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Abstract

Operational risk data, when available, are usually scarce, heavy-tailed and possibly de-
pendent. In this work, we introduce a model that captures such real-world characteristics
and explicitly deals with heterogeneous pairwise and tail dependence of losses. By consid-
ering flexible families of copulas, we can easily move beyond modeling bivariate dependence
among losses and estimate the total risk capital for the seven- and eight-dimensional distri-
butions of event types and business lines. Using real-world data, we then evaluate the impact
of realistic dependence modeling on estimating the total regulatory capital, which turns out
to be, as often expected, up to 38% smaller than what the standard Basel approach would
prescribe.

Keywords: operational risk, risk capital, dependence modeling, zero inflation, Student’s t
copula, vine copula,

1 Introduction

The magnitude of operational losses observed in recent years and their potential systemic ef-
fects has pointed out the need of development of realistic and therefore often more sophisticated
quantitative risk management models (see Basel Committee on Banking Supervision [2009b]).
Among the main challenges in operational risk modeling, we have the presence of very hetero-
geneous losses, usually classified in a matrix of 56 risk classes (seven event types (ETs) × eight
business lines (BLs)1; see Basel Committee on Banking Supervision [2006]), scarcity of data and
large numbers of zero losses for some classes, short time series with extreme tails and the need
to estimate quantiles at very high confidence levels. In fact, banks are required to calculate the
minimum capital requirement as the 99.9%-Value-at-Risk of the loss distribution such that

MCR = VaR99.9%

(
56∑
j=1

Sj

)
, (1.1)

where Sj is the aggregate loss of one of the 56 BL-ET combinations. It is clear that this quantity
is influenced by the dependencies among the different risk classes. The standard approach of the
Basel Committee on Banking Supervision [2006] requires banks to marginally calculate the risk
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1Business lines: 1. Corporate Finance, 2. Trading and Sales, 3. Retail Banking, 4. Commercial Banking, 5.

Payment and Settlement, 6. Agency and Custody, 7. Asset Management, 8. Retail Brokerage. Event types: 1.
Internal Fraud, 2. External Fraud, 3. Employment Practices & Workplace Safety, 4. Clients, Products & Business
Practices, 5. Damage to Physical Assets, 6. Business Disruption & System Failures, 7. Execution, Delivery &
Process Management.
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capital of all 56 BL-ET combinations and then determine the risk capital as the sum of these
56 figures, that is

MCRBasel =
56∑
j=1

VaR99.9% (Sj) . (1.2)

This corresponds to the assumption of comonotonicity (perfect dependence) among all 56 BL-ET
combinations, which is often perceived by banks as a worst-case scenario for the MCR, assuming
that MCRBasel ≥ MCR. However, due to the lack of subadditivity of the VaR measure for non-
elliptical distributions (see Artzner et al. [1999]), it may also happen that MCR ≥ MCRBasel.
The question if the standard Basel approach is too conservative has therefore been raised many
times by practitioneers and researchers.

Regulators allow then, with due diligence, explicit dependence modeling under the Advanced
Measurement Approach (AMA)2. The supervisory guidelines for the AMA banks [Basel Commit-
tee on Banking Supervision, 2011] underline that dependence modeling for operational risk is an
evolving area, where many approaches are currently used by banks with potential impact on the
capital requirements. Results from the 2008 Loss Data Collection Exercises [Basel Committee
on Banking Supervision, 2009a] suggest that, among the AMA banks only 17% use correlation
coefficients, while most rely on copulas (43%), with a preference for Gaussian copulas, and 31%
AMA banks use other methods.

Research is high then on the regulators agenda to avoid spurious differences in exposure
estimates (see Basel Committee on Banking Supervision [2011, §224]) and to provide sound
guidelines for dependence modeling in operational risk, explicitly suggesting to move beyond
Gaussian copulas and correlations coefficients. Theoretical and empirical evidence so far has
mostly supported the idea that the assumption of perfect positive dependence is unduly strong
and using internally determined correlations, as Basel II allows, could lead to lower the risk
capital requirements while still providing adequate coverage for future losses (see Artzner et al.
[1999], Chapelle et al. [2008] and Frachot et al. [2004]). However, recently Mittnik et al. [2011]
have also shown that, despite only for a small number of risk classes, modeling bivariate depen-
dence could also lead to increase the risk capital and tail dependence, which cannot be captured
by Pearson’s correlation coefficient, should not be ignored. What is the total impact on risk
capital of explicit dependence modeling among all BLs and ETs is still, to our knowledge, a
question with no answer, as estimating realistic multivariate operational risk management mod-
els with more than two cells can be computationally challenging and data are often scarce for
model validation.

In this work, we aim at analyzing how much the risk capital estimate may change when
modeling dependencies in multivariate settings. That is, we consider the total impact of ex-
plicit dependence modeling within the eight- or seven-dimensional BL and ET distributions
by introducing a statistical model, which allows to explicitly consider the presence of extreme
tails, heterogeneous pairwise dependence and large numbers of zero observations. In particular,
we propose a flexible approach that, inspired by the work of Deb et al. [2009] on drug expen-
ditures and Erhardt and Czado [2012] on dependent health insurance claims, directly models
the dependence between the aggregate losses in BL-ET combinations using copulas. Since the
non-occurrence of losses (zero events) also conveys information about the dependence character-
istics, we explicitly incorporated it to allow a more accurate assessment of dependence. Finally,

2§669d in Basel Committee on Banking Supervision [2006]: “Risk measures for different operational risk esti-
mates must be added for purposes of calculating the regulatory minimum capital requirement. However, the bank
may be permitted to use internally determined correlations in operational risk losses across individual operational
risk estimates, provided it can demonstrate to the satisfaction of the national supervisor that its systems for deter-
mining correlations are sound, implemented with integrity, and take into account the uncertainty surrounding any
such correlation estimates (particularly in periods of stress). The bank must validate its correlation assumptions
using appropriate quantitative and qualitative techniques.”
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given that no excessive data aggregation is required, parameter estimation can be based on the
maximum amount of available observations.

By using real-world data from the Italian Database of Operational Losses (DIPO) in the
period from January 2003 to June 2011, we can provide new and much needed insights on
the impact of different dependence modeling strategies on total capital requirements and their
validation on real-world data. In fact, our results suggest that explictly modeling dependence
and zero inflation can lead to a reduction, as often expected, of the total regulatory capital,
which might turn out to be up to 38% smaller than what the Basel comonotonicity approach
would prescribe.

The paper is organized as follows. Section 2 describes the general modeling framework by
discussing the key components of our modeling strategy. Dependence modeling of positive losses
is treated in Section 3, after introducing the key properties we consider as relevant to compare
the four major copula classes that we investigate for multivariate operational risk modeling.
Marginal modeling and a detailed description of the copulas families considered are reported in
Appendix A and B, respectively. Modeling dependence among zero events as additional model
component is then described in Section 4, and the computation of risk measures is subsequently
discussed in Section 5. Section 6 finally provides the results of the empirical investigation on
real-world data, while Section 7 concludes.

2 Zero-inflated dependence model

Common characteristics of operational risk data can be summarized as follows. First, if losses
are modeled on a weekly or monthly basis, it may frequently occur that there are no losses
observed for a particular BL or ET. An excessive number of zero losses is called zero inflation.
Second, distributions of operational losses per BL or ET may be heavy-tailed, i.e. there is a
significant probability of extreme losses that has to be taken into account. Third, different BLs
and ETs are not independent. Most importantly, the type of dependence, especially the so-called
tail dependence, may have a huge impact on risk capital estimates.

While the heavy tails in marginal distributions have already been extensively discussed in the
literature (see for example Chavez-Demoulin et al. [2006] and Gourier et al. [2009]), appropriate
zero-inflated dependence models for aggregate operational losses have, to our knowledge, not
yet been proposed.

Copulas have been established as the fundamental concept of statistical dependence mod-
eling. A d-dimensional copula is a multivariate distribution function on [0, 1]d with uniformly
distributed marginals. Its central role in dependence modeling is due to the theorem by Sklar
[1959], which states that any multivariate distribution can be decomposed into its margins and
a copula. More precisely, let X = (X1, ..., Xd)

′ ∼ F with marginal distributions F1, ..., Fd, then

F (x1, ..., xd) = C1,...,d(F1(x1), ..., Fd(xd)), x1, ..., xd ∈ (R ∪ {−∞,∞})d, (2.1)

where C1,...,d is a d-dimensional copula. If X is a continuous random vector, then the copula
C1,...,d is unique and the multivariate density f of X can be decomposed as

f(x1, ..., xd) = c1,...,d(F1(x1), ..., Fd(xd))f1(x1)...fd(xd), (2.2)

where c1,...,d is the copula density and f1, ..., fd are the marginal densities of f . Comprehensive
reference books on copulas are Joe [1997] and Nelsen [2006].

