
1 IAEA-CN245-042

Dynamic probabilistic risk assessment at a design stage
for a sodium fast reactor.

V. Rychkov and H.Chraibi

EDF R&D, EDF Lab Paris-Saclay, Palaiseau, France

E-mail contact of main author: valentin.rychkov@edf.fr

Abstract. A Sodium Fast Reactor is a good candidate for an application of dynamic probabilist risk
assessment due to long mission times and possible system recoveries. In this paper, we present a new
approach to construct the dynamic probabilistic model of the Decay Heat Removal (DHR) function of a
Sodium Fast Reactor. We use Distributed Stochastic Hybrid Automata concept with the PyCATSHOO
modeling tool. The proposed approach allows to construct a dynamic probabilistic model of a SFR DHR
function that incorporates the time evolution of physical parameters and dynamic changes in the states
of DHR systems (failure or recovery of DHR system components) and presents enough flexibility to be
applied at the design stage.

Key Words: Dynamic PSA, DHR modeling, PyCATSHOO, Python

1. Introduction

The design of a new reactor is an iterative process. At a design stage, each reactor system may exist
in several variants : combined together, these variants give different reactor designs. Probabilistic risk
assessment (PRA) is a tool that may help to compare different reactor designs. Conservative or macro-
scopic way to perform probabilistic risk assessment at a design stage may be insufficient to provide enough
information to distinguish between different plant design variants [1].

The classical way to construct a PRA model with boolean Event Trees/Fault trees (ET / FT) is well
applicable for a PWR type reactors at a design stage. Nevertheless ET/FT formalism finds its limits
for a Sodium Fast Reactor if one considers long mission times and possible system recoveries. Due to
thermal inertia and simplicity of thermal-hydraulic behavior, the Decay Heat Removal (DHR) function
of a Sodium Fast Reactor (SFR) is a good candidate for dynamic probabilistic risk assessment [2, 3].

In this paper, we present a new approach to construct the dynamic probabilistic model for the DHR
function of a Sodium Fast Reactor with PyCATSHOOmodeling tool. PyCATSHOO is a tool dedicated for
dependability analysis of hybrid systems [4, 5, 6], i.e. systems where deterministic continuous phenomena
and stochastic discrete behaviour are equally important [7].

The paper is organised as follows: we introduce PyCATSHOO and its modeling capabilities in more
details, then we introduce an example of an SFR DHR systems that perform the DHR function, we
present the PyCATSHOO model of the DHR systems and simulation results.

2. PyCATSHOO modeling tool

The safety requirement of its nuclear and hydraulic fleet, has allowed EDF to have long-standing experi-
ence in using and developing PRA and PSA tools of complex systems. PyCATSHOO is one of the tools
developed over last few decades at EDF R&D.

PyCATSHOO implements the concept of Piecewise Deterministic Markov Process (PDMP) using
distributed stochastic hybrid automata. The principles of this paradigm are described in details in [4].
Back there, PyCATSHOO was in a prototype stage whereas a nearly industrial version is currently in
use at EDF to perform several safety studies. During 2017, EDF is going to release PyCATSHOO under
a freeware licence.

2 IAEA-CN245-042

PyCATSHOO is a C++ written library and has two APIs (Application Programming Interfaces) in
Python and C++. These APIs provide a set of tools, based on distributed hybrid stochastic automata to
model and assess the complex hybrid systems. PyCATSHOO combines the power of Python language1
and LEGO type modelling approach.

A hybrid stochastic automaton may exhibit random transitions between its states according to a
predefined probability law. It may also exhibit deterministic transitions governed by the evolution of
physical parameters.

One can summarize a modelling approach with PyCATSHOO as follows:

• A system is divided in a functional, or any other way, into elementary subsystems, components.

• Each of elementary subsystem, component is described as a set of hybrid stochastic automata,
state variables and message boxes.

• Message boxes ensure message exchanges between subsystems, components and hence ensure their
dependencies.

• The system behaviour is simulated using Monte Carlo sampling.

• Sequences that lead to desirable end states are traced and clustered.

