψ(y2 mod p) =∣∣(y

p

)
y mods p

∣∣ = y. ut



Corollary 1. The DDH in Hq is equivalent to the DDH in QR(p).

Proof. Let Hq = 〈h〉 and QR(p) = 〈s〉 with s = ψ(h). Since the isomorphisms
between Hq and QR(p) are efficiently computable, it is easy to transform a DDH
challenge (h, |ha mods p|, |hb mods p|, |hc mods p|) ∈ Hq4 into a DDH challenge
(s, sa mod p, sb mod p, sc mod p) ∈ QR(p)4 as s = ψ(h), sa mod p = ψ(|ha mods
p|), sb mod p = ψ(|hb mods p|), sc mod p = ψ(|hc mods p|); and vice-versa using
ψ−1. ut

4 A Variant of ElGamal Cryptosystem

From Corollary 1, we obtain an ElGamal-type cryptosystem that is IND-CPA
secure under the standard DDH assumption in QR(p).

Key generation On input some security parameter 1λ the key generation al-
gorithm generates a Sophie Germain prime q. It also defines p = 2q + 1,
a generator g of (Z/pZ)∗, and h = |g mods p|. Finally it picks at random
an element x in Z/qZ and computes y = |hx mods p|. The public key is
pk = {h, p, q, y} while the secret key is sk = {x}. The message space is
M = {1, . . . , q}.

Encryption The encryption of a message m ∈M is given by c = (c1, c2) where

c1 = |hr mods p| and c2 = |myr mods p| .

Decryption Given a ciphertext c = (c1, c2) ∈ Hq2, the corresponding plaintext
message m can be recovered using secret key x as

m = |c2/c1x mods p| .

5 Chosen-Ciphertext Security

The previous cryptosystem is “malleable”. Given the encryptions of messages
m and m′ in M, say (c1, c2) and (c′1, c

′
2), anyone can derive the encryption of

message m′′ = m ?m′ ∈M as (c′′1 , c
′′
2) = (c1 ? c

′
1, c2 ? c

′
2).

While malleability is sometimes useful for certain applications (e.g., for blind
decryption), it also rules out the security against chosen-ciphertext attacks. From
Corollary 1 and [6, § 5.4], it is possible to get an ElGamal-type cryptosystem that
is IND-CCA1 secure under the standard DDH assumption in QR(p).

Key generation On input some security parameter 1λ the key generation al-
gorithm generates a Sophie Germain prime q. It also defines p = 2q+ 1, two
generators g and ḡ of (Z/pZ)∗, and sets h = |g mods p| and h̄ = |ḡ mods p|.
Finally it picks at random three elements x, ξ, ξ̄ in Z/qZ and computes y =
|hx mods p| and X = |hξ h̄ξ̄ mods p|. The public key is pk = {h, h̄, p, q, y,X}
while the secret key is sk = {x, ξ, ξ̄}. The message space is M = {1, . . . , q}.



Encryption The encryption of a message m ∈ M is given by c = (c1, c̄1, c2, v)
where

c1 = |hr mods p| , c̄1 = |h̄r mods p| , c2 = |myr mods p| ,
and v = |Xr mods p| .

Decryption Given a ciphertext c = (c1, c̄1, c2, v) ∈ Hq4, the decryption algo-

rithm first checks whether v = |c1ξ c̄1ξ̄ mods p|. If so, the corresponding
plaintext message m can be recovered using secret key x as

m = |c2/c1x mods p| ;

otherwise the decryption algorithm returns ⊥.

Security against adaptive chosen-ciphertext attacks can be achieved by as-
suming in addition the existence of a hash function H chosen from a univer-
sal one-way family [12]. We note that this requirement is weaker than that of
collision-resistance. Doing so, we obtain from Corollary 1 and [6, Section 4] a
Cramer-Shoup like cryptosystem that is IND-CCA2 under the standard DDH
assumption in QR(p).

Key generation On input some security parameter 1λ the key generation al-
gorithm generates a Sophie Germain prime q. It also defines p = 2q + 1,
two generators g and ḡ of (Z/pZ)∗, and sets h = |g mods p| and h̄ =
|ḡ mods p|. It picks at random five elements x, ξ, ξ̄, η, η̄ in Z/qZ and com-
putes y = |hx mods p|, X = |hξ h̄ξ̄ mods p| and Y = |hη h̄η̄ mods p|. Fi-
nally it selects a hash function H from a family of universal one-way hash
functions that map bit string to elements of Z/qZ. The public key is pk =
{h, h̄, p, q, y,X, Y,H} while the secret key is sk = {x, ξ, ξ̄, η, η̄}. The message
space is M = {1, . . . , q}.

