

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Wirtschaftsinformatik (I 17)

Prof. Dr. Helmut Krcmar

Model Integration and Traceability
for Product Service Systems Engineering

Thomas Wolfenstetter

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Alexander Pretschner

Prüfer der Dissertation: 1. Prof. Dr. Helmut Krcmar

 2. Prof. Dr.-Ing. Birgit Vogel-Heuser

3. Prof. Dr. Claudia Eckert

Die Dissertation wurde am 08.08.2018 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 29.01.2019 angenommen.

 II

for Xixi

Abstract III

Abstract

Motivation
The design and development of product service systems (PSS) is a complex enterprise that
brings together various domains, such as product, software and service engineering. A fully
integrated PSS calls for a deep collaboration among the different engineering domains over
the whole PSS life cycle which can pose several challenges to the engineering team. In
particular, it should be possible to trace the evolution of engineering artifacts along the
complete life cycle starting from early stakeholder requirements to the final solution
components. For this purpose, a requirements traceability (RT) model for PSS needs to take
into account the special characteristics and complexities that are relevant in the context of
PSS.

Research Approach

For the research presented in this thesis we followed the recommendations of Design Science
Research as presented by Hevner (2004; 2007). In this process we conducted extensive
literature reviews, studied several cases from different industries and iterated through the
design cycle using reference modeling and software tool prototyping as research methods.
Through this iterative process in which the aspired artifacts are enhanced and evaluated
continuously, it was possible to comprehend the issue that was studied in all its details and
thus evaluate the solution approach and evolve the artifacts until they solve the issues under
consideration.

Results
In this thesis, we developed a traceability and model integration solution for PSS engineering
consisting of a model integration ontology and software tool supporting traceability and
model integration, which builds on top of that. Along this way, we identified characteristics
that make PSS engineering special. On this fundament we determined, whether existing
traceability approaches were suited for PSS engineering. Our analysis shows, that none of the
existing approaches was recommendable for PSS without restrictions but we concluded that
systematic combination and enhancement of those approaches offered great potential. Based
on these results we introduce a concept for a cross-disciplinary model integration ontology as
well as a conceptual methodology for model transformation. Finally, we present our
prototypical software tool TRAILS, which implements the concepts developed in this thesis
and offers support to engineers in terms of integrating domain-specific models of a PSS,
analyzing them and capturing trace links between the various model artifacts captured.

Contribution

Overall, we believe that the analyses, concepts and solutions presented in this thesis
contribute to requirements engineering, model-based systems engineering and product service
systems research. Researchers can build upon our analysis of traceability approaches in
various domains to develop methods that fit the need of complex cross-disciplinary
engineering projects. In this context, our approach facilitates the integration of domain-
specific models by abstracting from specific details of the modeling language or data format
that are not relevant in the integrated model perspective. In this sense, researchers can use our

Abstract IV

model integration ontology as a blueprint approach for linking knowledge in model-based
systems engineering. With our approach we also bring a certain degree of formalism into the
development of PSS, thus justifying the term “PSS engineering”. Using model-based
approaches to specify and document PSS engineering artifacts, it is possible to detect conflicts
between different solution components of a PSS much easier and often earlier in the
development process.

Study Limitations

Taking an objective look at our research, we have to admit that there are certain limitations
regarding our overall research approach, our model integration ontology and our prototypical
software tool, TRAILS. By its nature, Design Science Research aims more at building a
functional model integration ontology along with a working prototype of our software tool
TRAILS, rather than trying to find the optimal structure of the ontology or the implementing
the tool with the optimal technology and runtime execution efficiency. Furthermore, we
focused on a limited number of domain-specific modeling approaches when developing our
model integration ontology and implementing the corresponding model integration features in
TRAILS. Also, within the scope of this thesis it was not feasible to conduct extensive
empirical evaluations regarding the advantages of our solution in real industry case studies.
Instead, we studied its applicability in one detailed case study of developing a bike sharing
system.

Future Research

Overall, we see three major starting points for future research to advance from. First to
mention is the extension of the integration ontology in order to cover additional artifact types
and augment its applicability for additional use cases. Second, we think that there is great
potential in the enhancement of TRAILS, our prototypical traceability and model integration
software tool by adding additional features and improving the existing ones. Finally, the third
point is a detailed empirical evaluation of our results in terms of their performance in real
industry cases.

Table of Contents V

Table of Contents

Abstract .. III

Table of Contents .. V

List of Figures ... X

List of Tables ... XII

List of Abbreviations ... XIII

PART A: INTRODUCTION TO THE DISSERTATION’S PUBLICATIONS 1

1 Introduction .. 2

1.1 Motivation ... 2

1.2 Problem Statement ... 4

1.2.1 Issue 1: Characteristics of PSS Engineering .. 5

1.2.2 Issue 2: Common Representation of Artifacts ... 5

1.2.3 Issue 3: Cross-domain Traceability and Change Management 6

1.2.4 Issue 4: Different Engineering Cycles ... 7

1.3 Research Questions .. 8

1.4 Structure ... 11

2 Conceptual Background ... 16

2.1 Requirements Traceability ... 16

2.1.1 Imperative for traceability and cross-domain issues .. 16

2.1.2 Scope of requirements traceability ... 17

2.1.3 Perspectives on traceability .. 19

2.1.4 Utilization of traceability information .. 21

2.2 Product Service Systems ... 24

2.2.1 Terminology ... 25

2.2.2 Types of PSS .. 26

2.2.3 Development of PSS .. 27

2.2.4 Need for Integration in PSS engineering .. 28

2.2.5 Advantages of PSS business models .. 29

2.3 Model-based Systems Engineering ... 30

2.3.1 Traditional engineering vs. model based engineering .. 30

2.3.2 Modeling languages in PSS engineering .. 31

2.3.3 Conceptual Modeling: Reference Models, Meta Models and Ontologies 32

2.3.4 Model Integration and Model Transformation ... 34

Table of Contents VI

2.3.5 Using Semantic Web Technologies in Engineering ... 35

3 Research Approach .. 38

3.1 Research Strategy .. 38

3.2 Research Methods .. 40

3.2.1 Literature Review and Expert Interviews ... 40

3.2.2 Ontology Development .. 41

3.2.3 Tool prototyping and evaluation .. 43

PART B: PUBLICATIONS ... 46

Publication 1: Why Product Service Systems Development is Special 50

1. Introduction .. 50

2. Methodology .. 52

3. Special Characteristics of PSS Development ... 52

3.1. Integration of Components ... 55

3.2. Multidisciplinary Development .. 55

3.3. Customer Integration .. 56

3.4. Lifecycle Orientation .. 56

3.5. Variability of Service Delivery .. 58

3.6. Individualization ... 58

3.7. Organizational Challenges ... 58

3.8. Value Network ... 59

3.9. Sustainability .. 59

4. Discussion .. 60

5. Conclusion .. 63

Publication 2: Analyse der Eignung domänenspezifischer Methoden der
Anforderungsverfolgung für Produkt-Service-Systeme ... 64

1. Ausgangssituation und Problemstellung .. 65

2. Grundlagen der Anforderungsverfolgung bei PSS ... 66

3. Forschungsdesign ... 67

4. Methoden der Anforderungsverfolgung ... 68

5. Bewertungskriterien ... 71

6. Bewertung der Anforderungsverfolgungsmethoden .. 73

7. Diskussion .. 76

8. Zusammenfassung und Ausblick ... 77

Publication 3: Towards Cycle-Oriented Traceability in Engineering Change Management ... 79

Table of Contents VII

1. Introduction .. 80

2. Research Methodology ... 80

3. Overview: Requirements Management and Engineering Change Management 81

3.1. Requirements Management and Requirements Engineering 81

3.2. Engineering Change Management ... 83

3.3. Issues regarding the interface between requirements management and
engineering change management ... 84

4. Implications for the interface between requirements management and engineering
change management ... 85

5. Cycle-oriented traceability for the management of changes .. 86

5.1. Theoretical background to traceability ... 86

5.2. A data model for traceability in engineering change management 88

5.3. Academic example ... 90

6. Conclusion and outlook .. 90

Publication 4: Traceability von Anforderungen und Tests in agilen
Softwareentwicklungsprojekten ... 92

1. Motivation .. 93

2. Methodik .. 94

3. Bestehende Ansätze zu agiler Traceability .. 95

4. Fallstudie: Agile Softwareentwicklung bei Alpha ... 97

4.1. Der agile Entwicklungsprozess .. 97

4.2. Herausforderungen für Traceability im agilen Entwicklungsprozess 99

5. Ein konzeptuelles Datenmodell für Traceability in agilen Projekten 100

6. Diskussion .. 103

7. Limitationen und Ausblick ... 105

Publication 5: Concept for an Integration-Framework to enable the crossdisciplinary
Development of Product-Service Systems ... 107

1. Introduction .. 108

2. State of the Art ... 108

2.1. Modeling-Approaches .. 108

2.2. Methods for interdisciplinary system modeling and information exchange 110

3. Integration-Framework ... 112

4. Application Example .. 114

5. Conclusions and Outlook ... 117

Table of Contents VIII

Publication 6: Supporting the cross-disciplinary development of product-service systems
through model transformations .. 118

1. Introduction .. 119

2. State of the Art ... 119

3. Model Transformations .. 122

4. Basic Concepts of the PSS-IF .. 123

5. Transformation Process .. 126

6. Conclusion and Outlook ... 126

Publication 7: Towards a Requirements Traceability Reference Model for Product Service
Systems ... 128

1. Introduction .. 129

2. Research Design ... 130

3. Results .. 131

3.1. General Model Constructs .. 131

3.2. Development Artifacts ... 132

3.3. Generic Stakeholders .. 133

3.4. Requirements .. 135

3.5. Specification Artifacts .. 136

3.6. Management Artifacts .. 137

3.7. Solution Artifacts ... 138

3.8. Structure Elements ... 139

4. Exemplary Use Cases ... 140

5. Discussion .. 143

6. Conclusion and Outlook ... 144

Publication 8: Introducing TRAILS: A Tool supporting Traceability, Integration and
Visualisation of Engineering Knowledge for Product Service Systems Development 146

1. Introduction .. 147

1.1. Motivation .. 147

1.2. Approach .. 149

1.3. Structure of Article ... 150

2. Related Work .. 150

2.1. PSS Modelling Methods ... 150

2.2. PSS Computer Aided Modelling Tools .. 151

2.3. Implications for Comprehensive PSS Engineering Tool Support 152

Table of Contents IX

3. Model Integration ... 152

3.1. Model Transformation .. 153

4. TRAILS Integration Method .. 155

4.1. Model Integration Ontology ... 155

4.2. Model Transformation Process .. 159

5. TRAILS Features ... 161

5.1. Importing Models ... 161

5.2. Merging Models ... 162

5.3. Adaptable Cross-domain Model Integration Ontology 163

5.4. Editing Models ... 164

5.5. Customizable Appearance and Standard Graph Layouts 164

5.6. Customized Filtering and Viewpoint Creation ... 165

5.7. Matrix View and Spreadsheet Integration .. 165

5.8. Multi-user Capabilities and Database Server ... 166

6. Case Study: Bike Sharing System .. 166

7. Discussion .. 174

8. Conclusion and Future Work ... 177

PART C: DISCUSSION .. 180

1 Discussion .. 181

1.1 Summary of Findings .. 181

1.2 Implications for Research .. 184

1.3 Implications for Practice .. 187

1.4 Limitations ... 188

1.5 Future Research ... 191

2 Conclusion .. 196

References .. 197

List of Figures X

List of Figures

Figure 1: Main issues regarding traceability for PSS engineering ... 5
Figure 2: Structure of this dissertation ... 15
Figure 3: Scope of Traceability .. 18
Figure 4: Research perspectives on requirements traceability ... 20
Figure 5: Development of Product Service Systems .. 28
Figure 6: Semantic Web Technology Stack ... 36
Figure 7: Cycles in Design Science Research applied to the dissertation topic 39
Figure 8: Overview of the bike sharing PSS case study: PSSycle ... 45
Figure 9: Nine Characteristics of PSS development .. 61
Figure 10: Dimensionen der Anforderungsverfolgung bei PSS ... 67
Figure 11: Considered activities of RE .. 82
Figure 12: Generic engineering change process .. 83
Figure 13: Dependencies between requirement artifacts (RAs) and solution artifacts (SAs) .. 84
Figure 14: Change cycles within and between RM and ECM ... 86
Figure 15: Data model for traceability in engineering change management 89
Figure 16: Schematischer Ablauf des agilen Entwicklungsprozesses bei Alpha 97
Figure 17: Herausforderungen für Traceability im agilen Entwicklungsprozess 99
Figure 18: Konzeptuelles Datenmodell für Traceability in agilen Projekten 101
Figure 19: Specification of the elements for the integration-framework 113
Figure 20: Excerpt of the mapping concept for the eBike-sharing-system 116
Figure 21: General types of transformation possibilities ... 123
Figure 22: Excerpt of the PSS-IF meta-model ... 124
Figure 23: Schematic representation of the transformation process 126
Figure 24: General Model Constructs .. 132
Figure 25: Development Artifacts Submodel ... 133
Figure 26: Generic Stakeholders Submodel ... 134
Figure 27: Requirements Submodel ... 135
Figure 28: Specification Artifacts Submodel ... 136
Figure 29: Management Artifacts Submodel ... 137
Figure 30: Solution Artifacts Submodel ... 138
Figure 31: Structure Elements Submodel ... 139
Figure 32: Exemplary Use Case: Traceability of Requirements Refinement 141
Figure 33: Exemplary Use Case: Traceability of Changes .. 142
Figure 34: TRAILS Model Integration Ontology: Edge Types ... 156
Figure 35: TRAILS Model Integration Ontology: Node Types ... 157
Figure 36: Generic Transformation Operators ... 159
Figure 37: SysML block diagram of the stationary bike sharing system 167
Figure 38: EPC of the rental process in the stationary bike sharing system 168
Figure 39: Excerpt of requirements document for free floating bike sharing system 168
Figure 40: SysML block diagram of the free floating bike sharing system 169
Figure 41: EPC of the rental process in the free floating bike sharing system 170
Figure 42: Configuration of comparison algorithms for merging models 171

List of Figures XI

Figure 43: Merging Results of Requirements with Block Diagram for a Stationary Bike
Sharing System ... 172
Figure 44: Linking Requirements to Solution Components ... 173
Figure 45: Linking activities to system components .. 174

List of Tables XII

List of Tables

Table 1: Relation between Research Question/Publications, Issues of the Problem Statement
and Research Areas at Focus .. 11
Table 2: Definitions of the term Product Service System .. 25
Table 3: Modeling Languages in PSS engineering .. 32
Table 4: Publications included in this dissertation ... 47
Table 5: Further publications by the dissertation's author ... 48
Table 6: Special Characteristics of PSS Development ... 53
Table 7: Zusammenfassung der Methodenbewertung ... 74
Table 8: Classes of traceability links .. 87
Table 9: Summary of existing approaches for interdisciplinary modeling and information
exchange ... 111
Table 10: Cross-Domain Modeling Approaches .. 120
Table 11: Characteristics of Discipline-Specific and Cross-Discipline Modeling 121
Table 12: General Types of Model Transformations ... 154

List of Abbreviations XIII

List of Abbreviations

BPMN Business Process Modeling Notation

CAD Computer-aided Design

DSL Domain-Specific Language / Discipline-Specific Language

DSR Design Science Research

EC Engineering Change

ECM Engineering Change Management

E/E Electrics and Electronics

EPC Event-driven Process Chain

ERM Entity Relationship Model

FEM Finite Element Analysis

FMEA Failure Mode and Effects Analysis

FOAF Friend of a Friend

HW Hardware

IL Intermediary Language

IT Information Technology

MBSE Model-based Systems Engineering

MDD Model-driven Development

OWL Web Ontology Language

PDM Product Data Management

PSS Product Service System

RA Requirements Artifact

RC Requirements Change

RDF Resource Description Framework

SA Solution Artifact

SW Software

SysML Systems Modeling Language

List of Abbreviations XIV

TRAILS Traceability, Model Integration and Lifecycle Management Support

UML Unified Modeling Language

URI Uniform Resource Identifier

WP Workpiece

XMI XML Meta-data Interchange

XML Extensible Markup Language

PART A: INTRODUCTION TO THE PUBLICATIONS 1

PART A: INTRODUCTION TO THE PUBLICATIONS

Introduction 2

1 Introduction

This doctoral thesis is concerned with the special challenges that the integrated development
of product service systems (PSS) imposes on traceability of artifacts in the PSS lifecycle in
general but with a special focus on requirements traceability. For this purpose, the thesis first
gives a theoretically as well as practically grounded overview of the issues that arise due to
the multidisciplinary development process that PSS require. On this basis, the types of
artifacts that need to be traced as well as the types of semantic relationships (so-called “trace
links”) between these artifacts are identified and specified in the form of a model integration
ontology that supports ensuring traceability in PSS engineering. Finally, this thesis introduces
a prototypical software tool to support traceability throughout the entire lifecycle of PSS. The
following chapter motivates this doctoral thesis and provides detailed problem statements for
the research questions addressed in this dissertation.

1.1 Motivation

Due to the ongoing technological evolution that shapes the face of the manufacturing
industry, especially high tech products, become increasingly complex (El Maraghy et al.
2012). While in the 1960ies for example, a car consisted of only few electric components,
today’s cars have turned into computers on wheels as they have to fulfill more and more
customer requirements regarding infotainment, driving assistance (e.g. automatic braking
assistance, line keeping assistance or stability programs), internet connectivity or other
comfort features, such as automatic parking or driver recognition. While in the beginning of
public aviation airplanes used to be merely mechanical systems, they nowadays have to
satisfy various entertainment requirements and some do not even need a pilot as they are able
to fly on their own. Also manufacturing systems that used to be simple conveyor belts running
at a predefined speed have become automated and intelligent in order to cope with the trend
towards mass-customization, just-in-sequence delivery and the increasing use of assembly
robots.

All of these examples require a tight integration of hardware and software components as they
evolve to so-called cyber physical systems. The technological evolution therefore comes
along with complex dependencies between the single system components as they are
dependent on each other in order for the systems as a whole to function. Being able to
effectively manage these dependencies is a not only an essential capability during
development but also during operation, i.e. throughout the whole system lifecycle. However,
the more complicated a system becomes, the more complex it is to manage its operation,
maintenance and finally, disposal. All of these activities are thus increasingly dependent on
experts.

Furthermore, in an increasingly globalized world, companies, especially manufacturing
companies, find themselves confronted with fierce competition in which it is hard to
differentiate oneself just on the basis of their products. In most of the cases there are a large
number of competitors that are capable of delivering a product of comparable quality. This
often leads to ruinous price wars causing margins to collapse (Becker and Krcmar 2008).

Introduction 3

Therefore, many manufacturing companies begin to offer services in order to differentiate
themselves from their competitors (Fritzsche 2007). In the course of this development, more
and more companies realize that customers are not interested in products or services per se
but rather expect a solution to a problem that they are confronted with or the fulfillment of a
demand they have (Leimeister and Glauner 2008; Sawhney 2006). This means that they
transform their business models into providing specific solutions for their customers (Davies
et al. 2006a; Galbraith 2002).Often these solutions consist of an integrated bundle of
hardware, software and services, commonly known as product service system (PSS) (Baines
et al. 2007; Boehm and Thomas 2013).

When developing an integrated solution that incorporates components from multiple
engineering domains such as mechanical engineering, software engineering and service
engineering, it does not make sense to separate the development into domain-specific
processes. Instead, the development of those systems is a challenging task that calls for an
integrated multi-domain engineering process that comprises mechanical, software and service
engineering (Hepperle et al. 2010).

Since PSS are to a large degree customer specific solutions the central point of reference for
PSS development are the customer’s demands which are to be fulfilled by the solution
(Burianek et al. 2007). Due to the fact that customers mostly just have a rough idea of what
they really need, it is the developer’s task to determine and specify the complete requirements
for the intended PSS (Sauerwein et al. 1996; Holtzblatt and Beyer 2013). Moreover, not only
the prospective customer’s requirements need to be considered but also those of other
stakeholders such as experts from the different engineering domains, regulatory bodies or
business partners. All these requirements need to be elicitated, analyzed, structured, refined
and specified in a way that they can be understood by the engineers who develop the various
solution components (Cheng and Atlee 2007; Kotonya and Sommerville 1998). Requirements
engineering therefore plays a pivotal role in PSS development (Berkovich et al. 2011c; Spath
and Demuß 2006).

This situation is aggravated by the fact that engineering artifacts and in particular
requirements do not remain consistent during the development process but rather are subject
to changes and evolve over time. In fact, it can be noted that the entire lifecycle of a PSS is
subject to internal and external cyclic influences that cause changes from time to time. Those
changes manifest themselves in changing requirements and consequentially changing designs
and specifications, which are to be dealt with. In order to cope with these changes, the
evolution of the requirements base and its manifestation in the various PSS components needs
to be monitored. This challenge is commonly referred to as requirements traceability (RT)
(Gotel and Finkelstein 1994; Ramesh and Jarke 2001). There is a large number of reasons,
why traceability is desirable in any engineering project. For example, it is possible to
comprehend and reenact which engineering artifacts have been changed at which point during
the development and what were the reasons for that. The need for systematically managing
traceability is generally accepted in all engineering domains. However, there is no approach
that addresses the special challenges that arise in the context of traceability for integrated
development of PSS which involves multiple engineering domains, each relying on it’s

Introduction 4

domain-specific approaches (Berkovich et al. 2011b). In this dissertation, we present a model
integration and traceability approach along with a prototypical software tool tackling the
issues of PSS engineering.

1.2 Problem Statement

The concept of requirements traceability has been around for decades. In the field of software
engineering the term has been around as early as 1975 when researchers were concerned
about ensuring software reliability (Williams 1975), especially in the aviation sector and for
military purposes. Since then, the need for requirements traceability has been widely
acknowledged in many areas of software and systems engineering, especially if the systems
under development are safety critical or if their failure would lead to severe adverse effects.
The reason for this can be found in the many advantages that proper traceability offers for
engineers, especially for tasks such as impact analysis, change management or project
management in general. We discuss those advantages in section 2.1.4.

As a consequence, various domain-specific methods and tools that ensure the traceability of
requirements fulfillment have been developed and rolled out to industry. Examples for
traceability software tools are Agosense1 , IBM Rational DOORS2, PTC Integrity3, Orcanos
Traceability Management4, Tracecloud5 or Yakindu6. Commonly, these approaches focus on
the development of either a physical product or a software system. However, as many
businesses aspire offering integrated PSS, challenges that arise in the context of requirements
traceability largely differ from traditional product development. In order to provide methods
and tools that ensure traceability in PSS engineering it is therefore important to precisely
reflect on issues which arise due to the various domains involved in PSS engineering and the
dynamic environment in which it takes place.

The research presented in this dissertation was conducted within the collaborative research
center “Sonderforschungsbereich 768 – Managing cycles in innovation processes – Integrated
development of product-service-systems based on technical products”. Based on experiences
made in this collaborative research center that involves researchers and engineers from many
scientific disciplines, we identified four major issues that influence traceability in the context
of PSS engineering (c.f. Figure 1). We discuss those issues in the following.

1 http://www.agosense.com/traceability
2 https://www.ibm.com/us-en/marketplace/cloud-requirements-management
3 http://www.ptc-de.com/application-lifecycle-management/integrity
4 http://www.orcanos.com/compliance/requirements-traceability-tool/#
5 https://www.tracecloud.com
6 https://www.itemis.com/en/yakindu/traceability/

Introduction 5

Figure 1: Main issues regarding traceability for PSS engineering
Source: Own illustration

1.2.1 Issue 1: Characteristics of PSS Engineering

When developing a PSS, the starting point is to examine the individual needs of potential
customers. For this purpose, PSS providers need to identify and interpret the customers’
requirements in detail and translate these into domain-specific engineering instructions
(requirements on a more detailed technical level) that can be understood by mechanical
engineers, electrical engineers, software developers as well as service designers. Along this
way, the initially vague descriptions of needs and the boundary conditions that the solution
has to conform to undergo a series of refinement and consolidation steps. This means that
throughout the requirements engineering process, requirements are abstracted, detailed,
translated, separated, combined, supplemented or discarded until a comprehensive description
of the problem domain is found that can be turned into a corresponding solution. Furthermore,
particularly in the business-to-business area, PSS providers need to understand the business
model and the corresponding business processes of their customers. Otherwise, it is merely
impossible to integrate the PSS offering into the value creation processes of their customers
(Böhmann and Krcmar 2007; Tuli et al. 2007). This means that PSS development not only
needs to design the components that fulfill a specific function when combined, but also
develop the service processes in which those components are being used as well as the
surrounding business model that is designed to deliver value in use to the customer.

1.2.2 Issue 2: Common Representation of Artifacts

As mentioned previously, PSS engineering involves various domains, such as mechanical
engineering, electrical engineering, software engineering or service engineering. In all these
domains engineers have to cope with different challenges. In order to do so they follow
different engineering techniques, use different tools and consequentially produce different
types of artifacts that are represented in different formats.

For example, while engineering the control software for an automated production line
developers might produce C# code that is based on architectural descriptions using UML
class diagrams while the mechanical engineers responsible for the physical components, such

Introduction 6

as actuators produce 3-dimensional computer-aided design (CAD) models that are simulated
using finite element models (FEM) and validated using a failure mode and effects analysis
(FMEA). At first glance, the solutions produced by the mechanical engineers and software
engineers seem largely independent of each other. However, taking a deeper dive into the
solution design one recognizes that the development of such cyber-physical systems requires
that the software engineer needs to know what the hardware looks like and vice versa. Again,
if we take into account the service and business model boundaries that are involved in
offering such a production line as a PSS (e.g. on a pay-per-item manufactured basis), software
as well as hardware engineers need to know the overall business specifications (e.g. service
blueprint, business process model) to be able to deliver the right functionality for the specific
business case.

In conclusion, integrated PSS engineering requires that artifacts from different engineering
domains need to be represented in a common format that allows to link related model
elements (requirements and solution artifacts that fulfil those requirements) or representations
of the same ontological concept in different engineering artifacts (e.g. a certain component in
a CAD model with its representation in a UML class diagram). By doing so, it is for example
possible to determine whether requirements are being regarded by the solution design or, as
discussed in the next section, evaluate how changing one component within the systems
impacts other components.

1.2.3 Issue 3: Cross-domain Traceability and Change Management

The prime goal of a PSS is to present an adequate solution to a specific problem or need a
customer has. Therefore, the PSS needs to be adapted, since this need, the problem or the
customer base evolve over time. As a PSS is primarily a promise for value-in-use, the
provider usually guarantees the availability of the PSS functions. As customer needs change
over time, laws are revised, technologies emerge and competition steadily varies, the
environment in which a PSS operates is highly dynamic.

While traditional products are usually replaced by new generations within the product line in
order to adapt to an evolving environment, the PSS business model is usually oriented
towards establishing long term customer relationships and therefore needs to be continuously
adapted and enhanced. This means that components of the PSS need to be replaced,
refurbished, exchanged, updated, added or removed while under operation (Huang and Mak
1999). In order to assure that the PSS is able to still provide service it was designed for, all
adaption processes need to be managed and potential effects of change need to be anticipated.
The management of these processes of adaption can be summarized in the concept of
engineering change management (Huang et al. 2001). Engineering change management
(ECM) includes managing, executing and monitoring all change processes to have an impact
on the system under consideration (Jarratt and Clarkson 2005).

As argued before, PSS development involves multiple engineering domains. In the final PSS,
the solution components produced by these domains need to be integrated seamlessly in order
to work together properly. This means that they are highly inter-dependent. Changing, adding
or removing a solution component might therefore have an impact not only in the same

Introduction 7

domain (e.g. software) but on the other solution domains of the PSS as well. For example,
updating a certain software component might lead to the point that service processes that had
been considered as independent cannot be executed any longer as they rely on information
indirectly provided by this piece of software. In order to avoid any adverse effects that result
from engineering changes, in PSS development they need to be managed across domain
borders, analyzing direct and indirect impacts of various types within the PSS as a whole.

1.2.4 Issue 4: Different Engineering Cycles

The development of new products is subject to a large variety of influences, originating either
in the development process itself or the overall environment, e.g. the target market. These
external and internal influences which lead to changes in the innovation process are often of
cyclic nature, i.e. they follow a pattern that keeps repeating. Additionally, cycles in innovation
processes are not isolated from each other. The same way a PSS is a complex system
consisting of various interdependent components, different cycles during the innovation
process influence each other as well (Langer and Lindemann 2009). These effects are
especially severe in PSS engineering, where many different domains each including various
stakeholders have to be coordinated, thus making their management a complex task.

A common external cyclic influence on the development of PSS is the continuous evolution
of the stakeholder’s requirements forcing PSS providers to adapt the solution components that
constitute the PSS. For example, evolving customer needs, the availability of new
technologies or the change of legal regulations can lead to new or changing requirements
(Berkovich et al. 2011b). These changes lead to iterations of requirements engineering
activities as well as solution design and test activities causing the need for further
coordination between different stakeholders in various domains. Especially changes of major
customer requirements that are recognized relatively late in the development process can
cause significant rework and thus being a major cost factor and delay market entry (Berkovich
et al. 2011c).

By providing the means of following the dependencies between different engineering artifacts
such as requirements or solution components, the impact of a change can be assessed more
accurately. Therefore, an important approach to mitigate the undesirable effects of such late
and unforeseen change is to ascertain traceability throughout the innovation process (Strens
and Sugden 1996). Traceability can support the management of cycles by revealing the
dependencies between different kinds of artifacts that are produced throughout the lifecycle of
a PSS. Since cycles follow a repeating pattern they can then be managed. However, in order
to manage cycles, their impact on the innovation process as well as the various
interdependencies in the innovation process and the PSS itself first needs to be understood,
modelled and anticipated.

Schenkl et al. (2013) identify the modelling of interdependencies between cycles and their
influences on the innovation process as a driving challenge for further research in PSS
engineering. Since traceability is concerned with the identification, analysis and
documentation of dependencies, integrating the traceability techniques with an approach to

Introduction 8

managing cycles in innovation processes can be regarded highly beneficial to complex
engineering projects.

1.3 Research Questions

The overall goal of this thesis is to develop a traceability approach that is targeted at solving
the issues that arise in the context cross-domain engineering of PSS. In the last section four
central issues were discussed, namely (1) the special characteristics of PSS engineering, (2)
the common representation of artifacts, the ability to support (3) cross-domain change
management and (4) different engineering cycles in the various domains. To solve these
issues, in this thesis we answer eight research questions that build on one another and in
combination form the path to a comprehensive traceability approach for PSS.

A first important milestone on this path is to clarify the challenges that the development of
PSS imposes on requirements traceability. As described by Tan et al. (2010), PSS providers
shift their “business strategy from a product-oriented to a service-oriented focus, where
instead of the product itself, the activity, its utility and performance associated with the use of
the product are considered to be of value to the customer.“ This way, value creation in a PSS
context cannot be seen from a merely transaction-based perspective, but has to be seen as an
interactive and relational process in which the customer acts as a value creation partner (Tuli
et al. 2007). This fact of course also impacts the development process of a PSS and therefore
the requirements for traceability. To determine how the differences between PSS and
traditional products or services influence the engineering process we aim to address the
following research question:

RQ1: What differentiates product service systems engineering from traditional product or
service engineering?

Traceability is a topic that is not only relevant for PSS development. In various engineering
domains the importance of tracing the evolution and satisfaction of requirements has already
been known for decades. For example, manufacturers of safety critical systems, such as
railway signaling and control systems, medical dialysis machines or avionics systems are
forced by law to prove that all legally mandatory requirements are satisfied and their products
work correctly. Also in many software development projects, especially in the business-to-
business or business-to-government sector, customers often demand a proof that all their
requirements are met. Having identified what makes the development of PSS so special it is
important to evaluate whether existing requirements traceability approaches already resolve
the challenges that are prominent in PSS development. We therefore ask the research question
of:

RQ2: What are the merits and shortcomings of existing domain-specific requirements
traceability approaches?

Having analyzed the state-of-the-art in requirements traceability research as well as the
challenges related to the characteristics of PSS development our initial insights show that in
order to provide a suitable traceability approach for PSS development especially two issues
need to be solved: (1) the need for seamless integration of PSS components that are developed

Introduction 9

by different engineering domains and (2) the alignment of different development methods
(e.g. scrum vs. waterfall development) that are applied in these domains. In order to tackle the
first issue, we take the use case of engineering change management across different domains
and aim at identifying the necessary information about domain-specific artifacts and the trace
links between those artifacts that ensure traceability in engineering change management. To
resolve the second issue, we primarily focus on agile development methodologies.

Traditional development methodologies such as a waterfall process or the v-model feature
long requirements analysis and concept development phases. Therefore, detailed process
documentation and system models which can be used to extract traceability information.
Agile methodologies on the other hand are more focused on rapid creation of prototypes and
mostly avoid heavy documentation. This way, it is much harder to collect the needed
traceability information. However, if traceability for the PSS as a whole is wanted, we have to
analyze which kind of information can be collected in agile development and describe the
traceable artifacts of agile development in a conceptual traceability model. We thus want to
answer the following research questions:

RQ3a: What is a suitable model for traceability in engineering change management?

RQ3b: What is a suitable model for traceability in agile development projects?

