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ABSTRACT
Correlations between prototypical usability metrics from 90 
distinct usability tests were strong when measured at the 
task-level (r between .44 and .60). Using test-level 
satisfaction ratings instead of task-level ratings attenuated
the correlations (r between .16 and .24). The method of 
aggregating data from a usability test had a significant 
effect on the magnitude of the resulting correlations. The 
results of principal components and factor analyses on the 
prototypical usability metrics provided evidence for an 
underlying construct of general usability with objective and 
subjective factors.
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INTRODUCTION
Determining how quantitative measures of usability relate 
is important in understanding the construct of usability. 
Using meta-analysis, Hornbæk and Law [7] recently 
reported weak correlations among efficiency, effectiveness 
and satisfaction, with an average Pearson-product moment 
correlation (r) of about .2.  The correlations were equally 
weak among the specific measures of time-on-task, binary 
completion rates, error rates and user satisfaction (the 
measures that Hornbaek & Law defined as “prototypical” 
due to their common inclusion in usability studies to 
represent aspects of efficiency, effectiveness, and
satisfaction).  They concluded that although their research 
showed some dependence among various aspects of 

usability, the associations were too low to warrant 
aggregating metrics into a summary score.  They 
hypothesized that Sauro and Kindlund’s [17] earlier reports 
of higher correlations might be due to small sample sizes 
and simple task-level measures.  They also suggested that 
the aggregation level of the data (task or user) could affect 
the magnitude of the correlations. 

The purpose of this analysis is to extend the important work 
of Hornbæk and Law [7] by focusing on the prototypical 
usability measures found in summative usability 
evaluations. Their research provided a broad survey of 
published studies, including studies that were not traditional 
scenario-based usability tests. We deal instead with the type 
of data found in the typical usability test presented to 
product teams, executives or for other internal 
benchmarking efforts [14].  In short, we wanted to see what 
the correlations were in actual usability tests, and how the 
level of aggregation affected the magnitude of the 
correlations.  The data also afforded a unique opportunity to 
explore the construct validity of usability.

METHOD
We gathered the raw data from usability studies by 
searching the archives of present and past usability reports 
and contacting colleagues across many companies to get a 
large and reasonably varied set of task-level usability data.  
The data collection period lasted several months and 
incorporated data from usability studies conducted from 
1983 to 2008, including products such as printers, 
accounting and human resources software, websites and 
portals. In total we obtained 97 raw data-sets from 90
distinct usability tests, all of which contained some 
combination of the prototypical usability metrics, with data 
from over 2000 unique users and 1000 tasks (see Table 1).
Thirteen of the 90 distinct usability tests (14.4%) were 
conducted by the authors.

Data Collected N
Data Sets 97
Distinct Usability Studies 90
Donors 12
Users 2286
Tasks 1034

Table 1.  Dataset descriptions.
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Description of Datasets
The type of data included in this analysis contained a 
narrower range of measures and tasks than those considered 
by Hornbæk and Law [7]. The bulk of the tasks in the 
present study were closed-end productivity activities (e.g., 
create an expense report, install paper in a printer, review 
employee performance reports, check status of a submitted 
report) as opposed to the more varied tasks in Hornbæk and 
Law (e.g., pointing and clicking, authoring privacy rules,
editing code, essays written with computer support).

All but four studies were between-subjects usability tests, 
wherein one set of users attempted a set of tasks on one 
product. Three data sets were from between-subjects 
comparisons in which independent groups of users 
attempted the same tasks on different products (either 2 or 
3). One study used a within-subjects design in which the 
same users attempted the same set of tasks across three 
products. The difference between the total number of 
datasets and distinct usability tests reflects the inclusion of 
these between- and within-subjects comparisons.

Our goal was to obtain raw datasets from as many 
companies and products as possible. Part of such an 
undertaking, however, required that we extend a degree of 
anonymity to the donors, and many of the details (including 
all confidential details) of the usability studies were 
removed from the raw datasets before we received them
(and many thanks to those who selflessly donated their 
data). For the datasets in which we also obtained the 
reports, the majority tested users who were unfamiliar with 
the product but had experience in the domain (e.g., Human 
Resources Professionals adding new hire information in an
HR application). All but three of the 97 datasets came from 
lab-based moderated usability tests; the other three were
automated remote usability tests.

Domains
The usability test data came from 12 sources, including
software companies (e.g., PeopleSoft, Oracle, IBM, Intuit), 
IT organizations within another company (e.g., Fidelity
Investments, American Family Insurance) or individuals or 
organizations as part of research.

Coding
Most datasets were coded from reports or spreadsheets with 
little modification. Because some scales (such as the ASQ
and PSSUQ – [11,12,13]) code higher numbers as having
worse usability, in contrast to the majority of other scales, 
the major source of re-coding came from ensuring the 
sentiment of the satisfaction scales were pointing in the 
same direction (with higher scores indicating greater 
satisfaction). 