Encryption The encryption of a message m ∈ M is given by c = (c1, c̄1, c2, v)
where

c1 = |hr mods p| , c̄1 = |h̄r mods p| , c2 = |myr mods p| ,
and v = |Xr Y rα mods p| where α = H(c1, c̄1, c2) .

Decryption Given a ciphertext c = (c1, c̄1, c2, v) ∈ Hq4, the decryption al-
gorithm first computes α = H(c1, c̄1, c2). Next, using α, it checks whether
v = |c1ξ+ηα c̄1

ξ̄+η̄α mods p|. If so, the corresponding plaintext message m
can be recovered using secret key x as

m = |c2/c1x mods p| ;

otherwise the decryption algorithm returns ⊥.

From Corollary 1 and [6, § 5.3], it is also possible to obtain a Cramer-Shoup
like cryptosystem that is IND-CCA2 under the sole standard DDH assumption in
QR(p). Hash function H is eliminated, at the expense of longer keys and slightly
increased processing time.



Key generation On input some security parameter 1λ the key generation al-
gorithm generates a Sophie Germain prime q. It also defines p = 2q+ 1, two
generators g and ḡ of (Z/pZ)∗, and sets h = |g mods p| and h̄ = |ḡ mods p|.
Finally it picks at random nine elements x, ξ, ξ̄, η1, η̄1, η2, η̄2, η3, η̄3 in Z/qZ
and computes y = |hx mods p|, X = |hξ h̄ξ̄ mods p|, Y1 = |hη1 h̄η̄1 mods p|,
Y2 = |hη2 h̄η̄2 mods p| and Y3 = |hη3 h̄η̄3 mods p|. The public key is pk =
{h, h̄, p, q, y,X, Y1, Y2, Y3,H} while the secret key is sk = {x, ξ, ξ̄, η1, η̄1, η2,
η̄2, η3, η̄3}. The message space is M = {1, . . . , q}.

Encryption The encryption of a message m ∈ M is given by c = (c1, c̄1, c2, v)
where

c1 = |hr mods p| , c̄1 = |h̄r mods p| , c2 = |myr mods p| ,
and v = |Xr Y1

rc1 Y2
rc̄1 Y3

rc2 mods p| .

Decryption Given a ciphertext c = (c1, c̄1, c2, v) ∈ Hq4, the decryption algo-

rithm first checks whether v = |c1ξ+η1c1+η2c̄1+η3c2 c̄1
ξ̄+η̄1c1+η̄2c̄1+η̄3c2 mods

p|. If so, the corresponding plaintext message m can be recovered using secret
key x as

m = |c2/c1x mods p| ;

otherwise the decryption algorithm returns ⊥.

6 Conclusion

This paper described a simple modification to the classical ElGamal cryptosys-
tem which, at the same time,

– provably meets the IND-CPA security notion (a.k.a. semantic security) in the
standard model under the standard DDH assumption, and

– enables the encryption of messages without prior encoding as group elements.

Efficient extensions meeting the stronger security notions of IND-CCA1 and IND-
CCA2 (security against chosen-ciphertext attacks) were also presented.
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5. Benôıt Chevallier-Mames, Pascal Paillier, and David Pointcheval. Encoding-free
ElGamal encryption without random oracles. In M. Yung et al., editors, Public Key
Cryptography − PKC 2006, volume 3958 of Lecture Notes in Computer Science,
pages 91–104. Springer, 2006.

6. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances
in Cryptology − CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 13–25. Springer, 1998.

7. Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology
− Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer, 1985.

8. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

9. Roger Fischlin and Claus P. Schnorr. Stronger security proofs for RSA and Rabin
bits. Journal of Cryptology, 13(2):221–244, 2000.

10. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

11. Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues and ap-
plications. In S. Halevi, editor, Advances in Cryptology − CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 637–653. Springer, 2009.

12. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In 21st Annual ACM Symposium on Theory of Computing,
pages 33–43. ACM Press, 1989.

13. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing,
pages 427–437. ACM Press, 1990.

14. Charles Rackoff and Daniel R. Simon. Noninteractive zero-knowledge proof of
knowledge and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in
Cryptology − CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 433–444. Springer, 1992.

15. Yiannis Tsiounis and Moti Yung. On the security of ElGamal based encryption. In
H. Imai and Y. Zheng, editors, Public Key Cryptography (PKC ’98), volume 1431
of Lecture Notes in Computer Science, pages 117–134. Springer, 1998.


	Secure ElGamal-type Cryptosystems Without Message Encoding