Having identified the different types of artifacts that are relevant for traceability purposes as
well as the types of semantic relationships in-between those, the next logical step is to take a
detailed look at how those artifacts are composed in terms of their logical structure, namely
their meta model. Providing requirements traceability presupposes identifying and
documenting the relationships between different kinds of engineering artifacts, such as
structural system models, requirements specifications, change requests or use case diagrams.
It is therefore inevitable to find a common conceptual model that is able to describe the
content of different kinds of domain-specific engineering artifacts and represent the trace
links between those. Such a data structure can be either text-based (e.g. simple cross-
references in a natural language text document), matrix-based (e.g. traceability matrices) or
graph-based (e.g. SysML Requirements Diagram). Each of these forms of representation has
its advantages and disadvantages. In order to find the best way of representing the various
domain-specific engineering artifacts in an integrated model, we answer the following
research question:

RQ4: What is a suitable approach for integrating different PSS engineering artifacts under a
common conceptual model?

At this stage we have defined which artifacts need to be regarded in order to ensure
traceability in PSS engineering as well as how to represent them in an integrated manner. The
next step on the road to a comprehensive approach for traceability in PSS engineering is to
create a template for the relationship network that is essential to traceability. This means that
we have to develop a reference model that defines the generic traceability relationships in PSS
engineering, i.e. artifacts and trace links. We thus ask the corresponding research question:

Introduction 10

RQ5: What is a suitable requirements traceability reference model for PSS?

Speaking figuratively, the PSS Integration Framework which resulted from answering RQ4
equals the “words” that constitute the language in which we need to translate the domain-
specific models. The result of answering RQ5 on the other hand can be seen as the grammar
of this new language. Since at this point we have a comprehensive language that is able to
express the necessary traceability relations in PSS engineering, we can now start to compose
the “dictionaries” that are needed for translating from the various domain-specific models (or
modeling languages respectively) into our common PSS representation, i.e. the PSS model
integration ontology. Hence, we want to answer the following research question:

RQ6: How can different PSS engineering artifacts be mapped onto the ontology defined in
RQ4 and RQ5?

One way to show the practicability of our approach for realizing requirements traceability in
PSS engineering is to develop a software tool that supports our approach and show its
implementation in practice using a realistic PSS development process as a use case. This
software tool would need to be able to import different types of domain-specific models
(behavioral as well as structural models), map these models onto the conceptual structure of
our PSS model integration ontology and merge multiple models from different domains into
one comprehensive semantic traceability network. Furthermore, it should display this network
in a visually appealing fashion to a user and offer functions to interact with this semantic
traceability network an analyze it. Therefore, we state our final research question:

RQ7: What would be a suitable software tool to support requirements traceability in PSS
engineering?

In Table 1 we give an overview over the research questions, the publications that are part of
this dissertation, the issues of the problem statement we address as well as the research areas
that are at focus in each of the publications.

Introduction 11

Table 1: Relation between Research Question/Publications, Issues of the Problem Statement and Research
Areas at Focus

RQ Publication Issue of the
problem statement

addressed

Research
area at focus

C
ha

ra
ct

er
is

ti
cs

 o
f

P
S

S
 E

ng
in

ee
ri

ng

C
om

m
on

 R
ep

re
se

nt
at

io
n

of

A
rt

if
ac

ts

C
ro

ss
-d

om
ai

n
T

ra
ce

ab
il

it
y

&

C
ha

ng
e

M
an

ag
em

en
t

D
if

fe
re

nt
 E

ng
in

ee
ri

ng
 C

yc
le

s

R
eq

ui
re

m
en

ts
 T

ra
ce

ab
il

it
y

M
od

el
-b

as
ed

 S
ys

te
m

s
E

ng
in

ee
ri

ng

P
ro

du
ct

 S
er

vi
ce

 S
ys

te
m

s

RQ1 Why Product Service Systems Development is
Special X X

RQ2 Analyse der Eignung domänenspezifischer
Methoden der Anforderungsverfolgung für
Produkt-Service-Systeme

X X X X

RQ3a Towards Cycle-Oriented Traceability for
Engineering Change Management

 X X X

RQ3b Traceability von Anforderungen und Tests in
agilen Softwareentwicklungsprojekten

 X X X

RQ4 Concept for an Integration-Framework to enable
the cross-disciplinary Development of Product-
Service Systems

X X X X

RQ5 Supporting the crossdisciplinary development of
product-service systems through model
transformations

 X X X

RQ6 Towards a Requirements Traceability Reference
Model for Product Service Systems X X X X X X

RQ7 Introducing TRAILS: A Tool supporting
Traceability, Integration and Visualisation of
Engineering Knowledge for Product Service
Systems Development

X X X X X X X

1.4 Structure

Introduction 12

As illustrated in

Introduction 13

Figure 2, this dissertation is structured in three parts: An introduction to this thesis (Part A),
the publications contained in this thesis (Part B) and a discussion of the research results (Part
C).

In Part A we first motivate the research topic against the background of current trends and
developments that impose challenges on engineering complex technical systems (section 1.1).
On this basis, in section 1.2 we illustrate the four major issues that influence PSS engineering
today. As a next step, we hereof derive our research questions and explain each of these
questions in section 1.3. Next, in section 2, we introduce the conceptual background of this
thesis. Here, we focus on requirements traceability (section 2.1), product service systems
(section 2.2) and the paradigm of model-based systems engineering (section 2.3). Having laid
out the fundamental concepts of the research areas that this thesis is subject to, we explain the
research approach in section 3. The overall approach hereby follows the Design Science
Research strategy, as presented in section 3.1. In section 3.2 we then illustrate the three major
methods that were used in this research, namely literature review, conceptual modeling and
prototyping of a software tool.

Part B comprises the eight publications that constitute the results of this research. In the first
publication “Why Product Service Systems Development is Special”, we determine what
differentiates PSS engineering from the development of traditional products or service.
Publication 2 “Analyse der Eignung domänenspezifischer Methoden der Anforderungs-
verfolgung für Produkt-Service-Systeme“ analyzes existing requirements traceability
approaches and evaluates whether they are applicable for PSS engineering. Subsequently in
publication 3 “Towards Cycle-Oriented Traceability for Engineering Change
Management” and publication 4 “Traceability von Anforderungen und Tests in agilen
Softwareentwicklungsprojekten” we take a closer look at the issues of cross-domain
traceability & change management as well as the different engineering cycles, especially due
to agile methods. In publication 5 we then present a “Concept for an Integration-
Framework to enable the crossdisciplinary Development of Product-Service Systems”.
This framework forms the fundament for our model integration ontology and thus the
integration of domain-specific artifacts into a comprehensive PSS model. On this basis,
publication 6 “Supporting the cross-disciplinary development of product-service systems
through model transformations” explains the mechanisms behind our model integration
approach. Publication 7 “Towards a Requirements Traceability Reference Model for
Product Service Systems” then summarizes our final model integration ontology, explaining
the relevant artifacts of PSS engineering along with the semantic relationships between those.
Finally, in publication 8 “Introducing TRAILS: A Tool supporting Traceability,
Integration and Visualisation of Engineering Knowledge for Product Service Systems
Development” we present our prototypical tool that implements our model integration and
traceability approach.

As the results of our research are incorporated in the individual publications in part B, we
continue with the discussion of our research in Part C. Here, we first present a summary of
our findings (section 1.1). Afterward we discuss the implications for research (section 1.2) as
well as the implications for practice (section 1.3). Each of those sections hereby explains the

Introduction 14

implications from the perspectives: requirements traceability, product service systems and
model-based systems engineering. As a next step, in section 1.4 we present the limitations of
our research regarding the overall research approach, our model integration ontology as well
as our prototypical software tool TRAILS. Finally in the discussion, we lay out a roadmap of
potential future research (section 1.5). Here, we focus on three major directions: empirical
evaluation, extension of the integration ontology and enhancement of the software tool, before
we draw a conclusion in section 2.

Introduction 15

Figure 2: Structure of this dissertation

Source: Own illustration

Conceptual Background 16

2 Conceptual Background

This chapter introduces the theoretical concepts that are fundamental to the topic of this
thesis. First, requirements traceability is introduced as a pivotal task in requirements
engineering for development projects in general and more specifically in the cross-domain
development of PSS. As PSS is the application area that this thesis focuses on, the overall
concept of a PSS business model, the different types of PSS that can be found in various
industries and the special characteristics that shape their development are introduced. Finally,
this chapter presents the concept of model-based systems engineering, a development
paradigm which is central to the requirements traceability approach that is proposed in this
thesis.

2.1 Requirements Traceability

Tracing the evolution and implementation of requirements is a crucial part of the
requirements management process (Kotonya and Sommerville 1998). According to Gotel and
Finkelstein (1994) “requirements traceability refers to the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction (i.e., from its origins,
through its further detailing and specification, to its subsequent deployment and use, and
through all periods of on-going refinement and iteration in any of these phases)." Since all
solution approaches and tools presented in this thesis are ultimately targeted at ensuring
traceability, this section presents an overview of the topic and general concepts. Furthermore,
we illustrate the different dimensions of traceability. Finally, we introduce basic use cases for
traceability information.

2.1.1 Imperative for traceability and cross-domain issues

The overall goal of requirements traceability is to document the life cycle of a requirement
from its origin through all stages of analysis, detailing, refinement and adaption along the
entire development process. Moreover, all dependencies and linkages between the
requirements themselves, between requirements and solution components or between any
other engineering artifacts need to be identified, documented and maintained (Ramesh and
Jarke 2001). Tracing requirements involves the identification and documentation of semantic
dependencies, so-called trace links. These trace links specify the relationships between all
kinds of artifacts. By navigating along trace links, it is for example possible to comprehend
why requirements had been specified in a certain way. Also developers can understand which
solution components contribute to fulfilling a certain requirement or which test cases have
been established in order to ensure that requirements are satisfied (Spanoudakis and Zisman
2005).

In the development of PSS, dependencies between artifacts that stem from different
engineering domains tend to be the rule rather than the exception. Consequently, traceability
needs to be guaranteed across domain borders (Berkovich et al. 2011b). In order to recognize
which development and solution artifacts should be considered by post-specification
traceability one has to examine the characteristics of the different engineering domains. For

Conceptual Background 17

example, the service design of a PSS often influences the architecture of software components
or the appearance of hardware components that are needed for service delivery.

The development of hardware products does not solely embrace the design of the product
itself but reaches out to production planning and beyond (Sharafi et al. 2010b). Among others,
issues like manufacturability, logistics, disassembly or environmental considerations play a
central role in the development process and should therefore be within the traceability scope.
The list of criteria that have to be considered during product development can be easily
expanded and is commonly known as “Design for X” criteria (Bauer and Paetzold 2006).
Depending on which criteria play a role in a specific engineering process, requirements need
to be traced to a wide variety of development artifacts (Dubois et al. 2010) like CAD-models,
production plans, assembly line concepts or supply chain designs.

Since the great majority of traceability approaches that are described in literature were
explicitly developed for software engineering purposes, those approaches already cover many
of the factors that are important for this engineering domain (Hildenbrand 2008). However, in
the case of PSS development it should also be noted that software often acts as the glue
between hardware and service components (Berkovich et al. 2011c). Therefore, besides
traceability links between requirements and software components also further relationships
between software artifacts and artifacts in other engineering domains need to be considered in
post-specification traceability.

Service engineering is probably the one domain that is most difficult to approach with regard
to requirements traceability. By definition services are intangible, usually time-dependent and
unique, but can have long-lasting effects. A service provider can only make the required
factors and potentials available and define the process of service provision but services
themselves can’t be stored. Instead, they are created instantly in the interaction with the
customer. Because services are produced and consumed at the same time a-priori trust in the
service provider is an essential factor. Consequentially, this causes a latent problem for
quality checks (Eversheim et al. 2006; Frese et al. 1998). For requirements traceability this
means that services can only be designed with regard to fulfill the specified requirements but
the actual fulfillment of each requirement cannot be checked until the service is provided.
Additionally, the requirements for a service can be very volatile since they depend largely on
the situation in which the service is provided. Therefore, a suitable traceability approach
needs to define some kind of service proxies like service blueprints or other service process
templates which can instead be traced during the phase of service provision.

2.1.2 Scope of requirements traceability

As shown in Figure 3, the scope of requirements traceability can be differentiated according
to the direction in which requirements are traced. Forward traceability covers trace links to
subsequent artifacts while backward traceability refers to links to preceding artifacts (Kotonya
and Sommerville 1998; Jarke 1998). Accordingly, traceability is often differentiated
according to the types of artifacts it links within the development process. This way, pre-
specification traceability refers to linking initial stakeholder needs to the requirements
specification while post-specification traceability follows the requirements from this stage

Conceptual Background 18

to various development artifacts and the final PSS components. Relationships between
individual requirements are subject to inter-requirements traceability (Pohl and Rupp
2010).

Figure 3: Scope of Traceability
Source: Adapted from Wolfenstetter et al. (2015a)

The development of a PSS starts with the appearance of a need in the market. Recognizing
this need or demand respectively marks the beginning of each innovation process. In order to
understand what the demand carrier really wants the demand has to be translated into
requirements which summarize the interests that each stakeholder has in the desired solution.
Being able to trace which source triggered the specification of a requirement is essential for
the innovation process as it allows understanding why the requirement was specified in the
first place. It is also reproducible, why a requirement was originally specified in a certain way
and who to refer to if adaptions are needed (Gotel and Finkelstein 1995). Especially in the
context of PSS development this becomes a real challenge since the spectrum of stakeholders
that are involved in the process and who have largely varying intentions is very broad and
heterogeneous. In fact, many studies (Ramesh and Jarke 2001; Pohl 1996a; Ramesh 1998)
that are concerned with the industrial practice in requirements traceability argue that the so-
called pre-specification traceability is the most apparent problem in practice and
simultaneously the least understood. The reason for this is that early in the development
process the needs of stakeholders are usually very vague and high-level and, if even, they are
often documented in a free and unstructured manner. This makes it difficult to explicitly link
them to a certain requirement within the specification.

By nature, the number of requirements rises with the increasing technical complexity of a
product or the organizational complexity of a service. A complex product like a car or a
complex service like surgery for example has to comply with a long list of legal regulations
and standards, where each item on this list can lead to multiple requirements for each system
component. Consequentially, the integration of complex products and services in a PSS

Conceptual Background 19

increases the volume and complexity of the requirements base tremendously. As a result, a
complex and multi-hierarchical network of interrelated requirements evolves during the
development of a PSS. This fact gives rise to the need for tracing the relationships between
requirements on multiple levels of abstraction (we refer to it as inter-requirements
traceability) in order to structure the requirements base (Lin et al. 2006).

A proven approach to accomplish requirements structuring for PSS is the artifact model
which breaks the requirements down into five levels of abstraction. As illustrated in Figure 3
each level (target, system, property, function and component) covers multiple types of
requirements. On the target level one defines generic requirements, not yet specifically linked
to the development process of a PSS (i.e. overall targets of the service provider and the
customer). On the system level neutral and initial requirements imposed on the PSS are
considered. On the property level PSS engineers specify the results of service processes, the
features of software components as well as the functions of hardware components.
Requirements specifications on the function level are concerned with the way these service
results, software features and hardware functions are realized, i.e. the behavioral structures of
the components, their functionality and the requirements related to them. Finally, the domain-
specific requirements on the component level describe the components in the language of the
particular engineering domain (Berkovich et al. 2012).

The requirement artifacts influence each other, for example by limiting or concretizing each
other. Therefore, several relationships between the artifacts can be distinguished (Pohl 2010;
Geisberger 2005). By the differentiation into five levels, the artifact model supports the
interdisciplinary elicitation and concretization of the requirements in accordance with the
development process. An adequate traceability approach for PSS should therefore be able to
trace relationships within such a hierarchically structured requirements base (Berkovich et al.
2011b).

Probably the subarea of requirements traceability that has gained the most attention in
research as well as in practice is post-specification traceability, i.e. tracing how
requirements are implemented. In a narrow sense, this means linking specified requirements
to domain-specific solution components (e.g. software code) and test cases (Cleland-Huang
and David Schmelzer 2003). However, especially in the case of PSS development, post-
specification traceability should have a wider scope that among other things takes into
account how product components are produced and maintained as well as how services are
delivered.

2.1.3 Perspectives on traceability

Reviewing the literature, we found that various publications focus on different aspects of
requirements traceability. As shown in Figure 4, these aspects can be broadly classified into
three perspectives on requirements traceability, namely (1) the conceptual perspective, (2) the
methodology perspective and the (3) process and management perspective.

Conceptual Background 20

Figure 4: Research perspectives on requirements traceability
Source: Own illustration

The conceptual perspective mainly deals with the types of artifacts that are in the scope of
requirements traceability as well as their structure. Publications that address traceability from
this perspective often deal with the question, which development or solution artifacts need to
be regarded in order to ensure traceability as well as the types of relationships existing
between those artifacts. For example, Pohl (2010) or Spanoudakis and Zisman (2005) define
several types of semantic trace links, namely dependency, generalization/refinement,
evolution, satisfiability, overlap, conflict, rationalization and contribution. Moreover, Ramesh
and Jarke (2001) as well as Hildenbrand (2008) present empirically backed reference models
for traceability with a focus on software engineering. The potential of effectiveness and
efficiency gains that can be realized in complex development processes due to proper
traceability depends on various factors, e.g. number of requirements, size of the team
composition, degree of requirements fluctuation, complexity of the product, heterogeneity of
the customer structure. The stronger these factors are, the more important is an accurate and
thorough management of traceability information (Schienmann 2001, p. 104), which comes in
hand with having a conceptual traceability model that is align with the organization’s needs.

A second category of publications approaches the traceability issue from a methodology
perspective. Research from this perspective is concerned with methods and tools that can be
applied in the area of requirements traceability. Here, the overall focus lies on “how” the
traceability information should be captured, maintained and used (Ramesh 1998; Ramesh and
Edwards 1993). In this context, methods for capturing and maintaining traceability
information can be divided into three types, namely manual, semi-automatic and fully
automatic (Spanoudakis and Zisman 2005; Aizenbud-Reshef et al. 2006). Additionally,
research from this perspective is concerned with finding appropriate ways to visualize
traceability information, suggesting various use cases for text-based, matrix-based or graph
based visualization (Li and Maalej 2012).

The third view on requirements traceability is from a process and management perspective.
Here, the focus is on the integration of requirements traceability activities into the innovation
process as a whole. When implementing means to assure requirements traceability, factors

Conceptual
perspective

Process and
management
perspective

Methodology
perspective

Conceptual Background 21

that influence the capturing, maintaining and utilizing of traceability information, such as
organizational environment or development methodology need to be considered (Ramesh
1998). From a strategical point of view, the implementation of traceability requires finding
the right level of information granularity, determining responsibilities within the organization
and establishing routines within the development process for capturing and maintaining
traceability information. Furthermore, engineers need to have a detailed understanding of
potential use cases for traceability information in order for the company to profit from the
laborious capturing and maintenance activities (Arkley and Riddle 2006; Ramesh et al. 1997).

The proposed categories often overlap with each other. For instance, requirements traceability
processes depend on tools and methods that are applicable for each step in the process. This
was also observed in our literature review, where we found that some publications address
issues from more than one category.

In the research for this dissertation we focus on the conceptual perspective, since it is the most
basic perspective of the three. By providing a conceptual approach to requirements
traceability for the cross-domain engineering of PSS it is possible to focus on the
methodology or the process and management perspective in future research.

2.1.4 Utilization of traceability information

Comprehensive requirements traceability within an engineering project is in our eyes
implemented, if all traceability information that is needed for the use cases defined in the
traceability strategy is captured and thoroughly documented. In reality however, capturing,
documentation and maintenance of traceability information is often seen as an additional
burden to the developer and thus neglected. Another obstacle in achieving comprehensive
traceability is that the documentation of traceability information can take the form of very
heterogeneous artifacts, such as software code, graph-based models, natural language
documents and others. In practice, transparency suffers from these different complex contents
(Egyed and Grünbacher 2005). For many organizations, the high costs of realizing
comprehensive requirements traceability deter them from an investment in this area
(Kannenberg and Saiedian 2010). It is thus a primary task of research into requirements
traceability to analyze and communicate the potential use cases of traceability information.

In a widely noticed study Mäder and Egyed (2012, p. 171) found that in development projects
where traceability is provided, engineers generate better solutions in 60% of the tasks and
were about 21% faster. The advantages of the requirements traceability are manifold.
Especially systems validation, identification of inconsistencies, change management, impact
analysis, knowledge management, stakeholder identification, artifacts reuse, accountability
and project management are facilitated significantly.

Perhaps the most prominent use case for traceability information is systems validation. In
quality management validation means testing if a system, product or software is suitable for
its intentional use. Especially in industries where solutions are built to customer order,
customers commonly demand proof that all their requirements have been met. If requirements
engineering standards have been followed properly during system development, validation

Conceptual Background 22

can be accomplished by checking whether the specified requirements are satisfied. By doing
so, it is possible to demonstrate fulfillment of requirements to the customer and at the same
time enhance the overall quality of the system (Pohl 2010; Kirova et al. 2008; Ebert 2014).
With adequate traceability information at hand, quality engineers can perform these checks by
following the links from requirements to solution artifacts and further to test artifacts. In this
context is also possible to assess which of the requirements are verified by which of the test
cases and to assure that each requirement is checked in a corresponding test case.
Furthermore, it becomes evident, which components of the solutions can be traced back to
which requirements (Ramesh and Jarke 2001). This makes it possible to identify features that
are incorporated in the system although they are not based on customer’s demands. From the
provider’s perspective, such features need to be avoided, as their implementation usually
causes a waste of resources and lowers future margins, since the customer is not willing to
pay a premium for them (Ramesh 1998; Pohl 1996b). In this regard, traceability not only
ensures implementation of requirements, it also helps to identify unrequired system
features by checking if every feature contributes to satisfying the requirements. This
development issue, also referred to as gold-plating often comes along with another related
threat to systems development that is commonly labeled as requirements creep. Requirements
creep means that additional requirements are added to the requirements specification by the
developers after it has been considered complete (Robertson and Robertson 2006). Those
requirements creep into the specification without being based on any customer, market or
legislation demands. A systematic traceability approach can help to avoid requirements
creep by capturing the source of and reason for each requirement.

Proper traceability information may further assist with the identification of inconsistencies.
If, for example, trace links indicate several requirements that refer to the same solution
component it needs to be ensured that these requirements do not contradict each other (Qusef
2013). Moreover, on the basis of traceability information it is possible to identify violations of
physical laws, conversion errors between different units of measurement, mismatches
between the different domain-specific engineering artifacts regarding the same solution
component or even problems regarding the manufacturability of a physical component.

As mentioned in section 1.2.3 and section 1.2.4, the emergence of new requirements or the
identification of inconsistencies within the requirements base as well as within or between
other development or solution artifacts are a primal reason for changes and adaptations. The
reasons for such changes are manifold and vary from an evolving competition in the target
market to organizational changes or changes in the price structure of a PSS offering (Boehm
2000). This way, it is not surprising, that on average requirements have a monthly rate of
change of about one to five percent, taking the project scope as a basis (Ebert 2012, p. 363).
So, in an engineering project that spans over several years, a large fraction of the originally
specified requirements has been changed at least once. To ensure that such changes are
implemented in a controlled manner, active change management needs to be established
(Doppler and Lauterburg 2008). Traceability information assists engineering change
management (as well as organizational change management) in many different ways. To
name one example, trace links show which artifacts are related to the artifact under

Conceptual Background 23

consideration which is subject to change and might therefore need to be changed as well
(Kotonya and Sommerville 1998). Hence, comprehensive traceability information empowers
change managers to act out the effects of change propagation within the network of
interrelated development and solution artifacts and perform a change impact analysis. This
fact is important since the efficiency of change management depends largely on the ability to
evaluate how changing a requirement affects the system as a whole (Ebert 2008).

Not only can traceability information be used for the development of PSS, it can also be
capitalized during service provision. In many PSS for example, maintenance and support
services are an integral part of the business model. Comprehensive traceability information
can support system maintenance by examining causes and effects of system failures (e.g.
during FMEA), identifying affected system parts and predict the effort that is necessary to
eliminate the failure (Pohl and Rupp 2010). This way, traceability information encourages
product understanding and supports stakeholders in handling critical tasks in the development
and maintenance of the product (Egyed and Grünbacher 2005; Maeder and Egyed 2012).
Furthermore, traceability facilitates an understanding of how and why the system satisfies the
needs of stakeholders by illustrating the connections between requirements and the system
design. Support staff can also use traceability information to explain to the customer why the
system behaves in a certain way and customer will comprehend the advantages of the current
system design.

Due to the cross-disciplinary development of PSS, the various stakeholders involved in the
innovation process are often familiar with only those parts of the system that they work on.
Whenever these stakeholders leave the development project or the organization for whatever
reason their knowledge that is not documented is usually lost and hard to rebuild. By
diminishing this issue, traceability information can play a pivotal role in organizational
knowledge management. Since traceability information explains the overall relations
between all development and solution artifacts as well as their evolution, new team members
can easily build up an understanding of the current state of development, facilitating the
integration of new member into the development team (Ghazarian 2008). Especially
organizations with a high staff turnover should rely on traceability of engineering information
to guarantee that knowledge is preserved (Gotel and Finkelstein 1994).

If the relationships between artifacts and the people, departments and roles within and
organization are captured, it is easily possible to identify stakeholders that are impacted by a
change or that could be consulted if expert knowledge is needed for engineering tasks
(Ramesh and Edwards 1993). This way, it is possible to bring together the right people in
charge in order to implement necessary changes quickly or resolving mutual
misunderstandings. This is especially important since from a realistic point of view, it is
impossible to codify all tacit knowledge within the organization into documents.

Additionally, traceability encourages the reuse of artifacts as it is possible to identify
artifacts that have already been developed for or used in a similar situation but in past
engineering projects. Especially in software engineering the reuse of fragments of software
code is a proven way to reduce development time (Krueger 1992). This strategy can also be

Conceptual Background 24

applied in the other domains of PSS engineering, namely service engineering or mechanical
engineering. For example, it is possible to reuse generic business process specifications, such
as payment processes, in other contexts or to adapt hardware products for other purposes than
the originally intended (c.f. part C, section 1.5). By comparing requirements in past and new
development projects one can identify traceability relationships and development artifacts that
can be adapted and reused, thus saving resources (Pohl and Rupp 2010). However, this is not
only true for solution artifacts that fulfill similar requirements specifications but also for
requirements that have been specified according to similar customer needs.

For managers of PSS engineering projects traceability information is a valuable knowledge
base for various project management tasks. Particularly, quantitative analyses of traceability
information regarding the status of the development project or the resources spent for
development are of interest for these tasks (Ramesh and Edwards 1993). For example, by
mapping development effort from system features to requirements it can be reconstructed how
much effort was needed to fulfill a specific requirement. Furthermore, based on traceability
information, project managers can assess to which degree development is competed, forecast
whether milestones will be met, determine the performance of the development team or
establishing a pricing structure of the future business model based on development efforts for
certain features. In summary, requirements traceability can play a key role in monitoring
project progress, allocating resources and controlling costs (van Lamsweerde 2007).

While the advantage that the utilization of traceability information offers for the use cases just
described makes the provision of traceability and its proper management recommendable for
every single engineering domain, the availability of traceability information unfolds its entire
potential in the context of PSS engineering, because in this context cross-domain engineering
and customer orientation are dominating factors.

2.2 Product Service Systems

In various industries and markets companies feel the pressure of increasing competition in
combination with more and more complex customer requirements (Boehm and Thomas 2013;
Leimeister 2012). Since even developing countries rapidly catch up in terms of product
quality and technology, many companies that are based in countries with a higher cost of
labor have realize competitive advantages elsewhere than in technology or quality leadership.
Today, in developed markets, the prime source of competitive advantage for local companies
is the proximity to the customer, which comes in hand with understanding the customer’s
problems and being able to deliver individual solutions to these problems. Moreover,
customers increasingly demand individually customized solutions to their problems
(Leimeister and Glauner 2008; Sawhney 2006) rather than separate standardized products or
services that where developed for a mass market (Knackstedt et al. 2008; Nordin and
Kowalkowski 2010).

Conceptual Background 25

2.2.1 Terminology

Many companies, product manufacturers as well as service providers, are changing their
traditional business model to become so-called solution providers (Davies et al. 2006a;
Galbraith 2002). The solutions they offer are integrated bundles of software, hardware and
services that aim at resolving a specific customer need (Sawhney 2006; Tuli et al. 2007).
Scientific literature refers to such bundles mainly as Product Service Systems (PSS) (Baines
et al. 2007; Boehm and Thomas 2013) as they integrate physical and/or software products
with service components into one offering whose single components are not distinguishable
as such for the customer.

However, the terminology in the context of integrated product and service bundles varies
from one author to another. Consequentially different terms are used synonymously
(Knackstedt et al. 2008; Velamuri et al. 2011). For example, we often find terms like hybrid
product (Leimeister and Glauner 2008), solution (Johansson et al. 2003), customer solution
(Foote et al. 2001) or covalent product (Weber et al. 2002) when referring to PSS. In order to
clarify, what we understand by the term PSS, we present a selection of definitions and derive
what we understand when referring to product service systems in this dissertation.

Table 2: Definitions of the term Product Service System

Source Definition

(Goedkoop et al.
1999)

“A Product Service system (PS system, or product service
combination) is a marketable set of products and services, jointly
capable of fulfilling a client’s need. [...] PS system knowledge
enables companies to find strategic options for business growth,
renewal, innovation and diversification.”

(Mont 2002) “[A] system of products, services, supporting networks and
infrastructure that is designed to be: competitive, satisfy customer
needs and have a lower environmental impact than traditional
business models.”

(Manzini and Vezzoli
2003).

“[A]n innovation strategy, shifting the business focus from
designing (and selling) physical products only, to designing (and
selling) a system of products and services which are jointly capable
of fulfilling specific client demands.”

(Tukker 2004) “A product-service system (PSS) can be defined as consisting of
tangible products and intangible services designed and combined so
that they jointly are capable of fulfilling specific customer needs.”

(Baines et al. 2007) “A PSS is an integrated product and service offering that delivers
value in use to the customer.”

(Böhmann and
Krcmar 2007)

Translated from German: Hybrid products are combinations of
products and services that are offered as integrated bundles to a
market. The goal of combining products and services is to offer

Conceptual Background 26

solutions to specific customer problems.

(Tan et al. 2007) “PSS is a shift in business strategy from a product-oriented to a
service-oriented focus, where instead of the product itself, the
activity, its utility and performance associated with the use of the
product are considered to be of more value to the customer.”

Following the definitions presented, a PSS is a combination of products and services that are
tailored towards solving a specific customer problem. In this regard, the tight integration of its
components is a key characteristic (Tuli et al. 2007; Burianek et al. 2009). This means that the
individual components of a PSS cannot be distinguished easily (Leimeister and Glauner
2008). In the context of this work we thus define the term PSS in the following way:

“A PSS comprises a technical product with integrated services that provides a complete
solution to users. Further, the product itself could be made up of mechanical, electronic

and/ or software components.”

2.2.2 Types of PSS

PSS can be found in a variety of industries, such as mechanical and industrial engineering,
transportation, public infrastructure or information technology (Becker and Krcmar 2008;
Tuli et al. 2007). In the IT sector for example, so-called “software as a service” is an area that
has been subject to tremendous growth over the past years. In this business model, the
functionality of standard software is offered over the internet on a rental basis and can be
accessed via a web browser while the application itself is hosted in a remote data center
(Böhmann and Krcmar 2007; Berkovich et al. 2010a). However, also complete solutions at
the customer’s site are quite common. In such business models the provider is responsible for
setup, operation, maintenance and updates of a software solution as well as the necessary
hardware and end user training and support (Floerecke et al. 2012).

According to Tukker (2004) one can differentiate between three generic types of PSS, namely
(1) product-oriented, (2) use-oriented and (3) result-oriented PSS.

Product-oriented PSS augment a traditionally sold product by adding product-related
services to customers. In this type of business model, the product is owned by the customer,
while the service is provided by the firms. In such business models during the operational
phase of the product the PSS provider offers specific product-related services such as
maintenance or repair. When reaching the end-of-use or end-of-life phase, take-back and
reprocessing services are offered. In use-oriented PSS, customers usually pay for the usage
of products, while the ownership of the product remains with the PSS provider.
Consequentially the provider takes over the responsibility of providing a certain product with
a promised functionality in operable condition (Tukker 2004; Bartolomeo et al. 2003).
Result-oriented PSS concentrate on delivering a certain result to the customer by keeping the
full responsibility at the provider’s side (Tukker 2004). This last type of PSS business model
is totally independent of any product instance. The provider just obligates himself to deliver a
certain result.

Conceptual Background 27

In opposition to traditional businesses in which value creation is commonly seen from a
transactional perspective the creation of value in PSS business models is a relational process
in which the provider and the customer interact (Tuli et al. 2007). This way, the customer is
no longer just a mere receiver of the value created, but acts as a value creation partner (Becker
et al. 2009; Schmitz 2008). This way, PSS business models tend towards more intensive and
long-lasting customer relationships than traditional businesses. In such relationships the
provider usually takes over responsibilities along the entire lifecycle, from requirements
elicitation to the stage of service provision and finally to the replacement and disposal of PSS
components (Baines et al. 2007; Herzfeldt et al. 2012).

2.2.3 Development of PSS

Comparing the different domains that are commonly involved in PSS development, namely
mechanical engineering, software engineering and service engineering, we find that in each
domain solution artifacts can be described in three dimensions.

In mechanical engineering we usually distinguish between the function, the behavior and the
structure of a system (Qian and Gero 1996). Software engineers on the other hand often view
system architecture from a feature (or function) dimension, a workflow (or control) dimension
and a data dimension (Scheer 1992). Also the domain of service engineering mostly resorts to
a tri-partition of service dimensions7. First, the service results describe the desired outcome of
a service. The process dimension describes which activities need to be performed in order to
generate this outcome and the resource dimension defines what is required in order to perform
the activities that generate the service result. These resources can for example be human
factors, information and knowledge as well as hardware or software artifacts (Bullinger and
Schreiner 2006). This means that the hardware and software components of a PSS constitute
service resources. As such they are primarily means to an end in order to provide the service
to the customer. Fehler! Verweisquelle konnte nicht gefunden werden. clarifies the
aforementioned similarities between hardware, software and service engineering and
illustrates the development of PSS that is generically speaking composed of (requirements)
analysis (dashed arrows) and component integration (solid arrows).