Now, suppose that we want to model the multivariate distribution of d BLs, ETs or cells of
the 7× 8 BL-ET matrix. For brevity, we henceforth always speak of d cells with d ∈ {7, 8, 56}.
Let Sj ≥ 0, j = 1, ..., d, denote the aggregate loss of the jth cell. Then, we explicitly model the
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presence of zero inflation in the aggregate loss by defining the following binary random variable
Wj ∼ PWj for each cell j ∈ {1, ..., d} as

Wj :=

{
1, zero loss in cell j

0, otherwise
.

That is, Wj is the zero inflation component of the otherwise positive continuous part of Sj ,
which we denote by S+

j > 0. We obtain the following decomposition:

Sj = Wj × 0 + (1−Wj)S
+
j = (1−Wj)S

+
j ≥ 0. (2.3)

If PWj (0) = P (Wj = 0) = 1, then there is no zero inflation.
Inspired by the work of Deb et al. [2009] on drug expenditures and Erhardt and Czado [2012],

who build a three-dimensional model for dependent health insurance claims, we introduce the
multivariate zero-inflated density of S = (S1, ..., Sd)

′ and W := (W1, ...,Wd)
′ as

fW ,S(w, s) = pW (w)f{S+
j , j ∈D(w)}(sj , j ∈ D(w)), (2.4)

where w := (w1, ..., wd)
′, s := (s1, ..., sd)

′ and D(w) = {i ∈ {1, ..., d} : wi = 0}. That is, D(w)
contains all indices, for which the respective component of w is equal to 0. In other words,
these are the cells with non-zero events. The |D(w)|-dimensional density of S+

j , j ∈ D(w), is
denoted by f{S+

j , j ∈D(w)}; if D(w) = ∅, then f∅ := 1. The multivariate binary probability mass

function of W is denoted by pW . More explicitly, we can write Expression (2.4) also as

fW ,S(w, s) = pW (w)
[
1{w=(1,...,1)′} + 1{w=(0,1,...,1)′}fS+

1
(s1) + 1{w=(1,0,1,...,1)′}fS+

2
(s2)

+ ...+ 1{w=(1,...,1,0)′}fS+
d

(sd) + 1{w=(0,0,1,...,1)′}fS+
1 ,S

+
2

(s1, s2)

+ 1{w=(0,1,0,1,...,1)′}fS+
1 ,S

+
3

(s1, s3) + ...+ 1{w=(1,...,1,0,0)′}fS+
d−1,S

+
d

(sd−1, sd)

+ 1{w=(0,0,0,1,...,1)′}fS+
1 ,S

+
2 ,S

+
3

(s1, s2, s3) + ...+ 1{w=(0,...,0)′}fS+
1 ,...,S

+
d

(s)
]
,

where 1 is the indicator function. Clearly, only exactly one of the indicator functions is different
from zero.

In this way, we separate the dependence of the zero inflation component from the dependence
of the positive losses. By applying Sklar’s theorem (2.2) to f{S+

j , j ∈D(w)}, we further obtain

f{S+
j , j ∈D(w)}(sj , j ∈ D(w)) = c{j ∈D(w)}(FS+

j
(sj), j ∈ D(w))

∏
j ∈D(w)

fS+
j

(sj),

where c{j ∈D(w)} is the copula density of C{j ∈D(w)}, the |D(w)|-dimensional margin of the d-
dimensional copula C1,...,d for all cells, which is assumed to be absolutely continuous such that
the density exists. More explicitly, it holds that

C{j ∈D(w)}(uj , j ∈ D(w)) = C1,...,d(v), uj ∈ [0, 1] ∀j ∈ D(w),

where v := (v1, ..., vd)
′ with

vj =

{
uj , j ∈ D(w)

1, otherwise
∀j = 1, ..., d.

Then, it follows that we can state Expression (2.4) in terms of the copula C1,...,d and its margins
as

fW ,S(w, s) = pW (w)c{j ∈D(w)}(FS+
j

(sj), j ∈ D(w))
∏

j ∈D(w)

fS+
j

(sj). (2.5)
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This means that, as in the classical copula approach, we can separate the dependence modeling
in terms of the copula C1,...,d from the modeling of the marginal distributions FS+

j
, j = 1, ..., d, in

(2.5). In addition, the multivariate binary distribution pW has to be modeled to account for the
zero inflation component. Appropriate choices for these three model components are discussed
in the following. We begin with the copula of positive losses (Section 3) and then turn to the
zero loss distribution pW (Section 4). Marginal distributions are briefly treated in Appendix A,
while a detailed description of pros and cons of different copulas families is reported in Appendix
B.

3 Copula modeling of positive losses

The between-cell copula is central to the model in order to appropriately capture dependencies
in operational risk data. In the simplest setting, the cells are simply assumed to be either
independent or perfectly dependent. As this is not necessarily the case, the question is what
properties a reasonable copula for operational losses should exhibit.

(i) Pairwise dependence: Clearly, dependence among different pairs of cells may be heteroge-
neous. Therefore the between-cell copula should be flexible enough to allow for different
strengths of dependence for different pairs.

(ii) Tail dependence: The between-cell copula should allow for the modeling of tail dependence.
The presence of upper tail dependence means that very large losses tend to occur jointly
rather than independently.

From a statistical point of view, the upper tail dependence coefficient is defined as a
bivariate property: the probability of an extreme event of S+

j given an extreme event of

S+
k , k 6= j, that is

λUj,k = lim
t→1−

P (S+
j > F−1

S+
j

(t)|S+
k > F−1

S+
k

(t)) = lim
t→1−

1− 2t+ Cj,k(t, t)

1− t
,

which only depends on the copula of the pair (S+
j , S

+
k ). Obviously, λUj,k ∈ [0, 1] and, if

λUj,k = 0, (S+
j , S

+
k ) don’t exhibit upper tail dependence.

(iii) Interpretability: Copulas may be specified in terms of many parameters with many dif-
ferent meanings. For reasons of internal and external communication, for example to the
senior management or regulators, it is however desirable to work with a model that has
parameters whose meaning can actually be interpreted. As we will see below, often pa-
rameters are directly linked to tail dependence or to measures of general dependence, such
as the Kendall’s τ rank correlation.

(iv) Computational tractability: To work with model (2.5) requires the availability of all multi-
variate copula margins. This is particularly important for statistical inference, where the
density expression is required for likelihood-based techniques.

While most of the literature on dependence modeling of operational losses (see Dalla Valle et al.
[2008] and Giacometti et al. [2008]) and also practitioners (see Basel Committee on Banking Su-
pervision [2009a]) focus on elliptical copulas, we here more generally evaluate a range of different
state-of-art multivariate copula models in light of the above four characteristics and discuss how
useful they are for modeling operational risk data. In particular, we focus on Archimedean, el-
liptical, individual Student’s t and vine copulas. While Archimedian and elliptical copulas have
already found applications in operational risk modeling, individual Student’s t and vine copulas
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Figure 1: Contour plots of bivariate Archimedian Gumbel, Archimedian Frank, Gaussian, Stu-
dent’s t with 8 degrees of freedom as well as individual Student’s t (6 and 10 degrees of freedom)
copulas. Kendall’s τ is 0.5 for all copulas. Margins are standard normal.

Archim. Gaussian Student’s t Indiv. t Vine

Pairwise dependence – + + + +
Tail dependence ◦ – ◦ + +
Interpretability + + + + ◦
Comput. tractability + + + ◦ –

Table 1: Overview of copula characteristics: positive (+), neutral (◦), and negative (–).

are here proposed, implemented and empirically tested for the first time. Moreover, Table 1
summarizes how the different copulas models behave (that is, either positively (+), neutrally
(◦), or negatively (–)) with respect to the desired characteristics of being capable of modeling
pairwise and tail dependence while still being easily interpretable and computationally tractable.

