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Chapter 1

Introduction

It may seem strange to term a graph as having an “antimagic” labeling, but the term comes
from its connection to magic labelings and magic squares. Magic squares can trace their
origin back to ancient China somewhere around the 7th century BCE [4]. A magic square
is an arrangement of numbers into a square such that the sum of each row, column and
diagonal are equal. The term “antimagic” then comes from being the opposite of magic, or
arranging numbers in a way such that no two sums are equal.

The interest in graph labelings can trace its roots back to a paper [9] by Alex Rosa in
the late 1960’s. Hartsfield and Ringel introduced the concept of antimagic labeling, which
is an assignment of distinct values to different objects in a graph in such a way that when
taking certain sums of the labels the sums will all be different. They conjectured in [7] that
every graph except for K2 has an antimagic edge labeling. Then Bodendiek and Walther
proved in [3] that from some natural number n any connected graph other than K2 will have
a weak antimagic edge labelling if you allow the labels to be natural numbers with an upper
bound of n. A weak antimagic labeling is simliar to an antimagic labeling except one does
not require distinct labels. (For more precise definitions of antimagic and weak antimagic
see Definitions 2.2 and 2.3). The work from these two papers are the motivation for my
research. From this we look further into weak antimagic labelings of graphs, using the idea
of inside-out polytopes to approach the problem in a different way [1]. We will show that
bipartite graphs will have a weak antimagic labeling while limiting the labels of the edges
to a value less than or equal to the number of edges in the graph. We will do this by using
polynomials to count labels and show that they exist.
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Chapter 2

Preliminaries

A (simple) graph G = (V,E), is defined by a pair of finite sets V and E, which we denote
as the vertex set and the edge set respectively. An element of the edge set is a two-element
subset of the vertex set. In other words any edge e connecting vertex u to vertex v can be
uniquely writen as e = {u, v}. Note that this is an unordered pair, so {u, v} = {v, u}. Two
vertices are called adjacent if there is an edge between them. Typically, a graph is depicted
as a set of dots for the vertices, joined by lines or curves for the edges. A graph G′ is a
subgraph of G if both the edge and vertex sets of G′ are subsets of the edge and vertex sets
of G respectively.

A labeling is an assignment of labels to edges, vertices, or both edges and vertices of a
graph. An edge labeling is function f : E → Z′, where Z′ ⊂ Z, in other words it is a
labeling of all edges by integers. A graph with such a labeling is an edge labeled graph.
For the remainer of this paper whenever refering to a graph we will be refering to an edge la-
beled graph. Similarly whenever refering to a labeling we will be refering to an edge labeling.

A path in a graph G is a sequence v0e1v1e2v2 · · · vn−1envn of edges and vertices, where
ek = {vk−1, vk} and each ek appears in the sequence only once. A cycle is a path that starts
and ends on the same vertex in such a way that that vertex is the only edge or vertex that is
repeated. A graph G is said to be connected if there exists a path between any two vertices
in G. Since we are only concerned with edge labeled graphs in this paper we can restrict
ourselves to connected graphs.

Definition 2.1. A graph GU1,U2 is bipartite if its vertex set can be divided into two disjoint
sets U1 and U2, such that for all u1i

, u1k
∈ U1 and for all u2i

, u2k
∈ U2 there does not exist

an edge e ∈ E, where e = {u1i
, u1k
} or e = {u2i

, u2k
}.

Definition 2.2. A graph G is called antimagic if the n edges of G can be distinctly labeled
1 through n in such a way that when taking the sum of the edge labels incident to each
vertex, the sums will all be different. (See Figure 2.1 for an example of an antimagic labeling
for the graph K4. Note that the red labels are the sums of the labels for the edges incident
to the closest vertex).
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Figure 2.1: (Strong) antimagic labeling for K4.

This type of labeling is sometimes refered to as a strong antimagic labeling due to the
fact that there is also a weak antimagic labeling.