In addition to scale direction, satisfaction questions differed 
on the number of scale steps. For post-task ratings, 20 used 
five-point scales (53%) 16 used 7-point scales (42%), one 
used the 150 point SMEQ scale, and three used magnitude 
estimation [5,15] (which does not have a defined number of 

scale steps).  Most post-task ratings were averages of 2 to 3 
questions using 5- or 7-point Likert-type questions,
resulting in a composite score often between 10-15 
response options.  Even though 95% of the tests used 5- or 
7-point scales for post-task satisfaction, we recoded the raw 
scale scores as proportions of the maximum score because a 
mean response of 4 on a 5-point scale represents a higher 
sentiment than a 4 (the mid-point) on a 7-point scale. For 
the same reasons, we used the same technique to scale the 
post-test satisfaction ratings. For example, a raw SUS score 
of 75 became .75 because the maximum SUS score is 100.

Metric Representation across Studies
Table 2 shows the representation of the prototypical 
measures across the datasets. 

Metric N %
Task Time 96 99

Completion Rate 95 98
Errors 56 58

Post-Test Satisfaction 47 48
Post-Task Satisfaction 39 40

Table 2. Metric distribution across the 97 datasets. Almost 
every study collected task time and completion rates; only 

39 collected post-task satisfaction.

Users
In total, there were 2286 unique users from the 97 datasets. 
The distribution of users across tests was highly skewed by 
one very large sample size (n = 296 – one of the automated 
remote usability tests), making the mean number of users 
per test a misleading figure. The median number of users 
per test was 10, ranging from 4 to 296. Sixty-four percent 
of the tests had between 8 and 12 users and 80% had fewer 
than 20. 

Most information about the characteristics of the users was 
removed from the data-sets, preventing a representative 
tabulation. There was sufficient evidence from the reports 
to conclude that users were predominately from the US and 
usually familiar with the application. The distribution of 
gender appeared roughly representative, but there was no 
evidence of representation from children or the elderly.

Tasks
In total, there were 1034 unique tasks from the 97 datasets. 
The distribution of tasks across tests was more normally 
distributed, with a mean of 10.6 and range of 2 to 44. Fifty-
one percent of tests had between 6 and 10 tasks.

Most information about the details of the task scenarios had 
been removed from the data-sets before we received them. 
Much of the data came from productivity tasks. For 
example, two scenarios which exemplify this type of task 
were “Enter a social security number for a beneficiary” and 
“Create and submit an Expense Report for Mileage between 
Vancouver and San Francisco.”



Task Duration
Task duration had a strong positive skew from a few very 
long tasks lasting over an hour. To address this skewness, 
the task time means were transformed using the natural 
logarithm. The mean task duration was 172 seconds with a 
range from 10 seconds to 104 minutes. Fifty percent of 
tasks lasted between 90 and 270 seconds.

LEVELS OF AGGREGATION FOR ANALYSIS
A key goal of this investigation was to understand how 
different levels of aggregation affect the correlations among
prototypical usability metrics. Hornbæk and Law [7, p. 625] 
identified different aggregation levels as a potential cause 
for different correlation magnitudes. Table 3 shows the
seven different aggregation schemes used in the current 
study. 

Across Tests

Within Tests
Multiple 

Correlations per 
Test

One 
Correlation Per 

Test

Tasks TM TO

Users UM UO

Observation -- OO

Task Means -- TAO

User Means -- UAO

Table 3. Aggregation schemes.  Task means, user means 
and observation level data are only possible one time per 

test.

As Table 3 shows, we aggregated tasks along two 
dimensions: (1) by the level of aggregation within a test and 
(2) the level of aggregation across tests. All aggregation 
methods ending with “O” generated only one correlation 
per test for each pair of prototypical usability metrics 
collected in the study.  The aggregation methods ending 
with “M” generated multiple correlations per test for each 
pair of variables.  To help explain the different methods, the 
following definitions of the aggregation schemes will 
include examples using the data in Table 4.

Task Level Aggregation (TO/TM)
Task level aggregation indicates the generation of 
correlations from the pairs of measures by the users for 
each task, so there are as many correlations for a test as 
there are tasks. For example, the correlations between task 
time and errors for the four tasks in the sample dataset 
shown in Table 4 are (.58, --, .89, .36) respectively. There is 
no correlation for task 2 because there were no errors. 
When one measurement has no variation, its correlation 
with other measurements is undefined due to division by 0.

One way to estimate the overall correlation between time 
and errors is to use the TO scheme, averaging the three 
valid correlations.  When averaging correlations, it is 
standard practice to convert the correlations to standard (z) 
scores, do the math, then convert the mean standard score 
back to a correlation.  To convert r to z, use:

z = .5*ln((1+r)/(1-r)).  

To convert z back to r, use:

r = ((exp(2*z)-1)/((exp(2*z)+1))).  

These formulas use Excel notation for easy pasting into a 
spreadsheet, replacing r and z in the bodies of the equations 
with cell designations as appropriate.

To continue the example, converting the three correlations 
to standard scores produces .66, 1.4, and .38, which have a 
mean of .81.  Converting this standard score back to a 
correlation gives r = .67 as the one correlation for this test
when using the TO aggregation scheme. 

An alternative aggregation scheme using this data is to 
include all three correlations with similar task level 
correlations from the other datasets (the TM scheme, with 
multiple correlations per test).  Using the TM scheme, the 
test data in Table 4 provided three estimates of the 
correlation between task time and errors (.58, .89, and .36).  