While Archimedean copulas fail to model heterogeneous pairwise dependence, this is straight-
forward using elliptical copulas, which also are easily interpretable in terms of their underlying
correlation matrices. However, standard elliptical copulas are somewhat restrictive when it
comes to the tails. A flexible modeling of the tails is instead facilitated by the individual Stu-
dent’s t copula and vine copulas, at the expense of an increased computational complexity and,
to some extent, a less obvious interpretation of parameters, especially for vine copulas. Contour
plots of the different copula families are shown in Figure 1, especially to illustrate the different
behavior in the upper tail, as indicated by sharper contour lines in the upper right corner of the
plots: the tail-asymmetric Gumbel copula with only upper tail dependence is very sharp in the
upper right corner, while Frank and Gaussian copulas do not show such behavior. The stan-
dard Student’s t and also the individual Student’s t copula are also both sharper than Gaussian
copulas in the tails, corresponding to their non-zero tail dependence. We refer the reader to
Appendix B for a detailed description of the pros and cons of the different copulas model, with
respect to the four key-characteristics we have proposed above.

4 Copula modeling of zero losses

The random vector W is multivariate binary, for which distributions are however rather non-
standard and often require an excessive number of parameters (see for example Johnson et al.
[1997]). We propose to use a copula approach here, which for clarity we first illustrate in
a bivariate example. For this, let W = (W1,W2)

′ and recall that P (Wi = wi) = P (Wi ≤
wi) − P (Wi ≤ wi − 1), i = 1, 2. Similarly, it holds for the bivariate probability mass function
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pW that

pW (w) = P (W1 = w1,W2 = w2)

= P (W1 ≤ w1,W2 ≤ w2)− P (W1 ≤ w1 − 1,W2 ≤ w2)

− P (W1 ≤ w1,W2 ≤ w2 − 1) + P (W1 ≤ w1 − 1,W2 ≤ w2 − 1)

= CW (PW1(w1), PW2(w2))− CW (PW1(w1 − 1), PW2(w2))

− CW (PW1(w1), PW2(w2 − 1)) + CW (PW1(w1 − 1), PW2(w2 − 1)),

where we used Sklar’s theorem (2.1) with an appropriate bivariate copula CW . In general, pW
can be represented as

pW (w) =

2∑
k1=1

...

2∑
kd=1

(−1)k1+...+kdCW

(
u
(k1)
1 , ..., u

(kd)
d

)
, (4.1)

where u
(1)
j = PWj (wj) and u

(2)
j = PWj (wj − 1) for j = 1, ..., d (see Song [1997]). For binary

margins PWj , it is either wj = 0 or wj = 1. If wj = 0, then u
(1)
j = PWj (0) is the probability of

a non-zero loss and u
(2)
j = PWj (−1) = 0. Conversely, if wj = 1, then u

(1)
j = PWj (1) = 1 and

u
(2)
j = PWj (0).

The copula CW can be any d-dimensional copula. As before, we recommend to use a copula
that allows for heterogeneous pairwise dependence, which makes Archimedean copulas of no
interest here. As vine copulas, on the other hand, do not have a closed-form copula expression,
they should also be ruled out (see Panagiotelis et al. [2012] for an alternative, Pair Copula Con-
struction (PCC)-based approach to modeling multivariate discrete data). Finally, to evaluate
Expression (4.1), 2d evaluations of the copula are needed, resulting in being very time-consuming
and such that also the individual Student’s t copula, which is of more complicated form than
standard elliptical copulas, typically is not a good choice. Gaussian or Student’s t copulas may,
on the other hand, be used here, since fast algorithms for the evaluation of CW are available
[Genz and Bretz, 2009]. Estimation is carried out by maximum likelihood techniques.

After defining the copulas to be used for modeling positive losses and zero inflation, we can
then estimate the model in (2.5) and evaluate the impact of realistic dependence modeling on
total capital requirement estimates, as described in the next sections.

5 Risk measures

A major purpose of a multivariate model for operational losses is of course an accurate assessment
of the regulatory risk capital to be held to cover future losses. The standard risk measure for
computing the operational risk capital under Basel II is the Value-at-Risk (VaR) at the 99.9%
level, as reported in (1.1). In general, for a level α ∈ [0, 1] the α-VaR is defined as

VaRα(L) = F−1L (α), (5.1)

where L =
∑d

j=1 Sj is the total operational loss over d cells and FL its distribution function (see
for example McNeil et al. [2005]). Since FL is however not known in closed form, it has to be
obtained by simulation. To simulate N losses sij , i = 1, ..., N, for each cell j ∈ {1, ..., d} using
our multivariate model (2.5), we proceed as follows.

(i) Obtain N samples uij , i = 1, ..., N, j = 1, ..., d, from the copula for positive losses. For
Archimedean, elliptical and vine copulas see Mai and Scherer [2012], for the individual
Student’s t copula see Luo and Shevchenko [2010].
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(ii) Set s+ij := F−1
S+
j

(uij) > 0 for i = 1, ..., N and j = 1, ..., d to invert (B.9).

(iii) Obtain N samples wij , i = 1, ..., N, j = 1, ..., d, from the copula for zero losses

(iv) Set sij := (1− wij)s+ij ≥ 0 for i = 1, ..., N and j = 1, ..., d according to (2.3).

In this way, we obtain N samples of the total operational loss li :=
∑d

j=1 sij , i = 1, ..., N, and

the α-quantile F−1L (α), that is the α-VaR, can be approximated by the corresponding empirical
quantile of l1, ..., lN .

6 Empirical Analysis

After introducing our multivariate model for operational losses, we now evaluate its practical
implications by using real-world data from the Italian Database of Operational Losses (DIPO).
So far, the number of studies using real-world data is still small in operational risk due to the
scarcity of available dataset and the reluctance of the financial industry to share their private and
often very sensitive information. Using data from a pool of banks and financial institutions, we
can provide very much needed insights on the effects of using more sophisticated risk management
modeling techniques on risk capital estimation and accuracy.

6.1 Data

Our dataset comprises operational losses reported from 33 Italian banking groups with about 180
entities to the Italian Database of Operational Losses (DIPO). The time period we consider is
from January 2003 to June 2011 for a total of 102 months or 451 weeks. The reporting threshold
is 5000 Euro, below which no loss is reported. Further, it is known for each loss which ET and
BL are affected. Figure 2 displays a pie chart for the proportion of aggregate losses (left) and
of numbers of losses (right) for each BL-ET combination with share larger than 1%. The figure
shows that the losses per cell are rather heterogeneous. That is, operational losses in certain
BLs and ETs occur more often and are of different magnitude. Especially Retail Banking (BL3)
and Retail Brokerage (BL8) are often subject to operational losses, while the most frequent
event types are External Fraud (ET2), Execution, Delivery & Process Management (ET7) and,
in particular, Clients, Products & Business Practices (ET4).

We choose here to model on a weekly basis to balance the trade-off between having sufficiently
many observations to avoid a large number of zero losses in each cell and also to being able of
an accurate marginal and dependence modeling. In our investigation, we will both model the
multivariate dependence between the eight BLs and between the seven ETs, to evaluate also the
impact of such choice in the total risk capital estimate. Both approaches are followed in practice
(see Basel Committee on Banking Supervision [2009a]), but so far no investigation showed the
implications behind them. A 56-dimensional model for all BL-ET combinations is subject to
future research, as more data will become available. Figure 3 shows pairwise scatter plots of the
aggregate losses of the seven ETs on the log scale. The general level of dependence appears to
be rather weak, as the observations are rather dispersed, but there are also cases with seemingly
stronger dependence such as between ETs 4 and 7. The dependence between positive losses will
be investigated in more detail in Section 6.3. Figure 3 also indicates that there is a significant
number of zero events that needs to be taken into account explicitly (see Section 6.4).

6.2 Marginal modeling

For the estimation of weekly operational losses per BL and ET we consider the following fre-
quency and severity distributions: zero-truncated Poisson, generalized Poisson [Consul and Jain,
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Figure 2: Proportion (in %) of aggregate losses Sj (upper table) and numbers of losses Nj (lower
table) for each BL-ET combination.

1973] and negative binomial for loss frequency and gamma, Weibull, log normal, Pareto and gen-
eralized Pareto for loss severity, where each severity distribution is translated to the reporting
threshold of 5000 Euro (see Expression (A.1)).