PyCATSHOO offers a very flexible modeling framework that allows to define generic components (classes)
of hybrid stochastic automata that can be reused in different reliability studies. It can greatly reduce
model development costs and thus make Dynamic PRA accessible at the design stage.

3. Decay Heat Removal system of a SFR

We consider a pool type SFR with three different DHR systems: an active DHR system S1 with two
trains, a passive (based on the natural circulation) system S2 with two trains, and a third Reactor Vault
Auxiliary Cooling System (RVACS) S3, through the main vessel. The primary sodium mean temperature
Tm evolution as a function of time can be described by Eq.(1):

MCp
dTm

dt
= Pres(t) + Ppumps(t)−NS1PS1(Tm)−NS2PS2(Tm)−NS3PS3(Tm) (1)

where MCp is the thermal inertia of the sodium pool, Pres is the residual power of the reactor, Ppumps

is the power produced by the pumps. NSX is the number of SX trains available. Performance of each
SX train PSX(Tm) is a known function of the pool temperature and possibly other parameters [3].

4. Modeling of a DHR function with PyCATSHOO

As we discussed above, to design a system with PyCATSHOO we define generic classes that describe
different elements of the model. For the needs of this case study we create the set of the PyCATSHOO
classes that are described below.

4.1. Generic component

aComponent class describes the behaviour of a generic DHR component (a pump, a heat exchanger, a
valve) that can be in an operating or in a failed state. It includes failure on demand, failure to operate
and recovery transitions, see Listing 1.2

1 import Pycatshoo as Pyc
2 c l a s s aComponent (Pyc . CComponent) :
3 de f __init__(s e l f , name , pycSystem , t ra in , ∗ args , ∗∗ kwargs) :
4 #State s
5 s e l f . addState ("S") #S=STARTING
6 s e l f . addState ("O") #O=OPERATING

1Python is a high level open-source programming language. An interested reader can easily learn
Python following one of the free tutorials on the internet like http://www.diveintopython.net

2Here and in the following listings, a green text starting with a hash-tag is a comment.

http://www.diveintopython.net

3 IAEA-CN245-042

7 s e l f . addState ("F") #F=FAILED
8 #Defau l t Trans i t i on parameters
9 #on−demand f a i l u r e p r obab i l i t y

10 s e l f . gamma=s e l f . addPortOut ("gamma" ,Pyc . VarType . double , 0 . 0 1)
11 #f a i l u r e to operate f requency
12 s e l f . lmbda=s e l f . addPortOut ("lmbda" ,Pyc . VarType . double , 0 . 0 0 001)
13 #recovery ra t e mu
14 s e l f .mu=s e l f . addPortOut ("mu" ,Pyc . VarType . double , 0 . 0 00001)
15 #Trans i t i on s :
16 #On−demand f a i l u r e t r a n s i t i o n s :
17 t r=s e l f . g e tS ta t e ("S") . addTrans i t ion ("SOF")
18 t r . addTarget (s e l f . g e tS ta t e ("F") ,Pyc . TransType . f a u l t)
19 t r . addTarget (s e l f . g e tS ta t e ("O") ,Pyc . TransType . t rans)
20 t r . setDistLaw (Pyc . IDistLaw . newLaw(s e l f , Pyc .TLawType . in s t , s e l f . gamma))
21 #Fa i l u r e to operate t r a n s i t i o n
22 t r=s e l f . g e tS ta t e ("O") . addTrans i t ion ("O_F")
23 t r . addTarget (s e l f . g e tS ta t e ("F") ,Pyc . TransType . f a u l t)
24 t r . setDistLaw (Pyc . IDistLaw . newLaw(s e l f , Pyc .TLawType . expo , s e l f . lmbda))
25 #Component recovery t r a n s i t i o n
26 t r=s e l f . g e tS ta t e ("F") . addTrans i t ion ("F_O")
27 t r . addTarget (s e l f . g e tS ta t e ("O") ,Pyc . TransType . rep)
28 t r . setDistLaw (Pyc . IDistLaw . newLaw(s e l f , Pyc .TLawType . expo , s e l f .mu))

Listing 1: Definition of aComponent class

4.2. Generic system train

aTrain class describes a generic SFR system train. It can be a DHR train, a support system train, or
I&C train. From an engineering point of view a train is an assembly of the components that is capable to
perform a specific function: cooling (a DHR system trains, ventilation system trains), AC power supply
(normal or emergency), or system control (I&C). For simplicity we assume that all train components are
necessary to perform the train function (no redundancy inside a train). Listing 2 shows an example of
implementation of aTrain class.