Definition 2.3. A graph is said to have a weak antimagic labeling if you can label the
edges in an antimagic way, still allowing the edges to be integers less than or equal to the
number of edges, without the edge labels necessarily being distinct. (See Figure 2.2 for an
example of a weak antimagic labeling of K4).
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Figure 2.2: Weak antimagic labeling for K4.

Any strong antimagic labeling is also a weak antimagic labeling.
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Chapter 3

Polytopes and Inside-out Polytopes

3.1 Polytopes and Ehrhart Theory

A convex polytope is a convex hull of finitely many points in Rd. More specifically, given
a finite point set {v1, v2, . . . , vn} ⊂ Rd, the polytope P is given by

P =

{
n∑
k=1

λkvk

∣∣∣∣∣λk ≥ 0 and
n∑
k=1

λk = 1

}
.

This is called the vertex description of the polytope and is written

P = conv{v1, v2, . . . , vn}.

Equivalently a polytope can be defined as the bounded intersection of finitely many half
spaces [11]. This is called the hyperplane description of P ; it is written

P = {x ∈ Rd|Ax ≤ b}, (3.1)

where the rows of Ax ≤ b are inequalities of the form
d∑
j=1

aijxj ≤ bi each of which decribes a

half space in Rd. The equation
d∑
j=1

aijxj = bi describes a hyperplane in Rd. The dimension

of a polytope P is the dimension of the affine space spanned by its vertices. If a polytope has
dimension d then we call it a d-polytope and write dim P = d. For a given polytope P , we
call a hyperplane H a supporting hyperplane if H bounds a half space that contains P . A
face of P is the intersection of P with some supporting hyperplane. An edge of a polytope
is a face that is 1-dimensional and a vertex of a polytope is a face that is 0-dimensional. A
polytope is called integral if its vertices all lie in Zd. The interior of a polytope P given
by (3.1), denoted P◦, is defined as

P◦ = {x ∈ Rd|Ax < b}.

The boundary of a polytope P is the set ∂P := P\P◦. The tth dilate of P is defined to be

tP = {tx|x ∈ P}
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where t ∈ Z>0, [1]. Ehrhart Theory deals with finding the discrete volume of dilated poly-
topes. In other words we want to count the number of lattice points in a dilate of the
polytope. For the tth dilate of a given polytope P ⊆ Rd, we define the following two count-
ing functions:

LP(t) = #{x ∈ tP ∩ Zd}

and
LP◦(t) = #{x ∈ tP◦ ∩ Zd}.

These counting functions then give rise to the following theorems.

Theorem 3.1. [5] Given a convex integral d-polytope P, the counting function LP(t) is a
polynomial in t of degree d.

Theorem 3.2. [6, 8] For a convex integral d-polytope P, LP(−t) = (−1)dLP◦(t).

In the next section we will introduce the concept of inside-out polytopes, as well as show
how antimagic labelings relate to both polytopes and inside-out polytopes.

3.2 Inside-out Polytopes

The theory of inside-out polytopes is concerned with counting the points of the integral lattice
Zd that lie within a polytope, but do not lie within a certain hyperplane arrangment. A
hyperplane arrangement or arrangement of hyperplanes is a finite set of hyperplanes
in an affine space.

Definition 3.1. An inside-out polytope is a polytope paired with an arrangement of hyper-
planes that cut through the polytope acting as additional boundaries inside the polytope.

An inside-out polytope is denoted (P , H), where P is a convex polytope and H is an
arrangement of hyperplanes. A region of the inside-out polytope (P , H) is a component of
P\
⋃
H or that component’s closure. A vertex of (P , H) is a vertex of one of the regions

of (P , H). An inside-out polytope is said to be integral if the vertices of that inside-out
ploytope all lie in Zd. The lattice-point enumerator for an inside-out polytope (P , H) is

E◦(P◦,H)(t) = #{x ∈ [tP◦\
⋃

H] ∩ Zd}. (3.2)

The lattice-point enumerator for the inside-out polytope starts with all possible points in
P . Then we subtract the lattice points in the hyperplane arangement H. Finally we use
the inculsion-exclusion principle to add and substract the intersections of the hyperplanes so
that each point is only counted once. The inculsion-exclusion principle states that if A
and B are two finite sets then the number of of elements in A∪B is the number of elements
in A plus the number of elements in B minus the number of elements in their intersection.