Using QQ-plots and goodness-of-fit tests, it turns out that negative binomial fits for the
loss frequency are quite good and always superior to the respective Poisson fits, which postulate
equidispersion that cannot be observed in the available data. Generalized Poisson fits, which also
allow for non-equidispersion, gave similar results as the negative binomial, so that we decided
to use the latter model. In an exploratory pre-analysis, we also determined that significantly
fewer losses are observed in three weeks in August. We account for this holiday season effect by
fitting appropriate mean regressions with indicator variable for these three weeks3. Severities
were not observed to be different in summer compared to the rest of the year.

For the loss severities, we also used QQ-plots and goodness-of-fit tests to determine the best
fitting distributions per BL and ET. From the above list of distributions the log normal gave the
best fit for the individual positive losses. Figure 4 shows that the fitted log normal distribution
functions in fact very closely follow the empirical distribution functions of the different BLs. A

3More precisely, let fN+ denote the probability mass function of the zero-truncated negative binomial distri-
bution for the number of losses of a given cell. Then,

fN+(n) =
Γ(n+ k)

Γ(k)n!

(
k

k + µi

)k (
µi

k + µi

)n/(
1−

(
k

k + µi

)k )
, n ∈ N,

with season-dependent mean parameter µi > 0 and size k > 0. We model µi as

µi = exp (β0 + β1Isummer(i)) ,

where β0, β1 ∈ R denote regression parameters, and the indicator variable Isummer is defined as

Isummer(i) :=

{
1, observation i occurs in one of the three summer weeks

0, otherwise
.

That is, we have two different frequency distributions for each BL and ET, depending on whether a loss occurs
in summer or not.
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Figure 3: Pairwise scatter plots of aggregate losses S+
j per ET on the log scale. The lower

triangle shows the percentage of joint zero events of the pairs (S+
j , S

+
k ). Labels are omitted from

the axes for confidentiality reasons.

look at the very tail of the distributions (see Figure 5) underlines this. For ETs similar results
hold.

In the next step, we then compute the convolution of the chosen severity and frequency
distributions for each BL and ET by Monte Carlo simulation with 100’000 samples (see Klugman
et al. [2008]). For each BL and ET we obtain two convolutions: one for the three summer weeks
with significantly fewer losses and one for the rest of the year. This provides us with estimates
F̂S+

j
and F̂ s

S+
j

of the marginal aggregate loss distribution functions FS+
j

and F s
S+
j

, where the

latter indicates the one for the three summer weeks. (Note that we have j = 1, ..., 8 for BLs and
j = 1, ..., 7 for ETs.) These estimates are then used to transform the losses sij , i = 1, ..., 451, to
approximately uniform data following the IFM approach described in Appendix B.5. That is,
we set

ûij :=

F̂
s
S+
j

(sij), observation i occurs in one of the three summer weeks

F̂S+
j

(sij), otherwise
. (6.1)

These pseudo observations are then used in the following dependence analysis.

6.3 Copula modeling of positive losses

Based on the marginal transformations, we then fitted the copula models for positive losses of
Section 3 to the ûijs (6.1). As Archimedean copulas we chose the Frank, which is symmetric
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Figure 4: Comparison of empirical and fitted log normal distribution functions for all eight BLs
and the main range of the individual losses Xij , i = 1, ..., Nj . Labels are omitted from the
horizontal axes for confidentiality reasons.

BL/ET 1 2 3 4 5 6 7 8

1 -0.14 0.02 -0.07 0.08 0.18 0.05 -0.10
2 0.12 0.12 0.16 0.00 0.06 0.10 0.20
3 0.08 0.15 0.23 0.01 0.12 0.10 0.23
4 0.10 0.30 0.16 0.01 0.04 0.06 0.22
5 0.04 -0.01 0.06 0.04 -0.06 0.12 0.07
6 0.05 0.13 0.10 0.12 0.05 0.18 0.06
7 0.07 0.20 0.18 0.29 0.07 0.08 0.10

Table 2: Empirical Kendall’s τ values of jointly observed pairs of positive aggregate losses
(S+
j , S

+
k ) per BL (upper triangle) and per ET (lower triangle).

and does not exhibit any tail dependence, and the Gumbel, which has upper but no lower
tail dependence. Upper tail dependence is of particular interest here, because it describes the
joint probability of very large losses and therefore needs to be accounted for in risk capital
calculations (see Section 6.5). General dependence is however rather weak between BLs and
ETs, respectively: Pairwise empirical Kendall’s τ values between BLs range from −0.14 to 0.23
and between ETs from −0.01 to 0.30 (see Table 2, and also Figure 3). This is in line with
previous studies (see Dalla Valle et al. [2008], Cope and Antonini [2008], and Giacometti et al.
[2008]) and clearly different from comonotonicity as postulated by the standard approach (see
Expression (1.2)).

As described in Appendix B.4, the use of vine copulas in our multivariate model for oper-
ational losses defined in (2.5) is quite challenging, since multivariate margins are not available
in closed form but involve possibly high-dimensional integration. We therefore checked both for
BLs and ETs which combinations of non-zero events are actually observed, that is which margins
need to evaluated. For a vine copula to be tractable for statistical inference, it is important to
construct it such that only low-dimensional integrations are required for the margins. Such a
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Figure 5: Comparison of empirical and fitted log normal distribution functions on the log scale
for all eight BLs in the upper tail of the individual losses Xij , i = 1, ..., Nj . Labels are omitted
from the horizontal axes to maintain confidentiality.

vine copula can be determined as described in Appendix C.
We found a PCC for ETs such that only one-dimensional integration is needed to evaluate

the multivariate operational loss model (2.5). This is similar to the individual Student’s t cop-
ula. Unfortunately, for BLs the best possible vine copula still required up to three-dimensional
integrations, which are numerically very demanding. We therefore do not consider a vine copula
for BLs. For ETs, we fit two different vine copulas: one with only Student’s t copulas and one
with Student’s t copulas for all unconditional variable pairs and Gaussian copulas for all pairs
that are specified conditionally.

Log likelihoods, numbers of parameters as well as AIC values (to penalize the log likelihood
for the number of parameters) of the considered models for BLs and ETs are shown in Table 3.
While both Archimedean copulas are clearly not appropriate for the operational risk data per BL
or ET, elliptical copulas provide a good fit. The individual Student’s t copula however provides
an even better fit than the standard Student’s t copula. This indicates that tail dependencies are
not only present but also quite heterogeneous, implying that the standard Student’s t copula with
only one parameter for the degrees of freedom is too restrictive. In fact, the estimated numbers of
degrees of freedom of the standard Student’s t copula are 42.04 for BLs and 54.78 for ETs, while
the estimated individual degrees of freedom of the individual Student’s t copula vary between
6.30 and more than 300 for BLs (of which three out of eight are below 50) and between 7.62 and
also more than 300 for ETs (of which three out of seven are below 50). The standard Student’s
t copulas therefore create the false impression that dependence is almost Gaussian. The large
estimated numbers of degrees of freedom can be seen as averages of the respective estimated
individual degrees of freedom, which are rather heterogeneous. Entries of the correlation matrices
range between −0.23 and 0.31 for BLs and between 0 and 0.33 for ETs, corresponding to a
rather weak to medium level of dependence. Computing tail dependence coefficients for these
parameters however results in values very close to 0. This is a very interesting result, since
the use of the two Student’s t copulas allows for an exact quantification of the tail dependence
(λUj,k ∈ [0, 1]; see (B.4)), which the non-tail dependent Gaussian copula does not allows for
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BLs ETs

log lik. #par. AIC log lik. #par. AIC

Gumbel 29.14 1 -56.27 51.99 1 -101.99
Frank 36.62 1 -71.23 70.96 1 -139.92

Gaussian 92.92 28 -129.83 107.14 21 -172.28
Student’s t 96.01 29 -134.02 111.32 22 -178.65
Individual Student’s t 105.35 36 -138.70 119.50 28 -183.01

Vine (uncond.: t, rest: Gaussian) - - - 112.80 27 -171.61
Vine (Student’s t) - - - 121.39 42 -158.78

Table 3: Log likelihoods, numbers of parameters and AIC values of copulas for dependence
among BLs.