1 c l a s s aTrain (Pyc . CComponent) :
2 de f __init__(s e l f , name , pycSystem , , ∗ ∗ kwargs) :
3 Pyc . CComponent . __init__(s e l f , name , pycSystem)
4 s e l f . components =[] #should conta in po i n t e r s to system components
5 s e l f . support =[] #support systems needed f o r a t r a i n to func t i on
6 s e l f . systemName=name . s p l i t (’_ ’) [0]
7 s e l f . poo l =[]
8 i f kwargs :
9 f o r key in kwargs :

10 i f key==’ components ’ :
11 f o r componentName in kwargs [key] :
12 s e l f . components . append (aComponent (componentName ,

pycSystem , s e l f))
13 i f key==’ support ’ :
14 s e l f . support . extend (kwargs [key])
15 i f key==’ pool ’ :
16 s e l f . poo l . append (kwargs [key])
17 #Train s t a t e s :
18 s e l f . addState ("N") #Non−opera t ing
19 s e l f . addState ("O") #Operating
20 #Train t r a n s i t i o n s :
21 t r=s e l f . g e tS ta t e ("N") . addTrans i t ion ("N_O")
22 t r . s e tCondi t ionFct (" l o g i c a lFunc t i on " , s e l f . l o g i ca lFunc t i on , Fa l se)
23 #The t r a n s i t i o n to the operat ing s t a t e happens when l o g i c a lFunc t i on

takes "True" value

4 IAEA-CN245-042

24 t r . addTarget (s e l f . g e tS ta t e ("O") ,Pyc . TransType . t rans)
25 t r=s e l f . g e tS ta t e ("O") . addTrans i t ion ("O_N")
26 t r . s e tCondi t ionFct (" l o g i c a lFunc t i on " , s e l f . l o g i ca lFunc t i on , True)
27 #The t r a n s i t i o n to non−opera t ing s t a t e happens when l o g i c a lFunc t i on

() takes " Fa l se " value
28 t r . addTarget (s e l f . g e tS ta t e ("N") ,Pyc . TransType . t rans)
29 #The t r a i n i s op e r a t i ona l only i f a l l the components and support

systems are ope r a t i ona l
30 de f l o g i c a lFunc t i on (s e l f) :
31 s t a t e=True
32 f o r component in s e l f . components :
33 s t a t e=s t a t e ∗component . s t a t e ()
34 f o r supSystem in s e l f . support :
35 s t a t e=s t a t e ∗supSystem . s t a t e ()
36 re turn bool (s t a t e)

Listing 2: Definition of aTrain class

4.3. Primary circuit

The Pool class implements the Eq.(1) that governs the evolution of the primary sodium temperature
as a function of number of available DHR trains. Listing 3 shows an example of implementation of the
Pool class. The pool is in OK state if the temperature is below maximum sodium temperature e.g.
650C, otherwise we consider a core damage and transition into a CD ("Core Damage") state. Instead of
temperature criteria one can easily implement a Larson-Miller type of damage criteria [8].