Task User
Raw 
Sat

Scaled 
Sat Time Comp Errors

1 1 4.00 0.57 72 1 0
1 2 4.00 0.57 60 1 0
1 3 3.33 0.48 72 1 0
1 4 3.00 0.43 66 1 0
1 5 1.00 0.14 144 0 1
1 6 4.00 0.57 72 1 0
1 7 2.33 0.33 78 1 1
1 8 2.33 0.33 72 1 1
2 1 4.00 0.57 60 1 0
2 2 4.00 0.57 54 1 0
2 3 4.00 0.57 54 1 0
2 4 3.00 0.43 66 1 0
2 5 3.00 0.43 72 1 0
2 6 4.00 0.57 72 1 0
2 7 3.00 0.43 72 1 0
2 8 3.00 0.43 54 1 0
3 1 4.00 0.57 72 1 0
3 2 4.00 0.57 72 1 0
3 3 4.00 0.57 78 1 0
3 4 3.00 0.43 84 1 0
3 5 3.33 0.48 90 1 0
3 6 4.00 0.57 90 1 0
3 7 2.33 0.33 114 1 1
3 8 2.00 0.29 150 1 1
4 1 4.00 0.57 96 1 0
4 2 4.00 0.57 72 1 0
4 3 4.00 0.57 60 1 0
4 4 1.67 0.24 114 0 1
4 5 2.33 0.33 78 0 1
4 6 4.00 0.57 66 0 1
4 7 2.33 0.33 78 1 0
4 8 3.00 0.43 96 0 1

Table 4. A dataset used in the analysis.  The satisfaction 
scores were task-level, with a maximum score of 7.

User Level Aggregation (UO/UM)
User level aggregation indicates the generation of 
correlations from the pairs of measures by the tasks for each 
user, so for this scheme there are as many correlations for a 
test as there are users. For example, to generate the 



correlations between task time and scaled task-level 
satisfaction for the sample data, the correlations are (--, --, -
.37, -.93, -.84, --, -.47, -.66). To estimate the overall 
correlation between time and completion, we can either 
average these 5 valid correlations (after transforming) to get 
r = -.73 (One per test: the UO scheme) or use all 5
correlations with the user level correlations from the other 
datasets (Multiple per test, the UM scheme). 

Observation Level Aggregation (OO)
Aggregation by observation involves creating one matrix of 
tasks and users within a dataset.  For example, when 
correlating errors with completion rates in the sample data
in Table 4, one correlation is generated from 32 pairs of 
errors and completion rates to get an r of -.68, which is then 
averaged with all other datasets (the OO scheme). 

Task Average Level Aggregation (TAO)
Task average level aggregation indicates correlation taken 
on the mean task performance. For the sample data in Table 
4, the correlation between post-task satisfaction and errors 
would use the mean satisfaction rating and mean number of 
errors by task (for this sample data, r = -.83). With this 
scheme, there is only one correlation per test for each pair 
of variables. 

User Average Level Aggregation (UAO)
User average level aggregation indicates that the correlation 
is taken on the mean user performance across tasks. For 
example, the correlation between task time and completion 
in the sample dataset for the 8 users is -.73. With this 
scheme, there is only one correlation per test for each pair 
of variables.

Exploring the Construct of Usability
The data also provide an opportunity to use principal 
components analysis (PCA) and factor analysis (FA) to 
explore the construct of usability.  Organizing the data as 
described above for UM casts the data in a form suitable for 
PCA and FA (one set of prototypical usability scores per 
participant, averaged over tasks to get a set of independent 
scores, restricting the final data set to those participants 
who have scores for all prototypical usability metrics).  The 
three key questions to address with these analyses are: 

1. Do all prototypical usability metrics significantly 
correlate?

2. Do all prototypical usability metrics heavily load 
on the first unrotated component of a PCA 
(indicative of an underlying usability construct ‘u’, 
analogous to Spearman’s ‘g’ for intelligence [9])?

3. Does an exploratory FA indicate a reasonable
underlying factor structure for the construct of 
usability?

RESULTS
All correlations in the subsequent tables were calculated 
using the Fisher r-to-z transformation, then transforming the 
z-scores back to report as correlations (Pearson’s r). All 
reported correlations were significantly different from 0 (p 
< .05). For each of the following seven tables, the 
calculation of the overall mean used the standard 
conversion to z-scores, then conversion back to r, so the 
overall means will not match a simple average of the tabled 
correlations, but will probably provide a better estimate of 
the true correlation between the two metrics than any 
individual correlation from the aggregation levels. Using a 
similar procedure, the overall median is the mean of the 
transformed medians. The 95% confidence intervals were 
calculated on the z-scores and transformed back to Pearson 
r’s. The intervals are asymmetrical because the distribution 
of r is positively skewed, especially for values above .5.
The “% Neg.” and “% Pos.” columns show the percentage 
of correlations that were either negative or positive based 
on the overall tendency of the metric pairs.  Higher values 
in this column show higher agreement and less variability 
in the datasets for that aggregation level and correlation 
pair.

Correlations among Task Completion, Task Time and 
Errors
Tables 5-7 show the correlations between the prototypical 
measures for effectiveness and efficiency: task time, errors 
and completion rates.  The tables show both the mean and 
the median as measures of central tendency for each 
correlation. 

95% CI

Level Mean Median N Low High %  Neg.