7 Some authors add the market dimension as a fourth dimension to describe services.

Conceptual Background 28

Figure 5: Development of Product Service Systems
Source: Own illustration

One fundamental characteristic of PSS that becomes evident during their development is the
special focus on satisfying customer needs (Aurich et al. 2006). The starting point of a PSS
development project is usually the identification of the customer’s (unconscious) problems
and desires. During requirements analysis, the PSS provider defines that essential service
results that are needed in order to fulfill the basic customer requirements. As a next step it is
necessary to determine the processes needed in order to achieve the service results and break
them down into single activities. For each activity one can now specify the stakeholders
involved in performing the activity and evaluate which other service resources are required.
Apart from human actors these resources are mainly information (which can be the result of
another service or s delivered by software) or physical items, i.e. hardware.

2.2.4 Need for Integration in PSS engineering

Customer-oriented business models, such as PSS aim at providing a solution to the customer’s
problems rather than the means to solve the problems himself. Thus they are usually based on
various solution components, such as hardware, software and human labor (in the PSS
development process represented in terms of service guidelines and instructions, e.g. service
blueprints or process models). To deliver the desired outcome all these components need to
seamlessly work together (Cook et al. 2006; Tukker and Tischner 2006). The need for
integration is therefore a defining factor in PSS engineering.

When it comes to functional harmonization the various solution components, experts speak of
technical integration. Here, the goal is to generate a value-added to the customer when
comparing the integrated PSS to the sum of its components (Johansson et al. 2003). In
general, PSS derive their reason to exist from the fact that they are more than just products
and services sold as a bundle (Reichwald et al. 2009). In this regard, Burianek et al. (Burianek
et al. 2009) speak of the „1+1=3“-effect.

Product Service System

ServiceHardware

Function Result

Behavior Process

Structure Resource

Software

Feature

Workflow

Data

Logical order of analysis and specification
Logical order of components integration

Conceptual Background 29

In addition to the technical integration of solution components, PSS require organizational
integration. This means that all internal business processes of the provider that are related to
the PSS need to be aligned (Beverungen et al. 2009). Furthermore, the PSS often needs to be
integrated with existing business processes or the IT-landscape of the customer. This is often
the case when it is not economically reasonable or desired by the customer to replace all
existing processes or IT-systems with the solutions offered by the PSS. In this case the PSS
provider often needs to take care of the continuation of such legacy systems (Böhmann and
Krcmar 2007). The need for integration that is inherent to any PSS also presents itself in
terms of marketing. PSS providers need to bundle formerly independent products and service
together in a way that delivers the highest value in use to the customer (Sawhney 2006; Sturm
and Bading 2008).

Since in most of the cases product-oriented PSS business models are basically products with
built around services, components can be developed independently of each other. However,
the situation with use- or result-oriented PSS is different. Deep integration between hardware,
software and services requires high levels of collaboration between the different engineering
domains continuously during all phases of the PSS life cycle (Johansson et al. 2003). Usually,
each of the stages of delivery, after-sales, and reprocessing services also different
stakeholders within the value creation network are involved (Bonnemeier et al. 2007).

2.2.5 Advantages of PSS business models

From the provider’s perspective the introduction of a PSS usually allows firms to generate
continuous revenues rather than one time sales and realize other benefits (Mont 2000) such
as entering new markets or increasing customer satisfaction and loyalty (Tukker 2004) by
entering long-term in depth customer relationships. Due to this, providers can profit from
faster feedback loops with the customer and as a result of the closer contact to the customer
there is also the possibility of add-on sales that increase the provider’s business volume as
well as margins.

Seen from the perspective of a customer, PSS offerings promise an easy scale up of the
service provided. As with, for example, cloud computing services or even automated
production systems that are obtained as a service, customer often just have to extend their
service contract and the provider will care for the rest. As a consequence, the total cost of
ownership (TCO) is also more transparent to the customer, since the cost of “one unit of
service” is broken down in the service contract with the provider. Another advantage for the
customer is the reduction of risk, because most of the risk regarding for example underused
capacities or fast recovery after system failures is born by the PSS provider.

Besides economic advantages for both the customer as well as the PSS provider, PSS also
feature advantages for society in general since they tend to have a smaller adverse impact on
the environment than traditional business models (Baines et al. 2007; Beuren et al. 2013).
For example, Mont (2002) argues that due to the special usage patterns of PSS fewer units of
a product need to be manufactured and maintained. Moreover, PSS business models often
imply so-called closed-loop material flows, fostering refurbishment rather than disposal.

Conceptual Background 30

Furthermore, due to the adaptation to special customer requirements PSS usually feature a
more economical factor input (Tukker and Tischner 2006).

2.3 Model-based Systems Engineering

In general, Systems Engineering can be defined as “the intellectual, academic and
professional discipline the principal concern of which is the responsibility to ensure that all
requirements for a bioware/hardware/software system are satisfied throughout the life cycle
of the system” (Wymore 1993, p. 5).

As especially technical systems are getting smarter, increasingly miniaturized and inter-
connected, their architecture and design becomes ever more complex. This development
forces engineers to describe them in a way that facilitates the handling of their inherent
complexity. One well suited and at the same time popular way of dealing with complexity is
specifying the system from multiple viewpoints using adequate modeling approaches.

Following Stachowiak (1973) a model is a representation of an original that has three basic
characteristics. First, models are always models of something, i.e. representations of originals,
which can be models themselves (mapping characteristic). Second, models don’t represent all
features of an original but only such that are selected as relevant by the modeler (reduction
characteristic). And third, a model is not a mere representation of an original but has a certain
purpose to a certain subject within a certain timeframe (pragmatic characteristic).

By anchoring the usage of models as the focal point of all engineering activities the model-
based engineering approach aims at solving engineering issues through abstraction and reuse.
At the same time, complexity is manageable and the formal or at least semi-formal
specifications avoid ambiguity and make the system structure easier to comprehend. Model-
based systems engineering (MBSE) can be summarized as a paradigm for development
projects in which models are seen as the central development artifacts. This means, that
models are not seen as a tool for mere documentation purposes. Instead, models deliver
additional benefits for the engineering process, e.g. through semi-automated generation of
deliverables such as software code also referred to as model-driven approaches (France and
Rumpe 2007). Overall, models can play a vital role along the entire lifecycle of a system
ranging from concept development to deployment, operation, maintenance and even update,
refurbishment or disposal (Feiler and Gluch 2012).

For PSS providers a model-based approach to engineering comprises enormous benefits and
yet obstacles at the same time. Probably the most common challenges are related to
communication and integration of engineering information as well as the management of
complexity. By its very definition, PSS engineering involves several domains, each
acquainted with its own modeling languages and software tools.

2.3.1 Traditional engineering vs. model based engineering

When characterizing the model-based approach in systems engineering we find that it rather
focuses on abstraction of a specific problem and the stakeholder’s requirements rather than
generating a quick fix for the current problem at hand and altering this solution draft until it

Conceptual Background 31

sufficiently satisfies all requirements as we find it in traditional engineering approaches. By
doing so, model-based systems engineering elaborates more on the problem domain in order
to capture the problem from various perspectives. This process involves different types of
modeling languages, each decomposing the problem setting according to a specific
dimension. While three dimensional CAD models show the spatial structure of physical
components, e.g. SysML block diagrams show a more logical decomposition of the systems
architecture, while at the same time abstracting from the physical dimensions.

In current industry practice model-based systems engineering is mostly synonymous to the
use of graph-based modeling languages such as UML, SysML, BPMN or ERMs. By
illustrating the system under consideration as a graph consisting of interrelated elements,
these models support engineers in understanding the overall structure of the system. It is often
argued that the major advantages of model-based systems engineering are the improvements
in the design quality due to a more complete and formal form of specification that is
beneficiary to the likelihood of inconsistencies and design errors getting uncovered. This is
especially true, since some test artifacts can be generated automatically, corresponding test
and simulations can be executed continuously and their results can be evaluated instantly.
Furthermore, in many cases the development time can be reduced significantly as already
existent designs and models can be adapted and reused (Bergenthal 2011). Another advantage
of using generally understandable models in the engineering process is that it improves the
communication and knowledge sharing between the various, often heterogeneous groups of
stakeholders. Due to the more intuitive way of communicating the structure and behavior of a
system, the semi-formal model representation is easier accessible, also for someone from
outside the subject area.

However, the model-based approach has several disadvantages when compared to traditional
development methodologies. First to mention, there is redundancy. The artifacts that are
created during the model-based engineering process represent the system from multiple
viewpoints. Therefore, engineering information about a certain part of the system, e.g. its
dimensions, exists in duplicated form, spread over multiple models. As a consequence, there
is a duplication of work because the system models are to a large part created manually
(Hailpern and Tarr 2006). Second, there is the problem of ensuring consistency between the
models. This means that if there is a change in one of the models an impact analysis must be
performed and each model affected by the change must be updated. Otherwise, different
engineers might work on inconsistent information resulting in problems when it comes to the
integration of components or even malfunctions of the final system.

2.3.2 Modeling languages in PSS engineering

As argued before, modeling a complex product service system in all its details is likely to turn
out as an extensive task involving various engineering domains, layers of abstraction and
perspectives on the system. Therefore, instead of representing all aspects of the system as a
whole in one large model, the model-based engineering approach rather resorts to
constructing a wider landscape of sub-models with limited focus, each of which just captures
a specific part of the system from a certain perspective. For this purpose, in each engineering

Conceptual Background 32

domain, in each abstraction layer and for each perspective on the system specialized modeling
languages and technologies have established themselves (Becker et al. 2010). Furthermore,
each domain-specific model only contains those aspects of the overall systems, which are
relevant for the respective engineering domain. Table 3 summarizes some of the most popular
modeling languages in PSS engineering (See also: Durugbo 2013) and classifies them into
four categories according to the perspective on the system they represent.

Table 3: Modeling Languages in PSS engineering

 Modeling languages or diagram types
System Environment e3 Value, Molecular Models (Shostack 1977), Business Model

Canvas (Osterwalder and Pigneur 2010)
System Result Requirements Diagram (SysML), I*, IDEF, SADT, Use Case

Diagram (UML, SysML), Function Tree
System Behavior BPMN, EPC, Activity Diagram (UML, SysML), Sequence

Diagram (UML, SysML), Service Blueprint (Shostack 1982), Petri
Nets

System Structure Block Diagram (SysML), Class Diagram (UML), Design Structure
Matrix,

While it can be argued, that with UML or SysML there are already two candidates for a
common modeling language, despite their growing popularity in industry, both have
downsides when it comes to model integration. A natural phenomenon with modeling
languages is that higher expressive power increases the inherent complexity of a language.
Since both languages lie their focus on being able to model all kinds of systems in as much
detail as possible, they are becoming increasingly complex as new features are getting added.
In fact, the expressive power of these modeling languages has become so extensive that one
can observe increasing endeavors to customize e.g. SysML for specific purposes (e.g.
modeling mechatronic systems Barbieri et al. 2014).

2.3.3 Conceptual Modeling: Reference Models, Meta Models and Ontologies

Traceability requires a comprehensive conceptual model that defines the artifacts (i.e. the
general concepts) of each engineering domain and their relationships with each other,
desirably throughout the entire life cycle of a PSS. Conceptual modeling formally describes
various aspects of real world entities, thus supporting humans as well as machines to
understand or interpret the purpose, structure and behavior of these entities and communicate
about them. As such, conceptual modeling plays an important part in the process of model
integration or model mapping, respectively. When it comes to conceptual modeling, the terms
reference model, meta-model and, lately, ontology are often used (and they are used
synonymously). In this context, we subsequently explain these terms from the perspective of
model integration and traceability for PSS engineering.

First, reference models can be seen as best-practice examples for common issues in a certain
domain that have been generalized in order to be applicable universally. Reference models
contain domain knowledge so that companies can use those models in order to create
solutions for specific issues (Becker et al. 2010). As such, they have a recommending

Conceptual Background 33

character in innovation processes facilitating the transfer of knowledge into companies
(Schütte 2013). Especially in engineering, reference models are needed at various levels of
abstraction and in various domains, whereby each describes generic solution concepts in a
generalized terminology. From a systems engineering perspective, reference model can best
be created through iterative refinement in order to advance to more detailed levels of
understanding (Wieringa 2008). In pursuit of the target of this thesis, the integration of
knowledge from the different engineering domains is necessary. For this purpose, it is
advisable to advance from existing reference models within the engineering domains and join
those in order to come up with an integrated reference model (Rosemann 2013).

The primary goal of reference models is to provide generalized domain knowledge. In
contrast to this, modeling languages (such as the ones discussed in the chapter before)
together with the meta models that define those languages formally specify the structure of
conceptual models (Becker et al. 2010). Meta models can thus be seen as orthogonal to
reference models. An example of a meta model is the Meta Object Facility (MOF) which
defines the elements used in UML diagrams. And again, UML itself consists of meta models
that define for example what a UML class diagram that models an actual software system is
composed of. In this sense, there can be multiple levels of meta modeling, each defining the
concepts of the level below in an abstracted manner. In the perspective of this thesis, a meta
model defines the structure of model while a reference model summarizes the domain
knowledge needed to develop meaningful conceptual models.

Looking at PSS engineering specifically, we see a lack of modeling approaches that are
capable of delivering a comprehensive picture of all aspects that are relevant to the PSS life
cycle. For this purpose, a demand-driven integration of existing modeling languages as well
as the integration of reference models from the different engineering domains seems to be
necessary (Becker et al. 2010). This integration can be done in several ways, one of which is
based on identifying common concepts that are specified by different domain-specific
modeling approaches and the defining a unified representation of those.

Of course, it is in the context not enough to simply define a common vocabulary, i.e. a list
with defined concepts that are “allowed” in the unified representation that all domain-specific
modeling approaches can be translated to. In addition to just defining the “words” of this
language, one would also have to define its internal structure, i.e. the semantic relationships
between the “words” that are used. Only if both things are available, the definition of
concepts as well as the definition of the semantic relationships between those concepts, the
unified representation has an internal logic that can be understood by machines (Noy 2004).

A well suited approach for this purpose that is for good reasons extremely popular in the area
of artificial intelligence but has also recently become common on the world wide web, is
ontologies. In practice, ontologies are among other things used for categorizing websites or
products in online shopping applications (Noy et al. 2001). The term “ontology” can be
defined as “a logical theory accounting for the intended meaning of a formal vocabulary, i.e.
its ontological commitment to a particular conceptualization of the world. The intended
models of a logical language using such a vocabulary are constrained by its ontological

Conceptual Background 34

commitment. An ontology indirectly reflects this commitment (and the underlying
conceptualization) by approximating these intended models” (Guarino 1998).

From a philosophical perspective, the term “ontology” is used in a much broader sense,
referring to a system of categories that describe the world from a certain point of view. In the
context of artificial intelligence, an ontology is an engineering artifact that defines a specific
vocabulary along with assumptions regarding the meaning of the words, i.e. the semantic
relationships between those words. Therefore, ontologies are a valuable tool when dealing
with the semantic heterogeneity in structured data (Noy 2004). In this context, every natural
language, modeling language or every other type of specification technique imaginable can be
viewed as an ontology. So, in order to translate from one ontology to the other, i.e. transform
one type of model artifact into another type of model artifact, we require a dictionary that
contains the transformation rules between the languages (Guarino 1998).

A fundamental goal of using ontologies is to create artifacts that are compatible to different
applications. If these ontologies refer to the same top-level ontology, integration between
application is relatively simple (Noy 2004). Perhaps the most interesting aspect about using
ontologies for making sense of structured data is the perspective of ontology-driven
information systems (Guarino 1998). Today, in the semantic web, many researchers agree that
the challenge of semantic integration is one of the hardest and that ontologies are the most
promising solution approach for this (Noy 2004).

2.3.4 Model Integration and Model Transformation

With models playing a pivotal role in all areas of engineering it is of utmost importance that
the various sub-models that together form a comprehensive specification of the PSS are
consistent. Consistency in the context comprises syntactic consistency as well as semantic
consistency. While syntactic consistency means that a certain model must conform to its meta
model, semantic consistency refers to the claim that various models that refer to the same
ontological entity may not contradict each other (Lucas et al. 2009).

In general, consistency among the various models of the PSS engineering process can be
reached by either regularly checking the models by hand or performing automatic and
continuous consistency checking. However, in order to do the latter, models need to be
integrated. Correspondingly, model integration refers to merging several source models into
one comprehensive target model. By doing so, it is possible to document and display the
various inherent relationships that are hidden within the different sub-models. By combining
the different perspectives on the PSS into one common structure engineers can better
understand the various dependencies within the system as a whole (Patel and Nagl 2010).

This means that models from different engineering domains that are written in different
modeling languages using different data formats need to be transformed into one common
form of representation (Tratt 2005). These so-called model transformations usually map
element of a source (meta) model onto corresponding elements of a target (meta) model in
accordance with certain transformation characteristics and requirements. In order to do so,
one needs to analyze the different types of entities a modeling language differentiates between

Conceptual Background 35

as well as the types of semantic relationships these entities may engage in. Furthermore, one
needs to identify all possible attributes of entities and relationships. On this basis it is then
possible to specify the transformation rules between one modeling language and another.

In the context of PSS engineering, model integration and transformation comes with a number
of requirements. First, the landscape of models that are used in PSS engineering is rather
heterogeneous. As already mentioned, software engineers, mechanical engineers or service
engineers all use various domain-specific modeling languages for various purposes. However,
even one and the same modeling language (e.g. UML) can be represented using different data
formats, for example XMI or proprietary formats. Furthermore, models can differ regarding
the perspective they take on the object that is modeled (e.g. behavioral vs. structural
perspective) or the level of abstraction at which they capture the PSS. A comprehensive
approach for model integration in PSS engineering should thus support a larger variety of
models or in the best case operate independently from the concrete model instances.

Another major requirement in this context is that the model transformation tool produces
dependable results on a reliable basis. In the best case, a smart algorithm is capable of
performing fully automated model transformations and consequentially reduce the manual
efforts for the development engineers to zero. As a matter of principle, automated model
mapping is in general less error prone than manual efforts as long as the transformation
process itself is deterministic and does not rely on a semantic interpretation of the source
model. In this sense, an automated model transformation process needs to be verifiable.
However, sometimes the transformation also requires a context sensitive interpretation of the
source model in order to produce the correct result. Therefore, a suitable transformation
algorithm needs to be flexible enough to produce acceptable transformation results even when
the source artifacts are not fully conformant to the meta models of the languages they are
specified in. Consequentially, another requirement for model transformation in PSS
engineering is that the resulting integrated PSS model preserves all attributes of the source
models involved. If modifications to original attributes of an entity within a source model are
necessary (e.g. unit conversions to homogenize the use of metrics in the integrated model),
the original attribute needs to be reproducible.

2.3.5 Using Semantic Web Technologies in Engineering

The term “semantic technologies” is mainly used to summarizes algorithms, data structures
and software solutions that bring structure and meaning to information. The basic idea behind
these semantic technologies is to specify information objects and their relationships in a way
that makes them interpretable by computers (Davies et al. 2006b). In order to do so,
information objects are annotated using meta information to explain the meaning of the
original information captured in the respective information object. As an example of how
semantic technologies impact the way information is being processed and interpreted we can
refer to large parts of the internet as we know it today. Currently, the vast majority of
information within the internet is stored as natural language text that needs to be manually
interpreted by the human user. By adding context and structure to the data it can be
interpreted automatically allowing more accurate search results and logical reasoning

Conceptual Background 36

performed by machines (Hitzler et al. 2007). Another issue with the internet today is that the
data is rather heterogeneous and unstructured. By adding meta information to information
object, semantic technologies are able to homogenize and structure which allows for a better
integration of heterogeneous data sources. In short, previously unrelated information objects
can be linked within a semantic network.

As argued before, the integration of information from different (domain-specific) sources, the
provision of traceability and the contextual analysis of engineering data are also a challenge
that is common in systems engineering. Similar to the vision of a semantic internet, a
“semantic engineering web” containing all knowledge about the system under development
would open up tremendous possibilities regarding the automated analysis of engineering
artifacts and the anticipation of change effects and other dynamic influences. For this vision
to become reality, two prerequisites need to be fulfilled: data structuring and data integration.
While the issue of representing engineering information in a structured manner is already
being addressed through the model-based systems engineering approach, integration of the
various data formats and model artifacts used by the different engineering domains still
remains an open issue. Here, the goal is to transform heterogeneous the model artifacts into an
integrated representation in order to identify and analyze the inherent semantic relationships
between model entities.

To support the development of the semantic web, the world wide web consortium proposes a
set of specific technologies that build upon each other and form the so-called semantic web
technology stack. As shown in Figure 6: Semantic Web Technology StackFigure 6,Fehler!
Verweisquelle konnte nicht gefunden werden. this technology stack is composed of several
layers, each of them using functions that are offered by the layer below.

Figure 6: Semantic Web Technology Stack
Source: adapted from (Hazaël-Massieux 2003)

On the fundamental level, the Unicode standard defines a repertoire of characters to allow
consistent coding and representation of text. Furthermore, the semantic web technology stack
defines on this level Uniform Resource Identifiers (URI) that are used to uniquely identify

Conceptual Background 37

any resource. One layer above, the extensible markup language (XML) specifies a set of rules
for encoding documents defining a syntax for the semantic web. In this sense, XML serves as
a basic format for various higher level semantic web technologies.

Probably one of the most important technologies in the semantic web field is the Resource
Description Framework (RDF). RDF is mainly used for interchanging data in a way that
preserves its meaning. The general idea behind RDF is to make statements about resources.
From a linguistic perspective, each RDF term is a triple composed of subject, predicate and
object. While subject and predicate always take the form of an URI the object can also be a
rare data value, a so-called literal. For the serialization of RDF models different notation
formats can be used, the most popular being RDF/XML and the compact and more human-
friendly Turtle format. Each RDF model intrinsically represents an annotated directed multi-
graph with subjects and objects being nodes and predicates being edges that reflect the
semantic relationship between two nodes (Hitzler et al. 2007).

On the technology stack of the semantic web, we find one level above RDF some
technologies that can be used to logically interpret the semantic RDF data and define complex
rules and a vocabulary of concepts, so-called ontologies. In general philosophy an ontology
refers to the science of existing things (Chandrasekaran et al. 1999). In the information
science domain, ontologies are used to describe all types of entities, their properties as well as
their relationships with each other. This way, ontologies help to limit complexity and organize
the information within a specific domain. As such, ontologies are being used to represent the
domain knowledge in a self-consistent manner in order to create a consistent knowledge base.
As means for defining ontologies in the semantic web context the world wide web consortium
has established the Web Ontology Language (OWL).

Research Approach 38

3 Research Approach

As explained in the last chapter, our research combines three different fields of research,
namely requirements traceability, product service systems and model-based systems
engineering. Because of this, we looked for a research approach that allowed us to explore
these fields of research, gradually improving our solutions in several iterations. Eventually,
we found an adequate research strategy by following the recommendations of Design Science
Research as presented by Hevner et al. (2004, 2007). In this process, extensive literature
reviews were conducted in the fields of requirements traceability, PSS development and
model-based systems engineering in order to capture the scientific theory on the subject
matter. Throughout this process we studied literature from various engineering domains, such
as service engineering, software engineering and mechanical engineering. Moreover, we also
studied several cases from different industries in order to consider the practitioners’
perspective. Furthermore, the design cycle involved conceptual modeling (especially
reference modeling) and software tool prototyping. The fundamentals of these methodologies
are explained in the subsequent sections.

3.1 Research Strategy

Design Science Research (DSR) is a methodology that focuses on the development and
evaluation of IT artifacts that are targeted at solving a specific management problem (Hevner
et al. 2004). This way, Design Science Research is rather concerned with identifying design
rules, principles and methodologies which manifest themselves as artifacts, rather than
finding descriptions or explanations for certain phenomena like other branches of science do
(Wieringa 2008). The artifacts can be for example algorithms, interfaces, processes, models,
languages or software tools. In the process of developing such IT artifacts the researcher is
required to build up domain-specific knowledge in order to be able to design a solution for the
management issue (van Aken 2005). Through an iterative process in which the artifact is
enhanced and evaluated continuously, the researcher is getting a more and more detailed
picture of the issue studied and can therefore evaluate the solution approach and evolve the
artifact until it solves the issue satisfactorily (Hevner et al. 2004). In its core, the process of
Design Science Research builds upon three cycles: (1) the relevance cycle, (2) the design
cycle and (3) the rigor cycle (cf. Figure 7).

Research Approach 39

Figure 7: Cycles in Design Science Research applied to the dissertation topic
Source: Adapted from (Hevner 2007)

The research activities of the (1) relevance cycle unfold from the necessity to understand the
environment in which the aspired artifacts need to be used in. This application area especially
involves people, organizational systems and technical systems. To retrieve a clear picture of
the issues to be solved, Design Science Research strives to analyze these issues within their
practical setting and also identify the opportunities that can be realized. The relevance cycle
therefore forms a bridge between the activities related to development and evaluation of the
design science artifacts and their practical application domain.

In the context of this dissertation, the people related issues evolve due to the fact that
stakeholders from various engineering domains need to be involved in the development of
PSS. Furthermore, PSS engineering often requires the collaboration of multiple organizations
in order to be able to provide the desired service. Both of these characteristics of PSS
development also promote the distribution of engineering activities over multiple locations
forcing the development team to work together remotely. Organizational systems that need to
be regarded are amongst others the use of different engineering methodologies leading to
synchronization issues within the PSS engineering problems as a whole. For example, in PSS
development software development teams often pursue agile methodologies while hardware
development teams are having a harder time with rapidly generating prototypes on a weekly
basis and therefore often rely on more sequential development methods. Furthermore, from a
technical perspective the application domain in which the artifacts developed during this
dissertation operate in involve various modeling languages being used by the multiple
engineering domains and organizations as well as different software tools that are used for
model-based systems engineering and project management. After each iteration of the design
cycle, its results are being mirrored to the real world issues.

In addition to the application environment Design Science Research also recommends to take
a detailed look into scientific theories and engineering methods. In order to do so, the Design
Science Research methodology demands a (2) rigor cycle in which the IT artifact under
development is checked against the general knowledge base within the topic area. Only by
checking against what has already been there, it is possible to develop truly innovative IT
artifacts. The degree of innovativeness of an IT artifact is to a large fraction determined by

Model Integration
Ontology

Evaluation

Design
Cycle

Environment

People:
•Stakeholders from various
domains

• Involvement of multiple
organizations

•Distributed work

Organizational Systems:
•Development Methodologies
•Traceability Requirements

Technical Systems:
•Modeling Languages
•Modeling Tools
•Management Tools

Knowledge Base

Foundations:
•PSS Development
•Agile Development
•Requirements Traceability
•Engineering Change
Management

•Model‐based Systems
Engineering

•Semantic Web
•Ontologies
•Reference Modeling

Design Science Research

TRAILS Tool

Rigor
Cycle

Relevance
Cycle

Research Approach 40

whether it is a valuable contribution to research within the area or just common problem
solving. Hence, in this rigor cycle the researcher has to accomplish two things. First,
important contributions to the various adjacent research areas need to be analyzed and their
results need to be adapted to the problem under consideration and second, the experiences
made during the development of IT artifacts need to be mirrored against and contribute to the
research within those fields. While research contributions to the knowledge base are primarily
targeted at the academic public, contributions that arise from the relevance cycle are focused
more on industry practice as an audience (Hevner 2007). The research fields that are most
relevant for this dissertation are of course requirements traceability, product service systems
as well as model-based systems engineering all of which have been introduced in the
preceding sections. However, one also needs to look into more distantly related topic areas.
For example, development methodologies, such as agile development have an influence on
which artifacts are being generated as a result of engineering activities and the research on
engineering change management shows which traceability information for efficiently
performing change management. In order to build on a strong fundament of academic
knowledge, this dissertation contains multiple literature reviews in various areas of research.

The centerpiece of Design Science Research is the (3) design cycle. Within this cycle the
researcher alternates continuously between further development and the evaluation of the IT
artifact under consideration. These activities alternate in multiple iterations so that the
development of the IT artifact receives regular feedback. As described earlier, the relevance
cycle yields requirements from the application area and allows for practical evaluation
whereas the rigor cycle delivers input from related research and checks the results against
scientific methods and theories. It is important to always view the design cycle in the context
of the relevance and rigor cycles and that there needs to be a balance between both of them in
order to develop an innovative IT artifact and to establish this balance the cycles need to be
traversed multiple times (Hevner 2007).

3.2 Research Methods

3.2.1 Literature Review and Expert Interviews

As just described Design Science Research recommends to explore the theoretical knowledge
base iterating through the rigor cycle and to get practical insights while exploring the
application environment in practice in the relevance cycle. During the research for this thesis,
we passed through both of these cycles several times, conducting expert interviews in order to
explore traceability from a practitioners perspective as well as literature reviews within the
relevant scientific fields of study.

Conducting a literature review helps the researcher in identifying, evaluating and explaining
the existing publications within the area of interest. This includes for example methods,
theories, experiences concerning certain aspects of the topic area and research gaps in both,
theory and practice (Vom Brocke et al. 2009; Cooper 1988; Fettke 2006). In order to analyze
the current state of the art in requirements traceability research and evaluate whether existing
approaches in this field are suitable for use in the development of product service systems we
conducted literature reviews that draw from several research fields. Particularly we were

Research Approach 41

interested in requirements engineering research within the domains of software engineering,
mechanical engineering and service engineering as well as publications on product service
systems in general and model-based systems engineering.

In each case, we started our analysis by performing keyword searches in the literature
databases Google Scholar, IEEE Xplore, ACM Digital Library, Springer Link and Emerald
Insight. From the results we eliminated all duplicates as well as all publications that were
concerned with traceability in domains not related to engineering products, services or
systems (e.g. traceability within supply chains or in particular food traceability). We then
reviewed the abstracts of the publications in order to decide whether a publication should be
incorporated in the detailed analysis and selected those with the best fit to the topic area to
undergo a detailed review. As recommended by Webster and Watson (2002), we further
examined publications that were cited by the ones that we already selected (backward search)
and conducted a forward search to identify publications that are citing the key publications (in
terms of citation count) that were identified during keyword search. Again, each of the
publications that was identified in this step was evaluated regarding its fit with the topic of
research. The final set of publications were then analyzed in detail in order to identify, group
and structure the underlying concepts (Fettke 2006). Overall, our analysis focused on models,
methods and tools that support the PSS engineer in ensuring traceability throughout the
lifecycle of PSS, especially focusing on traceability during the development stage and cross-
domain challenges.

As a main outcome of performing those literature reviews, we were able to identify the
different types of engineering artifacts as well as the basic entities and concepts which are
used in these artifacts. Again, this collection of entities and concepts formed the basis for our
model integration ontology.

In addition to these literature reviews, we explored how traceability was implemented in
practice and which challenges arouse in this regard by conducting 31 expert interviews in
various industry sectors (e.g. public infrastructure, automotive, software and finance). The
interviews followed semi-structured interview guidelines, each lasting between 40 minutes
and one hour. All interviews were recorded, transcribed any finally evaluated using a software
tool for qualitative data analysis (MaxQDA v12). Based on the insights from these interviews,
we were able to get practical insights of whether and how different companies ensured
traceability in requirements engineering in their development projects and which kind of
difficulties they were facing.

3.2.2 Ontology Development

As explained in section 2.3.3 ontologies can be seen as formal specifications that define the
terms or general concepts within a domain of interest as well as the semantic relations that
exist between those terms. In general, ontologies can be used for various different purposes.
First, ontologies are predestinated to share a common understanding of the structure of
information among stakeholders or even software systems. As such, they facilitate the reuse
of domain knowledge and can be used to analyze domain knowledge and make the

Research Approach 42

assumptions within a domain explicit. Furthermore, ontologies may also be used to separate
domain knowledge from operational knowledge (Noy et al. 2001).

In literature various approaches for developing ontologies can be found, ranging from rather
stage-based processes (e.g. TOVE Gruninger and Fox 1994) to continuously evolving
prototype models (e.g. METHONTOLOGY Fernández-López et al. 1997). Although these
approaches differ regarding the exact sequence, scope and repetition rate of the steps they
contain, a comparative study (Jones et al. 1998) showed, that all more or less require the same
three fundamental activities. First, one needs to create an informal description of the relevant
concepts as well as their relationships with each other. Second, this informal model needs to
be formalized. This means, it needs to be formally defined using an adequate ontology
language. Third, the ontology needs to be implemented in a software system that allows to
create instantiations of the concepts defined in the ontology and allow fo logical reasoning
(Jones et al. 1998).

Accordingly, the best way to start ontology development is to select a specific (business or
engineering) tasks that needs to be supported. In our case, this is the task of ensuring the
traceability of requirements along the development of PSS. On this basis, it is possible to
specify the domain that is addressed by the ontology as well as the scope it needs to cover. As
a next step, one can consider reusing and enhancing other ontologies that already exist in that
area (Noy et al. 2001). For this purpose, we analyzed various ontologies with different
characteristics, ranging from universal ontologies to rather specialized ones that are focused
on describing a particular field of knowledge.

Cyc for example, a more universal ontology defines more than 500,000 concepts from
multiple areas, with a type hierarchy ranging from e.g. “type of US work visa” to “TV show
format” (Cycorp 2016). Despite the impressive number of concepts defined in this ontology,
we found particularly few concepts that are relevant to PSS engineering were defined while
other areas of knowledge that are irrelevant for our purpose are overpopulated extensively. In
summary, we found that such universal ontologies are not recommendable for the specialized
purpose of PSS engineering.