1 import Pycatshoo as Pyc
2 c l a s s poo lC la s s (Pyc . CComponent) :
3 de f __init__(s e l f , name , system) :
4 Pyc . CComponent . __init__(s e l f , name , system)
5 # Dec la ra t i on o f d i f f e r e n t i a l equat ion with in PyCATSHOO:
6 s e l f .PDMP_name = "poolMeanTemp"
7 s e l f . system () . addPDMPManager(s e l f .PDMP_name)
8 # Ordinary D i f f e r e n t i a l equat ion
9 s e l f .PDMP_ODE_name = "ODE"

10 s e l f . addODE(s e l f .PDMP_name, s e l f .PDMP_ODE_name, s e l f .ODE, 0)
11 # add the va r i ab l e that w i l l be tracked by PDMP c o n t r o l l e r
12 s e l f . addODEPort(s e l f .PDMP_name, s e l f .meanTemp)
13 s e l f . addState ("OK")
14 s e l f . addState ("CD")
15 s e l f . s e t I n i t S t a t e ("OK")
16 t r=s e l f . g e tS ta t e ("OK") . addTrans i t ion ("OK_CD")
17 #The cond i t i on o f the core damage
18 t r . s e tCondi t ionFct ("coreDamage" , s e l f . coreDamage , Fa l se)
19 t r . addTarget (s e l f . g e tS ta t e ("CD") ,Pyc . TransType . t rans)
20 t r . setDistLaw (Pyc . IDistLaw . newLawVal (s e l f , Pyc .TLawType . in s t , 1))
21 de f coreDamage (s e l f) :
22 i f s e l f .meanTemp . dValue ()> 650 : #meanTemp>650C
23 re turn True
24 e l s e : r e turn Fal se

Listing 3: Definition of the Pool class

The following part (see Listings 4) of the Pool class contains different functions (the residual power as a
function of time, performance of SX trains) to integrate the differential Eq. (1) over time.

1 de f ODE(s e l f) :
2 # Here we de f i n e the d i f f e r e n t i a l equat ion PyCATSHOO w i l l i n t e g r a t e
3 # s e l f .po_NSX − i s the number o f op e r a t i ona l SX t r a i n s
4 s e l f .meanTemp . setDvdtODE(

5 IAEA-CN245-042

5 s e l f . Pres () − s e l f . po_NS1 . dValue () ∗ s e l f . S1 () − s e l f . po_NS2 .
dValue () ∗ s e l f . S2 () − s e l f . po_NS3 ∗ s e l f . S3 ())

6 de f Pres (s e l f) :
7 # re s i d u a l heat power as a func t i on o f time
8 re turn Residual_Heat_at_time_t
9 de f S1 (s e l f) :

10 # Power evacuated by a S1 t r a i n
11 re turn power_S1
12 de f S2 (s e l f) :
13 # Power evacuated by a S2 t r a i n
14 re turn power_S2
15 de f S3 (s e l f) :
16 # Power evacuated by a S3 t r a i n
17 re turn power_S3

Listing 4: Pool class, differential equation and residual heat data

4.4. Common Cause Failures

aCCF class implements a Binomial Failure Rate Common Cause Failure model [9]. The details of this
implementation are not relevant for the purpose of this paper.

5. An example of a model for DHR function

Above we defined generic classes for a generic component, a generic system train, the evolution of physical
parameters inside the primary circuit as function of available SX trains, and Common Cause Failures.
In this section we show how one can construct architectures of different DHR systems based on these
classes.

To construct a model of DHR function, we assume that different trains of the same DHR system
(S1 or S2 or S3) are consisted of identical components. The components of the trains may have or may
not have common failure modes. For example, in Listing 5, active components of the DHR trains like
Electromagnetic Pump (PEM) of S1 system or Opening vent of S2 system or a regular Pump of S3
system do have common failure modes. And passive components like Heat Exchangers (HEX) do not
have common failure modes.

1 import Pycatshoo as Pyc
2 from SFR_CCF import ∗ #Import o f Common Cause f a i l u r e model
3 from SFR_Pool import ∗ #Import o f the Pool c l a s s
4 from SFR_Train import ∗ #Import o f the aTrain c l a s s
5 from copy import deepcopy
6 c l a s s SFR(Pyc . CSystem) :
7 de f __init__(s e l f) :
8 Pyc . CSystem .__init__(s e l f , "SFR") #name o f the system Class
9 s e l f . poo l = poo lC las s ("Pool " , s e l f) #name o f the poo lC la s s i n s t anc e

10 #l i s t o f components f o r each system
11 s e l f . CCFcomponentsS1=["PEM"]
12 s e l f . CCFcomponentsS2=["VENT"]
13 s e l f . CCFcomponentsS3=["PUMP"]
14 s e l f . componentsS1=["HEX"]
15 s e l f . componentsS2=["HEX"]
16 s e l f . componentsS3=["HEX"]

Listing 5: Composition of different SX trains

We construct each train of a SX system separately. Listing 6 shows an example of the model of
S1 trains one and two. They have the components with and without common cause failures, they
are connected to the primary pool to extract residual heat and they depend on the electrical self.
systemELECx system trains one and two.