TM -0.41 -0.36 809 -0.44 -0.38 81
UM -0.36 -0.32 1921 -0.38 -0.34 83
OO -0.39 -0.38 92 -0.43 -0.34 97
TO -0.44 -0.40 92 -0.49 -0.38 96
UO -0.51 -0.47 92 -0.56 -0.46 99

TAO -0.61 -0.60 92 -0.67 -0.54 91
UAO -0.51 -0.45 92 -0.58 -0.43 90

Overall -0.46 -0.43 7 -0.51 -0.41 91

Table 5. Correlations between completion rate and time by 
aggregation level.

95% CI

Level Mean Median N Low High %  Neg.

TM -0.59 -0.48 518 -0.63 -0.54 90
UM -0.51 -0.43 675 -0.55 -0.48 88
OO -0.40 -0.39 56 -0.45 -0.33 96
TO -0.51 -0.48 55 -0.60 -0.41 91
UO -0.56 -0.42 56 -0.66 -0.43 91

TAO -0.60 -0.58 56 -0.68 -0.52 95
UAO -0.58 -0.57 56 -0.67 -0.47 95

Overall -0.54 -0.48 7 -0.61 -0.46 92

Table 6. Correlations between completion rate and errors 
by aggregation level.



95% CI

Level Mean Median N Low High %  Neg.

TM 0.47 0.47 624 0.44 0.50 86
UM 0.62 0.59 812 0.59 0.66 92
OO 0.54 0.57 56 0.48 0.59 100
TO 0.47 0.48 56 0.41 0.53 96
UO 0.66 0.59 56 0.57 0.74 98

TAO 0.80 0.77 56 0.73 0.85 96
UAO 0.53 0.50 56 0.44 0.61 91

Overall 0.60 0.59 7 0.53 0.66 94

Table 7. Correlations between errors and task time by 
aggregation level.

Correlation of Task-Level Satisfaction with Task 
Completion, Task Time, and Errors  
Tables 8-10 show the correlations between task-level 
satisfaction and the prototypical measures for effectiveness 
and efficiency: completion, errors and time. 

95% CI

Level Mean Median N Low High %  Neg.

TM 0.41 0.33 455 0.32 0.50 79
UM 0.56 0.50 1518 0.51 0.62 90
OO 0.42 0.42 39 0.36 0.48 97
TO 0.42 0.36 39 0.34 0.49 97
UO 0.63 0.51 39 0.38 0.79 95

TAO 0.68 0.74 39 0.59 0.74 95
UAO 0.42 0.48 39 0.31 0.52 90

Overall 0.51 0.48 7 0.41 0.61 92

Table 8. Correlations between task-level satisfaction and 
completion rate by aggregation level.

95% CI

Level Mean Median N Low High %  Neg.

TM -0.39 -0.38 575 -0.42 -0.36 84

UM -0.54 -0.51 1676 -0.57 -0.52 90

OO -0.41 -0.41 38 -0.46 -0.36 97
TO -0.39 -0.37 38 -0.44 -0.33 97

UO -0.52 -0.54 38 -0.61 -0.41 95

TAO -0.56 -0.59 38 -0.65 -0.45 89

UAO -0.43 -0.42 38 -0.55 -0.3 89

Overall -0.47 -0.46 7 -0.53 -0.39 92

Table 9. Correlations between task-level satisfaction and 
task time by aggregation level.

95% CI

Level Mean Median N Low High %  Neg.

TM -0.37 -0.25 398 -0.49 -0.24 78

UM -0.42 -0.37 554 -0.49 -0.35 83

OO -0.34 -0.38 26 -0.41 -0.27 100

TO -0.33 -0.29 26 -0.43 -0.23 96

UO -0.52 -0.43 26 -0.74 -0.20 88
TAO -0.61 -0.63 26 -0.72 -0.48 92

UAO -0.45 -0.49 26 -0.58 -0.31 92

Overall -0.44 -0.41 7 -0.57 -0.30 90

Table 10. Correlations between task-level satisfaction and 
errors by aggregation level.

Task-level satisfaction measurement (e.g., the ASQ [11,12]) 
takes place after the completion of each task (or scenario), 
in contrast to satisfaction measures taken at the completion 
of a test (post-test satisfaction), such as the SUS [2], SUMI
[8], and PSSUQ [12,13]) which appear in Table 11.

Post-Test Satisfaction

95% CI

Mean Median N Low High %  -/+

Comp 0.24 0.29 46 0.12 0.36 72 +

Time -0.25 -0.28 47 -0.37 -0.11 68 -

Task Sat 0.64 0.62 15 0.39 0.8 93 +

Errors -0.16 -0.16 29 -0.3 -0.02 62 -

Table 11. Correlations with post-test satisfaction.  Post-test 
correlation done at the aggregation level of UAO is the 

only way to correlate post-test satisfaction with task-level 
measures.

Correlation of Test-Level Satisfaction with Task Level 
Metrics
Forty-seven of the datasets included test-level satisfaction 
measurement along with some combination of task-level 
measures. Correlation with post-test satisfaction ratings 
with task level measures is only possible with the UAO 
aggregation scheme because users complete post-test 
satisfaction measures once at the end of the test. Table 11 
shows the correlations between test-level satisfaction and 
the other usability metrics. 