Theorem 3.3. [2] If (P , H) is integral, then E◦(P◦,H)(t) is a polynomial in t of degree dimP.
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To relate inside-out polytopes to antimagic labelings, consider a graph with n edges.
We label the n edges a1 through an where each ai ∈ Z>0. From the work done by in [3],
we know that there exists a weak antimagic labeling for some upper bound on the labels.
We let t be this upper bound so 0 < ai < t. Now we map this labeling to the n-tuple
(a1, . . . , an). Consider all possible labelings for this graph with these conditions as points
in an n-dimensional space. The polytope that is constructed from these points is the tth

dilation of an n-dimensional unit cube. The lattice-point enumerator for the tth dilation
of the n-dimensional unit cube is (t + 1)n. Since we deal with strict inequalities, however,
we want to look at the interior of this polytope for which the lattice-point enumerator is
(t − 1)n. But that represents all possible labelings for that graph, we want the ones that
are antimagic. So we construct an inside-out polytope (P◦, H) with P◦ being the open n-
dimensional unit cube and H consisting of the hyperplanes that contain the points of the
form (a1, . . . , an) such that (a1, . . . , an) is not an antimagic labeling. Remember a labeling
will not be antimagic if any of the sums of edges labels at two of more vertices are equal.
We will call these hyperplanes non-antimagic. From this point forward we will use PA to
denote the antimagic inside-out polytope (P◦, H).

Since each point in PA represents a labeling for our graph, the lattice-point enumerator
of PA will also be the counting function for the number of antimagic labelings. Thus the
counting function A(t) for the number of antimagic labelings is defined by

A(t) = E◦P◦,H(t). (3.3)

For further clarification let’s look at a specific graph. Let us consider the graph C3 seen in
Figure 3.1.

a b

c

Figure 3.1: The graph C3 with edge labels

If we consider all possible labels (a, b, c) with the contraints 0 < a, b, c < t, then we know
that the tth dilate of the 3-dimensional unit cube will represent all possible labelings for this
graph. Now using the non-antimagic hyperplanes we can complete the inside-out polytope
for this graph. For this graph the only labelings that are not antimagic are if a+ b = b+ c,
a + b = a + c, or a + c = b + c (i.e., when the sums at the vertices are equal). When we
simplify these we get the equations for the non-antimagic hyperplanes a = b, a = c, and
b = c.
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b

Figure 3.2: The inside-out polytope for the graph C3

In Figure 3.2 the entire cube is the tth dilate of the 3-dimensional unit cube. The green
plane is the hyperplane a = b. The hyperplane a = c is highlighted in red. The hyperplane
b = c is highlighted in blue. In the figure above, the line a = b = c is highlighted in yellow.

If we want to find the lattice point enumerator for this inside-out polytope we can do it
in parts. The number of lattice points in the interior of the cube is (t− 1)3. Then for each
hyperplane the number of lattice points will be (t − 1)2. And finally the line segment of
intersection will have (t− 1) lattice points. So starting with all possible lattice points in the
interior of the cube we will remove the lattice points that are in the non-antimagic hyper-
planes. However there is an overlap in the lattice points on the non-antimagic hyperplanes,
along the line a = b = c. Thus, we add the lattice points along the line back in twice since
it was the point of intersection of the non-antimagic hyperplanes and only needed to be
removed once. Thus the lattice point enumerator for the interior of this inside-out polytope
is

E◦P◦,H(t) = (t− 1)3 − 3(t− 1)2 + 2(t− 1).

Therefore the counting function for the antimagic labelings of C3 will also be

A(t) = (t− 1)3 − 3(t− 1)2 + 2(t− 1).