6 IAEA-CN245-042

1 # S1 system t r a i n one
2 s e l f . toS11 [’ components ’]=deepcopy (s e l f . componentsS1)
3 s e l f . toS11 [’ components ’] . extend (deepcopy (s e l f . CCFcomponentsS1))
4 s e l f . toS11 [’ pool ’]= s e l f . pool
5 s e l f . toS11 [’ support ’]= s e l f .ELEC1
6 # S1 t r a i n two
7 s e l f . toS12 [’ components ’]=deepcopy (s e l f . componentsS1)
8 s e l f . toS12 [’ components ’] . extend (deepcopy (s e l f . CCFcomponentsS1))
9 s e l f . toS12 [’ pool ’]= s e l f . pool

10 s e l f . toS12 [’ support ’]= s e l f .ELEC2
11 #S1 system that has two t r a i n s
12 s e l f . S1=[]
13 s e l f . S1 . append (aTrain ("S1_1" , s e l f , ∗∗ s e l f . toS11))
14 s e l f . S1 . append (aTrain ("S1_2" , s e l f , ∗∗ s e l f . toS12))

Listing 6: Construction of S1 system with the dependencies

In the same way we can construct S2, S3 and ELEC systems.
Finally, we create CCF groups for the components that have common failure modes. We use Binomial

Failure Rate model [9] to represent Common Cause Failures.

5.1. Launching simulations

In order to simulate the behaviour of DHR function, we create an instance of SFR class (see List. 5),
load a parameter file and launch a parallel simulation. We span the simulation runs on all available cores.
Different HPC architectures can be used to perform these simulations in an efficient way.

1 de f sysExec () :
2 system = SFR()
3 system . loadParam (" poolTest . xml")
4 system . s imulate ()
5 i f system .MPIRank() > 0 :
6 e x i t (0)
7 i f __name__ == ’__main__ ’ :
8 t ry :
9 sysExec ()

10 except Exception as e :
11 pr in t (type (e) , e)
12 Pyc . pr intMessages ()

Listing 7: Simulation of the model

5.2. Design Variants

The scripting way to create system trains, tracking of the dependencies and common cause failures (see
Listing 6) together with the coupling to the simple thermalhydraulic model of the primary circuit (Listings
3,4) allows easy study of design variants.

To change the composition of a SX train, one need to change the list self.componentsSX;
to change the performance of DHR trains one has to modify def SX(self) functions; to change
components in CCF groups one has to modify self.CCFcomponentsSX lists.

6. Example of a simulation results

To launch a simulation with PyCATSHOO, we need to fix the reliability parameters of different system
components.

The parameter file "poolTest.xml" (see an example in listing 8) contains different reliability data
e.g. failure rates, failure probabilities on demand, common cause failure parameters etc.

7 IAEA-CN245-042

1 <PY_PARAM
2 NAME="MyParameters"
3 TRACE="1" SEQ_NB="100"
4 TMAX="200000"
5 RES_FILE="out . txt ">
6 <PRT NAME="Pool . convect ionFactor " INITV=" 0.02 "/>
7 <PRT NAME="S1_1_PEM.gamma" INITV=" 0.01 "/>
8 <PRT NAME="S1_1_PEM. lmbda" INITV=" 0.0001 "/>
9 </PY_PARAM>

Listing 8: Parameter file of a PyCATSHOO model

The simulated sequences of a DHR function with PyCATSHOO contain events that lead to the core
damage, evolution of temperature as a function of time. The probability of the core damage is extracted
from simulated sequences.