(λUj,k = 0).
The two vine copulas for dependence between ETs as alternative extension of the standard

Student’s t copula also improve the log likelihood, as larger values imply better model fitting.
This also stresses the need for a flexible tail dependence modeling, but as before estimated
tail dependence coefficients are very small and close to 0. In contrast to the standard and the
individual Student’s t copulas, the vine copulas however strongly suffer from the large number
of model parameters, such that AIC values are better for the elliptical copulas. The number of
parameters could however be reduced by setting Student’s t copulas with, for example, more
than 100 degrees of freedom to Gaussian copulas. This would hardly impact the log likelihood
value, but significantly reduce the number of parameters. If a correlation parameter is very small
and close to independence, one could even think of using independence copulas to reduce the
number of parameters even further. Also the individual Student’s t copula could be simplified
to some extent, either by grouping variables with similar numbers of degrees of freedom (the
resulting model being the grouped Student’s t copula by Daul et al. [2003]) or by removing the
χ2 mixing variables in the definition of the individual Student’s t copula (B.5) for components
with a large number of degrees of freedom.

6.4 Copula modeling of zero losses

As discussed in Section 4, essentially any copula could be used to construct a flexible multivariate
binary distribution for the zero losses, but due to computational and other limitations we focus
here on a Gaussian copula. Empirical marginal probabilities of zero losses per BL range between
0 and 0.81 in the first BL, while for ETs the largest number of zero losses is observed for the
sixth ET with about 0.20.

In a pre-analysis, it turns out that many of the empirical pairwise probabilities of zero losses
are very small (below 0.01). We therefore restrict our copula analysis to those BLs and ETs with
significant pairwise probabilities. These are the BLs 1, 5, 6 and 7 and the ETs 3, 5 and 6. That
is, we fit a four-dimensional Gaussian copula for zero losses of BLs and a three-dimensional one
for the ETs. Estimated entries of the correlation matrix range between 0.02 and 0.28 for BLs
and between 0.05 and 0.51 for ETs.

6.5 Risk measures

After carefully modeling the dependence between positive and zero losses for BLs and ETs, we
evaluate the different models in terms of their risk capital estimates and assess the diversification
benefit compared to comonotonicity assumption (see also Embrechts et al. [2009]). In particular,
we focus on the Gaussian, the Student’s t, the individual Student’s t and the vine copula with
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Figure 6: Annual α-VaRs on the log scale for α = 90%, 95%, 99%, 99.5%, 99.9% and for the
different copula models for positive losses. The left panel shows the results for BL modeling,
the right for ET modeling. Vertical axes have been scaled to maintain confidentiality.

only Student’s t copulas, since they provided the best fit. They differ mainly in if and how tail
dependencies are modeled. For comparison, a model with independence between positive and
zero losses is also used.

We obtained 100’000 yearly samples from the different models, that is we simulated each
week of the year respecting the different marginal distributions in summer and then summed
over the weeks. Based on these samples we computed annual VaRs (5.1) for different levels
(i.e. α = 90%, 95%, 99%, 99.5%, 99.9%) as shown in Figure 6. Obviously, risk measures are
lowest when no dependence among BLs and ETs is assumed. Using a Student’s t copula as
underlying dependence model however results in the highest VaR estimates, while its extensions,
the individual Student’s t and the vine copula with only Student’s t copulas, lead to smaller
estimates. This is very interesting, since a standard Student’s t copula is often chosen instead
of a Gaussian copula to respect tail dependence, but it apparently leads to overestimation
of quantiles. This is certainly due to the restrictive modeling approach of allowing only one
parameter to govern the overall level of tail dependence. Although tail dependence here is very
small, its impact is obvious and a more accurate modeling of it, using extensions of the Student’s
t copula, yields refined estimates of risk measures. Also, notice that when α = 99.9% as under
Basel II, differences between the Gaussian, Student’s t and individual Student’s t copula are
more pronounced compared to the independence assumption. Comparing the BL and the ET
modeling shows that the picture is essentially the same for both. This is reassuring given that
the modeling is based on the same data, which only have been grouped differently. nual VaR
estimates are not entirely unrealistic, we obtained twelve months of additional data, that is one
new annual observation.

The second question of interest is the diversification effect of considering the VaR of the total
loss rather than the sum of the individual VaRs (see Expressions (1.1) and (1.2)). That is, we
are interested in the fraction

Divα :=
VaRα(

∑d
j=1 Sj)−

∑d
j=1 VaRα(Sj)∑d

j=1 VaRα(Sj)
, (6.2)

which gives the relative reduction in the VaR compared to the Basel comonotonicity assumption.
If Divα < 0, there is a diversification benefit.
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Figure 7: VaR diversification effect Divα (6.2) for α ∈ [90%, 99.9%] and for the Gaussian,
Student’s t and individual Student’s t copula models for positive losses of BLs and ETs. Since
differences between lines are very small, no distinction between the different models is made.

The diversification effect for the copula models considered here is displayed in Figure (6.2).
There is a clear diversification benefit of up to 38% for BLs and 35% for ETs when explicitly
modeling the dependence. This mirrors the fact that dependence between BLs and ETs, both
in general and in the tails, is observed to be rather weak and therefore clearly differs from the
Basel comonotonicity standard approach, where Divα = 0. Interestingly, there is no clear-cut
difference between the different models that we choose as the most accurate ones among a larger
pool of models (see Section 6.3). This indicates that the diversification effect mainly is driven
by the general level of dependence modeled, which is about similar for the different models
considered here.

7 Conclusion

In this work, we introduce a rather general and flexible multivariate modeling approach for
operational risk losses, which explicitly takes into account the multivariate dependence among
losses and the presence of scarce data. Our aim is to introduce a more accurate model and then
evaluate its implications on the estimation of the total risk capital compared to the Basel II
comonotonicity assumption for the entire set of BLs and ETs using real-world data. Explicit de-
pendence modeling is discussed critically by considering different copula classes and introducing,
from both statistical and business perspectives, four key characteristics the ideal model should
allow to take into account: heterogeneous pairwise dependence, tail dependence, interpretable
parameters and computational tractability. It turns out that from a theoretical perspective, the
individual Student’s t copulas is probably the most appealing for operational losses as it only
poses a moderate computational challenge, while still being easily interpretable in its parameters
and structure and allowing for the presence of different pairwise and tail dependencies. Com-
pared to the Student’s t copula with only one degrees of freedom parameter, tail dependence is
determined by the degrees of freedom of the individual variables and therefore flexible in consid-
ering potentially heterogeneous behaviors among losses. Vine copulas add even more flexibility,
but at the expense of a more complex parameter interpretability and computational tractability,
which make it less appealing in our zero-inflated model framework. Gaussian copulas are an
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option when it is reasonable to assume no tail dependence, while Archimedean copulas, despite
used in practice, are of less interest for operational risk modeling as they cannot account for
heterogeneous pairwise dependence.

Empirical results on real-world data suggest that Gaussian and even better Student’s t
copulas can provide a good fit to positive losses grouped by BLs or ETs, despite the Gaussian
implies zero tail dependence and the Student’s t copula results in a potential overestimation of
tail dependence due to its inflexible degrees of freedom parameter. However, as expected, the
individual Student’s t copula shows the best fit in terms of AIC and log likelihood to the data
at hand and allows to build an easily interpretable model for operational losses, from which to
run Monte Carlo estimation to determine the overall effect on risk capital. In fact, while the
Student’s t copula results in the highest VaR estimates for both BL and ET modeling, with
an increase with respect to the independence assumption of up to 35% and 43% for BLs and
ETs, respectively, individual Student’s t copula estimates result only in an increase of 17% and
37%. This reflects the more accurate assessment of tail dependence by the individual Student’s
t copula, which can account for heterogeneous tail dependence through the individual degrees
of freedom per variable, of which the standard Student’s t copula’s degrees of freedom can be
regarded as an average.

Finally, when considering the diversification ratio to evaluate the effect of a potential re-
duction of risk capital estimates compared to the standard Basel assumption of comonotonic
losses, results suggest that a more realistic modeling of the multivariate distribution of BLs and
ETs leads to a reduction in capital of up to 38% for BLs and 35% for ETs for high quantiles
(α = 99.9%, with few differences between models). This confirms, as also previously reported
in the literature for much simpler bivariate settings, that the comonotonicity assumption of the
standard Basel framework is unduly strong when evaluating the overall effect. Banks might
therefore have an incentive to move towards more sophisticated but then realistic and accurate
risk management models. However, further investigations on different real-world data and larger
sample sizes for out-of-sample evaluation are still required to draw irrefutable conclusions.
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A Marginal modeling

The topic of marginal modeling of operational losses has already been extensively discussed
in the literature (see, amongst others, Aue and Kalkbrener [2006]). We therefore only briefly
mention the most relevant points. Since here we only deal with one particular cell, we suppress
indices relating to the different cells and simply denote the aggregate loss by S.