The second type of ontologies that we looked into are specialized ontologies that focus on a
particular problem but on a generic level. For example, Dublin Core is an ontology that
defines a standard for describing the metadata and semantics of documents (DCMI 2017). As
such, it is being used in the world wide web to specify the semantics of hypertext documents.
While most of the concepts it specifies can be used for characterizing PSS engineering
artifacts (especially traditional engineering documents such as technical drawings), it solely is
not sufficient to describe the semantic relations that are needed for traceability in PSS
development. Another ontology that focuses on capturing the semantic relationships within a
network is FOAF (friend of a friend) which can be used to describe the semantics of social
networks (Brickley and Miller 2014). As such, it only defines characteristics and relationships
between people. This ontology delivers valuable input for our PSS engineering ontology as
we also need to capture human stakeholders in the engineering process and some of their

Research Approach 43

social characteristics or relationships (e.g. organizational structure within a company or areas
of knowledge that can be attributed to a developer).

Last, we looked into specialized ontologies that were designed for a certain domain. Good
Relations, for example, is an ontology designed for improving the e-commerce sector through
semantic descriptions. For this purpose it defines concepts like product and service, but only
as a black box. This means, that the internal composition of a product or service or their
development are not captured by the Good Relations ontology, but only the concept of a
product or service itself (Hepp 2011). While some of the concepts defined in this ontology are
suitable for describing PSS service provision and market-oriented aspects of a PSS, the
ontology does not specify anything related to the engineering process and the internal
structure of a PSS.

An ontology that addresses the engineering sector is for example the Engineering Ontology
by Sevcenko and Mann (2002). Although its described area of application is engineering in
general, this ontology primarily defines the physical and mathematical concepts that are
needed for simulation models or different types of electrical or mechanical components. It is
thus to be seen on a rather low technical level of engineering. What it does not capture is for
example the various types of development artifacts and other important concepts that are
needed for managing a PSS development projects.

Having defined the desired scope of the target PSS engineering ontology, we had analyzed the
potential benefits of existing ontologies and concluded that none of them would be
sufficiently expressive to capture the entire domain of interest. As a next step, ontology
development methodologies suggest to conceptualize the domain knowledge (Fernández-
López et al. 1997), i.e. identify and specify important terms within the knowledge domain
(Noy et al. 2001). As explained in the section before, we accomplished this through literature
reviews as well as the analysis of domain-specific modeling approaches.

Having done so, one can then start to formalize the conceptual model (Fernández-López et al.
1997). This means that first, the classes as well as the class hierarchy needs to be defined (c.f.
Publication 5). Second, the properties (also known as slots) which define the attributes of a
specific class or it’s potential relationships with other classes need to be determined (c.f.
Publication 7). Third, for each of the properties one can then define so-called facets, i.e.
cardinality or value types of the properties (Noy et al. 2001). At this stage, the ontology can
then be integrated with other existing ontologies (Fernández-López et al. 1997) and it should
finally be implemented in order to make it computable (c.f. Publication 8). This way, it can
serve it’s intended purpose to bridge the gap between executable systems and the real world
that it models (Jones et al. 1998).

3.2.3 Tool prototyping and evaluation

With regard to the overall research goal in the context of design science research we can
differentiate between practical problems and knowledge problems. While solving a practical
problem relates to finding out the difference between the real world and how stakeholders
would like the world to be, solving knowledge problems demands the researcher to fill the

Research Approach 44

gap between what a stakeholder knows and what he needs to know for his task (Wieringa
2009). In this sense, this thesis focuses on solving a knowledge problem by providing a
software tool that supports engineers in overviewing the system under development and
reenacting its evolution.

Two essential activities in the DSR process are demonstration and evaluation. In the
demonstration step, the research needs demonstrate the use of the artifact (in this case the
software tool) by solving an instance of the problem (Peffers et al. 2007). We do this by
applying our tool to the case study of developing a bike sharing system. In this context we
modeled the bike sharing use case including the requirements specification, architectural
description as well as the service processes. All of these models where generated using
commercially available software tools that have a high degree of dissemination throughout
various industries. During the following evaluation activity, one needs to observe and
measure how well the artifact under consideration performs in solving the problem (Peffers et
al. 2007). Due to the nature of the problem we are concerned with, we decided to perform tool
evaluation also in workshops with researchers in the area of model-based systems engineering
asking for direct feedback on the tool.

In order to gradually improve our software tool (TRAILS), we kept iterating between
implementing new tool features or re-designing existing ones and evaluating how these
features would find application in realistic case studies, always searching for potentials of
improvement. While traditional methodologies often view iteration as an inevitable evil that
needs to be avoided or at least minimized through better proactive planning, evolutionary or
iterative development processes (such as DSR) embrace iteration as a mechanism that finally
delivers better outcomes (Berente and Lyytinen 2007). In this respect, the design science
approach literally suggests an endless iteration over implementation and evaluation.
Practically however, it is too expensive or simply not valid to iterate over successive versions
of a solution design. This is especially true, when the environment in which the tool is
planned to find application is a complex social system, such as a PSS engineering team. As an
alternative, researchers can resort to a technical action research approach, evaluating the tool
by using it under conditions of practice (Baskerville 1997).

In context of the model integration approach that we propose, we followed the
recommendations of Wieringa (2009) performing laboratory experiments in the form of a
modeling case study of limited complexity and conducted expert modeling workshops to
receive professional feedback. However, in order to ensure controllability of the setting and
due to the absence of a suitable industry case study, we decided to refer to an academic case
study of developing a free-floating bike sharing system. This case study was conducted within
the collaborative research center SFB7688: “Managing Cycles in Innovation Processes –
Integrated Development of Product-Service Systems Based on Technical Products” of which
the research conducted for this thesis was a subproject.

8 See also: https://www.sfb768.tum.de/en/home/

Research Approach 45

In our case study PSSycle we guided a team of students from informatics and mechanical
engineering in developing the prototype of a an electrically powered bicycle than can be
rented using a smartphone application (see Figure 8). In this project, which had a total
duration of 2 years, we developed mechanical, electrical as well as software components and
the PSS business model. This way, it was possible to follow the entire development process
from ideation and need analysis to prototyping of hardware, software and service processes.

Figure 8: Overview of the bike sharing PSS case study: PSSycle
Source: own illustration

Researchers often view information systems as technical systems with their development
being viewed as a socio-technical process that involves communication, participation and
power. However, agreeing with Berente and Lyytinnen (2007) we rather see information
systems as organizational and social communication systems. Consequently, information
systems are undergoing constant evolution and they behave different in different social
contexts. Hence, there is no single entity that can be considered as the system but rather the
system is some vague idea and it can be approximated through representations (Berente and
Lyytinen 2007).

PART B: PUBLICATIONS 46

PART B: PUBLICATIONS

PART B: PUBLICATIONS 47

Overview of Publications included in this Dissertation

Table 4: Publications included in this dissertation

No.
[Type]

Autors Title Outlet

P1
[C]

Thomas Wolfenstetter,
Simon Bründl,
Markus Böhm,
Helmut Krcmar

Why Product Service Systems Development is
Special

DOI: 10.1109/IESM.2015.7380308

IESM 2015,
Seville, Spain

ISBN: 978-2-9600532-6-5

P2
[C]

Thomas Wolfenstetter,
Sebastian Floerecke,
Markus Böhm,
Helmut Krcmar

Analyse der Eignung domänenspezifischer
Methoden der Anforderungsverfolgung für
Produkt-Service-Systeme

WI 2015,
Osnabrück, Germany

ISBN: 978-3-00-049184-9
VHB-Jourqual9: C

P3
[C]

Nepomuk Chucholowski,
Thomas Wolfenstetter,
Martina Wickel,
Helmut Krcmar,
Udo Lindemann

Towards Cycle-Oriented Traceability in
Engineering Change Management

DESIGN 2014, Dubrovnik,
Croatia

ISSN: 1847-9073

P4
[C]

Thomas Wolfenstetter,
Jonas Zitzelsberger,
Markus Böhm,
Helmut Krcmar

Traceability von Anforderungen und Tests in
agilen Softwareentwicklungsprojekten

SE&M 2015,
Dresden, Germany

ISBN: 978-3-88579-633-6

P5
[C]

Konstantin Kernschmidt,
Thomas Wolfenstetter,
Christopher Münzberg,
Daniel Kammerl,
Suparna Goswami,
Udo Lindemann,
Helmut Krcmar,
Birgit Vogel-Heuser

Concept for an Integration-Framework to enable
the crossdisciplinary Development of Product-
Service Systems

DOI: 10.1109/IEEM.2013.6962430

IEEM 2013,
Bangkok, Thailand

ISBN: 978-1-4799-0986-5

P6
[C]

Thomas Wolfenstetter,
Konstantin Kernschmidt,
Christopher Münzberg,
Daniel Kammerl,
Suparna Goswami,
Udo Lindemann,
Birgit Vogel-Heuser,
Helmut Krcmar

Supporting the cross-disciplinary development
of product-service systems through model
transformations

DOI: 10.1109/IEEM.2014.7058623

IEEM 2014,
Bandar Sunway, Malaysia

ISBN: 978-1-4799-6410-9

P7
[C]

Thomas Wolfenstetter,
Simon Bründl,
Kathrin Füller,
Markus Böhm,
Helmut Krcmar

Towards a Requirements Traceability Reference
Model for Product Service Systems

DOI: 10.1109/IESM.2015.7380307

IESM 2015,
Seville, Spain

ISBN: 978-2-9600-5326-5

P8
[J]

Thomas Wolfenstetter,
Mohammad R. Basirati,
Markus Böhm,
Helmut Krcmar

Introducing TRAILS: A Tool supporting
Traceability, Integration and Visualisation of
Engineering Knowledge for Product Service
Systems Development
DOI: 10.1016/j.jss.2018.06.079

Journal of Systems and
Software

ISSN: 0164-1212
h5-index10: 51

Notes: [C]: Conference; DESIGN: Proceedings of the 13th International Design Conference; IEEM: IEEE
International Conference on Industrial Engineering and Engineering Management; IESM: International
Conference on Industrial Engineering and Systems Management; [J]: Journal; P: Publication; SE&M:
Multikonferenz Software Engineering & Management 2015; WI: 12th International Conference on
Wirtschaftsinformatik

9 http://vhbonline.org/vhb4you/jourqual/vhb-jourqual-3/teilrating-wi/
10 https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems

PART B: PUBLICATIONS 48

Table 5: Further publications by the dissertation's author

Year
[Type]

Autors Title Outlet

2018
[J]

Alexander Herzfeldt,
Thomas Wolfenstetter,
Christoph Ertl,
Helmut Krcmar

The role of individualization and project
learning for cloud service profitability

DOI: 10.4018/JECO.2018040104

JECO
Vol. 16 • No.2

ISSN: 1539-2937

2017
[J]

Alexander Herzfeldt,
Thomas Wolfenstetter,
Markus Böhm,
Helmut Krcmar

From Products and Service to IT solutions:
Nine Principles for Managing IT solutions

DOI: 10.2979/eservicej.10.2.01

e-Service Journal,
Vol. 10, No. 2

ISSN: 1528-8226

2017
[C]

Toias Engel,
Thomas Wolfenstetter,
Nikolaos Sakiotis

Optimizing distribution logistics within
cities through time-slot deliveries

DOI: 10.15480/882.1479

HICL 2017,
Hamburg, Germany

ISBN: 978-3-7450-4332-7

2015
[C]

Stefan Feldmann,
Sebastian J. I. Herzig,
Konstantin Kernschmidt,
Thomas Wolfenstetter,
Daniel Kammerl,
Ahsan Qamar,
Udo Lindemann,
Helmut Krcmar,
Christiaan J. J. Paredis,
Birgit Vogel-Heuser

Towards effective management of
inconsistencies in model-based engineering
of automated production systems

DOI: 10.1016/j.ifacol.2015.06.200

IFAC 2015

ISSN: 2405-8963

2015
[J]

Sebastian Floerecke,
Thomas Wolfenstetter,
Helmut Krcmar

Hybride Produkte–Stand der Literatur und
Umsetzung in der Praxis

IM+ io Vol. 30, No. 2

ISSN: 1616-1017

2015
[C]

Stefan Feldmann,
Sebastian J. I. Herzig,
Konstantin Kernschmidt,
Thomas Wolfenstetter,
Daniel Kammerl,
Ahsan Qamar,
Udo Lindemann,
Helmut Krcmar,
Christiaan J. J. Paredis,
Birgit Vogel-Heuser

A comparison of inconsistency management
approaches using a mechatronic
manufacturing system design case study

DOI: 10.1109/CoASE.2015.7294055

CASE 2015,
Gothenburg, Sweden,

ISBN: 978-1-4673-8183-3

2014
[C]

Olga Roht,
Tobias Engel,
Thomas Wolfenstetter,
Suparna Goswami,
Helmut Krcmar

An Analysis of Synergy Effects between
Closed-Loop Supply Chains and Product-
Service Systems

POMS 2014,
Atlanta, USA

2013
[C]

Andreas Kohn,
Julia Reif,
Thomas Wolfenstetter,
Konstantin Kernschmidt,
Suparna Goswami,
Helmut Krcmar,
Felix Brodbeck,
Birgit Vogel-Heuser,
Udo Lindemann,
Maik Maurer

Improving common model understanding
within collaborative engineering design
research projects

DOI: 10.1007/978-81-322-1050-4_51

ICoRD 2013

ISBN: 978-81-322-1050-4

PART B: PUBLICATIONS 49

Year
[Type]

Autors Title Outlet

2011
[C]

Armin Sharafi,
Thomas Wolfenstetter,
Petra Wolf,
Helmut Krcmar

Analysis of Current IT Support for Product
Development Processes

ICoRD 2011

2010
[C]

Armin Sharafi,
Thomas Wolfenstetter,
Petra Wolf,
Helmut Krcmar

Comparing product development models to
identify process coverage and current gaps:
A literature review

IEEM 2010

Notes CASE: IEEE International Conference on Automation Science and Engineering; HICL: Proceedings of the
Hamburg International Conference of Logistics; ICoRD: International Conference on Research into Design;
IEEM: IEEE International Conference on Industrial Engineering and Engineering Management; IFAC:
International Federation of Automatic Control; IM+ io: Magazin für Innovation, Organisation und Management;
JECO: Journal of Electronic Commerce in Organizations; POMS: International Meeting of the Production and
Operations Management Society

PART B: PUBLICATIONS 50

Publication 1

Publication 1: Why Product Service Systems Development is Special

Why Product Service Systems Development is Special

Thomas Wolfenstettera, Simon Bründlb, Markus Böhma, Helmut Krcmara

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, markus.boehm,

krcmar}@in.tum.de

b Institute for Information Systems and New
Media,

Ludwig-Maximilians-Universität München
Munich, Germany

bruendl@bwl.lmu.de

Abstract

The design and development of product service systems (PSS) is a complex process that
brings together product, software and service engineering. A fully integrated PSS calls for
significant collaboration among the different engineering disciplines along the entire design
and development process which can pose several challenges to the development team.
Therefore, when developing a PSS, companies should take into account the special
characteristics and complexities that are relevant in the context of PSS. However, in practice
companies often follow their traditional development processes and simply design a service
around their existing products. This way, many PSS offerings do not live up to their full
potential. In order to overcome this issue practitioners need to know what makes PSS
development special. By reviewing existing literature on PSS development, this paper
identifies and describes the special characteristics of PSS development in contrast to
traditional products or services.

Keywords— Product Service System; Development; Characteristics; Literature Review

1. Introduction

In an increasingly globalized world, companies, especially manufacturing companies, find
themselves confronted with fierce competition in which it is hard to differentiate oneself just
on the basis of their products. In most of the cases there are a large number of competitors
that are capable of delivering a product of comparable quality. This often leads to ruinous
price wars causing margins to collapse (Becker and Krcmar 2008). Therefore, manufacturing
companies across various industry sectors increasingly realize that they can realize additional
profits and tighten their customer relationships by offering services that complement and

PART B: PUBLICATIONS 51

enhance their original product portfolio. In doing so, they create bundles of products and
services that form a specialized solution for a certain problem or need of the customer. These
bundles are often described as so called product service systems (PSS), i.e. integrated
customer solutions consisting of product and service components that generate value in use
(Baines et al. 2007).

In general, mainly three types of PSS can be differentiated: (1) product-oriented PSS, (2) use-
oriented PSS and (3) result-oriented PSS (Tukker 2004). In product-oriented PSS, the main
focus is still on the selling and vending of products and only few services such as
maintenance and repair are added. Product-oriented PSS can be further classified into
product-related services as well as advice and consultancy. Product-related services refer to
additional services which are needed during the use phase of the product (Tukker 2004) e.g.
maintenance or financing schemes. In contrast, advice and consultancy are services that guide
the efficient and effective use of the product sold. For instance, training and demonstrations
are examples of advice and consultancy services.

Use-oriented PSS refer to the use or consumption of a particular product, and the services
associated with such use-oriented solutions. Use-oriented PSS can be differentiated into
product lease, product renting/sharing and product pooling. Here the product itself stays in the
ownership of the provider, but is made available to and shared by numerous users (Tukker
2004). While the user has unlimited access to the leased product e.g. a car, this is not the case
for product renting/sharing where the product is used by a number of different customers in
succession. In contrast, the PSS business model of product pooling enables simultaneous use
of the product by a certain number of users, e.g. sharing of a car for a ride to work so that
several consumers use the car at once.

Result-oriented PSS focus on the service component of the PSS. The provider and the
customer agree on a pre-specified result, which is later delivered by the provider (Tukker
2004). Examples for result-oriented services are the delivery or outsourcing of activities such
as cleaning, catering or hosting, support and maintenance of IT infrastructure.

While PSS provide manufacturing companies with an opportunity to gain competitive and
strategic benefit, they also pose significant challenges and complexities in terms of designing
such systems. Companies are faced with the need to shift from a product orientation to a
service orientation, and manage the inherent interdependencies between the product and
service components, more so since each of these components are likely to be designed and
developed by different business organizations. Developing a PSS incorporates the integration
of components from multiple engineering disciplines such as mechanical engineering,
software engineering and service engineering. In this regard it does not make sense to separate
the development into domain-specific processes. Instead the development of those systems is
a challenging task and calls for an integrated multi-domain engineering process that
comprises mechanical, software and service engineering (Hepperle et al. 2010). Since PSS are
customer specific solutions the central point of reference for PSS development are the
customer’s demands which are to be fulfilled by the solution (Burianek et al. 2007).

PART B: PUBLICATIONS 52

Given these challenges, there is a need to move beyond a purely product-centric orientation,
or a purely service dominant logic, in order to develop successful PSS. However, in practice
companies often follow their traditional development processes and simply design a service
around their product. This way, many PSS offerings do not live up to their full potential.
Based on a review of existing literature this paper aims at identifying and categorizing the
special characteristics that companies have to face in the course of PSS development

2. Methodology

The research is guided by the following research question: What are the special characteristics
of PSS that differ their development from traditional products and services? To answer this
research question, we conducted a literature review as recommended by Webster and Watson
(Webster and Watson 2002), which includes a keyword search in selected relevant sources, a
forward and backward search, and a subsequent content analysis of the as relevant evaluated
publications. The initial search included the scientific databases ACM Digital Library, AIS
Electronic Library, EBSCOhost, IEEE Xplore Digital Library, Science Direct, and the
scientific search engine Google Scholar. The literature search was based on a structured
keyword search. We used the keywords “PSS”, “product-service system”, “servitization” and
“hybrid product”. All keywords have been expanded into synonymous German terms. In each
database we then looked at the abstracts of the 500 most cited publications in order to decide
whether a publication should be incorporated in the detailed analysis.

After an initial review and compression of redundant duplicates a total of 106 papers
remained for secondary analysis. In this secondary analysis, relevant articles were reviewed
and analyzed on a full text basis. This process resulted in 60 articles, which provide a
significant contribution to the research question of this study. As part of the forward and
backward search, twelve additional relevant articles were identified. The identified papers
have been analyzed using a concept centric approach as recommended by Webster and
Watson (2002).

3. Special Characteristics of PSS Development

Based on our literature study we were able to identify nine characteristics that distinguish the
development of PSS from traditional products and services. We categorized these
characteristics into (1) Integration and Multidisciplinarity, (2) Provision of solutions as well
as (3) Environment and Organization (see Table 1).

PART B: PUBLICATIONS 53

Table 6: Special Characteristics of PSS Development

 Integration & Multidisciplinarity Provision of Solutions Environment & Organization

In

te
gr

at
io

n
 o

f

C
om

po
ne

nt
s

M
u

lt
id

is
ci

pl
in

ar
y

D
ev

el
op

m
en

t

C
u

st
om

er

In
te

gr
at

io
n

L
if

ec
yc

le

O
ri

en
ta

tio
n

V
ar

ia
bi

lit
y

of

S
er

vi
ce

 P
ro

vi
si

on

In
di

vi
du

al
iz

at
io

n

O
rg

an
iz

at
io

na
l

C
h

al
le

ng
es

V
al

u
e

N
et

w
or

k

S
u

st
ai

n
ab

ili
ty

(Alonso-Rasgado et al.
2004)

(Aurich et al. 2006)

(Baines et al. 2007)

(Baxter et al. 2009;
Becker and Klingner
2013; Creusen 2011;
Yip et al. 2014)

(Becker et al. 2009;
Floerecke et al. 2015)

(Becker and Krcmar
2008)

(Berkovich et al. 2009;
Durugbo 2011)

(Berkovich et al.
2011a)

(Berkovich et al.
2011c; Schenkl et al.
2013; Roy et al. 2009b;
Vezzoli and Sciama
2006; Ping and Jia
2010)

(Böhmann et al. 2008;
Mannweiler et al.
2010)

(Böhmann and Krcmar
2007)

(Botta 2007; Gräßle et
al. 2010; Hao 2012)

(Burianek et al. 2007;
Wolfenstetter et al.
2015a)

(Geum and Park 2011)

(Gürtler et al. 2013)

(Goedkoop et al. 1999)

(Hepperle et al. 2010;
Langer et al. 2009)

(Herzfeldt et al. 2011)

(Isaksson et al. 2009)

(Komoto et al. 2005;
Wurtz et al. 2013)

(Laurischkat 2013)

(Langer 2013)

(Laperche and Picard
2013)

(Lee and Park 2010;
Tuli et al. 2007;
Xuanju and Jian 2009)

(Mien et al. 2005; Lee

PART B: PUBLICATIONS 54

et al. 2011)

(Leimeister and
Glauner 2008)

(Li and Liu 2010; Roy
et al. 2009a)

(Liu et al. 2010)

(Luiten et al. 2001)

(Manzini and Vezzoli
2003)

(Maussang et al. 2009)

(Mont 2002, 2000)

(Mont and Tukker
2006)

(Baxter et al. 2009;
Morcos and Henshaw
2009; Vezzoli et al.
2012)

(Morelli 2002, 2006;
Phumbua and Tjahjono
2012)

(Wilkinson et al. 2009)

(Roht et al. 2014)

(Schweitzer 2010)

(Spath and Demuß
2006)

(Sturm and Bading
2008)

(Sun and Zhang 2012;
van Ostaeyen et al.
2013)

(Tukker 2004; Wu and
Gao 2010)

(Mont and Tukker
2006)

(Wang et al. 2011)

(Wolf et al. 2010)

(Yang et al. 2009;
Yang et al. 2010, 2011)

Sum 15 9 25 32 20 10 12 21 17

The first category, Integration and Multidisciplinarity, summarizes features that are related to
or result from the integration of the product and service components that form a PSS.
Furthermore, these components are subject to different life cycles and other cycles that
influence development and service provision. As a consequence, PSS development and
service provision require an intense collaboration of different engineering disciplines, such as
mechanical engineering and service engineering.

The orientation towards the Provision of Solutions to individual customer needs is
accomplished through modular system architectures. The fact that system modules are
individually combined to satisfy a specific need further results in a high variability of service
provision. In order to be able to cater to customer needs individually further requires a high
degree of customer integration in both, development and service provision.

PART B: PUBLICATIONS 55

In addition to that, PSS further features that are related to Environment and Organization can
be distinguished. They comprise organizational challenges, the value network integration as
well as the sustainability goal that is often associated with PSS.

3.1. Integration of Components

PSS combine products and services to deliver an additional value to the customer (Becker and
Krcmar 2008). This often requires a technical integration of the components resulting in
interdependencies (Mont 2002). Some experts even view this integration as the central feature
of PSS development (Burianek et al. 2007; Böhmann and Krcmar 2007). According to
Aurich, Fuchs and Wagenknecht (2006), simply adding a service to an existing product is not
productive. In fact, a holistic approach is necessary in order to generate the desired outcome
(Baxter et al. 2009). Based on stakeholder requirements the various components need to be
aligned and integrated. Thus, an isolated analysis of the required solution components is
insufficient (Burianek et al. 2007). As a consequence PSS development is by far more
complex than traditional engineering (Creusen 2011).

Changes on the physical product eventually lead to modifications to the package of services.
Vice versa do modifications of services have an impact on the product components (Becker
and Klingner 2013). These interdependencies lead to an increased complexity, which is much
higher compared to a delimited consideration of goods and services (Mont 2002). Therefore,
product and service components of a PSS need to be developed and aligned in an integrative
PSS development process (Wang et al. 2011). Only then interdependencies between product
and service are adequately taken into account. On the other hand, Yip, Phaal and Probert
(2014) represent the opinion that a PSS development process is either product or service
driven. However, no matter what discipline drives the development, a high degree of
integration of physical and non-physical components requires a systematic co-dependent
process for product and service development (Aurich et al. 2006). Spath and Demuß (2006)
describe a solution approach for PSS as the consistent and customer integrated product and
process development, which is extended by a design method of service engineering.

3.2. Multidisciplinary Development

The combination of products and services and therefore the integration in PSS involves
different domains in the development process. In order to take cross-disciplinary aspects into
account, both the development and production of the physical product as well as the non-
physical service must be considered systematically (Aurich et al. 2006). Mont and Tukker
(2006) state that the multidisciplinary approach influences a wide range of disciplines such as
economics, environmental science, sociology, psychology, product design and engineering. In
general three disciplines are mainly involved in the development of PSS: product, software
and service development (Herzfeldt et al. 2011). A stakeholder in the PSS development
process has typically specific expertise in one of the disciplines. A deeper knowledge about
the other disciplines is desirable but rare in practice. It is therefore necessary to derive a
common sense for cross-disciplinary problems (Gürtler et al. 2013). The consideration of all
engineering disciplines has to be done early in the requirements analysis (Berkovich et al.

PART B: PUBLICATIONS 56

2011a). A successful implementation requires the introduction of interfaces to coordinate and
integrate the participating developers in the development process. The general objective is an
integration of different engineering disciplines to a systematic development approach of
powerful tangible and intangible components (Spath and Demuß 2006).

3.3. Customer Integration

In order for the PSS provider to compose an individual service offering the customer has to
get actively involved in the service development (Langer 2013; Tuli et al. 2007). According to
Böhmann and Krcmar (Böhmann and Krcmar 2007), this integration comprises the technical
and organizational embedding of the solution into the business processes of the customer.
Especially when developing use-oriented and result-oriented PSS for industrial customers, the
technical integration of software and service components into the customers system landscape
has to be considered (Burianek et al. 2007; Berkovich et al. 2011a). This requires the PSS
provider to have a broad understanding of the customer-specific business processes (Langer
2013; Sturm and Bading 2008). In addition to that PSS require a high degree of customer
interaction during development which exceeds traditional customer-orientation (Isaksson et
al. 2009; Laperche and Picard 2013). In the scope of hybrid value creation the relationships
between the PSS provider and the customer has to go beyond the integration of the customer
in the development process. In PSS the customer becomes a vital part of the PSS business
model. From the customers’ point of view, the acceptance of a PSS is based on the relative
evaluation of the novel PSS-concept versus already existing products (Lee and Park 2010).
Customers value the performance, availability and shifting of risks to the provider (Baines et
al. 2007). The PSS business model aims at offering the customer increased value at lower
costs while at the same time being more sustainable than traditional business models (Mont
and Tukker 2006). To support their business strategy PSS providers try to build up and keep a
strong relationship to their client base (Phumbua and Tjahjono 2012). This enables the PSS
provider to collect information about the customers’ needs (Wu and Gao 2010). The results
are long lasting commercial partnerships between the PSS provider and the customer (Alonso-
Rasgado et al. 2004; Wolf et al. 2010). In contrast to traditional business models the
responsibility of a PSS provider does not end with the sale, the interaction between provider
and customer in the utilization phase leads to dynamic changes as well. For the PSS provider
it is important to understand and to be able to cope with the risks caused by this dynamic to
guarantee compliance of the contract (Phumbua and Tjahjono 2012). Changes in the market
lead to changed requirements of the business model (Phumbua and Tjahjono 2012). Therefore
the continuous innovation of the business model is crucial for the long-term success of the
PSS provider (Hao 2012). According to Böhmann and Krcmar (Böhmann and Krcmar 2007),
the goal-oriented transformation enables an orientation to changed customer needs even later
in the process of service provision. As a consequence the companies therefore have to
continuously modify or even redefine their existing PSS business model (Hao 2012).

3.4. Lifecycle Orientation

In contrast to traditional business models the lifecycle management of PSS focuses on
development and realization of the necessary user functionalities along the entire product

PART B: PUBLICATIONS 57

lifecycle (Laperche and Picard 2013). According to Mont (2002) as well as Li and Liu (2010),
the successful development of a PSS requires the providers of hybrid bundles of services to
broaden their participation and responsibility onto the phases of the lifecycle which are not in
their responsibility scope if you take a look from the traditional point of view. This implies
for PSS providers implementation and management of ‘closed-loop supply chains’ which
cover the forward- as well as the backward flow of consumable supplies (Roht et al. 2014).
The ownership for use-oriented and result-oriented PSS remains in most cases with the
provider (Baines et al. 2007; Geum and Park 2011; Mien et al. 2005; Roy et al. 2009a; Liu et
al. 2010; Maussang et al. 2009; Wilkinson et al. 2009). For the PSS provider this results in
increased responsibility over the product lifecycle. The customer profits from the reduced
responsibility, splitting of risks and decreased support departments (Isaksson et al. 2009).
From the view of the provider the PSS lifecycle begins with the planning and development,
succeeded by the manufacturing, the according service delivery and the disposition (Roy et al.
2009b; Schweitzer 2010). This broad perspective containing the whole lifecycle is
indispensable for reaching a good performance of the PSS (Wang et al. 2011). Through the
offering of integrated, hybrid bundles of services the motivation of the firm to change the
product design increases. Products where the ownership is not transferred to the customer are
less price-sensitive. The minimization of costs over the entire lifecycle thus is a strong driver
for product development. Simplification of maintenance and remanufacturing are recognized
as valuable by the PSS provider, too (Roy et al. 2009a). In addition to the necessity of a
closed circuit for the consumable supplies, there need to be bi-directional information flows
between the provider and the customer (Mien et al. 2005). The PSS provider continuously
gains information about the utilization behavior and potential trends through the cooperation
with the customer (Roht et al. 2014; Schweitzer 2010). The balanced planning and
development of PSS has to be conducted with the goal of guaranteeing requirements suitable
extension of products and services over the entire lifecycle. To gain advantages the relevant
products and services have to be integrated over all phases of the product lifecycle (Liu et al.
2010). The majority of influencing factors for the PSS development have a temporal, often
repetitive character. Some examples for externally triggered cycles in the context of PSS
development include: The availability and maturity of technologies, competitive trends,
different lifecycles of hard- and software, changed customer requirements, financial changes,
development changes or legislative changes (Berkovich et al. 2011c). Moreover, PSS are not
only subject to external but also internal cycles (Schenkl et al. 2013). This means
development- and production processes have to be adjusted, staff and organizational
structures change and the flow of information has to be defined and coordinated. Internal and
external cycles depend on and influence each other. Every component has independent
characteristics like storage life, maximal useful life or value to the market. Additional they
contain properties like option to repair, reuse and recyclability affecting the lifecycle (Komoto
et al. 2005). The different items of work are therefore influenced by their own lifecycle
(Böhmann and Krcmar 2007). Especially the heterogeneous lifecycles of PSS components are
a challenge for the development of a PSS. Due to the heterogeneity of the components’
lifecycles high coordination and iterative adjustments of the PSS between the different
domains is required (Berkovich et al. 2011c). The involved disciplines have to ensure tight
coordination regarding the temporal dependencies (Schenkl et al. 2013). For the efficient

PART B: PUBLICATIONS 58

development of PSS the potential cyclic influences and temporal dependencies during the
entire lifespan of the PSS have to be considered (Langer et al. 2009).

3.5. Variability of Service Delivery

The basic idea of PSS is that customers do not ask for specific products or services but rather
to solve a problem or to fulfill a demand (Leimeister and Glauner 2008; Sun and Zhang 2012;
Yang et al. 2009). The customer has no interest in owning the product, but on its use
(Isaksson et al. 2009; Maussang et al. 2009). Becker et al. (2009) state that the altered
customer expectations, results in significantly increased requirements which means higher
complexity for the provider. A possible solution is to provide alternative variations of goods
and services. Services may adopt functions of the physical product and vice versa. The
increased degree of freedom leads to a higher complexity in the PSS development process,
but also offers new business opportunities if the variation complexity is managed well and
supported systematically (Gürtler et al. 2013; Wolf et al. 2010).

3.6. Individualization

Variations in PSS offer specific service deliveries for individual customers. This solution-
oriented and individual adaption to rising customer requirements is one of the main
challenges for providers of PSS (Langer 2013). Field experience shows that PSS, compared to
pure physically products, need a profound adaption of customer-specific requirements (Wolf
et al. 2010). PSS is based on parts, which are categorized into components and modules
(Böhmann et al. 2008). Based on customer requirements modules are built on the level of
solution components. Already existing modules rated regarding their reusability. This
categorization enables the standardization of modules (Berkovich et al. 2011a).