Overall Correlations
Table 12 shows the average correlations from Tables 5-11
above. The correlations range from low correlations for 
test-level satisfaction (e.g., -.16) to strong correlations (e.g.,
.60) for task time and errors.

Comp

Time -0.46 Time

Errors -0.54 0.60 Errors

Task-Sat 0.51 -0.47 -0.44 Task-Sat

Test-Sat 0.24 -0.25 -0.16 0.64

Table 12. Correlation matrix using the average of all 
aggregation levels (except Test-Sat which necessarily used

only the UAO aggregation level).

Levels of Aggregation and Variable Pairs
One of our key questions was the extent to which the level 
of aggregation affects the magnitude of the measured 
correlation.  We used ANOVA to assess the main effects of 
Level of Aggregation and Variable Pair (correlated pairs of 
variables) and their interaction.  Out of the 97 data sets in 
the database, there were 26 for which we could compute all 
of the following prototypical usability metrics: task time, 
task completion, errors per task, and task-level satisfaction.  
For each study, we used each of the five levels of 
aggregation to obtain correlations for each of the six 



variable pairs, for a total of 30 correlations per study.  Next, 
we converted correlations to z-scores (ensuring that 
correlations in the expected direction were coded as 
positive z-scores), then conducted the ANOVA on the z-
scores, treating studies as subjects in a within-subjects 
design with two independent variables (Level of 
Aggregation and Variable Pair).  

The main effect of Level of Aggregation was statistically 
significant (F(4, 100) = 6.2, p < .0001), as was the main 
effect of Variable Pair (F(5, 125) = 8.0, p < .0001) and their 
interaction (F(20, 500) = 2.2, p = .003).  Figure 1 shows the 
interaction (with z-scores converted back to r).  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TE CE TS CS ES CT

Variable Pair

A
b

so
lu

te
 V

al
u

e 
o

f 
M

ea
n

 C
o

rr
el

at
io

n

TAO

UO

UAO

TO

OO

Figure 1.  Interaction between Level of Aggregation and 
Variable Pair.  The codes for variables are T = Time, C = 

Completions, E = Errors, and S = Satisfaction (Task-
Level).

Tables 13 and 14 show the results of Bonferroni multiple 
comparisons on the main effects.  For the multiple 
comparisons, we used all of the study-level data available 
for each level of aggregation (n = 93) and for each variable 
pair (n ranging from 26 to 56, depending on the variable 
pair).

TAO UO UAO TO OO

r = 0.67 r = 0.58 r = 0.48 r = 0.43 r = 0.42

X

X X
X X X

Table 13. Bonferroni comparisons of Levels of 
Aggregation.  With five levels, there are 10 possible 

comparisons, so to maintain a significance level of .05 
across the set of comparisons, the critical significance level 
for each individual comparison was .005 (.05/10).  Levels 
that have an “X” on the same row were not significantly 

different.

TE CE CS CT TS ES

r = 0.62 r = 0.53 r = 0.52 r = 0.49 r = 0.46 r = 0.46

X X X

X X X X X

Table 14. Bonferroni comparisons of Variable Pair.  With 
six pairs, there are 15 possible comparisons, so to maintain 
a significance level of .05 across the set of comparisons, the 

critical significance level for each individual comparison 
was .0033 (.05/15).  Levels that have an “X” on the same 

row were not significantly different.

Construct Validity of Usability
The database contained 325 cases (from 13 studies) in 
which participants provided all five prototypical usability 
metrics: task completions, task times, error counts, task-
based satisfaction, and test-based (overall) satisfaction.  The 
correlation matrix for the metrics for this subset of the data 
appears in Table 15.

Comp

Time -0.50 Time

Errors -0.66 0.59 Errors

Task-Sat 0.43 -0.24 -0.34 Task-Sat

Test-Sat 0.35 -0.23 -0.23 0.64

Table 15. Correlation matrix for the 325 complete cases by 
participant.

All correlations were statistically significant (p < .0001) 
and in the expected direction, a finding consistent with the 
hypothesis of an underlying construct of usability. The 
magnitudes were similar to those of the whole dataset (see 
Table 12 above) with the exception of time and task-level 
satisfaction which had a greater attenuation.

Table 16 shows the unrotated loadings for a PCA conducted 
on this subset of the data.  All variables loaded highly on 
the first component, with the absolute value of the loadings 
ranging from .63 to .82.  Thus, this finding is consistent 
with the hypothesis of an underlying construct of usability.  

Measures 1 2 3 4 5
Comp 0.82 -0.20 0.38 0.26 0.27
Time -0.70 0.45 0.53 0.06 -0.16

Errors -0.80 0.41 -0.17 0.11 0.40
Task-Sat 0.71 0.56 0.09 -0.41 0.13
Test-Sat 0.63 0.65 -0.22 0.32 -0.17

Eigenvalue 2.70 1.14 0.51 0.35 0.30
% Variance 53.97 22.78 10.14 7.05 6.06

Table 16. Unrotated PCA loadings.