Unfortunately the antimagic inside-out polytope for other graphs is not easy to visualize,
nor will the lattice point enumerator be as easy to calculate. Because of this we must find
another way to understand the lattice-point enumerator for the inside-out polytopes of our
graphs.

For the remainder of this paper when using the term antimagic it will mean weak an-
timagic. We will also shift from looking at all graphs to focus strictly on bipartite graphs.
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Chapter 4

Main Results

4.1 Totally Unimodular Matrices

Consider a bipartite graph GU,V . Label the vertices in U with the numbers 1 through m1

and label the vertices in V with the numbers 1 through m2. Now label the edges in the
graph ai,j, where i and j are the numbers of the vertices in U and V respectively, incident
to the edge. Take the sum at each vertex of edge labels incident to that vertex. Let
V (i) = {j ∈ V : j is adjacent to i} and U(j) = {i ∈ U : i is adjacent to j}.
Then for each vertex i ∈ U this sum is

∑
j∈V (i)

ai,j. Similarly, for each vertex j ∈ V we have∑
i∈U(j)

ai,j. In order for these labelings to be antimagic we want each of these sums to be

distinct.
We construct a martix B, the incidence matrix for our graph, with entries bv,a that are
defined by

bv,a =

{
1 if edge a is incident to vertex v,
0 otherwise.

The matrix B is an (m1 +m2)× n matrix constructed in a way such that the first m1 rows
represent the vertices in U and the next m2 rows the vertices in V . However since B can be
rather large depending on the number of edges in the graph, it may be easier to look at an
example with a specific graph in mind first. See Figure 4.1 for the incidence matrix for C6.

Each row is representative of a different vertex, while the columns represent different
edges. Since an edge can only be incident to two vertices, there will be two 1-entries in each
column of this matrix while all the other entries will be 0. Now let us shift back to the
general case.

Definition 4.1. A matrix is totally unimodular [10] if every one of its submatrices has a
determinant of −1, 0, or 1.

Proposition 4.1. The incidence matrix of a bipartite graph is totally unimodular.

Proof. Take an arbitrary submatrix of an incidence matrix B of a bipartite graph. There
are three possible cases for columns of submatrices of B. This submatrix can have a column
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a1,1

321

1 2 3

a1,2

a2,2

a3,1

a3,3a2,3





1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 0 0 1
0 1 1 0 0 0
0 0 0 1 1 0





Figure 4.1: The graph C6 with edge labels and its incidence matrix

of only entries equal to 0, only columns with two entries equal to 1, or at least one column
that has one entry equal to 1. By induction on the size of the matrix, we will prove that this
submatrix will have a determinant of ±1 or 0.

For our base case let’s consider 1× 1 matrices with only 0 and 1 entries that follow the
conditions for the submatrix. Since the determinant of (0) and (1) are 0 and 1 respectively,
any 1× 1 matrix under our conditions have a determinant of ±1 or 0.

Now assume that any k×k matrix under these cases has determinant 0, or ±1. This will
be our inductive hypothesis.

Case 1: The submatrix has a column of only 0 entries.

If the matrix has a column of only 0 entries then its determinant is 0.

Case 2: The submatrix has only columns with two entries equal to 1.

If every column in the submatrix has two entries equal to 1, then every edge label for
the subgraph which the submatrix represents will be incident to two vertices of the sub-
graph. Since the graph is bipartite, then for each column, one of the 1 entries will appear in
a row that represents a vertex in the set U and the other in the set V . Because of this, if
we multiply all the rows that represent the vertices in the set U by −1 and then add them
to the rows of representative of vertices in the set V , all the rows will cancel. Hence this
submatrix is singular and will have determinant 0.

Case 3: The submatrix has at least one column with only one entry equal to 1.