For targeted individual design must the variations meet differentiated tangible and intangible
components, in order to provide a customized products and services as a systematically
combination of PSS modules (Wolf et al. 2010). The real configuration of the PSS is thus an
integrated system of standardized and customer-specific modules and components (Böhmann
and Krcmar 2007).

3.7. Organizational Challenges

The integration of products and services requires transformations of the provider’s
organizational structure and internal business processes (Baines et al. 2007; Mont 2002;
Wilkinson et al. 2009). Organizations which conduct this transformation not only have to take
a look up on their business model but also on their processes and procedures, relations to
suppliers as well as their employees’ mindsets (Baxter et al. 2009). The transformation to a
service oriented approach leads to changes regarding company culture, competences,
knowledge and commercial partnerships while at the same time increasing complexity (Mont
2002; Laperche and Picard 2013). Intra-organizational infrastructures like for example
acquisition, production, store and distribution but also the company’s strategy or the quality
management decide about competitive advantages against competing provider. Therefore, the

PART B: PUBLICATIONS 59

PSS development requires a focus on internal infrastructure not recognizable by the customer.
The increased company interaction with other organizations results in inter-organizational
changes which require the use of new performance indicators and employees. These internal
transformations lead to a modification of the relationships between the company functions
within the organization (Mont 2002). Companies transforming to PSS providers have to face
challenges which are bigger than for organizations that are either product- or service oriented.
The different orientations of the customer-centered front-end and the product-centered back-
end lead to divergent hierarchies, processes, incentives and objectives (Böhmann and Krcmar
2007; Roy et al. 2009a). Furthermore, there is the necessity of organizational changes when
transforming to a PSS provider but also mention that more knowledge about how these
changes have to look like and how the change process in the company has to be handled is
required (Roy et al. 2009a).

3.8. Value Network

In a PSS the solution is provided by an integrated value network in which multiple actors
interact with each other (Luiten et al. 2001). Therefore, the development does not only
involve different disciplines and components, but also various stakeholders from different
organizations (Berkovich et al. 2011a).

This leads to substantial changes regarding the way relationships with external stakeholders
are being management. For example, the implementation of closed-loop supply chains
requires tight collaboration with the suppliers as well as the customer (Mont 2002). PSS often
require competencies, resources and capabilities that are new to the organization thus
requiring integrative partnerships with business partners (Wilkinson et al. 2009). It is
therefore essential for PSS providers to actively manage the composition the network of
partners and identify how each partner can contribute to the value network. Especially for
complex PSS this calls for a high level of trust and information sharing between partners. In
contrast to traditional product development these partnerships are not limited to the
development phase but along the entire lifecycle as the provision of the desired solution can
often only be realized in partnerships (Morelli 2006). However, in these partnerships each
stakeholder might have his own, often conflicting goals (Wilkinson et al. 2009). As PSS are
the result of a collaborative value-added process among partners the traditional value chains
become value networks (Baines et al. 2007; Isaksson et al. 2009; Schweitzer 2010; Wolf et al.
2010). Durugbo (2011) emphasizes the need for PSS providers to implement a network-
thinking mindset in order to master the interorganizational challenges related to PSS. In total,
the effective collaboration of heterogeneous partners in multiple organizations is a key
premise for developing successful PSS.

3.9. Sustainability

In many cases the basic principle behind PSS is the shift from volume-driven production to
value-driven business models (Mien et al. 2005). The goal of this paradigm change is de-
materialization leading to more sustainable ways of creating value. Sustainability in this
regard refers to economic as well as environmental aspects. Mont and Tukker (Mont and

PART B: PUBLICATIONS 60

Tukker 2006) describe PSS as business models that deliver more value to the customer at
lower costs while at the same time being less harmful to the environment than traditional
business models. The major advantage of a PSS is the renunciation of conventional product
concepts shifting the focus onto the basic customer need. This allows for a higher degree of
freedom for developers (Tukker and Tischner 2006). Because in most cases the ownership of
PSS components remains with the provider, there is a strong incentive to minimize the cost
and amount of material used (Laperche and Picard 2013). PSS providers therefore implement
closed-loop supply chains as they are mostly responsible for retraction, upgrading and
refurbishing of components in the loop (Mont 2002; Aurich et al. 2006; Roht et al. 2014).

The environmental efficiency of PSS thus results from a lifecycle wide optimization of
resources resulting from a convergence of the stakeholder’s interests (Manzini and Vezzoli
2003). Because of the holistic perspective of the development process focusing on
optimization for long-term use, the development of sustainable PSS is affected by higher
complexity (Luiten et al. 2001). Tukker and Tischner (2006) highlight that the different types
of PSS vary in how sustainable they usually are. Product-oriented PSS often only add services
to existing products and therefore mostly add little to the sustainability of the solution. Use-
oriented PSS on the other hand tend to intensify the use of the product which is often more
sustainable if they are being used to capacity. Result-oriented PSS have to potential to limit
the resources required to the fulfilment of the original customer need therefore being more
sustainable.

In summary, the development of more sustainable PSS is big challenge but at the same time
an even bigger opportunity for companies (Luiten et al. 2001). Laperche and Picard (2013)
highlight that the awareness for sustainability needs to be present in the entire organization. In
order to systematically profit from positive effects while avoiding obstacles, there is need for
flexible approaches for PSS engineering and service provision (Aurich et al. 2006). In this
context it is most promising, if the design for sustainability is already carefully considered
during the development stage (Mont and Tukker 2006).

4. Discussion

By analyzing the state of the art in literature on PSS we were able to identify nine
characteristics that differentiate the development of PSS from traditional product or service
engineering (c.f. Fig 1). The integration of products and service leads to mutual dependencies
of the components of a PSS since modifications on one side may affect other parts of the
solution as well. Moreover, the different hardware, software and service components of a PSS
have different lifecycles, so that changing specific components at later lifecycle stages needs
to be already considered during development. The need for consistency of development
artifacts requires intensive coordination of the various disciplines involved, thus making the
development of PSS more complex than traditional development. As each engineering
discipline has specific characteristics, various perspectives and different engineering, cycles
PSS development requires a cross-disciplinary approach for managing the interfaces and
interdependencies. As the multiple disciplines have to be integrated in a holistic engineering
process, the development of PSS also requires a broader sphere of competence than traditional

PART B: PUBLICATIONS 61

approaches. Since the focus of a PSS does not lie on a product or a service itself but on
satisfying a customer need their development requires a value-based design approach in
which different service or product components may be freely combined in order to form the
solution. This results in a higher variability of service provision. However, the customer
individual service provision also produces a bigger range of variants that have to be managed.

Figure 9: Nine Characteristics of PSS development

The variability of the costumer individual composition of a PSS favors a design approach that
allows for individualization through modules. If the promised solution can be broken down
into partial solution components PSS can be adapted to individual customer needs by
combining standardized and costumer individual components. The fact that PSS need to be
individually adapted to customer needs demands for intensive customer integration in the
development process of PSS that goes beyond traditional levels of customer orientation.
However, the integration of customers is not limited to the development of a PSS. With PSS
the customer is also part of the business model as the value is co-created together with the
customer. The interaction of the provider and the customer during the lifecycle of a PSS is
subject to dynamic changes. The effects of those dynamic changes need to be anticipated and
controlled. Therefore, PSS therefore require the consideration of the entire lifecycle including
the design of closed-loop supply chains for service provision already during the development
phase. With the perspective shifting to full lifecycle consideration the provider should not
only keep development and production costs in mind but all costs that arise during the
lifecycle of a PSS.

The development of a PSS and the subsequent phase of service provision also feature a
number of organizational challenges that force the PSS provider to align two sometimes
contradicting goals. Customer orientation requires the company to react flexibly in order to
satisfy dynamically changing customer needs. At the same time the company needs to
optimize internal structures of the organization to remain competitive. The difference between
the internal and external focus manifests itself in diverging hierarchies, processes and goals.
Furthermore, the goals of the PSS provider need to be aligned with those of its partners as
development and service provision is done in value networks. In this context changes in the
market or in PSS may also force partners to adapt. Inter-organizational dependencies therefore
need to be considered already during the development stage. The development of a PSS thus

Integration &
Multidisciplinarity

Integration of
Components

Multidisciplinary
Development

Customer
Integration

Provision of
Solutions

Lifecycle orientation

Variability of service
provision

Individualization

Environment &
Organization

Organizational
Challenges

Value network

Sustainability

PART B: PUBLICATIONS 62

requires a high level of trust and collaboration among internal and external stakeholders. Due
to the increasing importance of value networks and ecosystems PSS are often viewed as
business models focusing on economic sustainability. One of the main goals of PSS is the
shift from a volume-driven to a value-driven economy. This paradigm change is often
believed to result in de-materialization of value-chains and therefore be more environmentally
sustainable. However, PSS are not per se more sustainable than traditional products or
services. In order to realize the potentials of less resource consumption and higher efficiency,
a PSS provider needs to take a lifecycle sustainability perspective already during the
development of a PSS.

For the PSS provider, the research findings can be translated into nine design
recommendations:

1. Implement a traceability strategy to actively manage the interdependencies between
the discipline specific development artifacts.

2. Enhance the collaboration between stakeholders of the various disciplines.

3. Actively integrate the customer along the entire lifecycle of a PSS and engage in tight
customer relationships.

4. Pro-actively manage and adapt to the various cycles that affect the development of a
PSS as well as service provision.

5. Start the development of a PSS from solution independent requirements and evaluate
multiple alternatives of service provision.

6. Individualize the service offering by using a modular PSS architecture.

7. Be aware that changing the business model might require changing the organizational
structure of the company.

8. Concentrate on the core competencies and collaborate with external partners in
development as well as during service provision.

9. Create economically and environmentally sustainable solutions by focusing on the
essential needs of the customer.

PART B: PUBLICATIONS 63

5. Conclusion

Based on a systematic review of existing literature, we identified the most important
challenges that are likely to be faced by multidisciplinary PSS development teams. The
publications that were reviewed address a broad variety of aspects and propose solutions for
the basic challenges that are relevant in this context. These can be translated into design
recommendations for PSS providers.

Acknowledgment

We thank the German Research Foundation (DFG) for funding this work as part of the
collaborative research center ‘Sonderforschungsbereich 768 – Managing cycles in innovation
processes – Integrated development of product-service-systems based on technical products’
(SFB768).

PART B: PUBLICATIONS 64

Publication 2

Publication 2: Analyse der Eignung domänenspezifischer Methoden der Anforderungsverfolgung für
Produkt-Service-Systeme

Analyse der Eignung domänenspezifischer Methoden der
Anforderungsverfolgung für Produkt-Service-Systeme

Thomas Wolfenstettera, Sebastian Floereckeb, Markus Böhma, Helmut Krcmara

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, markus.boehm,

krcmar}@in.tum.de

b Universität Passau, Lehrstuhl für
Wirtschaftsinformatik II, Passau,

Deutschland
sebastian.floerecke@uni-passau.de

Abstract

Die Anforderungsverfolgung bringt bei der Entwicklung von Produkt-Service-Systemen
(PSS) zahlreiche Herausforderungen mit sich. Gründe hierfür sind komplexe Schnittstellen
zwischen den Domänen Produkt-, Software- und Dienstleistungsentwicklung,
unterschiedliche Lebenszyklen und gegenseitige Beeinflussung einzelner Komponenten, ein
hoher Grad an technischer Integration sowie eine kundenindividuelle Leistungserstellung.
Verstärkt wird diese Komplexität dadurch, dass sich Anforderungen an das PSS entlang des
gesamten Lebenszyklus ändern können. Während in der Literatur domänenspezifische
Anforderungsverfolgungsmethoden zu finden sind, existiert bislang kein PSS-spezifischer
Ansatz. Ziel dieses Beitrags ist daher, zu untersuchen, inwieweit sich diese Methoden für PSS
eignen. Die Grundlage dafür bilden zehn, aus den Eigenschaften von PSS abgeleitete
Kriterien. Die Analyse zeigt, dass keine der Methoden alle Kriterien vollständig erfüllt.
Dennoch bieten einige bei der Verfolgung der Anforderungsherkunft, der Beziehung
zwischen Anforderungen, der Anforderungsumsetzung sowie dem Versionsmanagement
vielversprechende Ansätze. Diese Bewertung dient als Ausgangspunkt für eine gezielte
Kombination und Erweiterung der Methoden, um eine adäquate Anforderungsverfolgung bei
PSS zu ermöglichen.

Keywords: Produkt-Service-System, Anforderungsverfolgung, Anforderungsmanagement,
Analyse, Literaturstudie

PART B: PUBLICATIONS 65

1. Ausgangssituation und Problemstellung

Um dem gestiegenen Wettbewerbsdruck entgegenzuwirken und sich von der Konkurrenz zu
differenzieren, bieten Unternehmen unterschiedlichster Branchen vermehrt Komplettlösungen
für individuelle Kundenprobleme an (Leimeister and Glauner 2008). Ein Beispiel hierfür sind
Carsharing-Angebote zur Erfüllung eines Mobilitätsbedürfnisses. Bei derartigen Lösungen
handelt es sich um integrierte Leistungsbündel, bestehend aus Hardware-, Software- und
Dienstleistungskomponenten, die als Produkt-Service-Systeme (PSS) bezeichnet werden
(Baines et al. 2007). Der Wertschöpfungsprozess im Kontext von PSS ist dabei auf eine
dauerhafte und intensive Geschäftsbeziehung ausgerichtet, in welcher der Kunde nicht mehr
länger nur als Wertschöpfungsempfänger, sondern als Wertschöpfungspartner auftritt (Tuli et
al. 2007). Hierbei trägt der Anbieter häufig die Verantwortung für den gesamten
Lebenszyklus eines PSS (Baines et al. 2007; Herzfeldt et al. 2012). Die Entwicklung eines
PSS erfordert eine integrative Zusammenarbeit von Produkt-, Software- und
Dienstleistungsentwicklung. Jede dieser Disziplinen entwickelt einzelne Komponenten, die
sich gegenseitig beeinflussen, nahtlos zusammenwirken sollen aber verschiedenen
Lebenszyklen unterworfen sind (Berkovich et al. 2011b; Krcmar 2010). Oberstes Ziel eines
PSS ist die möglichst optimale Erfüllung eines individuellen Kundenbedürfnisses. Daneben
müssen Anbieter, zumindest im Business-to-Business-Bereich, die Geschäftsprozesse ihrer
Kunden verstehen, um das PSS in deren Wertschöpfung integrieren zu können (Böhmann and
Krcmar 2007; Tuli et al. 2007). Aus Anbietersicht ist es daher entscheidend, sämtliche
Anforderungen an die Lösung genau zu erheben, zu spezifizieren und deren Abhängigkeiten
zu kennen (Berkovich et al. 2011c).

Entlang des gesamten PSS-Lebenszyklus kommt es jedoch fortlaufend zu Änderungen
(Berkovich et al. 2011a; Herzfeldt et al. 2010), da dieser zyklischen Einflüssen unterworfen
ist (Langer and Lindemann 2009). Beispiele für Zyklen sind die Änderung von
Kundenwünschen und Gesetzen oder die Verfügbarkeit neuer Technologien (Berkovich et al.
2011c). Im Carsharing-Bereich etwa besteht eine zentrale Anforderung an den
Dienstleistungsprozess darin, dass der Kunde vor Übernahme des Fahrzeugs dieses auf
Vorschäden prüft und nicht erfasste Mängel meldet. Durch Einführung einer neuen
Sensortechnologie könnten dagegen Schäden bereits bei Entstehung erfasst und weitergeleitet
werden. Dies würde die ursprüngliche Anforderung überflüssig machen und die Nutzung
vereinfachen, brächte aber Änderungen am Fahrzeug und der Software mit sich, welche
wiederum weitere Änderungen anstoßen könnten. Zudem könnte diese Anpassung gegen
gesetzliche Datenschutzregeln verstoßen und somit rechtliche Folgen haben. Im Rahmen des
Anforderungsmanagements müssen PSS-Anbieter daher mögliche Änderungen antizipieren,
die Auswirkungen auf weitere Anforderungen und Komponenten erkennen und Maßnahmen
zum Umgang mit Änderungen anstoßen. Voraussetzung dafür ist, den Lebenszyklus einer
Anforderung zu verfolgen und Abhängigkeiten zwischen Anforderungen und PSS-
Komponenten zu identifizieren, diese abzubilden und zu pflegen (Berkovich et al. 2011b).
Dieser Bereich des Anforderungsmanagements, dem besonders bei der PSS-Entwicklung eine

PART B: PUBLICATIONS 66

große Bedeutung zukommt, wird als Anforderungsverfolgung bezeichnet (Gotel and
Finkelstein 1994; Ramesh and Jarke 2001).

Obwohl in der Literatur verschiedene, domänenspezifische Anforderungsverfolgungs-
methoden, aus der Software- und Hardwareentwicklung, zu finden sind, existiert bislang kein
domänenübergreifender Ansatz, der den Herausforderungen von PSS genügt (Berkovich et al.
2011b; Wolfenstetter et al. 2013). Dieser Beitrag untersucht daher, inwieweit sich diese
domänen-spezifischen Methoden der Anforderungsverfolgung für die PSS-Entwicklung
eignen. Der Analyse liegen zehn Kriterien zugrunde, die aus den speziellen Eigenschaften von
PSS und den Aufgaben der Anforderungsverfolgung bei PSS hergeleitet wurden.

2. Grundlagen der Anforderungsverfolgung bei PSS

Die Verfolgung von Anforderungen stellt eine Querschnittsfunktion des
Anforderungsmanagements dar, die während des kompletten Lebenszyklus eines Produkts,
einer Dienstleistung oder eines PSS zu gewährleisten ist (Cheng and Atlee 2007; Ebert 2012).
Der Lebenszyklus einer Anforderung wird dabei von ihrem Ursprung über alle Phasen der
Entwicklung verfolgt und die Abhängigkeiten zwischen verschiedenen Artefakten, wie etwa
Anforderungen, PSS-Komponenten oder Testfälle, dokumentiert und gepflegt (Gotel and
Finkelstein 1994; Ramesh and Jarke 2001). Da, wie das Carsharing-Beispiel zeigt,
beispielsweise Dienstleistungen das Design der Software oder der Hardware beeinflussen
können, muss die Anforderungsverfolgung bei PSS domänenübergreifend durchgeführt
werden (Berkovich et al. 2011c). Zur Verfolgung von Anforderungen werden semantische
Abhängigkeiten, sogenannte „Trace Links“, dokumentiert. Diese Trace Links geben an, wie
Artefakte zueinander in Beziehung stehen (Spanoudakis and Zisman 2005). Durch Navigieren
entlang der Trace Links lässt sich unter anderem nachvollziehen, warum eine Anforderung
spezifiziert wurde, durch welche PSS-Komponenten eine Anforderung erfüllt werden soll
oder welche Testfälle ihrer Absicherung dienen.

Die Anforderungsverfolgung lässt sich in drei Dimensionen unterteilen: Pre-Traceability
erfasst Trace Links von der Anforderungsquelle, beispielsweise Kunde oder Gesetzgeber
(Pinheiro 2004), bis zu ihrer Spezifikation (Gotel and Finkelstein 1994). Post-Traceability
dagegen umfasst Trace Links einer Anforderung von ihrer Spezifikation bis zu ihrer
Umsetzung, etwa als Softwarecode oder physische Komponente (Gotel and Finkelstein 1994).
Drittens können Beziehungen zwischen Anforderungen auf derselben oder unterschiedlichen
Abstraktionsebenen verfolgt werden. Diese Dimension wird als Inter-Traceability bezeichnet
und beinhaltet Überlappungen, Konkretisierungen oder auch Konflikte zwischen
Anforderungen (Pohl 2010; Pinheiro 2004). Für PSS ist Inter-Traceability von besonderer
Bedeutung, da die Anforderungsspezifikation ein komplexes, domänenübergreifendes und
multihierarchisches Netzwerk aus interdependenten Anforderungen darstellt (Berkovich et al.
2011a). Figure 10 fasst die Dimensionen der Anforderungsverfolgung zusammen:

PART B: PUBLICATIONS 67

Figure 10: Dimensionen der Anforderungsverfolgung bei PSS
Quelle: In Anlehnung an (Gotel and Finkelstein 1994)

Durch eine systematische Anforderungsverfolgung lässt sich gezielt nachprüfen, ob und wie
Anforderungen tatsächlich umgesetzt wurden. Des Weiteren können Komponenten oder
Funktionen identifiziert werden, die keine Anforderung erfüllen und daher möglicherweise
überflüssig sind (Kotonya and Sommerville 1998; Watkins and Neal 1994). Gleichzeitig wird
das nachträgliche Einschleichen von Anforderungen in die Spezifikation verhindert, da für
jede Anforderung die Quelle sowie der Grund deren Aufnahme nachvollziehbar ist (Kirova et
al. 2008; Ebert 2012). Bei einer bevorstehenden Änderung lässt sich analysieren, welche
Artefakte ebenfalls betroffen sind und gegebenenfalls angepasst werden müssen (Watkins and
Neal 1994; Pohl 2008). Außerdem fördert die Anforderungsverfolgung die
Wiederverwendung von Artefakten, da festgestellt werden kann, welches Artefakt verwendet
werden könnte und welche Anpassungen für die Verwendung in einem anderen Kontext nötig
sind (Kotonya and Sommerville 1998; Spanoudakis and Zisman 2005). Ferner werden die
Überwachung des Projektfortschritts, die Ressourcenallokation sowie das Controlling
unterstützt (Ebert 2012; Torkar et al. 2012). Zudem kann geprüft werden, welche Testfälle
eine Anforderung verifizieren und ob jede Anforderung durch einen Test abgesichert wird
(Kirova et al. 2008; Pohl 2008).

3. Forschungsdesign

Um verschiedene Anforderungsverfolgungsmethoden zu identifizieren, wurde eine
Literaturstudie nach den Richtlinien von Webster und Watson [24] durchgeführt. Dabei wurde
zunächst in den Publikationsdatenbanken Google Scholar, IEEE Xplore, ACM Digital
Library, Springer Link und Emerald Insight nach relevanten Schlüsselwörtern wie
„Requirements Traceability“, „Traceability“, „Tracing“ oder „Anforderungsverfolgung“
gesucht. Zudem wurden diese Begriffe in Verbindung mit Suchbegriffen wie „Product
Development“, „Service“, „Product Service System“ oder „Hybrides Produkt“ geprüft.
Anschließend bewerteten die Autoren getrennt voneinander die Relevanz der
Veröffentlichungen, die in den Datenbanken jeweils unter den 500 besten Treffern lagen und
mindestens einmal zitiert wurden. Im Fokus standen Publikationen, in denen
Anforderungsverfolgungsmethoden beschrieben wurden. Grundlage der Publikationsauswahl

PART B: PUBLICATIONS 68

für die detaillierte Prüfung war der Durchschnitt der Relevanzbewertung von Titel und
Abstract seitens der Autoren. Danach wurden die Literaturverzeichnisse der identifizierten
Beiträge systematisch geprüft. Gleichzeitig wurde kontrolliert, welche Quellen wiederum die
bisher betrachteten Beiträge zitieren. Dieses Vorgehen wurde iterativ wiederholt, bis keine
weiteren Methoden ausfindig gemacht werden konnten. Insgesamt wurden nach der
Streichung von Duplikaten sowie derjenigen Publikationen, in den die
Anforderungsverfolgung nur eine untergeordnete Rolle spielt, 15 Methoden aus 118
Veröffentlichungen identifiziert.

Die identifizierten Anforderungsverfolgungsmethoden wurden hinsichtlich ihrer Eignung für
PSS anhand von zehn Kriterien analysiert. Hergeleitet wurden die Kriterien aus den
Eigenschaften von PSS und den Aufgabenbereichen der Anforderungs-verfolgung im Kontext
von PSS. Die Methodenbewertung erfolgte anhand einer drei-stufigen Skala, unabhängig
voneinander durch die Autoren im Hinblick darauf, ob und in welchem Umfang die Kriterien
in der Beschreibung der Methoden und deren Diskussion thematisiert wurden. Dabei ergab
die Bewertung in 84,7 % der Fälle eine exakte Übereinstimmung (Krippendorffs Alpha:
0,709). Bei unterschiedlichen Bewertungen wurden gemeinsam Argumente abgewogen und
eine Konsensentscheidung herbeigeführt. Voll erfüllt bedeutet in diesem Beitrag, dass
höchstens nur leichte Erweiterungen für die Verwendung im PSS-Kontext nötig sind. Bei
einer teilweisen Erfüllung wird zwar ein Kriterium in den Publikationen erwähnt, allerdings
sind weitreichende Änderungen erforderlich. Wenn ein Kriterium überhaupt nicht thematisiert
wurde, erfolgte eine Einstufung als nicht erfüllt.

4. Methoden der Anforderungsverfolgung

Im Rahmen der Literaturstudie konnten 15 Methoden der Anforderungsverfolgung
identifiziert werden. Viele Methoden stammen dabei aus dem Umfeld der Software-
entwicklung. Ein möglicher Grund dafür ist, dass in diesem Bereich das
Anforderungsmanagement innerhalb der Forschung bislang stärker als bei den
Ingenieurswissenschaften adressiert wurde (Berkovich et al. 2011a). Obwohl explizit danach
gesucht wurde, konnte keine spezifische Methode für Dienstleitungen gefunden werden. Dies
kann damit begründet werden, dass die Dienstleistungsentwicklung ein relativ junges
Forschungsfeld darstellt (Leimeister 2012) und dort oft Ansätze aus anderen Domänen
adaptiert werden.

Insgesamt handelt es sich bei diesen Methoden um heterogene Ansätze, die sich auf
unterschiedliche Aspekte der Anforderungsverfolgung konzentrieren. So legen einige
Methoden den Fokus darauf, wie Trace Links identifiziert (z. B. Antoniol et al. 2002),
dokumentiert oder gepflegt werden können (z. B. Cleland-Huang et al. 2002), während sich
andere damit beschäftigen, wie diese Informationen visualisiert (z. B. Cleland-Huang 2005)
oder wie Auswirkungen von Änderungen prognostiziert werden können. Konzeptuelle
Ansätze hingegen beschreiben, welche Artefakte bei der Anforderungsverfolgung
berücksichtigt werden müssen, welche Arten von Beziehungen existieren und welche
Informationen über jedes Artefakt benötigt werden (z. B. Ramesh and Jarke 2001). Daneben
gibt es Prozessmodelle, die definieren, welche Aktivitäten bei der Anforderungsverfolgung

PART B: PUBLICATIONS 69

durchzuführen sind. Die in diesem Beitrag als Methode verstandenen Ansätze beschreiben
hingegen, wie diese Aktivitäten durchgeführt beziehungsweise unterstützt werden können.
Die den einzelnen Methoden zugrundeliegenden Ideen werden nachfolgend kurz vorgestellt:

(1) Information Retrieval basiert auf einem Ähnlichkeitsvergleich zweier Artefakte zur
automatischen Identifikation möglicher Trace Links. Ein Artefakt fungiert als Anfrage
und ein anderes als Dokument, das hinsichtlich der Anfrage durchsucht wird. So agiert
beispielsweise der Softwarecode als Anfrage und die Anforderungsspezifikation als
Dokument. Artefakte mit hohen Ähnlichkeitswerten gelten dabei als Kandidaten für
Trace Links. Um Unterschiede zwischen verschiedenen Artefaktversionen zu erkennen,
kann dieser Ansatz mehrfach angewandt werden (Antoniol et al. 2002).

(2) Bei Event-based-Traceability, einem Architekturkonzept für Softwaretools, werden
Trace Links als Publisher-Subscriber-Beziehungen abgebildet. Diese Methode setzt
existierende Trace Links voraus. Sobald eine Änderung eintritt, werden davon
betroffene Stellen benachrichtigt, um mögliche Auswirkungen zu analysieren (Cleland-
Huang et al. 2002).

(3) Der Grundgedanke von Rule-based-Traceability ist die Verwendung von XML-
basierten Regeln zur automatischen Generierung von Nachvollziehbarkeits-
informationen. Dazu müssen neben den Regeln selbst, das Anwendungsfalldokument
und das Analyseobjektmodell im XML-Format vorliegen (Zisman et al. 2002).

(4) Während andere Methoden keine Unterscheidung bei den Anforderungen bezüglich
ihrer Bedeutung für die Anforderungsverfolgung vornehmen, setzt das Value-based-
Traceability genau an dieser Stelle an. Ziel ist es, besonders wichtige Anforderungen
detaillierter zu verfolgen als solche mit niedriger Priorität. Dadurch ergeben sich
Kostensenkungspotentiale bei der Anforderungsverfolgung (Heindl and Biffl 2005).

(5) Der Ausgangspunkt von Feature-Model-based-Traceability ist, dass der Unterschied
im Abstraktionsgrad und der Formalität zwischen Anforderungen und Features geringer
als zwischen einer Anforderung und einem Lösungsartefakt ist. Ein Feature beschreibt
eine Produkteigenschaft aus Sicht des Kunden und stellt das Bindeglied zwischen
Anforderungen und Lösungsartefakten dar. Die Trace Links verlaufen somit von den
Anforderungen zu den Features bis hin zu den Lösungselementen (Riebisch 2004).

(6) Das Ziel des Feature-oriented-Traceability ist das Identifizieren von
Nachvollziehbarkeitsinformationen basierend auf priorisierten Anforderungen
hinsichtlich Kosten und Aufwand. Daran lässt sich erkennen, dass dieses Verfahren eine
Erweiterung des Value-based-Traceability darstellt (Ahn and Chong 2006).

(7) Scenario-based-Traceability gleicht statische Informationen aus
Entwicklungsmodellen mit dynamischen Informationen aus dem aktuell
implementierten Softwareprodukt ab. Dazu wird das Verhalten der Software mit
Testszenarios, die während der Entwicklung definiert wurden, beobachtet. Da die
meisten Beobachtungen direkt mit Szenarien korrespondieren, können auf diese Weise
Trace Links zwischen Szenarien und dem System identifiziert werden (Egyed 2001).

(8) Hypertext-based-Traceability verwendet ein Hypertextmodell, welches das komplexe
Verbinden und Versionieren von Nachvollziehbarkeitsbeziehungen ermöglicht. Zur
Generierung der Trace Links wird das Information Retrieval eingesetzt. Es nutzt XML

PART B: PUBLICATIONS 70

als Datenformat zur Repräsentation der Modelle und der generierten Trace Links. Diese
müssen daher in einer XML-Darstellung vorliegen (Maletic et al. 2003).

(9) Goal-centric-Traceability zielt darauf ab, nicht-funktionale Anforderungen zu
verfolgen. Nicht-funktionale Anforderungen, wie Zuverlässigkeit, Sicherheit oder
Wartbarkeit, gelten als besonders anspruchsvoll zu verfolgen, da sie Auswirkungen auf
das System als Ganzes haben und zwischen ihnen zahlreiche Abhängigkeiten und
Zielkonflikte bestehen (Cleland-Huang et al. 2005).

(10) Der Ausgangspunkt von Pre-Requirements Specification Traceability ist die
Annahme, dass Pre-Traceability im Vergleich zu Post-Traceability deutlich schwieriger
ist, da Trace Links zwischen dem Problemraum – den Bedürfnissen – und dem
Lösungsraum – der Anforderungsspezifikation – etabliert werden müssen. Da die
Distanz zwischen beiden Räumen groß ist, wird ein Übergangsraum eingefügt, um diese
Komplexitätslücke zu reduzieren (Ravichandar et al. 2007).

(11) Einen weiteren Ansatz, der speziell zur Unterstützung des Pre-Traceability entwickelt
wurde, stellen Contribution Structures dar. Dabei werden Trace Links zwischen
Anforderungen und Stakeholdern generiert. Beispielsweise wird die
Anforderungsquelle oder die Verantwortlichkeit für die Umsetzung einer Anforderung
dokumentiert (Gotel and Finkelstein 1995).

(12) Bei Traceability-Matrizen, wie Design-Structure- oder Domain-Mapping-Matrizen,
müssen die Trace Links manuell erzeugt werden. Sie werden häufig in der Praxis
verwendet, um sowohl Beziehungen zwischen Anforderungen untereinander als auch
zwischen Anforderungen und anderen Entwicklungsartefakten, wie Testfällen,
Codemodulen und dem Design, zu etablieren und visualisieren (Cleland-Huang 2005).

(13) Das Reference Model for Requirements Traceability definiert bestimmte Typen von
Artefakten und Trace Links. Dabei wird zwischen verschiedenen Detaillierungsstufen
der Anforderungsverfolgung unterschieden (Ramesh and Jarke 2001).

(14) Beim Quality Function Deployment handelt es sich um einen strukturierten Ansatz zur
Übersetzung von Kundenanforderungen in Designziele sowie zur Analyse der
Abhängigkeiten zwischen Komponenten. Damit lässt sich darstellen, welche
Kundenanforderung durch welche Produktkomponente umgesetzt wird (Akao 1990).

(15) Die Fehlermöglichkeits- und Einflussanalyse wird eingesetzt, um eine möglichst
fehlerfreie Gestaltung von Produkten und Prozessen unter Einhaltung aller Kunden- und
Qualitätsanforderungen zu erzielen. Sie basiert auf dem Prinzip der vorausschauenden
Fehlervermeidung. Wie auch beim Quality Function Deployment lässt sich abbilden,
welche Komponente welche Anforderung erfüllt (Teng and Ho 1996).