Note that the mechanics of PCA maximize the assignment 
of variance to the first unrotated component, leading to 
some controversy regarding its interpretability.  Despite 
this, some psychometricians do hold that this first unrotated 
principal component is interpretable “as a general index of 
a construct represented by shared variance among related 



variables.  For example, if one had administered five tests 
of specific cognitive abilities, the first unrotated principal 
component … could be viewed as a measure of general 
ability" [9, p. 251].  This first unrotated component is also a 
potential source for weightings to use in the computation of 
a composite score.  This is not evidence for a latent factor 
structure with only one factor, rather, it is evidence for an 
overall usability construct that might or might not have an 
additional latent factor structure.  

To explore the possibility of a latent factor structure, we 
conducted a common factor analysis on the 325 cases.  A 
parallel analysis [4] of the eigenvalues from the FA (2.364, 
0.805, 0.094, 0.024, -0.003) indicated a two-factor solution 
(with those two factors accounting for about 63% of the 
total variance).  The final varimax-rotated loadings for the 
two-factor solution appear in Table 17, with objective 
measures loading strongly on the first factor, and subjective 
measures loading strongly on the second factor.

Measures 1 2

Comp 0.70 0.33

Time -0.65 -0.14

Errors -0.88 -0.15

Task-Sat 0.24 0.79

Test-Sat 0.15 0.76

Table 17.  Rotated factor loadings.

Internal Reliability of Post-Test Questionnaires
There were 9 different post-test satisfaction questionnaires 
used across 47 datasets. Seven datasets provided only 
summary level data, but we had the raw data from the other 
40 datasets, allowing us to examine the reliability of the 
questionnaires using a procedure similar to that of Hornbæk 
and Law [7]. We computed the internal reliability using 
coefficient alpha, with results in Table 18.

Coefficient Alpha

Questionnaire N Mean Min Max
SUS 17 0.83 0.52 0.98

Homegrown 11 0.78 0.63 0.92
SUMI 6 0.92 0.86 0.98

PSSUQ 6 0.92 0.80 0.98
Overall 40 0.85

Table 18. Internal reliability of post-test satisfaction 
questionnaires.

To test the relative reliability between homegrown and 
standardized questionnaires, we combined the 
questionnaires into two groups and conducted a t-test, with 
the result that the standardized instruments were more 
reliable (.78 vs .87, t(16)=2.24, p < .05) than the 
homegrown ones, confirming the finding of Hornbæk and 
Law. There were seven questionnaires that had reliability
below .70; however, they were about equally split between 
standardized and homegrown (four homegrown; three 
standardized). All homegrown questionnaires asked 

questions about ease of use and at least one additional
construct. For example, one questionnaire asked whether 
the product met the user’s business needs and another asked 
about the perceived attractiveness of the interface. The 
inclusion of these items reduced the internal reliability,
suggesting that they were getting at a construct other than 
usability. Three instances of the SUS questionnaire had 
reliability between .52 and .68. Likely causes for this lower 
reliability include small sample sizes and failure to orient 
the questions in the same direction (coding errors).

DISCUSSION
Although the values of the correlations fluctuated 
depending on the aggregation level, the magnitudes of the 
correlations among the prototypical usability metrics tended 
to be medium to large. The lower bounds of the 95% 
confidence intervals around the correlations for the overall 
averages never dipped below .30. This conservative lower 
bound suggests task-level correlations that have at least a 
medium-sized effect [3].

Comparison with Correlations of Hornbæk & Law (2007)
Table 19 shows the average correlations across aggregation 
levels from this study, the correlations obtained using the 
UAO scheme and post-test rather than post-task satisfaction 
(closest to the scheme used by Hornbæk & Law [7]), and 
the correlations reported by Hornbæk and Law.

Measures Overall UAO H&L

Comp/Time -0.46 -0.50

Comp/Errors -0.54 -0.56

Errors/Time 0.60 0.51 0.32 / 0.44*

Sat/Comp 0.51 0.26

Sat/Time -0.47 -0.25 -0.15

Sat/ Errors -0.44 -0.22 -0.20

Table 19. Comparison of correlations at the UAO 
aggregation level with the prototypical measures from 

Hornbaek &Law (H&L). *The correlation of .44 is for their 
category of errors-along-the-way, which is more similar to 
the error types in the current analysis than their category of 

task-completion-errors (errors in a task’s outcome).

In the current study, the UAO level of aggregation comes 
closest to the correlations reported by Hornbæk and Law 
[7]. In their Table 5, Hornbæk and Law (p. 623) reported
correlations of .316 (with a 95% confidence interval from 
.246 to .386) for time and errors, .196 (95% CI from .012 to 
.380) for errors and satisfaction, and .145 (95% CI from 
.016 to .274) for time and satisfaction.    It appears that 
many of their satisfaction measures were post-test, and our 
UAO correlation between errors and post-test satisfaction 
(see Table 10) was very similar, -.16 (95% CI from -.02 to -
.30), as was the UAO correlation between time and post-
test satisfaction of -.25 (95% CI from -.11 to -.37). Our 
UAO estimate of the correlation between time and errors 
(.51, with a 95% CI from .44 to .61) was significantly 



higher than Hornbæk and Law’s estimate (95% CI from 
.246 to .386).