The aggregate loss S is the sum of individual operational losses within a given cell, that is

S =
N∑
i=1

Xi,
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with the number of losses N ∼ FN and the individual losses Xi ∼ FX , i = 1, ..., N, independent
and identically distributed, where the severity distribution FX is positive and continuous and
the frequency distribution FN is a count distribution with support on N0 = {0, 1, 2, ...}. The
case N = 0 means that no losses are observed, that is S = 0 (the empty sum is taken to be zero).
As this case is explicitly taken into account by the zero loss variable W , we denote the positive
number of losses as N+ ∈ N = {1, 2, ...} with zero-truncated distribution FN+ . Therefore, we
have

S+ =
N+∑
i=1

Xi.

Typical choices for FN+ are the zero-truncated Poisson and negative binomial distributions
(see, e.g., Grogger and Carson [1991]). As is commonly known, the Poisson distribution as-
sumes equidispersion, that is it fixes mean and variance to be equal. Since this is a very strict
assumption, the negative binomial distribution may often be a more realistic choice.

It is typically the case that operational losses below some threshold are not reported. That
is, only losses above a certain threshold are observed. In this case, the severity distribution has
to be translated to this threshold. Let F0 be an arbitrary positive continuous distribution, then
translation to the threshold m > 0 means that we define the severity distribution for x ∈ (m,∞)
as

FX(x) =
F0(x)− F0(m)

1− F0(m)
. (A.1)

An important issue of the distribution of individual operational losses is that it may be
heavy-tailed as noted above. Examples of heavy-tailed (or subexponential) distributions are in
particular the log normal, Pareto, Weibull (with shape parameter smaller than 1) and generalized
Pareto, while the also commonly used gamma distribution is light-tailed (see Embrechts et al.
[1997]). Furthermore, according to a classification based on moments, Pareto tails can be shown
to be heavier than log normal tails. An alternative proposed in extreme value theory is to use
the generalized Pareto as explicit tail distribution above a certain threshold, while a different
distribution is used for the body of the distribution (see Chavez-Demoulin et al. [2006] for more
details).

B Copulas Families

B.1 Archimedean copulas

A d-dimensional Archimedean copula is defined in terms of its generator function ϕ : [0, 1] →
[0,∞), whose inverse ϕ−1 is d-monotone on [0,∞) (see McNeil and Nešlehová [2009]):

C1,...,d(u1, ..., ud) = ϕ−1 (ϕ(u1) + ...+ ϕ(ud)) , u1, ..., ud ∈ [0, 1]. (B.1)

Popular Archimedean copulas are Clayton, Gumbel and Frank. According to our proposed
key-characteristics, this class exhibits:

(i) Pairwise dependence: Each margin of an Archimedean copula is again of the same copula
type with the same parameter. That is, pairwise dependence is fixed to be the same for all
pairs. This quite restrictive property is the reason why Archimedean copulas are mainly
used in bivariate applications, but are not quite appropriate for multivariate applications
with heterogeneous pairwise dependence.

(ii) Tail dependence: Depending on the chosen generator function, Archimedean copulas can
exhibit different tail behavior. For instance, the Gumbel copula is upper tail dependent,
while the Frank does not have any tail dependence.
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(iii) Interpretability: For most Archimedean copulas there is a close correspondence between
copula parameter(s) and the Kendall’s τ rank correlation, which measures the general level
of dependence. The Gumbel copula, which has just one parameter θ, for example implies
the following Kendall’s τ value: τj,k := τj,k(θ) = 1−1/θ for each pair of cells j and k. The
corresponding upper tail dependence coefficient is λUj,k := λUj,k(θ) = 2 − 21/θ. For other
such relationships see, amongst others, Brechmann and Schepsmeier [2013].

(iv) Computational tractability: The major advantage of Archimedean copulas is that all mar-
gins are readily available and the copula often only depends on one or two parameters.
This strongly simplifies statistical inference [Hofert et al., 2012].

Clearly, because of the insufficient flexibility in pairwise dependence, Archimedean copulas
should ruled out as reasonable models for multivariate operational losses when moving beyond
the bivariate case.

B.2 Elliptical copulas

By inverting Sklar’s theorem (2.1), copulas can be constructed for arbitrary multivariate distri-
bution functions F and marginal distribution functions F1, ..., Fd as

C1,...,d(u1, ..., ud) = F (F−11 (u1), ..., F
−1
d (ud)), u1, ..., ud ∈ [0, 1]. (B.2)

Elliptical copulas are obtained by letting F be an elliptical distribution function (see Fang et al.
[1990] and McNeil et al. [2005]) and F1, ..., Fd the corresponding margins. The most popular
examples are the Gaussian and the Student’s t copulas. Their properties are:

(i) Pairwise dependence: Pairwise dependence of Gaussian and Student’s t copulas can be
different for each pair. In the d×d-correlation matrix each pair has a corresponding entry.

(ii) Tail dependence: While the Gaussian copula does not exhibit any tail dependence, the
Student’s t copula has symmetric upper and lower tail dependence. The degree of tail
dependence for each pair is controlled by the degrees of freedom: the smaller the degrees
of freedom, the stronger the tail dependence. Conversely, the Student’s t copula converges
to the Gaussian copula when the degrees of freedom go to infinity.

(iii) Interpretability: As noted above, pairwise dependence is essentially determined by the
correlation matrix, whose entries can be directly related to the general level of dependence
of each pair. The pairwise Kendall’s τ of cells j and k is

τj,k := τj,k(ρj,k) =
2

π
arcsin(ρj,k), (B.3)

where ρj,k ∈ (−1, 1) is the (j, k)the entry of the correlation matrix [McNeil et al., 2005].
In case of the Student’s t copula with ν > 2 degrees of freedom the upper (and lower) tail
dependence of each pair can be obtained as

λUj,k := λUj,k(ρj,k, ν) = 2tν+1

(
−
√
ν + 1

√
1− ρj,k√
1 + ρj,k

)
, (B.4)

where tν is the univariate Student’s t distribution function with ν degrees of freedom.

(iv) Computational tractability: The margins of elliptical copulas are again elliptical of the same
class. The correlation matrix is a sub-matrix of the full correlation matrix. Although easily
tractable density expressions are available, statistical inference is complicated by the fact
that the correlation matrix has to be positive definite. Good starting values for numerical
optimization are often provided by computing pairwise empirical Kendall’s τ estimates
and then inverting Expression (B.3).

18



The above properties present elliptical copulas as an appealing model for multivariate operational
losses. Their major disadvantage certainly is that the Gaussian copula does not exhibit any tail
dependence, while the tail dependence of the Student’s t copula is symmetric in both tails and
governed by only one parameter for all pairs.

To illustrate the model defined in (2.5) in terms of elliptical copulas, we consider a trivariate
example. If d = 3, then Expression (2.5) can be written as

fW ,S(w, s) = pW (w)
[
1{w=(1,1,1)′} + 1{w=(0,1,1)′}fS+

1
(s1)

+ 1{w=(1,0,1)′}fS+
2

(s2) + 1{w=(1,1,0)′}fS+
3

(s3)

+ 1{w=(0,0,1)′}c1,2
(
FS+

1
(s1), FS+

2
(s2)

)
fS+

1
(s1)fS+

2
(s2)

+ 1{w=(0,1,0)′}c1,3
(
FS+

1
(s1), FS+

3
(s3)

)
fS+

1
(s1)fS+

3
(s3)

+ 1{w=(1,0,0)′}c2,3
(
FS+

2
(s2), FS+

3
(s3)

)
fS+

2
(s2)fS+

3
(s3)

+1{w=(0,0,0)′}c1,2,3
(
FS+

1
(s1), FS+

2
(s2), FS+

3
(s3)

)
fS+

1
(s1)fS+

2
(s2)fS+

3
(s3)

]
.

That is, dependence is modeled by the trivariate copula C1,2,3 with bivariate margins C1,2, C1,3

and C2,3. If C1,2,3 is an elliptical copula with correlation matrix

R(ρ1,2, ρ1,3, ρ2,3) =

 1 ρ1,2 ρ1,3
ρ1,2 1 ρ2,3
ρ1,3 ρ2,3 1

 ,

then each bivariate margin Cj,k, 1 ≤ j < k ≤ 3, is also elliptical of the same class and has a
2×2-correlation matrix with parameter ρj,k. In case of the Student’s t copula, each margin also
has the same degrees of freedom as C1,2,3.