Consider a (k + 1) × (k + 1) matrix with a column with only one entry equal to 1, like
the matrix below.
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(
1 c
0 M

)
This matrix was positioned in a way that the column that has only one entry equal to 1 is
the first column, and that 1 was placed in the upper right corner. However, this column
can appear anywhere in the matrix with the 1 being anywhere along that column. The only
thing that may change as a result of this is the sign of the determinant. Since we are not
concerned with the sign this will not affect the outcome and thus we can assume that the
1 is in the first row and column. The c in the matrix above represents the rest of the first
row which can contain both entries of 0 and 1. The M represents the k × k submatrix that
is not part of the first row or column. Now if we take the determinant of this matrix it is 1
times the determinant of the M submatrix. Since every entry except for the 1 of the first
column is 0 we are not concerned with the remaining entries in c. Since M is a k× k matrix
by our inductive hypothesis the determinant of M will be ±1 or 0. Hence the determinant
of the entire matrix is ±1 or 0.

As we saw in all three cases the determinant of the submatrix was ±1 or 0. Since these
cases represent all possible submatrices of B, B is totally unimodular.

Given a matrix A we contruct a new matrix A1 in such a way that A1 is made by taking
the difference of two rows of A. In other words to construct A1 we will replace row Rj in A
with Rj −Rk. We keep track of this construction by creating a directed graph GA such that
each node in the graph represent a row in A. If we replace row Rj in A with Rj −Rk in A1

then we draw an edge from node Rj to node Rk. This is illistrated in the figure below.





u v · · · · · · w
... ... ...
a b c · · · d
e f g · · · h
... ... ...
x y · · · · · · z









u v · · · · · · w
... ... ...

a− e b− f c− g · · · d− h
... ... ...
x y · · · · · · z



!
R1

Rj
Rk

Rn

R1

Rn

R1

R2
R3

Rj
Rk

Rn

Rj - Rk

Figure 4.2: The matrices A and A1 with graph GA

Lemma 4.2. If A is a totally unimodular matrix with entries 0 and 1 and GA contains no
cycles, then A1 is also totally unimodular.

12



Proof. We will prove this by induction on the number of row operations. For our base case
consider a totally unimodular matrix A to which we perform none of the row operations
described above. Then our graph contains no edges so there are no cycles and our matrix is
unchanged, hence it remains totally unimodular.
Now assume that the lemma holds for n row operations.
Now consider A1 being constructed by performing n + 1 row operations on A. From our
inductive hypothesis we know that for n of these operations our new matrix will be totally
unimodular. If we perform one more operation in such a way that we are not creating a cycle
in GA then it will not effect the rank of our new matrix A1. Then, taking the difference of
two rows will not effect the determinant of our matrix or any of it submatrices. Hence A1

will still be totally unimodular.

4.2 The Polynomiality of A(t)

In order to better understand the inside-out polytope we are working with we need to take
a closer look at its regions. Recall the inside-out polytope PA consists of P◦, the open n-
dimensional unit cube, being cut by non-antimagic hyperplanes H. Since both the unit cube
and the hyperplanes are open, each region of our inside-out polytope will be open. Each
region is enclosed by some faces of P◦ and some non-antimagic hyperplanes. The faces of
P◦ are defined by hyperplanes of the form Xk = 1 or Xk = 0. Since each vertex of a given
region is just a point in an n-dimensional space, it can be described by the intersection of n
hyperplanes. Since the vertices of the regions make up the vertices of PA, each vertex will
be the intersection n hyperplanes from the set of hyperplanes of the form Xk = 1, Xk = 0,
and the non-antimagic hyperplanes.

Theorem 4.3. [10] Let A be an integral matrix of full row rank. Then the polytope P =
{x|x ≥ 0 : Ax = b} is integral for each integral vector b, if A is totally unimodular.

Theorem 4.4. The vertices of PA are integral.