We agree with the hypothesis put forth by Hornbæk and 
Law [7] that a likely cause of higher correlations in Sauro 
and Kindlund [17] and in the current analysis is due to 
restricting task types and task-level measures.  The variety 
of studies used in Hornbæk and Law most likely provide a 
better picture of the broader area of human computer 
interaction (HCI), whereas the data analyzed here present a 
more focused picture of summative usability tests.  In other 
words, the results of Hornbæk and Law are more 
generalizable to the entire field of HCI, whereas our results 
are more generalizable to the types of usability tests 
typically conducted by usability professionals – a type of 
test often performed, but rarely published. For example, an 
indicator of the difference in the types of studies examined 
in the current study and Hornbæk and Law is the percentage 
of studies that included task completion rates as a metric.  
In Hornbæk and Law, 15 of 72 studies (21%) included this 
metric; in our database, 95 of 97 studies (98%) included it.  

Error Types
Fifty-three of our datasets contained error data. Hornbæk 
and Law [7] defined a distinction between task-completion-
errors (errors in task outcomes) and what they dubbed 
errors-along-the-way (e.g., slips, mistakes). The data sets 
we have contain total error counts at the task level, 
combining these two types of errors. The correlation found 
between errors and task time in this analysis (r = .60) was 
closer to the Hornbæk and Law correlation of task time 
with errors-along-the-way (r = .44) than their correlation of 
task time with task-completion-errors (r = .16).  

This is consistent with our observation that in standard 
usability testing, task-completion errors are a much smaller 
class of errors than errors-along-the-way.  In many cases, 
participants may not even be aware of task-completion-
errors, which would restrict correlation between those types 
of errors and satisfaction measurements.  Also, errors-
along-the-way necessarily have an effect on task time (all 
other things being equal, more errors lead to longer task 
times), but there is no similar logical relationship between 
task-completion-errors and task time.  Whether usability 
practitioners should routinely discriminate between these 
two classes of errors is an open question because, although 
this distinction is of interest to some researchers, it might be 
of little practical significance in guiding product redesign.

Levels of Aggregation and Variable Pairs
As suggested by Hornbæk and Law [7], the level of 
aggregation significantly affected the magnitude of the 
correlations, with the highest correlations generally 
associated with the TAO level of aggregation.  The lowest 
correlations generally occurred with the OO level of 
aggregation, but even those correlations were of substantial 
magnitude.  The lowest correlation from the ANOVA was 
for the association of completions and time using the OO 

level of aggregation, with r = .30.  Because this is a 
correlation between two different variables collected at the 
same time, it is a measure of concurrent validity.  In 
classical psychometrics, validity coefficients of .30 are 
respectable, large enough to justify the use of the associated 
psychometric instruments for personnel decisions [16].  

There were also significant differences among the 
magnitudes of the correlations for the variable pairs.  The 
strongest correlation was for time and errors (r = .62), but 
this correlation was not significantly different from those 
for completions and errors (r = .53) or satisfaction (task-
based) and errors (r = .52).  With correlations ranging from 
r = .46 to .62 in the Bonferroni comparisons for all the pairs 
of variables, only the correlation between time and errors 
was significantly higher than any of the other correlations 
(specifically, higher than the correlations for time and 
completions, time and satisfaction, and errors and 
satisfaction).

These analyses (ANOVA and associated Bonferroni 
multiple comparisons) show that for different levels of 
aggregation, prototypical usability metrics from standard 
usability tests correlate significantly, which is consistent 
with the hypothesis that they are measuring different 
aspects of a common underlying construct of usability.  

The Construct of Usability
The results of the PCA and FA on the 325 complete cases 
in the database were consistent with an underlying construct 
of usability containing two components, one objective and 
one subjective.  Not only did the prototypical metrics of 
usability correlate significantly with one another, the 
pattern of their correlations was also consistent with an 
easily interpreted factor structure.  The magnitudes of 
loadings on the first component of the PCA (ranging from 
.63 to .82) were close enough in value that it is reasonable 
to use unweighted combinations to create composite 
usability scores, which is usually the case with combined 
measurements [16].  For these 325 cases, the correlation 
between weighted and unweighted combination was .99999
showing no statistical advantage to using a weighted 
combination instead of a simpler unweighted combination.

This evidence for the construct validity of usability is 
especially compelling given the wide variety of the sources 
of data in the analyses.  These data did not come from one 
large study with homogenous participants, products, and 
tasks.  Instead, they came from a disparate collection of 
studies, with values averaged across a disparate collection 
of tasks (for example, for one task a completion time of five 
minutes might be fast, but for a different task, it might be 
slow).  Even with this inherent variability in the data, the 
analyses consistently supported the existence of the 
construct of usability.

Why do we care if the prototypical usability metrics 
correlate?  From psychometric theory [16], an advantage of 
a composite score (created either by summing or averaging 



components of the score) is increased reliability of 
measurement, but that increase depends on correlations 
among the component scores.  If the component scores do 
not correlate, the reliability of the composite score will not 
increase relative to the component scores.  Even without an 
increase in reliability, it might still be advantageous to 
combine the scores [1], but the results of the PCA and FA 
lend statistical support to the practice of combining 
component usability metrics into a single score [17].

Hornbæk and Law [7, p. 625] argued that attempts to 
reduce usability to one measure are bound to lose important 
information because there is no strong correlation among 
usability aspects. There are, however, real-world situations 
in which practitioners must choose only one product from a 
summative competitive usability test of multiple products 
and, in so doing, must either rely on a single measurement 
(a very short-sighted approach) or must use a composite 
score [10,17].  