B.3 Individual Student’s t copula

Recently, Luo and Shevchenko [2010] defined the Student’s t copula with multiple degrees of
freedom or individual Student’s t copula as follows. Let Z = (Z1, ..., Zd)

′ follow a multivariate
normal distribution with zero mean vector, unit variances and positive definite correlation matrix
R. Further, let Q be uniformly distributed on [0, 1] and independent of Z. Then define Vj =√
νj/χ

−1
νj (Q) for constants νj > 2 and j = 1, ..., d, where χ−1ν is the inverse χ2 distribution

function with ν degrees of freedom. This means that V1, ..., Vd are perfectly dependent.
The individual Student’s t copula is then defined as the copula obtained by inverting Sklar’s

theorem as in (B.2) for the distribution of

X := (V1Z1, ..., VdZd)
′. (B.5)

The univariate margins of X are univariate Student’s t distributions with νj degrees of freedom,
j ∈ {1, ..., d}. In other words, each component of an individual Student’s t copula has an
individual degrees of freedom parameter. The standard Student’s t copula is obtained when
ν1 = ν2 = ... = νd. Another special case is the grouped Student’s t copula with fixed degrees of
freedom for groups of variables by Daul et al. [2003]. Luo and Shevchenko [2010] show that the
individual Student’s t copula has the following properties.

(i) Pairwise dependence: As an extension of the standard Student’s t copula, the pairwise
dependence of the individual Student’s t copula can also vary between different pairs. The
dependence of a pair of variables is determined in terms of the corresponding entry in the
correlation matrix and by the two parameters for the degrees of freedom of the variables.
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(ii) Tail dependence: The tail dependence of the individual Student’s t copula is again sym-
metric in both tails. In contrast to the standard Student’s t copula, it is however decisively
determined by the degrees of freedom of the individual variables (see below) and therefore
much more flexible.

(iii) Interpretability: In terms of general dependence the pairwise Kendall’s τ of cells j and k
is approximately given by τj,k := τj,k(ρj,k) = 2

π arcsin(ρj,k) as for elliptical copulas (see
(B.3)). According to Daul et al. [2003] and Luo and Shevchenko [2010] the approximation
error typically is very small.

The determination of tail dependence coefficients is however less simple. The upper tail
dependence of cells j and k can be shown to be

λUj,k := λUj,k(ρj,k, νk, νj) = A(ρj,k, νj , νk) +A(ρj,k, νk, νj),

with

A(ρ, ν1, ν2) =

∫ ∞
0

fχ2
ν1+1

(t)Φ

(
−B(ν1, ν2)t

ν1/(2ν2) − ρt1/2√
1− ρ2

)
dt,

B(ν1, ν2) =

(
2ν2/2Γ((1 + ν2)/2)

2ν1/2Γ((1 + ν1)/2)

)1/ν2

,

where fχ2
ν

denotes the χ2 density function with ν degrees of freedom and Φ the standard
normal distribution function. If ν = νj = νk, this reduces to Expression (B.4) for the
standard Student’s t copula with ν degrees of freedom. As before, small degrees of freedom

indicate higher tail dependence. It holds that λUj,k(ρj,k, ν
(1)
k , νj) > λUj,k(ρj,k, ν

(2)
k , νj) if

ν
(2)
k > ν

(1)
k > νj .

(iv) Computational tractability: Despite its more sophisticated structure, the individual Stu-
dent’s t copula is still computationally tractable. The margins are simply individual Stu-
dent’s t copulas with corresponding degrees of freedom parameters and sub-matrix of
the full correlation matrix. Furthermore the multivariate density only involves a one-
dimensional integration, as

c1,...,d(u1, ..., ud) =

∫ 1

0
φR(z1(u1, q), ..., zd(ud, q))

d∏
j=1

(vj(q))
−1dq

 d∏
j=1

ftνj (t
−1
νj (uj))

−1 ,
where vj(q) =

√
νj/χ

−1
νj (q) and zj(uj , q) = t−1νj (uj)/vj(q) for j = 1, ..., d. Here, ftν denotes

the univariate Student’s t density function with ν degrees of freedom and φR the mul-
tivariate normal density function with zero mean vector, unit variances and correlation
matrix R.

Statistical inference of the individual Student’s t copula is therefore feasible also in higher
dimensions. To obtain good starting values for numerical optimization, it is convenient to
use inverted pairwise empirical Kendall’s τ values as for elliptical copulas. For the indi-
vidual degrees of freedom parameters, we propose to preliminarily fit bivariate individual
Student’s t copulas for each pair and then take the average estimated degrees of free-
dom of each variable as starting value. In our numerical examples, this typically provides
reasonably good starting values, which speeds up the numerical optimization.
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The individual Student’s t copula hence extends the standard Student’s t copula at the critical
point: Individual degrees of freedom parameters for each variable allow for a more flexible range
of tail dependence of the different pairs, while the assumption of one common parameter for the
degrees of freedom can be very restrictive if larger numbers of variables are considered. On the
other hand, the individual Student’s t copula is harder to interpret in terms of its parameters, as
its tail dependence coefficients are of more complicated form. Statistical inference is also more
difficult due to a one-dimensional integration in the density expression.

B.4 Vine copulas

Vine copulas are a completely different approach to construct multivariate copulas and can also
be used to generalize the Student’s t copula. They are based on bivariate copulas as building
blocks, which made them to be called pair copula constructions (PCCs) as introduced by Aas
et al. [2009]. A special case of vine copulas was already discussed by Joe [1996], however Bedford
and Cooke [2001, 2002] independently constructed a general class of multivariate distributions,
called regular vine distributions, which depend only on bivariate and univariate distributions.
They are best illustrated in a trivariate example.

Let X = (X1, X2, X3)
′ ∼ F . The multivariate density f of X can then be decomposed as

f(x1, x2, x3) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2). (B.6)

With Sklar’s theorem (2.2) it follows that

f2|1(x2|x1) =
f1,2(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)

= c1,2(F1(x1), F2(x2))f2(x2),

(B.7)

where C1,2 is the bivariate copula of the pair (1, 2). In the same way, it holds that

f3|1,2(x3|x1, x2) =
f2,3|1(x2, x3|x1)
f2|1(x2|x1)

=
c2,3|1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1)f3|1(x3|x1)

f2|1(x2|x1)
= c2,3|1(F2|1(x2|x1), F3|1(x3|x1))f3|1(x3|x1)
(B.7)
= c2,3|1(F2|1(x2|x1), F3|1(x3|x1))c1,3(F1(x1), F3(x3))f3(x3),

where

F2|1(x2|x1) = C2|1(F2(x2)|F1(x1)) :=
∂C1,2(F1(x1), F2(x2))

∂F1(x1)
(B.8)

and similarly for F3|1.
Thus, we have decomposed the density f of X in terms of the marginal densities and the

three bivariate copulas C1,2, C1,3 and C2,3|1 with densities c1,2, c1,3 and c2,3|1, respectively. In
particular, we have decomposed the three-dimensional copula of X into these bivariate copulas,
of which two are unconditional and one is conditional on another variable. The copulas can be
chosen independently of each other from different copula classes. For example, C1,2 could be
a Gaussian, C1,3 a Student’s t and C2,3|1 a Gumbel copula. This flexible way of constructing
multivariate copulas therefore allows for a wide range of different dependence structures to be
captured.

Clearly, the above decomposition can be extended to the general multivariate case. A d-
dimensional PCC of d(d − 1)/2 bivariate copulas then requires different choices regarding the
order of variables in the decomposition as in (B.6). To organize the different decompositions,
Bedford and Cooke [2001, 2002] therefore introduced vines as a graphical representation of
PCCs. Rather than stating the general definition of vines and vine copulas, we concentrate here
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on the properties and refer to Kurowicka and Cooke [2006] and Kurowicka and Joe [2011] for
more details. Statistical inference and model selection are considered in Brechmann et al. [2012]
and Dißmann et al. [2013].