Figure 1 shows the time evolution of primary sodium temperature for 100 different sequences. Those
sequences that reach 650C are considered as core damage sequences. We can note the importance of
component recoveries. There are sequences that do not reach the core damage state because some of
DHR trains were recovered.

FIG. 1: An example of time evolution of primary sodium temperature (y-axis in Celsius)
as a function of time (x-axis in seconds) for a set of simulated sequences.

Table I (see next page) contains a sequence that leads to the core damage. This sequence involves
a non-lethal CCF event. The table I provides the time stamps of the events (transitions) as well as
corresponding components names. E.g. at 21808.9 sec, the pump of train 2 of S3 system failed etc.

The similar (in chronology) sequences can be clustered. The probability of a macro-sequence (the
cluster of sequences with the similar chronology of events) is the ratio between the number of the sequences
in the cluster and the total number of simulated sequences. The total probability of core damage is the
sum of probabilities of macro-sequences.

8 IAEA-CN245-042

TABLE I: An example of the sequence that leads to the core damage.

n Average
times-
tamp

Name Final
state

type law

1 12731.5 S2_2_VENT.O_F F def exp
2 21808.9 S3_2_PUMP.O_F F def exp
3 38631.3 S3_1_PUMP.O_F F def exp
4 39585.2 S2_1_VENT.O_F F def exp
5 49361.6 S1_2_PEM.O_F F def exp
6 58138.6 S2_3_VENT.O_F F def exp
7 63260.1 CCF_S2_VENT.ON_NL ONL tr exp
8 131373 S1_1_PEM.O_F F def exp
9 190357 Pool.OK_CD CD tr inst

7. Conclusions

This paper briefly describes an approach to create a dynamic model of an SFR DHR system using
PyCATSHOO tool.

We can treat support systems, dependencies, Common Cause Failures, and physical phenomena inside
the same model. The scripting way to create the model allows us to easily study different variants of
DHR architecture to support the design of an SFR.

Acknowledgments

Authors would like to acknowledge M. Marquès and F. Aubert for fruitful discussions, and Sodium Fast
Reactor R&D project of CEA that have supported this work.

References

[1] GAUTHE P. et al. "Use of simplified PSA studies in support of the ASTRID design process" (Proc.
FR13, Paris, 2013)

[2] CURNIER, F. et al., "Symbiosis of static and dynamic probabilistic approaches to support the design
process and evaluate the safety of SFR", (Proc. PSA 2015, , Sun Valley ID).

[3] MARQUES M. et al. "Consideration of Physical Behavior and Possibility of Repair in the Long Term
Reliability Evaluation of Decay Heat Removal Systems", (Proc. PSA 2015, , Sun Valley ID).

[4] CHRAIBI H., "Dynamic reliability modeling and assessment with PyCATSHOO: Application to a
test case", (Proc. Probabilistic Safety Analysis and Management, Tokyo, 2013).

[5] CHRAIBI H. et al. "PyCATSHOO:Toward a new platform dedicated to dynamic reliability assess-
ments of hybrid systems", (Proc. PSAM 13, Seoul, 2016).

[6] BROY P., et al. "A new methodology to model and assess reliability of large dynamic hybrid systems",
(Proc. of Mathematical Methods in Reliability (MMR) , Stellenbosch, South Africa 2013).

[7] RYCHKOV V., KAWAHARA K., "PSA Level 2 with dynamic event trees. Lessons learned and
perspectives", (Proc PSA 2015, Sun Valley ID).

[8] https://en.wikipedia.org/wiki/Larson-Miller_Parameter

[9] ATWOOD C. L. "The binomial failure rate common cause model", ,Technometrics, 28(2), 139-148,
(1986).

https://en.wikipedia.org/wiki/Larson-Miller_Parameter

	Introduction
	PyCATSHOO modeling tool
	Decay Heat Removal system of a SFR
	Modeling of a DHR function with PyCATSHOO
	Generic component
	Generic system train
	Primary circuit
	Common Cause Failures

	An example of a model for DHR function
	Launching simulations
	Design Variants

	Example of a simulation results
	Conclusions