Our PCA suggests that a single composite score of five 
usability measures (including post-test satisfaction) would 
likely contain about 54% of the variation of the raw scores
(see Table 16) – accounting for a substantial proportion of 
the variance, but certainly not 100%. Any summary score 
(median, mean, or other composite scores) must lose
important information (just as an  abstract does not contain 
all of the information in a full paper) – it is the price paid
for summarizing data. It is certainly not appropriate to rely 
exclusively on summary data, but this analysis indicates the 
retention of a reasonable amount of the original variables’
information.  Also, it is important to keep in mind that the 
data that contribute to a summary score remain available as 
component scores for analyses and decisions that require 
more detailed information.  

Differences in Task- and Test-Level Satisfaction
There was a noticeable difference in satisfaction 
correlations when using test-level satisfaction instead of 
task-level satisfaction. For example, Table 12 shows that 
the correlation between errors and task-level satisfaction 
was -.44, but errors and test-level satisfaction only 
correlated at r = -.16.

The correlation between task- and test-level satisfaction 
was .64 (See Table 12). Thus, post-task satisfaction 
accounted for around 40% of the variation in post-test 
satisfaction. Hornbæk and Law [7] found correlations of 
between .38 and .70 between the two, consistent with our 
findings.  This relationship is among the strongest between 
pairs of measures, but it is not high enough to indicate 
complete redundancy. 

The relatively high coefficient alphas of the post-test 
satisfaction questionnaires (See Table 18) also suggest that 
reliability is probably not a major cause of the attenuation
in the correlations for post-test satisfaction. It is reasonable 
to speculate that responses to post-test satisfaction 
questions elicit reactions to aspects beyond the immediate 

usability test (past usage, brand perception, customer 
support). The nature of the questions supports this
hypothesis; e.g., the SUS item, “I think that I would like to 
use this system frequently.”  In contrast, responses to post-
task questions are probably highly influenced by the just-
completed activity.  The direct nature of the post-task 
questions supports this idea; e.g., the ASQ item, “Overall, I 
am satisfied with the amount of time it took to complete the 
tasks in this scenario.”

There are other factors that might influence a participant’s 
rating of items in a post-test satisfaction questionnaire.  For 
example, there could be a primacy effect if the participant’s 
experience with the product in the first task was unusually 
good or bad.  Hassenzahl and Sandweg [6] reported 
evidence for recency effects from the last task, and Xie and 
Salvendy [19] found similar effects in the measurement of 
workload.  For all these reasons, it should not be surprising 
that post-task satisfaction measures correlate more highly 
than post-test satisfaction with other task-level usability 
measures.  It is possible to assess post-task subjective 
usability with a single item [18], so this need not add much 
time to a usability test. Overall, these findings strongly 
support the practice of collecting both post-task and post-
test satisfaction measurements in usability tests.  

Task Level Independence and Range Restriction
Although there are many likely causes for the differences 
among aggregation levels, one notable difference occurs
when correlating the data within users or tasks. At this level 
there was often little variation. Many users completed all 
tasks successfully and many tasks had 90 to 100% 
successful completion rates. Error rates were also often 
homogenous at this level, with many users committing no
errors and many tasks being error-free. Under these 
circumstances, it is impossible to compute a correlation, 
which excludes the task from the types of analysis
conducted in the present study (as illustrated with the 
sample data in Table 4). 

At different levels of aggregation though (e.g., OO), a task 
with a 100% completion rate gets combined with other 
tasks, allowing it to contribute to the computed correlations. 
What’s more, at very high or low levels of magnitude there 
is also a more limited opportunity to detect correlations (as 
only 1 or 2 values may differ). This problem is most 
noticeable when correlating the discrete measures 
(completion rates and errors) when there are a limited 
number of values. It is also a potential problem for post-
task satisfaction scales if there are few scale steps. 

This factor affected 5 out of 6 of the correlation pairs, with 
the greatest range restriction expected for the correlations 
between completion and errors and between completions 
and satisfaction.  To a slightly lesser extent, it will restrict 
the correlations between completion and time, errors and 
time, and errors and satisfaction.  There should be little 
restriction of the correlation between time and satisfaction.  



CONCLUSION
Recent investigations of the magnitude of correlations 
among prototypical usability metrics have had mixed 
results, with some indicating substantial correlation [17] 
and others less substantial [7].  In this paper, we report the 
correlations computed from a database with prototypical 
usability metrics (task times, completion rates, errors, post-
task satisfaction, and post-test satisfaction) from 90 distinct 
summative usability studies. For these types of studies and 
measurements, the data indicated that prototypical usability 
metrics correlate substantially. Additional analyses 
provided evidence of their association with an underlying 
general construct of usability made up of an objective factor 
and a subjective factor, supporting the practice of 
combining component usability metrics into a single score. 
The results of this study help to clarify the factors that 
affect the correlation structure of usability studies, such as a 
focus on summative usability studies (as opposed to more 
general studies of human-computer interaction), 
distinguishing between post-task and post-test satisfaction 
measurement, and the effect of various data-aggregation 
schemes.
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