(i) Pairwise dependence: Due to the flexibility in the choice of copulas in the decomposition,
different pairs of cells can have very different dependence structures such as asymmetry
or tail dependence. However, vine copulas only allow for d − 1 unconditional bivariate
copulas, which are straightforward to interpret (in the example above: for the pairs (1, 2)
and (1, 3)), while the dependence of the pairs, for which copulas are specified conditionally,
is harder to work with (see the discussion below; in the example above: the pair (2, 3) given
cell 1).

(ii) Tail dependence: Joe et al. [2010] showed that for each pair of cells to have tail dependence,
it is sufficient for the unconditional bivariate copulas to have tail dependence. That is, if
for instance all d− 1 unconditional copulas are specified as Student’s t, then each pair of
cells is tail dependent.

(iii) Interpretability: As noted above, interpretation of dependence patterns of vine copulas is
complicated by the fact that most pairs are specified conditionally. Only for the dependence
of the d − 1 pairs, for which the copula is given unconditionally, the interpretation is as
simple as for the copulas discussed previously. However, simulation from vine copulas
is very simple so that properties can be assessed empirically based on sufficiently large
simulated data sets.

(iv) Computational tractability: Statistical inference of vine copulas is in principle rather
straightforward, since the density of a vine copula is conveniently given in terms of a
product of bivariate copulas. In the example above we have

c1,2,3(u1, u2, u3) = c1,2(u1, u2)c1,3(u1, u3)c2,3|1(C2|1(u2|u1), C3|1(u3|u1)),

where C2|1 and C3|1 depend on the copulas C1,2 and C1,3, respectively (see Expression
(B.8)). For log likelihood calculations, this nicely transforms into a sum of log copula
densities.

To be useful for our multivariate operational loss model (2.5), we however also require
the margins of vine copulas. The availability of the multivariate margins is unfortunately
a major issue of vine copulas. Clearly, some margins are available in closed form, in
particular those of the d − 1 pairs with unconditional copula. However, in most cases
integration is needed to compute the margins. For example in the above illustration, the
margin of the pair (2, 3) is given by

c2,3(u2, u3) =

∫ 1

0
c1,2,3(u1, u2, u3)du1.

In the worst case, where a pair of cells (j, k) is specified conditionally on all other cells
{1, ..., d} \ {j, k}, (d − 2)-dimensional integration may be needed to compute a bivariate
margin. This renders the use of vine copulas in model (2.5) hardly feasible even if d is
only as large as 5 or 6. Only if there are few zero events, margins may stay sufficiently
well tractable. In our application in Section 6, we will show how to calibrate a seven-
dimensional vine copula for operational losses per ET.

Although building blocks of vine copulas can be of arbitrary type, we focus here on elliptical
copulas. On the one hand, this narrows the wide range of possible constructions, from which
it is difficult to choose (see Czado et al. [2013] for an overview on this issue). On the other
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hand, this allows us to define an extension of the Student’s t copula, which stays interpretable
for the following reason: For example, Stöber et al. [2012] show that a Student’s t copula can
be represented as a vine copula, where the parameters of the bivariate copulas are obtained as
partial correlations and degrees of freedom are increased by one for each additional variable that
is conditioned on. The Student’s t copula can therefore be generalized by a vine copula with
Student’s t building blocks, where each bivariate Student’s t copula is allowed to have different
numbers of degrees of freedom. Since this results in a model with a large number of parameters
(two parameters per building block), a simpler model can be constructed by only choosing
Student’s t copulas for the d − 1 unconditional pairs and Gaussian copulas for all conditioned
pairs. According to Joe et al. [2010], this construction also has tail dependence for all pairs. A
further model simplification could be achieved by even choosing independence copulas for pairs
that are conditioned on a certain number of other variables as discussed by Brechmann et al.
[2012]. Note that if a vine copula is specified completely in terms of Gaussian copulas, it is in
fact equivalent to a Gaussian copula.

B.5 Estimation of copulas

The number of copula parameters to be estimated depends on the family: While Archimedean
copulas typically have just one or at most two parameters, elliptical copulas require the specifica-
tion of the full correlation matrix with d(d−1)/2 entries. Student’s t copulas have an additional
parameter for the degrees of freedom, while the individual Student’s t copula has individual
degrees of freedom parameters per variable, that is d(d− 1)/2 + d parameters in total. If a vine
copula has only Student’s t building blocks, it has twice d(d− 1)/2 parameters, that is d(d− 1)
parameters. This can be reduced by using Gaussian copula for the conditional pairs. Then, the
number of parameters is d(d− 1)/2 + d− 1.

These parameters are typically estimated by maximum likelihood estimation. Often the
method of inference functions for margins (IFM; Joe and Xu [1996]) is used for this purpose. To
avoid estimation of too many parameters at the same time, marginal parameters are estimated
first and then hold fixed in copula parameter estimation. That means, if we have n (i.i.d.)
observations sij of the total loss in cell j for j = 1, ..., d and i = 1, ..., n, then we estimate the

marginal distribution FS+
j

by F̂S+
j

in a first step (see Appendix A) and set

ûij := F̂S+
j

(sij). (B.9)

Using these pseudo observations, the copula log likelihood `C is then maximized in terms of the
copula parameters θ (see Expression (2.5)):

`C(θ|û1, ..., ûd,w) =

n∑
i=1

log c{j ∈D(w)}(ûij , j ∈ D(wi)|θ), (B.10)

where ûj = (û1j , ...., ûnj)
′ and w = (w1, ...,wn)′ indicates whether zero losses were observed

or not. Note that the zero event distribution pW is independent of the copula parameters and
therefore does not need to considered in the estimation here.

For the trivariate Gaussian copula example above, it is θ = (ρ1,2, ρ1,3, ρ2,3)
′ and (B.10) can

be written as

`C(ρ1,2,ρ1,3, ρ2,3|û1, û2, û3,w)

=
∑

i: wi=(0,0,1)′

log c1,2(ûi1, ûi2|ρ1,2) +
∑

i: wi=(0,1,0)′

log c1,3(ûi1, ûi3|ρ1,3)

+
∑

i: wi=(1,0,0)′

log c2,3(ûi2, ûi3|ρ2,3) +
∑

i: wi=(0,0,0)′

log c1,2,3(ûi1, ûi2, ûi3|R(ρ1,2, ρ1,3, ρ2,3)).
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1,2,4,5,6,7

1,2,4,7 1,2,4,5,7 1,2,3,4,5,7

3,4 1,2,3,4,7 1,2,3,4,6,7 1,2,3,4,5,6,7

2,3,4,5,6,7

Figure 8: Combinations of observed non-zero events in ETs, where arrows indicate that a set is
the subset of another.

For instance, the parameter ρ12 is estimated based on the information when wi = (0, 0, 1)′ and
when wi = (0, 0, 0)′, that is every time when the pair (1, 2) is observed.

C Vine copula selection for zero-inflated data

From the conditional density decomposition (B.6) it is clear that a d-dimensional PCC can
always be extended to a (d + 1)-dimensional one by adding the term f(xd+1|x1, ..., xd) to the
existing PCC. That is, we can construct the vine copula by starting with a bivariate one and
then iteratively extending it to the seven-dimensional one, which is needed to describe the
dependence between all ETs. For this, we check which set of jointly observed ETs (these are
{3,4}, {1,2,4,7}, {1,2,3,4,7}, {1,2,4,5,7}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {2,3,4,5,6,7}, {1,2,4,5,6,7},
and {1,2,3,4,5,6,7}) is a subset of another as displayed in Figure 8. One option is to start with
a vine copula for {3,4}. It is reasonable to extend it to {1,2,3,4,7}, which is the smallest set of
which {3,4} is a subset. Then, we choose {1,2,3,4,5,7} and finally {1,2,3,4,5,6,7} as indicated
by solid lines in Figure 8. The reason why we choose {1,2,3,4,5,7} instead of {1,2,3,4,6,7}, of
which {1,2,3,4,7} also is a subset, is that {1,2,4,5,7}, which is not explicitly included in the vine
copula, is a subset of {1,2,3,4,5,7}. In this way, every multivariate margin, that is not an explicit
sub-model of the PCC, is a subset of a set that is included and has only one element more. For
the vine copula, this means that only one-dimensional integration is needed to integrate out
this one additional element. For instance, the margin of {1,2,4,7} is obtained by integrating out
variable 3 from the sub-model for {1,2,3,4,7}, since {1, 2, 4, 7} ⊂ {1, 2, 3, 4, 7}.
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