PART B: PUBLICATIONS 71

(16)

5. Bewertungskriterien

Der Methodenbewertung liegen folgende zehn Kriterien zugrunde, die anhand der
Literaturstudie aus den Eigenschaften von PSS und den Aufgabenbereichen der
Anforderungsverfolgung im Kontext von PSS hergeleitet wurden:

(1) Verfolgung der Anforderungsherkunft: Ist dieses Kriterium erfüllt, so kann unter
anderem nachvollzogen werden, warum eine Anforderung spezifiziert wurde und wer
welche Verantwortung trägt (Pinheiro 2004; Maeder et al. 2006). Allerdings wird häufig
darauf hingewiesen, dass Pre-Traceability in der Praxis die größte Herausforderung
darstellt und deshalb auch nur selten angewendet wird (Gotel and Finkelstein 1994;
Ravichandar et al. 2007). Im Kontext von PSS ist Pre-Traceability besonders wichtig
und zugleich schwierig, da meist viele, heterogene Interessensgruppen mit
unterschiedlichen Anforderungen berücksichtigt werden müssen (Berkovich et al.
2011a).

(2) Verfolgung der Beziehung zwischen Anforderungen: Bei der Detaillierung von
Anforderungen an ein PSS werden abstrakte Geschäftsziele iterativ heruntergebrochen
bis konkrete, domänenspezifische Anforderungen an jede PSS-Komponente spezifiziert
werden können. Die strukturierte Abbildung der Beziehungen zwischen Anforderungen
an Sach- und Dienstleistungskomponenten eines PSS dient somit der Koordination der
verschiedenen Domänen (Berkovich et al. 2011a). Bei der Anforderungsverfolgung für
PSS muss daher berücksichtigt werden, dass mehrere Abstraktionsebenen, von
Geschäftszielen bis hin zu detaillierten Komponentenanforderungen, existieren
(Wolfenstetter et al. 2013). Anforderungen können hierbei in Konflikt
zueinanderstehen, sich gegenseitig einschränken oder erweitern (Pohl 2008; Winkler
and Pilgrim 2010). Durch die Erfassung dieser Beziehungen kann somit die
Anforderungsbasis strukturiert werden (Wolfenstetter et al. 2013; Pinheiro 2004).

(3) Verfolgung der Anforderungsumsetzung: Dieses Kriterium umfasst Trace Links einer
Anforderung von ihrer Spezifikation bis zur Umsetzung durch eine Lösungs-
komponente des PSS (Gotel and Finkelstein 1994). Zu jedem Zeitpunkt der
Entwicklung muss erkennbar sein, zu welchem Grad Anforderungen umgesetzt oder
umsetzbar sind (Sahraoui 2005). Außerdem sollen Komponenten oder Funktionen
identifiziert werden können, die keine Anforderung erfüllen und daher möglicherweise
überflüssig sind (Ramesh and Jarke 2001; Kirova et al. 2008).

(4) Versionsmanagement: Da Artefakte bei der Entwicklung von PSS einer ständigen
Veränderung unterworfen sind, muss eine Methode zur Anforderungsverfolgung in der
Lage sein, verschiedene Versionen eines Artefakts abzubilden und miteinander zu
verknüpfen (Spanoudakis and Zisman 2005; Berkovich et al. 2011a). Nur anhand dieser
Evolutionskette kann nachvollzogen werden, welche Änderungen aus welchem Grund
und zu welchem Zeitpunkt vorgenommen wurden. Unterschiedliche Versionen müssen
dabei dokumentiert und gegebenenfalls auch wiederhergestellt werden können (Pinheiro
2004).

PART B: PUBLICATIONS 72

(5) Varianten- und Konfigurationsmanagement: PSS zielen meist auf die Lösung eines
spezifischen Kundenproblems ab und müssen daher individuell gestaltet werden. Bei
einer unsystematischen Individualisierung und Variantenbildung ist es für den PSS-
Anbieter jedoch schwierig, profitabel zu wirtschaften (Sawhney 2006; Galbraith 2002).
Um gewisse Komponenten wiederverwenden zu können und damit Kosten zu sparen,
wird das Konzept der Modularisierung eingesetzt. Dadurch können individuelle
Kundenanforderungen oft durch die Kombination bestehender Module abgedeckt
werden (Böhmann et al. 2008). Die Anforderungsverfolgung sollte dabei aufzeigen, wie
verschiedene Komponenten kombiniert werden müssen, um sämtliche Anforderungen
zu erfüllen (Wolfenstetter et al. 2013). Hierdurch ergeben sich zusätzliche
Herausforderungen, da sich die Menge der Informationen und die Komplexität,
Änderungen zu managen, erhöht (Mohan and Ramesh 2006).

(6) Integration des Wertschöpfungsnetzwerks: Nachdem PSS oftmals aus vielen
Komponenten bestehen, ist es für Anbieter zumeist nicht möglich, sämtliche
Bestandteile selbst zu entwickeln oder anzubieten (Gebauer et al. 2013). Auch wenn sie
in der Regel alleine die Geschäftsbeziehung mit ihren Kunden unterhalten, sind PSS-
Anbieter von der Qualität ihrer Modullieferanten abhängig (Reichwald et al. 2009).
Daher müssen Anbieter die Lieferanten und Partner aus ihrem Wertschöpfungsnetzwerk
in die Entwicklung einbinden. Für die Anforderungsverfolgung bedeutet dies, dass sie
bei PSS ebenfalls unternehmensüber-greifend durchführbar sein sollte. So muss
Partnern der aktuelle Stand, der für sie relevanten Teilmenge, der Anforderungsbasis
zugänglich gemacht werden können.

(7) Simultane Entwicklung und unterschiedliche Sichten: Entwicklungsaufgaben werden
häufig so aufgeteilt, dass Teams gleichzeitig und weitgehend autonom an bestimmten
Teilaufgaben arbeiten können (Sharafi et al. 2010b). Dies sollte durch die
Anforderungs-verfolgung unterstützt werden. Daneben muss es möglich sein,
verschiedene Sichten auf das Anforderungsmodell und das gesamte PSS-Modell zu
definieren. Dabei sollten die verschiedenen Rollen, wie Projektmanager oder
Entwickler, gezielt mit Informationen versorgt werden können, die sie auch tatsächlich
benötigen (Berkovich et al. 2010b).

(8) Robustheit gegenüber Unsicherheiten: Artefakte, wie Designmodelle oder
Anforderungen, zeichnen sich oftmals durch ungenaue oder sogar gänzlich fehlende
Daten aus. Diese Unsicherheit stammt aus dem Umfeld des Entwicklungsprojekts, der
Entwicklungsarbeit selbst oder der Projektdefinition (Ebert and Man). Unsicherheit tritt
zum Beispiel dann auf, wenn die Dauer eines Dienstleistungsprozesses nur ungenau
bestimmt werden kann. Bei der Anforderungsverfolgung im Kontext von PSS sollten
deshalb derartige Unsicherheiten und Informationslücken adressiert werden können
(Wolfenstetter et al. 2013).

PART B: PUBLICATIONS 73

(9) Berücksichtigung des gesamten PSS-Lebenszyklus: PSS-Anbieter sind meist für den
kompletten Lebenszyklus verantwortlich (Baines et al. 2007; Herzfeldt et al. 2012).
Auch die Anforderungsverfolgung sollte daher den gesamten Lebenszyklus erfassen.
Dabei muss ein breites Spektrum von Lösungsartefakten berücksichtigt werden. So
muss etwa abgebildet werden, wie Hardwarekomponenten hergestellt und
instandgehalten, wie Dienstleistungen erbracht oder wie Softwaremodule aktualisiert
werden. Oft können Erfahrungen aus späten Lebenszyklusphasen Anforderungen an die
nächste Generation eines PSS aufzeigen. Dazu muss aber der
Anforderungslebenszyklus nachvollziehbar sein (Knethen et al. 2002).

(10) Reduzierung des Aufwands: Da allgemein die Erfassung sämtlicher
Anforderungsverfolgungsinformationen mit einem hohen Aufwand verbunden ist und
dabei nicht jede Anforderung gleich wichtig ist, wäre eine vollständige, aber
unsystematische Anforderungsverfolgung in vielen Fällen unwirtschaftlich (Jarke 1998;
Ebert 2012). Dies gilt insbesondere für PSS, die oftmals durch eine hohe Anzahl und
einer hohen Verflechtung von Anforderungen gekennzeichnet sind (Wolfenstetter et al.
2013). Daher sollte es möglich sein, kritische Anforderungen zu identifizieren und
genauer zu verfolgen als unkritische.

6. Bewertung der Anforderungsverfolgungsmethoden

Die Bewertung der 15 Methoden zeigt, dass keine der untersuchten Methoden alle Kriterien
erfüllt. Dennoch werden bereits, wie Table 7 verdeutlicht, alle der für PSS relevanten
Kriterien von den Methoden, zumindest teilweise, abgedeckt.

PART B: PUBLICATIONS 74

Table 7: Zusammenfassung der Methodenbewertung

PART B: PUBLICATIONS 75

Das erste Kriterium, (1) Verfolgung der Anforderungsherkunft, wird nur von wenigen
Techniken abgedeckt. Allerdings können die Ansätze der positiv bewerteten Methoden auf
PSS übertragen werden, da Beziehungen zwischen der Anforderungsquelle und der
Spezifikation als weitestgehend domänenneutral angesehen werden können.

Die (2) Verfolgung der Beziehung zwischen Anforderungen berücksichtigen zehn der 15
Methoden, zumindest aus ihrer domänenspezifischen Perspektive heraus. Für die
Strukturierung von Anforderungen an PSS wurde durch ein Artefaktmodell (Berkovich et al.
2011a) bereits ein erster, domänenübergreifender Ansatz vorgeschlagen. Dieser unterstützt
durch die Aufteilung von Anforderungen in mehreren Abstraktionsebenen die
interdisziplinäre Erhebung und die Konkretisierung der Anforderungen. Durch eine
Erweiterung dieses Modells um verschiedene Arten von Trace Links kann es für die
Verfolgung der Beziehung zwischen Anforderungen eingesetzt werden.

Die (3) Verfolgung der Anforderungsumsetzung steht bei den meisten der Methoden im
Mittelpunkt. Jedoch werden auch hier nur domänenspezifische Artefakte betrachtet. Bei der
Entwicklung von PSS müssen allerdings Beziehungen zwischen heterogenen Artefakten in
allen beteiligten Domänen abgebildet werden können. Beispielsweise muss analysierbar sein,
wie sich eine Änderung im Konstruktionsentwurf für ein physisches Produkt auf die
Steuerungssoftware auswirkt. Insgesamt bilden die Verfahren eine geeignete Basis, die für
PSS allerdings erweitert werden müsste.

Das (4) Versionsmanagement nimmt in etwa bei der Hälfte der Methoden, jedoch
ausschließlich im Softwarebereich, einen hohen Stellenwert ein. Für die
Anforderungsverfolgung im Kontext von PSS ist das Managen von Änderungen und somit
der Umgang mit verschiedenen Versionen der Artefakte in Anbetracht der zyklischen
Wechselwirkungen von enormer Wichtigkeit. Für die Anforderungsverfolgung bei der PSS-
Entwicklung gilt es deshalb zu prüfen, wie die Versionsverwaltung in einer
domänenübergreifenden Umgebung aussehen sollte.

Der Bereich (5) Varianten- und Konfigurationsmanagement stand bisher innerhalb der
Forschung zur Anforderungsverfolgung weniger im Fokus. Wie aus der Analyse hervorgeht,
unterstützen zwar einige Methoden das Kriterium, aber bezogen auf PSS, nur im weiteren
Sinne. Dabei ist die Modularisierung die Voraussetzung, um als PSS-Anbieter profitabel
arbeiten zu können (Sawhney 2006). Es ist davon auszugehen, dass das Anbieten
unterschiedlicher Varianten, basierend auf einer modularen Architektur, die Komplexität bei
der Anforderungsverfolgung erheblich steigert (Mohan and Ramesh 2006).

Dass die Entwicklung und die Erbringung von PSS oft innerhalb eines (6)
Wertschöpfungsnetzwerks erfolgt und dies daher ebenfalls von der Anforderungsmethode
unterstützt werden sollte, geht aus den untersuchten Publikationen nur unzureichend hervor.
Denkbar wäre, Event-based-Traceability unternehmensübergreifend einzusetzen. Bei dem eng
damit verwandten Kriterium der (7) simultanen Entwicklung zeigt sich wiederum, dass nur
diese Methode einen zufriedenstellenden Ansatzpunkt liefert. Diese Forschungslücke der
simultanen Entwicklung ist bereits bekannt und gilt als einer der größten Schwachstellen der
existierenden Methoden (Winkler and Pilgrim 2010).

PART B: PUBLICATIONS 76

Bezüglich der (8) Robustheit gegenüber Unsicherheiten wird ersichtlich, dass lediglich drei
Methoden in gewisser Weise mit Informationslücken umgehen können. Ein PSS-spezifischer
Ansatz sollte im Idealfall in der Lage sein, Informationslücken auszugleichen und
Unsicherheiten bei der Analyse von Änderungsauswirkungen zu berücksichtigen. Davon
scheint die Anforderungsverfolgung aber weit entfernt zu sein. Bevor allerdings dieses
Spezialkriterium angegangen wird, sollten zunächst Lösungen für grundlegendere Probleme
erarbeitet werden.

Die untersuchten Methoden beschränken sich meist auf spezielle Phasen der Entwicklung
oder sind nur in den Lebenszyklus einer domänenspezifischen Komponente abzubilden. Da
jedoch bei PSS unterschiedliche Lebenszyklen von Komponenten in einer integrierten,
domänenübergreifenden Lösung aufeinandertreffen, deckt keine der betrachteten Methoden
den (9) kompletten PSS-Lebenszyklus vollständig ab. Die Methoden müssen für einen Einsatz
im PSS-Kontext in dieser Richtung erweitert werden, da die Verantwortung für den gesamten
Lebenszyklus zu den elementarsten Anforderungen der PSS-Entwicklung zählt (Baines et al.
2007). Grund für diese Lücke ist, dass der Verantwortungsbereich innerhalb des
Produktlebenszyklus bei einem klassischen Produkthersteller zumeist deutlich früher als bei
einem PSS-Anbieter endet (Reichwald et al. 2009).

Das letzte betrachtete Kriterium, (10) Reduzierung des Aufwands, erfüllen nur zwei der
untersuchten Ansätze vollständig. Sie versuchen einen Kompromiss dahingehend zu finden,
ausschließlich die kritischen Anforderungen einzubeziehen und wichtige Anforderungen
detaillierter zu verfolgen, um die anfallenden Kosten zu senken. Die geringe Anzahl an
unterstützenden Methoden ist erstaunlich, da nach (Torkar et al. 2012; Egyed et al. 2005)
zahlreiche Praktiker den mit der Anforderungsverfolgung verbundenen Aufwand beklagen.

7. Diskussion

Insgesamt gesehen ist keine der Methoden uneingeschränkt für die PSS-Entwicklung
geeignet. Gleichzeitig kann aber auch kein Verfahren als besonders nachteilig, bezogen auf
PSS, ausgewiesen werden. Schließlich unterstützen sie alle auf ihre Art einen Teilaspekt der
Anforderungsverfolgung. Insbesondere weisen einige der Methoden bei den Kriterien (1)
Verfolgung der Anforderungsherkunft, (2) Verfolgung der Beziehung zwischen
Anforderungen, (3) Verfolgung der Anforderungsumsetzung und (4) Versionsmanagement
bereits vielversprechende Ansätze auf. Allerdings muss an dieser Stelle betont werden, dass
die betrachteten Methoden nicht direkt miteinander vergleichbar sind, da jede einen etwas
anderen Fokus aufweist. Es zeigt sich aber, dass jedes Kriterium durch mindestens eine
Methode, zumindest teilweise, erfüllt wird. Somit ergibt sich ein großes Potential für eine
gezielte Kombination und Erweiterung der Methoden in Bezug auf die Herausforderungen der
PSS-Entwicklung.

Für die Forschung ergeben sich neben der aufwendigen Neuerstellung eines PSS-spezifischen
Ansatzes zwei Möglichkeiten: Entweder wird versucht, bestehende Verfahren tiefgreifend zu
erweitern oder sie in geeigneter Weise zu kombinieren. Dies wirft die Frage auf, wie
bestimmte Verfahren kombiniert werden können, damit sie die Anforderungen von ihrer

PART B: PUBLICATIONS 77

Quelle bis zu ihrer Umsetzung verfolgen und gleichzeitig Informationen aus späteren
Lebenszyklusphasen einbinden, um diese bei der Weiterentwicklung des PSS nutzen zu
können. In diesem Zusammenhang ist es sinnvoll, die Anforderungsverfolgung als Prozess
mit den Aufgaben (1) Identifikation und Dokumentation der relevanten Informationen und
Trace Links, (2) die fortlaufende Aktualisierung dieser und (3) die Nutzung der Informationen
und Erkenntnisse daraus, beispielsweise im Änderungsmanagement, zu betrachten. Bezogen
auf diese Phasen sollten die untersuchten Methoden in geeigneter Weise kombiniert und
erweitert werden. So wäre es denkbar, mit Information Retrieval mögliche Trace Links zu
identifizieren und Event-based-Traceability einzusetzen, um diese zu pflegen und Entwickler
über sie betreffende Änderungen zu informieren. Inwieweit diese Strategie allerdings
umsetzbar ist, sollte in einer weiteren Forschungsarbeit genauer untersucht werden, da eine
unstrukturierte, nicht-integrierte, gleichzeitige Verwendung mehrerer Verfahren zu
Überlappungen und redundanter Arbeit führen kann.

8. Zusammenfassung und Ausblick

In diesem Beitrag wurde der Frage nachgegangen, inwieweit sich die existierenden
domänenspezifischen Anforderungsverfolgungsmethoden für den Einsatz bei PSS eignen.
Dieser Analyse lagen zehn Kriterien zugrunde, anhand derer die
Anforderungsverfolgungsmethoden im Kontext von PSS bewertet wurden. Bei dieser
Bewertung wurde deutlich, dass keine Anforderungsverfolgungsmethode alle der betrachteten
Kriterien erfüllt. Dennoch zeigen einige bei den Kriterien (1) Verfolgung der
Anforderungsherkunft, (2) Verfolgung der Beziehung zwischen Anforderungen, (3)
Verfolgung der Anforderungsumsetzung und (4) Versionsmanagement vielversprechende
Ansätze. Insgesamt erscheint es sinnvoll und auch möglich, die Methoden so zu kombinieren
und zu erweitern, dass alle geforderten Kriterien hinreichend erfüllt werden.

Um Entwickler von PSS in der Praxis bei der Anforderungsverfolgung zu unterstützen, bedarf
es dreier Bausteine: Erstens ist ein Datenmodell erforderlich, das spezifiziert, welche
Artefakte bei der Anforderungsverfolgung berücksichtigt werden müssen und welche Arten
von Abhängigkeiten, Trace Links, zwischen diesen bestehen. Ein solches Datenmodell könnte
beispielsweise als Ontologie realisiert werden, welche die semantischen Beziehungen
zwischen verschiedenen Artefakten definiert. Dies sollte jedoch so gestaltet sein, dass es,
beispielsweise hinsichtlich des Detaillierungsgrads, für unternehmens- beziehungsweise
projektspezifische Zwecke angepasst werden kann. Daneben wird ein Prozessmodell benötigt,
das darlegt, welche Aktivitäten in welchen Phasen des Entwicklungsprozesses in
Unternehmen stattfinden müssen, um die Trace Links und weitere Informationen, die im
Kontext der Anforderungsverfolgung wichtig sind, zu dokumentieren, zu pflegen und zu
nutzen. Abgerundet werden sollte dies durch eine Art Methodenbaukasten, der in
Abhängigkeit verschiedener Faktoren, wie dem Projektkontext oder der Art des PSS, aufzeigt,
welche Methoden bei der Anforderungsverfolgung angewandt werden sollten.

PART B: PUBLICATIONS 78

Danksagung

Diese Veröffentlichung entstand im Rahmen des Sonderforschungsbereichs 768
„Zyklenmanagement von Innovationsprozessen – Verzahnte Entwicklung von
Leistungsbündeln auf Basis technischer Produkte“. Das Forschungsvorhaben wird gefördert
durch die Deutsche Forschungsgemeinschaft (DFG).

PART B: PUBLICATIONS 79

Publication 3

Publication 3: Towards Cycle-Oriented Traceability in Engineering Change Management

Towards Cycle-Oriented Traceability in Engineering Change
Management

Nepomuk Chucholowskib, Thomas Wolfenstettera, Martina Wickelb, Helmut Krcmara, Udo
Lindemannb

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, markus.boehm,

krcmar}@in.tum.de

b Institute for Product Development,
Technische Universität München

Munich, Germany
{nepomuk.chucholowski, martina.wickel,

udo.lindemann}@pe.mw.tum.de

Abstract

Engineering changes and requirement changes strongly interfere with each other. Traceability
helps to formalize this interface on a process and organizational level. We propose a data
model that includes information elements for different change stages and all related
requirement artifacts, solution artifacts or production artifacts. It facilitates the access to
necessary information about relations or dependencies between these artifacts. Hence, change
effects can easily be estimated and relevant people/information for the decision about a
change and its implementation can be identified.

Keywords: engineering change management, requirements management, traceability

PART B: PUBLICATIONS 80

1. Introduction

Dynamic markets, regulatory environments and other external and internal cyclic influence
factors force companies to make changes and adaptions to their products (product as a general
term also standing for product service systems, PSS) (Langer et al. 2011). For instance,
revised laws, emerging technologies, changing market needs, rising competition, errors or
uncertainties during development lead to target deviations. That means the actual state of a
product does not meet the desired nominal state anymore. Hence, companies need to adapt
their products, processes and production continuously among the product lifecycle (Huang
and Mak 1999). Those processes of adaption are addressed by the concept of engineering
change management (ECM) (Huang et al. 2001) and are interpreted as internal cycles within
product development (Langer and Lindemann 2009).

These engineering changes (ECs) not only affect the product and its design but also other
related artifacts such as production processes (Huang and Mak 1999). While changed
requirements are commonly seen as possible triggers for engineering changes, the effect of an
engineering change on other requirements is considered only by little literature. However,
changing one part of a product can have unforeseen effects on the fulfilment of requirements
which are not directly related to that part. Changed requirements are handled by requirements
management. In this work we examine how an integration of engineering change management
and requirements management could look like and how companies can benefit from
traceability in their development cycles.

The following section describes our research methodology before section 3 gives an overview
on requirements management and engineering change management, ending with the
description of issues on the interface between the two topics. In section 4 we then present
implications for the interface before the approach towards traceability in engineering change
management is described in section 5. Section 6 concludes the paper and gives an outlook for
future research.

2. Research Methodology

In order to analyze the current state of the art in research on how engineering changes and
requirement changes are considered integrally we conducted a systematic literature review
about engineering change management and requirements management. We started our
analysis by initially investigating already known publications (Pohl 2010; Jarratt et al. 2011;
Lindemann and Reichwald 2013; Wiegers 2009), that give a good overview about the
respective topics. In order to find publications which directly associate engineering change
management and requirements management, we additionally searched in online literature
databases. As recommended by (Webster and Watson 2002) we further conducted a backward
and forward search within the publications initially selected. In total we selected 95
publications that form the sample for our analysis. For this set of publications, we performed
a qualitative content analysis in order to draw a summarizing picture of the state of the art in
engineering change management and requirements management.

PART B: PUBLICATIONS 81

Additionally to the analysis of literature, we got insights into current practice through
discussions with practitioners who are part of our industrial focus group on engineering
change management.

In literature and in the focus group discussions, we particularly investigated how engineering
change management and requirements management interface with each other. Altogether we
want to answer the following research questions:

1. Which knowledge items are produced and required in engineering change
management and requirements management?

2. How do cycles in engineering change management and requirements management
interface with each other in terms of process management and organization?

3. How can traceability among different development artifacts contribute to managing
engineering changes?

3. Overview: Requirements Management and Engineering
Change Management

3.1. Requirements Management and Requirements Engineering

In the early phases of product development, the problem needs to be stated in a form that can
be understood by engineers and used to find a solution. The part of product development that
is concerned with defining the problem domain is commonly known as requirements
engineering (RE). When talking about RE it is important to clear out what is meant by the
term requirement. Requirements describe qualitative and/or quantitative properties or
conditions for a product (Ehrlenspiel 2009). A more detailed definition of the term
requirement can be found in the IEEE standards: “Requirements are statements of what the
system must do, how it must behave, the properties it must exhibit, the qualities it must
possess, and the constraints that the system and its development must satisfy” (Radatz et al.
1990). These requirements not only stem from customers but also from other stakeholders like
the engineers developing the product (Pohl 2010).

Leffingwell and Widrig (2003) do not distinguish between the terms RE and requirements
management (RM) and describe it as the eliciting, organizing, and documenting of the
requirements of the system in a systematic way. It further aims to establish and maintain
agreement between customers and the project team on the changing requirements of the
system. As illustrated in Figure 11, requirements engineering can also be divided into
requirements development and requirements management (Berkovich et al. 2009). Since we
focus on requirement changes after they already have been developed, we further use this
definition of RM which is described in the following.

PART B: PUBLICATIONS 82

Figure 11: Considered activities of RE
Source: Based on (Berkovich et al. 2009)

The management of requirement changes (RCs) and the traceability of requirements are the
two main tasks of requirements management. For instance, when a customer desires a new or
changed functionality or product property a requirement is addressed and a potential change is
identified. After identifying the encountered situation, a change request leads to several
activities in the change management process: Create change request, determine attainability,
plan, implement and evaluate changes. Each activity consists of several sub-activities to
ensure customers’, stakeholders’ and producers’ requirements. This step is supported by
requirements traceability, which deals with the life cycle of a requirement (traceability will be
explained in more detail in section 5.1.). Changes in requirements are continuous and
inevitable, because - while the product is being developed - customer needs evolve,
competitors introduce products and processes that help to give them a competitive advantage,
and political, organizational and technical environments change.

In general, changes are noticeable in two ways. Either existing requirements change or new
requirements emerge after the requirements specification has been considered complete.
Requirements usually change with a monthly rate up to 5%, normalized to the total project
effort. Over the entire project progress requirements vary between 30% and 60% of the initial
requirements analysis (Ebert 2012). New or changed requirements during the project period
must follow the same process and procedures as original requirements. Any change in
requirements must be analyzed, evaluated and decided. For a controlled change of
requirements in running projects a fixed change process must be defined (Versteegen 2003:).
Any change must be agreed through a specified instance. If changes are accepted or received
in an uncontrolled manner, this might lead to even more requirements or a constantly re-
tuning of previously recorded requirements by stakeholders. As a result, there will be
additional costs and delays in the project process. The setting of deadlines for the adoption of
requirements and a transparent communication of the effects of changes are possible
solutions.

PART B: PUBLICATIONS 83

3.2. Engineering Change Management

The definitions of the term engineering change (EC) slightly differ in literature. While in the
past ECs often only referred to modifications made to product components that were already
in production [e.g. (Wright 1997)], nowadays any alteration to released parts, documents or
software during the design process is considered as an EC (Jarratt et al. 2011). The handling
of these changes is called engineering change management (ECM) (Jarratt and Clarkson
2005). Other authors additionally see the documentation of all impacted product data
(Rouibah and Caskey 2003), the documentation of the history of all changes of products and
its associated documents (Huang and Mak 1999), or also the avoidance and anticipation of
ECs (Lindemann and Reichwald 2013) as part of ECM. This shows that there are different
perspectives on ECM in literature. Jarratt, et al. (Jarratt et al. 2011) categorize the EC
literature by a process perspective, tool perspective and product perspective. This
categorization neglects the view on the different strategies regarding all perspectives and the
fact that in some literature the documentation is reckoned as the main objective of ECM.
Hence, we differentiate between a process, documentation and strategic perspective in the
following. For a more detailed categorization we refer to (Hamraz et al. 2013) who performed
a comprehensive literature review and categorized 427 ECM publications.

From a process perspective, ECM is the processing of engineering changes, i.e. starting with
an EC request and finishing with its successful implementation (or its disapproval before)
[e.g. (Jarratt and Clarkson 2005)] and providing respective methods and tools within the
process steps. Jarratt and Clarkson (2005) suggest a generic change process in six basic steps
shown in Figure 2.

Figure 12: Generic engineering change process
Source: Based on (Jarratt and Clarkson 2005)

ECM also deals with the constant documentation of changes, regarding change activities (EC
processes) as well as old and new states of product documents (e.g. Huang and Mak 1999;
Rouibah and Caskey 2003). This can also be seen as the view of industrial standards (e.g. ISO
26262 or the German DIN 199-4 and DIN 6789-3) which aim to ensure that companies
comply with other industrial standards such as ISO 9001 or with the requirements of their
OEM customer (e.g. VDA 4965). Yet, as indicated above, ECM additionally pursues
strategies besides the effective and efficient processing and documentation of ECs. It further
aims to avoid and anticipate ECs and to learn from ECs from the past.

PART B: PUBLICATIONS 84

3.3. Issues regarding the interface between requirements
management and engineering change management

In order to refer to an artifact that can be regarded as the object of an EC (e.g. parts,
components or product documentation) we use the term ‘solution artifact’ (SA) which is part
of the solution domain. The term ‘requirement artifact’ (RA) represents a goal or a
requirement. The problem domain is the counterpart to the solution domain and characterizes
the problem that is addressed by the developed product by requirement artifacts.

A planned change of a solution artifact (i.e. an EC) should not be considered without looking
at the requirements, because several requirements can be affected indirectly and lead to the
need to change another solution artifact. The same is valid the other way around. When a
requirement artifact is changed (i.e. a RC) it can affect other requirement artifacts directly or
indirectly via several solution artifacts. As illustrated in Figure 3, there are known
interrelations within requirement artifacts and solution artifacts and also dependencies in-
between. For instance, RA 1 and RA 2 are related to each other, SA 1 and SA 2 fulfill RA 1.
When there is an EC of SA 1, it could affect RA 1, which is related to RA 2. Then, if RA 2
has to be adapted, also SA 4 could be affected. Hence, there is an unknown dependency
between SA 1 and SA 4 (an illustrative example for these correlations is given in Koh et al.
2012).

Figure 13: Dependencies between requirement artifacts (RAs) and solution artifacts (SAs)

Within the often referenced ECM and RM literature there is no interface directly addressed.
Only the link of ECM to configuration management gives a small hint to consider both,
solution artifacts and requirement artifacts, since configuration management aims to overlook
all functional and physical characteristics and their changes and to verify the compliance with
product specifications (i.e. requirements) (Jarratt et al. 2011).

Only few publications are found that directly associate RM and ECM (Koh et al. 2012; Koh et
al. 2008; Morkos et al. 2012). They initially come from ECM and research on change
propagation. Indirect dependencies through requirement and solution artifacts are investigated
with the help of matrices, where known dependencies are modeled and indirect dependencies

PART B: PUBLICATIONS 85

are derived. However, using matrices bears some weaknesses, as they quickly become
confusing if they grow in size or if weightings for the dependencies, different kinds of
dependencies, conditional dependencies and several propagated indirect dependencies have to
be considered. Moreover, the authors look at the dependencies in order to estimate change
propagation, without describing implications for ECM and RM from the process and
organizational perspective.

Further articles regarded as relevant mainly deal about product lifecycle management and
product data management (e.g. Andersson et al. 2003). They refer to RM as well as to ECM,
but they rather just mention the terms without investigating the implications for the interface.

When looking into practice, the treatment of RCs and ECs can be very different. For instance,
in one company that is represented in our focus group RCs are not considered integrated with
ECs, besides seeing them as a trigger for ECs. In another company, requirements also have a
code number and are thereby treated the same as product components or its documentation in
their product data management (PDM) system. In a third company, requirements are stored in
a special IT system. However, the consideration of all necessary solution artifacts and
requirement artifacts that could be affected by one change request does not follow a structured
formal process. On an organizational level, teams are built who have to assess and decide on
the request.

4. Implications for the interface between requirements
management and engineering change management

This paper does not investigate change propagation in order to assess change effects, but
looks at it from a procedural and organizational perspective. This is important, since every
propagated change theoretically leads to another change request (regardless if it concerns a
RC or EC), which somebody has to decide upon. The conceivable procedural interactions
between ECs and RCs are depicted in Figure 4. When there is a target deviation, the change
procedure is triggered. ECs are either triggered by a deficient actual state (i.e. product does
not meet requirements) or by a deficient or changed nominal state (for example
misunderstood or changed customer requirements) (Fricke et al. 2000; Herberg et al. 2010). In
both cases an initial change is necessary and requested either in the solution domain (EC) or
in the problem domain (RC). However, the change can make other changes necessary both in
the solution domain and in the problem domain (i.e. further ECs or RCs are requested as
depicted with gray arrows in Figure 4). This leads us to the conclusion, that the management
of ECs and RCs should not be seen separated.

PART B: PUBLICATIONS 86

Figure 14: Change cycles within and between RM and ECM

The information that is needed for a holistic estimation of the effects of one change is often
distributed over a large variety of documents or it is only tacit knowledge that single
engineers have. With the concept of traceability this information on each artifact that is
generated during the development process can be stored systematically. If companies are able
to use this hidden and distributed information they can improve the efficiency of their change
processes. Furthermore, they can avoid errors or additional work by reducing unforeseen
changes and hence avoid or shorten their development cycles.

5. Cycle-oriented traceability for the management of changes

Even though neither ECM literature nor RE/RM literature addresses the synchronization of
ECs and RCs directly, it is encountered indirectly. There are approaches (Koh et al. 2012;
Morkos et al. 2012) to assess change propagation not only on a component level, but also via
requirement relationships. Furthermore, in ECM it is suggested to build an engineering
change board including people from all relevant domains who could be affected by the
change. Members in our focus group from industry state that people who control the
requirements are also part of that committee in their companies. However, since the
synchronization is not prescribed in a formal process, there is potential for errors.