Proof. Consider an arbitrary vertex of PA. This vertex is then the intersection on n hy-
perplanes from the set of hyperplanes of the form Xk = 1, Xk = 0, and the non-antimagic
hyperplanes. Using the incidence matrix of our graph we can represent the non-antimagic
hyperplanes by setting two rows equal to each other. Then if we take the difference of those
two rows we can construct a system from the equations of these hyperplanes. In doing this
we will leave out the hyperplanes of the form Xk = 0, for now. So a vertex is the solution
to a system of the form

(
I 0

Bα

) X1
...
Xn

 =



1
...
1
0
...
0


.
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In this matrix the first j rows are formed by the equations X1 = X2 = · · · = Xj = 1
the indices were relabelled for symplicity. Then Bα is a matrix constructed from taking
differences of two rows from the incidence matrix of our graph. Since the incidence matrix
is totally unimodular by Lemma 4.2 so is Bα. Now we look at the hyperplanes of the form
Xk = 0. If Xk = 0, then we throw out column k. The resulting matrix is totally unimodular,
and so the entire matrix will be totally unimodular, since adding an identity matrix does not
change the determinant of the matrix or any submatrix. Then by Theorem 4.3 the solution
must be integral. Hence the vertices of PA are integral.

Theorem 4.5. The counting function for the antimagic labelings of a bipartite graph is
polynomial of degree equal to the number of edges in the graph.

Proof. Since the vertices of PA are integral, Theorem 3.3 implies that A(t) = E◦PA
(t), the

counting function for antimagic labelings is a polynomial. The degree of this polynomial is
dimP , which is the number of edges in the graph.

Now that we have shown that the counting function for the number of antimagic labelings
for our graph is a polynomial, we can use this information towards proving that the graph
will have at least one antimagic labeling. Remember when we say antimagic labeling we
mean weak antimagic labeling which does not require distinctness of the labels.

Theorem 4.6. Any bipartite graph has an antimagic labeling.

Proof. We know A(t) is a polynomial for a bipartite graph with n edges. In order for this
graph to have an antimagic labeling we can use only labels 1 to n. So we must only show
that A(n + 1) 6= 0. Suppose A(n + 1) = 0, then that means that each number 1 to n + 1 is
a root of the polynomial A(t): If some number k, such that 1 ≤ k ≤ n + 1 is not a root of
A(t) then there exits an antimagic labeling using labels 1 to k−1. Moreover, for each h ≥ k,
A(h) 6= 0 since an antimagic labeling can be attained using labels 1 to k − 1 and adding
more options for labels will not decrease the number of antimagic labelings, only increase.
Since A(t) is a polynomial of degree n it can only have n roots. Therefore 1 to n + 1 can
not all be roots of A(t) and A(n+ 1) 6= 0. Hence any bipartite graph will have an antimagic
labeling.
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Chapter 5

Open Problems

We have shown that any bipartite graph has a weak antimagic labeling. In general, the
process we used to show this will hold true for any graph whose incidence matrix is totally
unimodular. However, only bipartite graphs have totally unimodular incidence matrices [10].
There are also different types of antimagic according to what is being labelled, such as node
antimagic. This method could possibly be used to prove a similar result for the different
kinds of antimagic. For other forms of antimagic, see [2].

Furthermore, our method of proving bipartite graphs have a weak antimagic labeling
could possibly be used to show that a graph also has a strong antimagic labeling. In order to
do that we would have to add more restrictions that would result in adding more equations
to the matrix for our graph. This process could also be extended to non-bipartite graphs.
However in both circumstances our matrices become more complex and will not be unimod-
ular. Because of this the counting function for antimagic labelings would only be guaranteed
to be a quasi-polynomial and not a polynomial as in the case for a weak antimagic labeling of
a bipartite graph. A quasi-polynomial is a “polynomial” with coefficients that are periodic
functions with an integral period; unlike the coefficients of a polynomial which do not change.
This then gives rise to another problem. If the counting function is a quasi-polynomial then
for each period we get different coefficients and therefore a different polynomial. Then each
of these polynomials will have its own set of roots. Because of this our argument using the
roots of a polynomial will not work since a quasi-polynomial of degree d with a period of k
can have kd roots. Hence a quasi-polynomial can have more roots than our graph has edges.
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Sci. Paris 254 (1962), 616–618.
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