Errors may originate e.g. because some domains affected by the change can be forgotten or
people (and thereby their knowledge) exit the company. Traceability bears the potential to
formalize the necessary investigation of interrelations between ECs and RCs.

5.1. Theoretical background to traceability

With the ongoing digitalization more and more know-how is stored in documents as
presentations, reports or construction plans. The implementation of a systematic organization
and reuse of those documents awards companies with a competitive advantage (Liebowitz
1999). Traceability aims to reuse such knowledge. Hence, experiences of individual and

PART B: PUBLICATIONS 87

organizational knowledge become available and can be provided for future activities in order
to improve processes and engineering designs (Hicks et al. 2002). Moreover, knowledge-
based product development aims to reuse best practices, reduced cycle times and
improvements in product quality and variety (Rezayat 2000). Traceability jointly connects
single knowledge items or fragments in order to generate, dispose, retrieve, transform and
apply them.

Especially the ability to follow the life of software artifacts has been used as a quality
attribute for software (Winkler and Pilgrim 2010). Defining, describing, capturing and
following traces from and to artifacts of a software development are driven by requirements.
Therefore, the requirements engineering community has been the largest driver of traceability
research. Traceability is defined in the IEEE Standard Glossary of Software Engineering
Terminology (Radatz et al. 1990) as:

1. “The degree to which a relationship can be established between two or more products of
the development process, especially products having a predecessor–successor or master–
subordinate relationship to one another. [...]

2. The degree to which each element in a software development product establishes its reason
for existing.”

To document the various dependencies, known or unknown, direct or indirect traceability
links show the influence between the artifacts (Winkler and Pilgrim 2010). Two kinds of
linkages must be differentiated: A unidirectional depends-on or a bidirectional alternative-for
link. Both can indicate an order in time or causality. Spanoudakis and Zisman (2005) define
eight different classes of traceability links listed in Table 8. They are partly used in our data
model for traceability in change management in the following section.

Table 8: Classes of traceability links
Source: (Spanoudakis and Zisman 2005)

Traceability links Explanation
Dependency Indicates that the existence of an artifact depends on another
Generalization/Refinement Shows the complexity of an artifact
Evolution Reflects the change of an artifact
Satisfaction Indicates, that an artifact was satisfied by another
Overlap An intersection of two artifacts
Conflicting Shows conflicts and inconsistencies between artifacts
Rationalization Specifies the justification of the evolution of artifacts
Contribution Shows the relationship between requirements and stakeholders

Traceability information helps to assess the effect of a requirements change and links to
related requirements. It is the ability to verify an item by documented recorded identification.
Model-driven development (MDD), an area where parts of the software development process
are executed automatically, is able to leverage traceability by automatously generating these
documented recorded identifications (Winkler and Pilgrim 2010). It can be identified at any
time, where, when and by whom solution artifacts are developed, manufactured, processed,

PART B: PUBLICATIONS 88

stored, transported, used or disposed. This linking of requirements to system models increases
the comprehensibility of the system. The impact of changing stakeholder requirements during
the project is easier to assess. An explicit linking and traceability between requirement
artifacts and solution artifacts facilitate crosschecking of system models with the associated
requirements.

Outside the software and requirements engineering community the concept of traceability has
attracted less attention among researchers. However, recently there has been significant
progress in this area, for example on the field of tracing engineering information (Pavković et
al. 2013). While software development by its very nature produces artifacts (e.g. code or
documentation) that are interpretable by machines so that traceable elements can be mostly
created automatically and managed by common requirements engineering tools, the situation
with the development of mechanical products is quite different. Štorga (2004) argues that
there are difficulties in achieving traceability in product development projects due to the
incompatibility of information among heterogeneous design tools as well as human factors
and the design process itself. An important issue regarding the implementation of traceability
in engineering design is that only things that leave traces are traceable. This challenge is met
by explicitly documenting different change states of an EC or RC on the one hand and all
kinds of artifacts that are affected by the change on the other hand.

5.2. A data model for traceability in engineering change
management

Štorga et al. (2011) present a reference model for traceability records that considers product
and process related traceability elements regarding the four perspectives requirements,
change, characteristics and decision traceability. Hence, they provide a useful holistic
framework to achieve traceability of information objects within engineering design. However,
the reference model does not address the different stages a change can evolve to. The
evolving stages of ECs or RCs can be summarized as follows: A change proposal is triggered
by an issue (i.e. target deviation), which then evolves to a change request if it is decided to go
after it. Finally, when there is a promising option to solve the change issue, the change request
becomes a change order which is the starting shot to implement the change. For every
evolving stage, every domain directly or indirectly affected by the change has to be
integrated, regardless if the initially triggered change was an EC or RC. This view can even
be extended to other domains in the product lifecycle, such as production. Thus, the reference
model by Štorga, et al. (2011) can be complemented by expanding the understanding of a
‘change’ from a single product component modification to a network of several related
changes to requirement artifacts, solution artifacts or production artifacts. These correlations
are modeled in a data model shown in Figure 15.

PART B: PUBLICATIONS 89

Figure 15: Data model for traceability in engineering change management

The data model for traceability in ECM does not describe the change process itself but gives a
static structure of how information regarding different artifacts within the ECM process is
interconnected. An upcoming issue (i.e. target deviation) leads to a change proposal which
then is connected to the entity change. The change proposal then evolves into a change
request in the static model. The change request process determines attainability and plans the
change. A successful change request then evolves into a change order where all information
of issue, change proposal and change request are collected and associated with change request
responsibilities, also for sub-activities for each part. The change order is also directly linked
to the entity change through a refers-to connection. A change is further linked to three artifact
types: requirement artifact, solution artifact and production artifact. The latter refers to all
artifacts within production that are related to a product such as production processes or tools.
They also have to be considered, since ECs can not only have direct impact on production
processes or tools, but also changes in production artifacts often require other changes. The
solution artifact is often related to itself and can offer various solution options. Requirement
artifacts and solution artifacts are linked through a relationship named ’satisfies’, denoting
which of the final solution artifacts are based on which requirements. A requirement artifact
can additionally be related to another one. The solution artifact is tested through a test artifact,
which verifies if the requirement artifact is satisfied by the solution artifact.

We believe that the tight connection between ECs and RCs should be reflected by deeply
integrated tools or even a single tool for both RM and ECM. This way, analyzing the impact
of ECs on requirements and vice versa can be facilitated. For solution, test and production
artifacts on the other hand it seems promising to manage them in separate specialized tools
and represent those artifacts as traceability records as proposed by Štorga et al. (2011). The

PART B: PUBLICATIONS 90

presented data model builds a basis to show the interrelations between different artifacts in the
context of changes. With its help, traceability in ECM can be established, where not only ECs
on a component level but all kind of product changes (including changes in service artifacts of
a PSS), changes in requirements, changes in production processes or tools and changes in
testing are considered. The following section gives an illustrative example of the data model.

5.3. Academic example

For an illustrative explanation of the data model we refer to an academic example of a pick
and place unit of an industrial plant (for more details see AIS, Institute for Automation and
Information Systems 2014). The unit grabs different work pieces (WP) that are stored in a
stack and puts it into a stamping module where a specific note is stamped on the WP.
Afterwards the WPs are transported to a sorting belt and are distributed to different slides
depending on their material (white plastic, black plastic or metal). During the development of
the system a customer changed one requirement so that not every WP had to be stamped
anymore but only those made of metal. The changed customer requirement as an upcoming
issue leads to a change proposal where the artifact that has to be changed is identified. This is
the requirement “R1: All WPs have to be stamped” in our example. The change proposal then
evolves into a change request that suggests changing the requirement to “R1*: Metal WPs
have to be stamped, other materials can be stamped optionally”. The required change leads to
other potential changes of the already developed system. For instance, the three options “EC1:
install additional inductive sensor that differentiates material”, “EC2: modify software and
use other existing sensors” or “EC0: no modification” are considered. The first two
alternatives require further RCs, ECs or changes in production. Information about the affected
artifacts and their respective relationships is stored in the entity change and thus can be
retraced for the different options. After the decision on which option to implement, the change
request evolves into a change order. The concept of cycle-oriented traceability helps to react
to further cyclic influence factors that lead to changes by providing information about the
history of past changes not only to solution artifacts, but also to requirement artifacts and
production artifacts.

6. Conclusion and outlook

Engineering changes and requirement changes strongly interfere with each other. With the
help of traceability in engineering change management this interface can be formalized on a
process and organizational level. Thereby, unforeseen changes promoted by the initial change,
errors and forgotten dependencies can be avoided. Further, the processing time of a change
can be shortened.

By describing the organizational structure of potential interrelations of changes within the
requirement and solution domain we aim towards a cycle-oriented management of changes.
At the same time, the investigation of the underlying procedures for changes shows that the
processes are very similar for all kinds of changes. Based on these findings, we presented a
data model as research in progress where different evolving stages of a change and different
artifacts related to the change are included. The data model should be seen as complementary

PART B: PUBLICATIONS 91

to the reference model for traceability records elaborated by Štorga, et al. (2011). The
elements of the data model indicate knowledge items that are required or produced in a
change process. The concept of traceability facilitates the access to necessary information
about relations and dependencies between solution artifacts, requirement artifacts and
production artifacts. Hence, the effects of a change to one artifact can easily be estimated and
relevant people for the decision about a change and the implementation of a change can be
identified. This leads to less errors and unforeseen effects of a change.

The approach towards a cycle-oriented, integrated management of any kinds of changes with
the help of traceability bears potential and has to be further developed. Moreover, also
changes in other company departments such as sales, marketing, quality management, etc.
that are influenced by various internal and external factors could be managed by a cycle-
oriented traceability. Therefore, we plan to extend the data model with artifacts regarding
these departments and with their respective dependencies. The data model will then be tested
as initial evaluation in a student research project. Another potential given by the use of
traceability in ECM regards the learning from previous changes. Sharafi et al. (2010a) argue
that especially in large organizations and in the context of complex products, engineering
change management can be supported by hidden, but valuable knowledge. This knowledge
can be discovered in the history of former change processes. The knowledge from former
cycles can be utilized through successful data management to speed up iterative change and
engineering processes (Sharafi et al. 2010a). An important factor for the reuse of knowledge
is traceability. Through the compound of elements, the knowledge becomes contextualized.
This in turn enables its transfer and successful reuse (Ramesh 2002).

Acknowledgement

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) for
funding this project as part of the collaborative research center ‘Sonderforschungsbereich 768
– Managing cycles in innovation processes – Integrated development of product-service-
systems based on technical products’. Additionally, we thank the practitioners in our
industrial focus group on engineering change management for the prosperous collaboration.

PART B: PUBLICATIONS 92

Publication 4

Publication 4: Traceability von Anforderungen und Tests in agilen Softwareentwicklungsprojekten

Traceability von Anforderungen und Tests in agilen
Softwareentwicklungsprojekten

Thomas Wolfenstetter, Jonas Zitzelsberger, Markus Böhm, Helmut Krcmar

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, jonas.zitzelsberger, markus.boehm, krcmar}@in.tum.de

Abstract

Eine wesentliche Herausforderung bei Softwareentwicklungsprojekten besteht oft in der
Notwendigkeit, mittels eines strukturierten Testmanagements zu überprüfen, ob die
Anforderungen sämtlicher Stakeholder hinreichend erfüllt werden. Um dieses Ziel zu
erreichen, muss transparent sein, wie Anforderungen, Lösungskomponenten und Tests
miteinander in Beziehung stehen. Diese Eigenschaft wird allgemein als Traceability
bezeichnet. Um Traceability sicherzustellen, bedarf es einer umfassenden Spezifikation und
kontinuierlichen Aktualisierung der Abhängigkeiten zwischen den Artefakten. In der Praxis
werden jedoch zunehmend agile Entwicklungsmethoden eingesetzt, bei welchen die
dokumentierte Spezifikation zugunsten der flexiblen Kommunikation zwischen Entwicklern
und Anwendern in den Hintergrund rückt. Bisherige Ansätze zur Sicherstellung der
Traceability beziehen sich häufig auf traditionelle, phasenorientierte Projektvorgehensweisen
und lassen sich daher nur eingeschränkt auf den agilen Kontext übertragen. Wie Traceability
in agilen Projekten sichergestellt werden kann, wurde bisher nicht ausreichend betrachtet. In
dieser Arbeit wird daher untersucht, wie Traceability in agilen Softwareprojekten
gewährleistet werden kann. Dazu werden die besonderen Herausforderungen im agilen
Kontext anhand einer Fallstudie aus der Industrie analysiert. Anschließend wird ein
Datenmodell vorgestellt, welches die relevanten Artefakte abbildet und miteinander
verknüpft.

PART B: PUBLICATIONS 93

1. Motivation

Bei der Erstellung von individueller oder der Anpassung standardisierter
Unternehmenssoftware für spezifische Problemstellungen muss das zu entwickelnde System
meist nahtlos in eine bestehende Systemlandschaft eingefügt werden können. Zu diesem
Zweck müssen die Anforderungen vieler verschiedener Anwender und anderer
Interessensgruppen berücksichtigt werden. Da es sich hierbei oft um relativ abstrakte
Anforderungen handelt, können diese zu Beginn eines Entwicklungsprojekts oft nicht genau
spezifiziert werden (Grande 2013). Oftmals werden die spezifischen Anforderungen erst im
Laufe des Projekts ersichtlich und sind dabei ständigen Änderungen unterworfen (Highsmith
2002). Daneben werden solche Anforderungen im Verlauf eines Entwicklungsprojekts immer
vielfältiger, zunehmend komplexer und ändern sich in schnelleren Zyklen (Schaffry 2008).
Um flexibel auf solche Änderungen zu reagieren und auch spät identifizierte Anforderungen
noch umsetzen zu können, werden bei der Softwareentwicklung agile Vorgehensmodelle
immer beliebter (Ghazarian 2008).

Im Gegensatz zum phasenorientierten Vorgehen werden im agilen Kontext Individuen und
deren Interaktion statt Prozesse und Tools fokussiert. Funktionierende Software steht vor
verständlicher Dokumentation und die Fähigkeit, auf Änderungen reagieren zu können, steht
vor der Verfolgung eines straffen Zeitplans (Williams and Cockburn 2003). Abgesehen von
den kurzen Iterationszyklen und der daraus resultierenden Flexibilität, unterscheidet sich die
agile Softwareentwicklung in weiteren Punkten von der phasenorientierten Entwicklung. Statt
einer individuellen Zuweisung spezieller Projektrollen, agieren im agilen Kontext sich selbst
organisierende Entwicklungsteams, innerhalb derer Rollen zwischen den einzelnen Personen
getauscht werden können (Nerur et al. 2005). Eine weitere, zentrale Eigenschaft der agilen
Entwicklung ist die kontinuierliche, enge Zusammenarbeit der Entwickler untereinander und
mit externen Interessensgruppen. Diese Zusammenarbeit manifestiert sich in zahlreichen
Meetings entlang des gesamten Entwicklungsprozesses. Im Gegensatz zu phasenorientierten
Vorgehensmodellen, bei welchen die Anforderungsspezifikation bereits in einem frühen
Projektstadium fixiert und anschließend nur noch in Ausnahmefällen geändert wird, finden
bei agilen Methoden ständige Neuplanungen auf Basis der aktuellen Problemstellungen und
Erkenntnisse statt, um so flexibel auf Änderungen oder neu identifizierte Anforderungen
reagieren zu können (Highsmith 2002).

Um dies zu erreichen, wird weitgehend darauf verzichtet, umfangreiche
Spezifikationsdokumente, wie sie aus phasenorientierten Vorgehensmodellen bekannt sind,
anzulegen und zu pflegen. Stattdessen setzen agile Methoden auf bilaterale Kommunikation
zwischen den Projektbeteiligten und damit einhergehend, auf informellen Wissenstransfer
(Cockburn and Highsmith 2001). Genau hier zeigt sich jedoch eine mögliche Schwachstelle
der agilen Entwicklung. Weil der Fokus auf der Kommunikation zwischen den
Projektbeteiligten liegt, werden Ergebnisse oftmals nicht strukturiert oder nur sehr
oberflächlich dokumentiert. Diese oberflächliche Dokumentation führt jedoch im weiteren
Verlauf des Projekts häufig zu Mehrarbeit und kostet damit zusätzliche Ressourcen.

PART B: PUBLICATIONS 94

Gerade bei Software, die eine zentrale Rolle im Geschäftsbetrieb eines Unternehmens
einnimmt und daher vom ersten Tag an tadellos funktionieren muss, gilt es sicherzustellen,
dass alle essentiellen Anforderungen identifiziert und umgesetzt wurden, bevor das System in
den laufenden Betrieb integriert wird. Dies ist durch Testfälle für sämtliche Anforderungen zu
verifizieren. Hierzu muss jedoch transparent sein, wie Anforderungen, Code und Testfälle
miteinander in Beziehung stehen. Diese Fähigkeit, nämlich den Lebenszyklus einer
Anforderung und deren Beziehungen zu anderen Artefakten der Softwareentwicklung zu
erfassen, und damit nachvollziehen zu können, wird als Traceability bezeichnet. Traceability
sollte sowohl vorwärts als auch rückwärts entlang des Entwicklungsprozesses gegeben sein -
das heißt sowohl von der Quelle einer Anforderung über die Detaillierung und Spezifikation
zu der letztendlichen Umsetzung der Anforderung und den korrespondierenden Testfällen als
auch in der entgegengesetzten Richtung (Gotel and Finkelstein 1994).

Traceability schafft Transparenz über die Umsetzbarkeit von Anforderungen sowie über die
Zusammenhänge zwischen den Anforderungen untereinander und weiteren
Entwicklungsartefakten, wie beispielsweise Tests. Hierdurch verbessert sich meist auch die
Qualität der Lösung und deren Anpassbarkeit an Änderungen (Lee et al. 2003). Durch das
explizite Erfassen der Beziehungen und Abhängigkeiten zwischen den Artefakten kann
jederzeit nachvollzogen werden, welche Anforderungen bereits umgesetzt wurden oder zu
welchem Grad diese umsetzbar sind (Ramesh and Jarke 2001). Bei Anforderungsänderungen
können, auf Basis der durch Traceability verfügbaren Informationen, die betroffenen
Entwicklungsartefakte, wie beispielsweise bestimmte Softwarefeatures oder Testfälle,
identifiziert und entsprechend angepasst werden (Sommerville and Kotonya 1998). Weiterhin
können diese Informationen genutzt werden, um Lücken oder unklar formulierte
Anforderungen aufzudecken oder sie können für das Projektcontrolling herangezogen werden
(Ramesh and Edwards 1993). Da sich insgesamt die Transparenz verbessert, können auch
weitere Personen leichter in das Projekt integriert werden (Ghazarian 2008). Diese
Transparenz sollte auch bei agilen Softwareentwicklungsprojekten gewährleistet sein. Wie die
im folgenden Abschnitt dargestellte Analyse der existierenden Publikationen auf diesem
Gebiet zeigt, beziehen sich bisherige Ansätze zur Gewährleistung von Traceability jedoch
überwiegend auf phasenorientierte Projektvorgehensweisen. Lediglich vereinzelte Arbeiten
befassen sich im Ansatz mit Traceability im agilen Kontext.

2. Methodik

Zur Entwicklung eines möglichst praxistauglichen Ansatzes für Traceability im agilen
Kontext ist es von zentraler Bedeutung, die in der Realität auftretenden Herausforderungen
genau zu kennen. So gestalten sich beispielsweise reale Entwicklungsprojekte meist anders
als ursprünglich in der Theorie vorgeschlagen. In der Praxis erfolgt meist eine Anpassung an
die Spezifika des Unternehmens sowie des Projekts. Die in dieser Arbeit angewandte
Methodik richtet sich daher nach dem Design Science Ansatz (Hevner 2007). Bei diesem
Ansatz werden relevante Konzepte in der wissenschaftlichen Theorie identifiziert und auf
Herausforderungen angewendet, welche in der Praxis bestehen. In mehreren, schrittweisen
Iterationen kann so ein möglichst praxisnaher Lösungsansatz für eine bestimmte
Problemstellung gefunden werden.

PART B: PUBLICATIONS 95

Zu diesem Zweck wurde ein konkretes Beispielprojekt eines deutschen Industriekonzerns
(Alpha), bei welchem ein Product-Lifecycle-Management System in die bestehende
Softwarelandschaft integriert wurde, untersucht. Um existierende Methoden und Werkzeuge
zur Gewährleistung der Traceability auf den agilen Kontext übertragen zu können, müssen
Beziehungen zwischen den generischen Entwicklungsartefakten sowie weitere
Herausforderungen der agilen Vorgehensweise untersucht werden. Zu diesem Zweck wurde
die relevante Literatur nach dem Vorgehen von Webster und Watson (2002) identifiziert. In
mehreren Iterationen wurden durch eine stichwortbasierte Literaturrecherche relevante
Publikationen zum Thema Traceability in agilen Entwicklungsprojekten identifiziert und
ausgewertet, um deren Kernkonzepte auf das Fallbeispiel übertragen zu können.

Um die zentralen Herausforderungen zu erheben und die angewendete Scrum-
Vorgehensweise im Detail zu verstehen, wurden semi-strukturierte Experteninterviews mit
sieben Vertretern des Entwicklungsteams und externer Fachbereiche bei Alpha geführt.
Anschließend wurden die Interviewtransskripte nach den Richtlinien von Gläser und Laudel
(2010) inhaltlich qualitativ ausgewertet. Hierdurch konnten der Entwicklungsprozess, die
dabei entstehenden Artefakte sowie Lücken in der Traceability identifiziert und
nachvollzogen werden. Besonderer Fokus lag dabei auf der Frage, welche Artefakte zu
welchem Zeitpunkt der Entwicklung aus welchen Prozessschritten resultieren und für welche
Schritte diese Artefakte wiederum den Input darstellen.

Auf Basis der in der Praxis identifizierten Herausforderungen sowie der Erkenntnisse aus der
Literaturanalyse wurde ein konzeptuelles Datenmodell entwickelt, welches die Artefakte in
agilen Entwicklungsprojekten miteinander in Beziehung setzt und die erforderlichen
Relationstypen (Trace Links) beschreibt. Dieses wurde in Abstimmung mit den befragten
Experten von Alpha in mehreren, iterativen Schritten bewertet und optimiert.

3. Bestehende Ansätze zu agiler Traceability

Die Analyse der Literatur zum Thema Traceability zeigt, dass sich der Großteil der
untersuchten Publikationen auf phasenorientierte Entwicklungsmodelle bezieht. Hinsichtlich
der agilen Entwicklungsmethodik existieren hingegen bisher nur vereinzelte Ansätze aus einer
relativ generischen Perspektive.

Bouillon et al. (2013a) beschreiben einen leichtgewichtigen Ansatz zur Gewährleistung von
Traceability in agilen Entwicklungsprozessen. Der Fokus dieser Arbeit liegt in erster Linie
darauf zu zeigen, dass Traceability auch im agilen Kontext wichtig ist sobald das Projekt eine
kritische Komplexität aufweist. Hierbei werden wichtige Entwicklungsartefakte angeführt.
Insgesamt gehen die Autoren jedoch nicht darauf ein, wie die Beziehungen zwischen diesen
Artefakten im Detail aussehen und welche Informationen benötigt werden, um die
dargestellten Abhängigkeiten von Anforderungen und Testfällen nachvollziehen zu können.

Ghazarian (2008) vertritt den Standpunkt, dass gewisse Arten von Anforderungen immer
wieder zu ähnlichen Softwareentwurfsmustern führen. Vor diesem Hintergrund wird die
Möglichkeit diskutiert, Traceability von Anforderungen dadurch sicherzustellen, dass die
Struktur des Software Codes gewissen Regeln unterliegt. Dieser Ansatz eignet sich jedoch nur

PART B: PUBLICATIONS 96

für sehr detaillierte Anforderungen, die bereits in der Sprache des Entwicklers beschrieben
sind. Zudem wird Traceability zwischen Anforderungen und Testfällen durch diesen Ansatz
nicht abgedeckt.

Ein weiterer Ansatz zur Gewährleistung von Traceability in agilen Projekten beschäftigt sich
mit der Herausforderung, wie Anforderungen, die oft nur informell in Meetings diskutiert und
nicht formal spezifiziert werden, explizit bestimmten Softwarefeatures zugeordnet werden
können. Hierzu wird ein Werkzeug vorgestellt, mit dessen Hilfe Verknüpfungen zwischen
Abschnitten aus Meeting Transskripten und zu erstellenden Softwarefeatures angelegt und
verwaltet werden können (Lee et al. 2003). Dieser Ansatz ermöglicht jedoch lediglich die
Identifikation zu implementierender Features und ist somit der Anforderungserhebung
zuzuordnen. Im Gegensatz dazu liegt der Fokus dieser Arbeit auf der Abbildung des
gesamten, agilen Entwicklungsprozesses und somit auf der Nachvollziehbarkeit ausgehend
von Anforderungen über die Implementierung bis hin zu den Testfällen. Nur durch diese
übergreifende Perspektive kann das volle Potenzial der Traceability realisiert werden
(Wolfenstetter et al. 2013).

Espinoza und Garbajosa (2011) beschreiben ein ausführliches, konzeptuelles Datenmodell zur
Sicherstellung der Traceability in Abhängigkeit vom jeweiligen Projektkontext. Dabei wird
jedoch nicht aufgezeigt, inwiefern die, durch die Traceability gewonnenen Erkenntnisse,
verwendet werden können, um die Auswirkungen von Anforderungsänderungen zu
antizipieren. Ebenso versuchen die Autoren einen eher generischen, von der agilen
Entwicklungsmethodik unabhängigen, Ansatz zu definieren, der zudem stark von
phasenorientierten Entwicklungsansätzen beeinflusst wird. Hierbei werden Anforderungen,
Code und Tests unabhängig voneinander betrachtet.

Die hier diskutierten Publikationen sollen den Fokus und die Perspektiven auf Traceability in
agilen Projekten ausreichend widerspiegeln, um die offenen Herausforderungen aufzuzeigen.
Ein Anspruch auf Vollständigkeit soll jedoch hier nicht erhoben werden. Ziel der
vorliegenden Arbeit ist es, basierend auf der Analyse eines Fallbeispiels aus der Praxis, ein
konzeptuelles Datenmodell für Traceability in agilen Projekten abzuleiten. Ein zentraler
Punkt hierbei ist, zu analysieren, welche Artefakte und Informationen zu welchen Zeitpunkten
während der Entwicklung entstehen (Hayes et al. 2009) und wie diese genutzt werden
können, um Änderungen zu antizipieren und Projektressourcen zu schonen. Dies betrifft
beispielsweise die Detaillierung der groben Anwendungsfälle, aus denen detailliertere
Anforderungen (User Stories) entstehen. Weiterhin wird in dieser Arbeit Traceability sehr
nahe am agilen Entwicklungsprozess beschrieben, wodurch es beispielsweise möglich wird,
für die Implementierung fehlende Anforderungen oder gewisse Inkonsistenzen zu
identifizieren.

PART B: PUBLICATIONS 97

4. Fallstudie: Agile Softwareentwicklung bei Alpha

Inhalt des untersuchten, agilen Entwicklungsprojekts ist die Anpassung einer kommerziellen
Product-Lifecycle-Management Systems eines Drittanbieters und dessen Integration in die
bestehende Softwarelandschaft von Alpha. Alpha ist ein multinationaler Industriekonzern mit
Sitz in Deutschland, der mechatronische Produkte entwickelt, produziert und vertreibt. Der
betroffene Anwenderkreis umfasst mehrere tausend Personen aus verschiedenen Abteilungen
und an unterschiedlichen Standorten.

4.1. Der agile Entwicklungsprozess

Im Unterschied zu den phasenorientierten Vorgehensmodellen, bei denen die eigentliche
Implementierung erst nach einer detaillierten Spezifikationsphase beginnt, setzt der agile
Entwicklungsprozess bei Alpha auf kontinuierliches Prototyping. Hierbei wird in kurzen
Iterationszyklen (Sprints) die zu entwickelnde Lösung schrittweise erweitert. Den Anwendern
wird dabei regelmäßig ein aktueller, lauffähiger Prototyp zur Verfügung gestellt. So können
diese prüfen, ob ihre Anforderungen richtig verstanden und umgesetzt wurden. Anschließend
können gegebenenfalls Anforderungen weiter detailliert oder angepasst werden. Figure 16
illustriert den rekonstruierten Prozessablauf bei Alpha und zeigt, welche Artefakte durch die
zyklisch ablaufenden Prozessaktivitäten entstehen und bei welchen Aktivitäten diese
verwendet werden.

Figure 16: Schematischer Ablauf des agilen Entwicklungsprozesses bei Alpha

Zunächst werden übergreifende Anwendungsfälle (Epics) initial erhoben und im Product
Backlog aufgelistet. Diese werden zu Beginn in sehr grober Form erhoben und nicht im Detail
spezifiziert. Epics werden textuell, nach folgendem Muster definiert:

Als <Benutzerrolle> will ich <das Ziel>[, sodass <Grund für das Ziel>].

Beispiel: Als Ingenieur will ich einen Testfall mit entsprechenden Werten hinterlegen, sodass
ich spezielle Konfigurationen testen kann.

PART B: PUBLICATIONS 98

Die spezifizierten Epics werden in einem Product Backlog aufgelistet. Für die Reihenfolge
der Einträge in dem Product Backlog ist der Product Owner verantwortlich. Der Product
Owner vertritt die fachliche Sicht auf die Software und ist sowohl für das Entwicklungsteam,
als auch für das Management des Product Backlogs verantwortlich. Er entscheidet ebenso,
welche User Stories in das Sprint Backlog übernommen werden. Bevor dies geschieht,
müssen die Epics detailliert werden. Hieraus ergeben sich User Stories, welche ebenfalls
textuell, durch das oben beschriebene Muster, allerdings deutlich detaillierter spezifiziert, und
durch Akzeptanzkriterien konkretisiert werden. Anhand dieser, kann am Ende eines Sprints
beurteilt werden, ob eine User Story erfolgreich umgesetzt wurde. Die Akzeptanzkriterien,
welche zudem die Testfälle einer User Story darstellen, werden nach der Methodik
„Specification By Example“ (Adzic 2011) definiert.

In sogenannten Sprint Planning Meetings werden die, durch den Product Owner priorisierten
und detaillierten, User Stories durch das Entwicklungsteam in feingranulare Tasks zerlegt,
welche im Sprint Backlog aufgelistet werden. Diese Tasks stellen die wesentlichen
Arbeitspakete dar, welche anschließend durch das Entwicklungsteam in einem Sprint
umgesetzt werden. Ein Sprint dauert maximal 30 Kalendertage und stellt den Kern der agilen
Scrum-Methode bei Alpha dar.

Der Entwickler implementiert einen spezifischen Task und führt anschließend einen Unittest
durch. Tritt ein Defect auf, muss der Entwickler den Fehler suchen und den Softwarecode
anpassen. Dies wird so lange wiederholt, bis im Unittest kein Defect mehr auftritt. Bei der
Implementierung entsteht so auf Basis des Tasks ein erstes Softwarefeature.

Nachdem der Unittest fehlerfrei verlaufen ist, führt der Entwickler den Integrationstest durch.
Hierbei wird versucht, den soeben implementierten Task mit den bereits vorher umgesetzten
Tasks zu integrieren. Hierbei wird das Zusammenspiel der isoliert voneinander fehlerfreien
Tasks getestet. Tritt ein Defect auf, muss der zugehörige Code angepasst und auf dessen Basis
ein erneuter Unittest durchgeführt werden. Erst danach kann der Task wieder integriert
werden.

Nachdem auch im Integrationstest kein Defect mehr auftritt, kann der Entwickler die
implementierten Features in die Testumgebung ausrollen. Dieser Implementierungszyklus
wird so lange wiederholt, bis keine Tasks mehr vorhanden sind. Die implementierten
Softwarefeatures werden anschließend schrittweise in der Testumgebung zu einem Release
integriert. Das kontinuierliche Zusammenfügen der einzelnen Features zu einem Release bzw.
das automatische Testen des ganzen Systems bis zum aktuellen Entwicklungsstand, entspricht
dem Prozess der „Continuous Integration“ (Fowler and Foemmel 2006). Dieser wird durch
das Einbinden des Codefragments in das Repository automatisch ausgelöst.

Nach Abschluss des Implementierungszyklus sowie der Entwicklertests werden in der
Testumgebung, durch ausgewiesene Tester, manuelle Tests durchgeführt. Hierzu werden
Akzeptanzkriterien zu Testszenarien gebündelt, auf deren Basis Subsystemtests durchgeführt
werden. Eine weitere Testebene stellen die Subsystem Integrationstests dar. Hierfür werden
mehrere Testszenarien zu einem Testset gebündelt. Ebenso werden auf Basis der Testsets
Akzeptanztests für die letztendliche Abnahme in den laufenden Betrieb durchgeführt.

PART B: PUBLICATIONS 99

Nachdem diese Tests erfolgreich abgeschlossen sind, kann das Release in die
Produktivumgebung ausgerollt werden.

Sind nach dem Ausrollen noch User Stories in dem Product Backlog vorhanden, können diese
in einem weiteren Sprint X implementiert werden. Damit jedoch immer ausreichend
detaillierte User Stories vorhanden sind, muss die Detaillierung der initial erhobenen Epics
immer einen weiteren Sprint (X+1) vor deren Umsetzung stattfinden.

4.2. Herausforderungen für Traceability im agilen
Entwicklungsprozess

Viele der in der Literatur existierenden Traceability Ansätze basieren auf detaillierten
Anforderungsspezifikationsdokumenten. Diese Dokumente sind charakteristisch für
phasenorientierte Vorgehensmodelle. Aus diesem Grund eignen sich existierende Traceability
Ansätze vor allem für solche Entwicklungsmethoden. Figure 17 illustriert, welche Trace
Links (1-7) zwischen den Artefakten im Fallbeispiel des agilen Entwicklungsprozesses bei
Alpha nicht dokumentiert werden. Wie sich aus den durchgeführten Experteninterviews zeigt,
ergeben sich dadurch die nachfolgend diskutierten Herausforderungen.

Figure 17: Herausforderungen für Traceability im agilen Entwicklungsprozess

Durch die informelle Anforderungsspezifikation im agilen Kontext, welche die direkte
Kommunikation zwischen Fachbereich (Anwender bzw. Anforderungssteller) und Entwickler
statt einer detaillierten Anforderungsspezifikation vorsieht, lassen sich bisherige Ansätze nur
eingeschränkt auf agile Modelle anwenden. Dies betrifft vor allem den Prozessschritt der
Detaillierung, bei dem die initial erhobenen Epics in einem Workshop zwischen Fachbereich
und Anforderungsmanager verfeinert werden. Die Anforderungsmanager haben anschließend
eine detaillierte Vorstellung über die Bedürfnisse des Fachbereichs und können auf dieser
Basis die Akzeptanzkriterien für jede User Story festlegen. Dies geschieht oftmals in einem
Workshop mit dem Entwicklungsteam. Durch diese Workshops und die direkte
Kommunikation zwischen den beteiligten Rollen, wird eine detaillierte Dokumentation auf
den unterschiedlichen Abstraktionsebenen oft als überflüssig erachtet (2).

Bei phasenorientierten Entwicklungsmethoden ist das Resultat der Spezifikationsphase ein
vollständiges Anforderungsprofil. Im Gegensatz zu diesem Vorgehensmodell, existiert im
agilen Kontext ein solches Anforderungsprofil nicht. Erst nachdem das Projekt abgeschlossen
ist und alle Anforderungen in das Softwareprodukt umgesetzt worden sind, existiert eine
vollständige, detaillierte Spezifikation der Anforderungen. Der Grund hierfür ist, dass bei der
agilen Entwicklung immer nur die Anforderungen detailliert werden, welche anschließend in
einem Sprint implementiert werden. Somit ist Traceability, wenn auch nur eingeschränkt,

PART B: PUBLICATIONS 100

innerhalb der Sprints und zu den bereits umgesetzten Anforderungen sichergestellt, nicht
jedoch übergreifend über alle bzw. zu den noch ausstehenden Anforderungen des
Softwareprojekts. Trace Links zu Anforderungen, welche zwar bereits erhoben, aber noch
nicht detailliert wurden, existieren nicht. Bei industriellen Großprojekten mit einer langen
Laufzeit besteht die Gefahr, dass Inkonsistenzen zwischen den Anforderungen der einzelnen
Sprints auftreten. Dieses Problem betrifft auch phasenorientierte Entwicklungsmethoden, bei
denen in der Spezifikationsphase Anforderungen seitenweise detailliert werden, wodurch die
Übersichtlichkeit meist leidet. Dennoch ist bei solchen Entwicklungsmethoden, aufgrund der
detaillierteren Dokumentation, Traceability gewährleistet. So ist es im Nachhinein möglich,
Redundanzen, hinsichtlich einzelner User Stories oder Tasks bzw. Inkonsistenzen, zu
erkennen (1, 2, 3).

Abgesehen von Redundanzen erschwert eine übermäßige Detaillierung, den Überblick über
alle feingranularen Tasks zu behalten. In der Praxis ist es den Projektmitgliedern aufgrund des
Zeitdrucks oft nicht möglich, für jeden einzelnen Task, Trace Links manuell zu
dokumentieren und diese fortlaufend zu aktualisieren (2, 3).

Aufgrund fehlender Trace Links zwischen einzelnen Artefakten, die in unterschiedlichen
Tools dokumentiert und verwaltet werden, ergeben sich meist weitere Probleme. Im
untersuchten Fall werden beispielsweise die initial erhobenen Epics und die zugehörigen
detaillierten User Stories in Form von Use Case Diagrammen sowie die von einer User Story
abgeleiteten Tasks in unterschiedlichen Tools verwaltet. Aufgrund dieses Bruches kann nach
Änderungen nur durch manuelle Prüfung nachvollzogen werden, welche Tasks zu einer
bestimmten Epic gehören. Wegen fehlender Schnittstellen zwischen diesen Tools, kommt es
bei Änderungen somit häufig zu Inkonsistenzen (1, 3). In der Folge bedarf es für die
Sicherstellung übergreifender Traceability eines erheblichen, manuellen Aufwands.

Akzeptanzkriterien werden für User Stories definiert und stellen zugleich die Testfälle für
diese dar. Diese Testfälle besitzen jedoch keine Beziehungen zu den abgeleiteten Tasks,
welche die konkreten Arbeitspakete für die Implementierung darstellen. Zur Validierung
spezifischer Akzeptanzkriterien können die dafür benötigten Tasks nicht identifiziert werden
(4). Wie bereits angesprochen, werden die Tasks in einem separaten Tool für die agile
Entwicklung dokumentiert. Nach der Implementierung eines Tasks, muss jedoch, beim
Einbinden in das Coderepository, die zugehörige User Story angegeben werden. Somit kann
nicht eindeutig nachvollzogen werden, welches Feature aus welchem Task resultiert (5). Nach
der Implementierung muss manuell geprüft werden, ob bestimmte Epics vollständig
umgesetzt sind. Dennoch kann nur schwer nachvollzogen werden, welche spezifischen
Features, bzw. welche Codefragmente zu einer Epic gehören (6). Die Testszenarien für eine
User Story werden in einem Testmanagementtool spezifiziert. Innerhalb dieses Tools können
jedoch die einzelnen User Stories nicht zu übergreifenden Epics zusammengefasst werden.
Somit kann nicht nachvollzogen werden, welche Testszenarien, welche Epics adressieren,
bzw. welche Testszenarien zur Validierung einer spezifischen Epic benötigt werden (7).

5. Ein konzeptuelles Datenmodell für Traceability in agilen
Projekten

PART B: PUBLICATIONS 101

Um den in Abschnitt 4.2 diskutierten Herausforderungen zu begegnen, ist es notwendig, die
bei der agilen Entwicklung entstehenden Artefakte, sowie die notwendigen Trace Links
zwischen diesen, strukturiert abzubilden. Hierzu wurden die in der Literatur identifizierten
Konzepte auf den, in der Fallstudie analysierten, agilen Entwicklungsprozess übertragen und
in fünf Iterationsschritten durch einen intensiven Austausch mit Alpha evaluiert und erweitert.
Das in Figure 18 dargestellte Klassendiagramm stellt das resultierende, konzeptionelle
Datenmodell für Traceability in agilen Projekten dar.

Figure 18: Konzeptuelles Datenmodell für Traceability in agilen Projekten

Eine User Story wird von einer Person, welche in dieser Beziehung die Rolle eines
Anforderungsstellers einnimmt, erhoben. Eine Person kann dabei auch mehrere Rollen,
annehmen. Durch die Beziehung erhebt kann nachvollzogen werden, welche Person, welche
User Stories erhoben hat.

Bei der Klasse User Story handelt es sich um fachliche Rollen, wie beispielsweise einen
Werkstattmeister. Diese dürfen nicht mit den Rollen der Klasse Person verwechselt werden.
Eine User Story wird durch das textuelle Muster beschrieben und stellt somit eine Metaebene
dar. Die Beziehung teilVon stellt die Granularität von User Stories dar. Initial erhobene User
Stories werden durch grobe Epics repräsentiert, welche bei der Detaillierung in mehrere,
kleinere User Stories zerfallen. Anhand dieser Beziehung kann nachvollzogen werden, welche
detaillierten User Stories welchem Epic zugeordnet werden können.

PART B: PUBLICATIONS 102

Die exakte Definition einer User Story findet in einem UML Modell statt. Beispielsweise
können in einem Use Case Diagramm mehrere User Stories definiert werden und eine User
Story kann durch mehrere Diagrammtypen definiert sein. Durch die Beziehung erstellt, kann
diejenige Person identifiziert werden, welche das UML Modell erstellt hat. Anhand der
Beziehung definiert kann nachvollzogen werden, welche User Story, in welchem UML
Modell definiert ist. Alle User Stories werden im Product Backlog dokumentiert. Das Attribut
Position bezieht sich auf die Reihenfolge, in welcher die User Stories im Product Backlog
stehen.

Bei der Detaillierung werden für eine User Story mehrere Akzeptanzkriterien festgelegt.
Aufgrund der Methodik Specification By Example stellen die Akzeptanzkriterien zugleich die
Testfälle einer User Story dar. Durch den Trace Link besitzt können die, zu einer spezifischen
User Story zugehörigen, Akzeptanzkriterien identifiziert werden.

Das Entwicklungsteam zerlegt eine User Story in mehrere, noch detailliertere Tasks. Ein
Task, welcher eine gewisse Anzahl an Story Points aufweist, wird von einer Person mit der
Rolle Entwickler implementiert. Durch den Trace Link wird zerlegt können die, zu einer
spezifischen User Story zugehörigen, Tasks identifiziert werden.

Die Tasks stehen in einem Sprint Backlog, das in einem Sprint abgearbeitet bzw. umgesetzt
wird. Pro Sprint kann eine bestimmte Anzahl an Story Points umgesetzt werden. Über das
zwischengeordnete Artefakt Sprint Backlog kann implizit nachvollzogen werden, welche
Tasks, und somit welche User Stories, in welchem Sprint umgesetzt werden.

Nach der Implementierung eines Tasks können als Output mehrere Softwarefeatures
resultieren. Durch die Versionierung können Änderungen innerhalb eines Features, anhand
der verschiedenen Versionen nachvollzogen werden. Anhand des Trace Links output, welcher
die Implementierung darstellt, kann nachvollzogen werden, welches Softwarefeature welche
Tasks adressiert. Ein Softwarefeature resultiert in mindestens einem Release. Durch die
Beziehung resultiert ist die Nachvollziehbarkeit der Softwarefeatures in das resultierende
Release gewährleistet.

Ein Softwarefeature kann von mehreren Testszenarien getestet werden, welche von einer
Person mit der Rolle Tester durchgeführt werden. Ein Testszenario hat als Input mehrere
Akzeptanzkriterien. Durch den Trace Link Input für kann nachvollzogen werden, welche
einzelnen Akzeptanzkriterien in welchem Testszenario gebündelt werden. Ein Testszenario
kann in keinem, aber auch in mehreren Testsets enthalten sein. Ein Testszenario wird sowohl
für das Testset des System Integrationstests, als auch für das Testset der Akzeptanztests
benötigt. Hingegen enthält ein Testset meistens mehrere Testszenarien. Durch die Beziehung
testet kann nachvollzogen werden, welches Testszenario welches spezifische Softwarefeature
testet.

Zu einem Testszenario können mehrere Defects auftreten. Anhand des Trace Links tritt auf
kann nachvollzogen werden, zu welchem spezifischen Testszenario ein Defect aufgetreten ist.

PART B: PUBLICATIONS 103

6. Diskussion

Etliche der in Abschnitt 4.2 angesprochenen Probleme resultieren aufgrund von Brüchen in
der zugrundeliegenden Toollandschaft. Diese Tools sind auf Unternehmensentscheidungen
für die einzelnen Bereiche, wie beispielsweise das Anforderungsmanagement oder das
Testmanagement, zurückzuführen. Hierbei wäre es für agile Projekte besser, wenn solche
Brüche zwischen den einzelnen Tools, welche während der Entwicklung eingesetzt werden,
vermieden werden. Innerhalb der einzelnen Tools ist Traceability sichergestellt - nicht jedoch
toolübergreifend. Somit lassen sich Anforderungen nicht über deren kompletten Lebenszyklus
hinweg konsistent nachverfolgen. Bei geeigneten Schnittstellen könnten auch
toolübergreifende Trace Links identifiziert werden. Diese globale Nachvollziehbarkeit ist, vor
allem bei Änderungen in großen, unübersichtlichen Projekten, von Vorteil, da aufgrund dieser
Links, alle weiteren Entwicklungskomponenten angepasst werden können (Lucia and Qusef
2010).

Durch die Sicherstellung von Traceability zu den atomaren Tasks können Redundanzen
bereits vor deren Umsetzung erkannt werden. Zudem wird, durch die Rückverfolgung der
Trace Links zu redundanten, aber bereits implementierten Tasks, die Wiederverwendung
bereits implementierter Features möglich. Ein bereits implementierter Task kann komplett
oder zum Großteil für den neuen Task wiederverwendet werden. Somit wird es durch
Traceability möglich, den Implementierungsaufwand zu verringern und dadurch schneller und
kosteneffizienter das Sprint- bzw. Projektziel zu erreichen. Abgesehen hiervon kann mit Hilfe
des in Kapitel 5 beschriebenen konzeptionellen Datenmodells und des resultierenden
Beziehungswissens der agile Entwicklungsprozess in weiteren Punkten optimiert werden.
Diese Optimierung findet auf Basis geeigneter Anwendungsszenarien für Traceability aus der
Praxis statt (Bouillon et al. 2013b).

Bei der initialen Erhebung weist die grobe User Story den Status einer Epic auf. Bei der
späteren Detaillierung werden die Epics in detailliertere User Stories zerlegt. Durch den Trace
Link zwischen den verschiedenen Versionen einer User Story kann nachvollzogen werden,
welche detaillierten User Stories aus welcher Epic resultieren.

Da ein Task nur von einem Entwickler umgesetzt wird, kann durch Traceability
nachvollzogen werden, welcher Task von welchem Entwickler implementiert wird. Parallel
zur Implementierung eines spezifischen Tasks in einem Sprint kann der Product Owner, mit
Hilfe der Trace Links, den Implementierungsstatus dieses Tasks prüfen. Dies ist aufgrund der
Beziehungen zwischen Entwickler, Task und Sprint Backlog möglich. Der Product Owner
kann nachverfolgen, welcher Entwickler, zu welchem Zeitpunkt des Sprints einen
spezifischen Task aus dem Sprint Backlog implementiert.

Nachdem einige User Stories bzw. die zugehörigen Tasks erfolgreich in ein Release
umgesetzt wurden, kann der Product Owner den Projektfortschritt anhand dieser
implementierten User Stories ableiten. Dies ermöglichen die Beziehungen zwischen den User
Stories und dem Product Backlog, in dem alle Anforderungen aufgelistet sind. Bei der
Implementierung werden die zugehörigen User Stories von dem Product Backlog in das

PART B: PUBLICATIONS 104

Sprint Backlog übernommen, wodurch es dem Product Owner ermöglicht wird, anhand der
restlichen User Stories im Product Backlog den Projektfortschritt abzuleiten.

Hat sich eine bereits implementierte User Story geändert, können aufgrund des Trace Links
zwischen User Story und Task, die zu der geänderten User Story zugehörigen Tasks
identifiziert und entsprechend modifiziert werden.

Für die Navigation mittels Trace Links zwischen Spezifikation, Design, Code und Test
müssen diverse Mappings der eindeutigen IDs stattfinden. Die exakte Spezifikation einer
textuellen User Story, findet in einem UML Modell statt. Hierzu muss zur Gewährleistung der
Nachvollziehbarkeit zwischen Spezifikation und Design Artefakten die ID des Modells mit
der textuell spezifizierten User Story verknüpft werden. Für die Nachvollziehbarkeit zwischen
Design und Code muss die ID der modellierten User Stories mit den zugehörigen Tasks
verknüpft werden. Diese werden von einem Entwickler in Softwarefeatures umgesetzt. Somit
ergibt sich über zugehörigen Tasks implizit Traceability zwischen Designartefakten und
Code. Nach der Implementierung eines Tasks werden die resultierenden Softwarefeatures in
das Repository übertragen, wobei jeweils eine neue Version entsteht. Zur Gewährleistung von
Traceability zwischen Code und Test muss nun die neu entstandene Versions ID mit der ID
der Entwicklertests verknüpft werden. Dadurch kann nachvollzogen werden, bei welcher
Version eines Softwarefeatures, der zugehörige Test erfolgreich bestanden wurde.

Nachdem eine User Story an den Anfang des Product Backlog platziert wurde, prüft der
Product Owner, ob diese mit einer bereits implementierten User Story in Konflikt steht. Diese
Prüfung wird durch die Traceability einer User Story über die Tasks hin zu den
Softwarefeatures möglich. Der Product Owner kann somit nachvollziehen, ob für die
spezifische User Story bereits Softwarefeatures existieren. Besteht ein Konflikt, kann anhand
der Trace Links der zugehörigen Stakeholder, welcher die User Story erhoben hat,
identifiziert und über den Konflikt benachrichtigt werden.

Besteht kein Konflikt, kann der Product Owner die spezifische User Story bewerten. Hierzu
bedient er sich Trace Links zu ähnlichen, bereits umgesetzten User Stories, wodurch er den
Umfang für die aktuelle User Story abschätzen kann. Ist sie zu umfangreich, wird sie in
detailliertere User Stories zerlegt. Nach diesem Prozess, bei dem jede zerlegte User Story
versioniert wird, können dadurch diese zu übergeordneten User Stories bzw. Epics
zurückverfolgt werden. Zusätzlich wird es durch die Zerlegung und der Trace Links zu bereits
umgesetzten Softwarefeatures möglich, redundante User Stories zu identifizieren und diese zu
entfernen.

Kann ein Defect eigenständig behoben werden, lokalisiert der Entwickler anhand der
Versions ID der zuvor eingecheckten Softwarefeatures, den zugehörigen Code und kann
diesen modifizieren. Kann der Defect aufgrund der Komplexität nicht eigenständig behoben
werden, muss zur Unterstützung der Stakeholder herangezogen werden, der die zugehörige
User Story erhoben hat. Diese Rückverfolgung ist mittels der Trace Links zwischen
Softwarefeature und Task, zwischen Task und User Story, sowie zwischen User Story und
Person gewährleistet.

PART B: PUBLICATIONS 105

Durch Traceability kann überprüft werden, ob alle Anforderungen der Stakeholder in dem
Softwareprodukt vorhanden sind, bzw. ob diese deren Vorstellungen entsprechen. Auch
können redundante Testfälle identifiziert werden, wodurch Ressourcen und Zeit im
Testmanagement eingespart werden können. Sind alle Testfälle abgedeckt und erfolgreich
bestanden, wirkt sich dies positiv auf die Qualität der Software und dies wiederum positiv auf
die Zufriedenheit der Stakeholder aus.

Für zukünftige Softwareentwicklungsprojekte können Informationen bezüglich der Trace
Links zwischen Anforderungen, Code und Testfällen vorausgegangener Projekte genutzt
werden, sodass mögliche Problemstellungen des neuen Projekts frühzeitig identifiziert werden
können.

7. Limitationen und Ausblick

Obwohl die, in dieser Arbeit vorgestellten Ergebnisse sich auf eine spezifische Fallstudie
beziehen, gehen wir davon aus, dass sich die Ergebnisse problemlos bzw. mit geringen
Modifikationen auf andere Unternehmen übertragen lassen. Zum einen befanden sich unter
den befragten Personen auch Entwickler externer Dienstleister, zum anderen zeigt ein
Vergleich des rekonstruierten Vorgehensmodells bei Alpha mit Vorgehensmodellen aus der
Literatur weitreichende Übereinstimmung. Somit können abgesehen von den
unternehmensspezifischen Teststufen, die dargestellten Artefakte und deren Zusammenhänge
auf Anwendungsfälle und agile Entwicklungsprozesse anderer Unternehmen übertragen
werden.

Für die Sicherstellung von Traceability müssen alle Beziehungen von den Anforderungen zu
den spezifischen Entwicklungskomponenten, wie beispielsweise Tests, initial erstellt und im
Laufe des Projekts fortlaufend aktualisiert werden. In komplexen Projekten ist dies
fehleranfällig und oftmals mit großem Aufwand für die Projektbeteiligten verbunden. Für
denjenigen, der diese Links dokumentiert, ergeben sich zunächst keine Vorteile. Sind jedoch
Trace Links zwischen den verschiedenen Artefakten umfassend dokumentiert, resultieren
zahlreiche Vorteile hinsichtlich des Projektmanagements oder einer Verbesserung der
Entwicklungsqualität (siehe Kapitel 1). Während der Entwicklung können, beispielsweise im
Fall von Anforderungsänderungen, alle betroffenen Komponenten identifiziert und
entsprechend modifiziert werden. Wenn diese Trace Links jedoch nicht korrekt erstellt bzw.
laufend aktualisiert werden, können auf dieser Basis fehlerhafte Artefakte erzeugt oder
falsche Managemententscheidungen getroffen werden. Aufgrund fehlerhafter Trace Links
kann es weiterhin zu falschen Designentscheidungen oder Prioritäten kommen, was wiederum
zu Unzufriedenheit der Stakeholder führen kann (Lee et al. 2003).

Auch die Ergebnisse der Experteninterviews spiegeln diese Problematik wider. Um
Projektverantwortliche und Entwickler in der Praxis von den Vorteilen zu überzeugen und
den Aufwand für die Dokumentation und Pflege der Traceability Links möglichst gering zu
halten, bedarf es daher Traceability Ansätze, die an den Bedürfnissen der Praxis ausgerichtet
sind sowie geeigneter IT-Unterstützung. Das in dieser Arbeit vorgestellte konzeptionelle

PART B: PUBLICATIONS 106

Datenmodell kann hierbei als Grundlage für ein Softwaretool zur Sicherstellung von
Traceability im agilen Entwicklungskontext dienen.

Danksagung

Diese Veröffentlichung entstand im Rahmen des Sonderforschungsbereichs 768
„Zyklenmanagement von Innovationsprozessen – Verzahnte Entwicklung von
Leistungsbündeln auf Basis technischer Produkte“. Das Forschungsvorhaben wird gefördert
durch die Deutsche Forschungsgemeinschaft (DFG).

PART B: PUBLICATIONS 107

Publication 5

Publication 5: Concept for an Integration-Framework to enable the crossdisciplinary Development of
Product-Service Systems

Concept for an Integration-Framework to enable the
crossdisciplinary Development of Product-Service Systems

Konstantin Kernschmidta, Thomas Wolfenstetterb, Christopher Münzbergc, Daniel Kammerlc,
Suparna Goswamib, Udo Lindemannc, Helmut Krcmarb, Birgit Vogel-Heusera

a Institute of Automation and Information
Systems

Technische Universität München
Munich, Germany

(kernschmidt, vogel-heuser)@ais.mw.tum.de

b Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, suparna.goswami,

krcmar}@in.tum.de
cInstitute of Product Development,
Technische Universität München,

Munich, Germany
{christopher.muenzberg, daniel.kammerl, lindemann}@pe.mw.tum.de

Abstract

Modern mechatronic Product-Service Systems (PSS), as a combination of mechanics,
electrics, electronics, software and services, require an interdisciplinary system understanding
and development process. During the development, each discipline uses specific modeling
languages and tools, which focus on certain aspects of the system. However, much of the
model information is commonly used in the different disciplines involved. Thus, it is
inefficient to model these commonly used elements separately from scratch in every
discipline and thereby keep the data of the system consistent. Therefore, in this paper a
concept for an integration-framework is presented, which defines a specification of the
relevant PSS elements and their attributes, in order to facilitate the crossdisciplinary use of
model-information during the development process of mechatronic PSS.

Keywords – integration-framework, mechatronics, product-service system, interdisciplinary
development

PART B: PUBLICATIONS 108

1. Introduction

The development and production of mechatronic PSS, consisting of mechanics,
electrics/electronics, software and services, is a complex task and requires detailed knowledge
in the different disciplines involved. During the detailed development each discipline
separately creates specific models of the system, focusing on the relevant parts of interest.
Thereby, different modeling languages and tools are used, which are optimized for their
specific development task. As the various models only represent different viewpoints of the
same system, many model elements are common across multiple models, developed for
different purposes. However, these components are often defined anew in each discipline and
created in every tool from scratch, therefore failing to utilize mutual information exchange. A
reason for this is the lack of efficient communication of discipline-specific system-knowledge
between different disciplines (Laurel and Mountford 1990), because the involved groups miss
a common terminology (Borchers 2000). As most disciplines use software tools during the
development phase, these tools in particular should enable and facilitate the crossdisciplinary
sharing and integration of knowledge (Curtis et al. 1988). Next to the required components, a
shared understanding of the included system functions is also indispensable in the
development process of a mechatronic PSS (Eisenbart et al. 2012).

The main contribution of this paper is therefore developing a concept for an interdisciplinary
integration-framework, which enables the different involved disciplines to map the elements
of their specific modeling approaches to a joint representation of a PSS. Therefore, the
relevant elements of a mechatronic PSS and their relations have to be specified. We expect
that this framework will improve interdisciplinary system understanding, enable the reuse of
information in the different modeling languages of the respective disciplines, and establish a
basis for automatic model transformations. In this context the disciplines mechanics, electrics/
electronics, software and service are considered. Through the usage of the framework the
interdisciplinary development process is facilitated and a more comprehensive view of the
PSS can be achieved.

2. State of the Art

In order to define the elements of an integration-framework for PSS, which includes the
aggregated information from the different disciplines, their common modeling approaches are
introduced in the following. Furthermore, an analysis of existing approaches for
interdisciplinary system modeling and information exchange is presented.

2.1. Modeling-Approaches

Mechanics: In literature, there are several modeling approaches, which are applied during the
development process of mechanical products. On the one hand they are used to analyze the
given problem statement. Therefore, TRIZ and its specific tools from the field of problem
analysis, i.e. function analysis and subsequent methods, are used (Orloff 2006). Equally, flow,
user- and relation-oriented models are created (Lindemann 2009). Furthermore, the Function-
Behavior-Structure (FBS) model of designing from Gero (1990) is used for task clarification.

PART B: PUBLICATIONS 109

The FBS gives a holistic view on a system. This approach displays the interdependencies
between functions and structures, mapped with the help of expected and actual behavior.

On the other hand, function modeling aims to support designer in developing solutions.
Thereby flow-, user-, or relation-oriented modelling as well as the function diagram are used.
The function diagram depicts the in- and output flows of the product or system (Ulrich and
Eppinger 2012). Based on this knowledge the overall functions of a product or system can be
displayed and in further development iterations lower hierarchic functions with respect to the
higher level in- and output flows can be determined. Equally, TRIZ function models are used
to develop solution ideas. Additionally, the depicted function modeling approaches are used
for the evaluation of different solution models with help of evaluation methods, i.e. scoring or
FMEA.

Accompanying the different modeling approaches in the different application fields hierarchic
modeling is used, e.g. function trees or function lists. This kind of modeling allows to
structure components, systems, functions or solutions and gives with this a structured
overview of the different levels of the system architecture. Depending on the modeling, a
bottom-up or top-down approach is applied.

Software/mechatronics: In a wide range of modern products and systems, software plays a
decisive role to fulfill the desired functionality. The software, especially in large-scale and
complex projects, is created usually in teams rather than by individuals and thus, requires,
instead of simple programming, a professional software development, which is the goal of
software engineering. Software engineering contains all activities related to the software
production, containing the specification, development, validation and evolution of software
(Sommerville 2011). In order to consider these aspects at different levels of detail, discuss
them with various stakeholders (other software developers as well as non-developers), and
facilitate the reuse of software parts for new projects or the evolution of existing systems,
model driven software engineering focuses on the creation of models of different parts of the
system (structure, behavior) prior to programming (Brambilla et al. 2012). In order to develop
and depict these models, the Unified Modeling Language (UML), specified by the Object
Management Group (OMG) (Object Management Group 2011b), is a wide spread modeling
language in model-driven software engineering. In order to facilitate and accelerate the
programming and reduce faults, efforts have been made to generate (parts of) the software
code automatically from the models (e.g. to C, or IEC61131-3 Vogel-Heuser et al. 2005).

The strong interactions between software, electrics/ electronics, and mechanics in
mechatronic products and production systems requires a more comprehensive view of the
system and its material, energy, and information flows. Therefore, the OMG specified the
Systems Modeling Language (SysML Object Management Group 2012), which is based on
UML and poses a multipurpose modelling language for a wide range of systems. Through
profiles or extensions of the meta-model, SysML can be adapted for its specific scope of
usage (e.g. SysML4Mechatronics for mechatronic systems Kernschmidt and Vogel-Heuser
2013). The requirement diagram and use case diagram specify the scope and the requirements
of the system and stakeholders. The block definition diagram enables a course grained

PART B: PUBLICATIONS 110

modeling of the system structure as ‘black box’, which is detailed with connections and flows
in the internal block diagram and the parametric diagram. The system behavior is modeled in
the activity or state machine diagram, as well as in the sequence diagram for chronological
interactions (Object Management Group 2011b). Through the integration of different
disciplines, SysML can be used for the identification and analysis of interdisciplinary
dependencies in mechatronic systems (Kernschmidt and Vogel-Heuser 2013). For the detailed
development of the electrics/electronics usually wiring diagrams or E-CAD are used.

Service: Within service engineering, a service is often structured into three dimensions –
structure, process and outcome. The structure dimension defines what is needed in order to
provide the service. The process dimension addresses the issue how the service is performed
and finally the outcome dimension specifies what the result of the service is. Following this
logic in the context of service modeling one can differentiate between resource models,
process models and (service-) product models. The resource model deals with the production
factors that are necessary for service delivery including human resources, material resources
and immaterial resources (Bullinger et al.). Modeling approaches that are often used in this
context are for example hierarchy diagrams, organigrams, entity-relationship models, class
diagrams or other kind of structural modeling approaches. In contrast to the resource model
the process model focuses on the dynamics of a service. It defines which activities have to be
carried out in which order and where there are logic branches (Bullinger and Scheer 2003). In
service engineering popular languages for process modeling are event-driven process chains
(EPC), activity diagrams, petri nets or the business process modeling notation (Krcmar 2009).
Product models have been used for physical products for quite a while. A product model is
part of the enterprise data model and comprehends all product information and characteristic
attributes and data about a product over the whole lifecycle (Bullinger and Scheer 2003). The
product model is especially important for modular services as it allows configuring the
service offerings according to individual customer demands. Additionally, the service
business model as a whole can be modeled using certain ontologies, e.g. the e3-service
ontology which describes how value is created through the interaction of different parties in
the service delivery process (Zolnowski et al. 2013).

2.2. Methods for interdisciplinary system modeling and
information exchange11

In the fields of machine and plant manufacturing, mechatronic systems and PSS various meta-
models and modeling methods exist, which address the integration of knowledge of the
different disciplines during the development process. Table 9 shows a summary of the
conducted literature research. While some approaches propose to use only one integrated
model for all disciplines during the development (Ferrarini et al. 2011, Eigner 2012; Anderl et
al. 2012; Thramboulidis 2010; Klingner and Becker 2012), other approaches (Drath et al.
2008; VDI/VDE 2005,Shah et al. 2009; Shah et al. 2010) show the necessity to enable a
mapping to discipline-specific models.

11 This section is based on preliminary work by Konstantin Kernschmidt

PART B: PUBLICATIONS 111

Table 9: Summary of existing approaches for interdisciplinary modeling and information exchange

(Drath et al. 2008)

(VDI/VDE 2005)

(Ferrarini et al. 2011)

(Shah et al. 2009),
(Shah et al. 2010)

(Anacker et al. 2011),
(Gausemeier et al. 2010)

(Eigner 2012),
(Anderl et al. 2012)

(Thramboulidis 2010)

(Klingner Becker 2012)

(Bochnig 2012)

Regarding the considered disciplines of a PSS, namely mechanics, electrics/electronics (E/E),
software (SW), and service, up to now an approach, which aggregates the information from
all disciplines equally, is missing. Thereby the structure of the system (including the
interfaces of the system elements), its behavior (course of activities), and the flows
(material/energy/information/control) between the elements should be included.

Furthermore, we analyzed if elements, which have to be considered during the development,
e.g. requirements or test cases, but are not part of the final system (hereinafter called
"development artifacts"), were integrated. The interdisciplinary semantic definition of the
required PSS elements is essential in order to map the elements from/to discipline-specific
modeling languages. By defining attributes for each model-element, they can be specified
more detailed and each discipline can add its relevant information.

As described in the section above, various modeling approaches exist in the different
disciplines involved in the development of mechatronic PSS. An approach that enables an
interdisciplinary development process, which satisfies the required integration of all
disciplines in the development of PSS and aggregates the information from their different
specific modeling languages, is missing. Thus, an integration-framework is needed, which can
be used by all stakeholders to define the elements of the PSS and which includes the
information from the involved disciplines and on the other hand enables a mapping to the
discipline-specific languages.

PART B: PUBLICATIONS 112

3. Integration-Framework

3.1 Approach

Interviews with experts from industry have shown that up to now there is a lack of a
standardized, computer-aided information flow between disciplines, incompatibilities
between the engineering systems and a resulting problem of data inconsistency (Li et al.
2012).

In order to develop a framework for PSS, the challenges imposed by the need for an
integrative innovation process that comprises multiple engineering disciplines have to be
taken into account. On the one hand, the characteristics of each specific modeling approach
should not be restricted, but on the other hand, the connection of the different involved
disciplines has to be integrated, as it poses a main benefit of the intended integration-
framework. Furthermore, next to the PSS elements the 'development artifacts', such as
requirement artifacts of different abstraction levels and representations (Berkovich et al.
2012) should be included in the framework. The framework enables the integration of
different discipline specific modeling approaches through the interdisciplinary definition of
the system elements before each discipline begins its discipline specific development.

The analytical comparison of modeling languages and approaches, which are used in each
engineering discipline, as described in section II.A, showed that the most common modeling
construct is the graphical representation of the considered system-view as a combination of
nodes, edges and attributes. Thus, in order to fulfill the given requirements and hence improve
the interdisciplinary development process of mechatronic PSS, a framework is needed which
specifies the required elements of the PSS and its development and which can be mapped to
different specific modeling languages. In this way the information of each element can be
aggregated form the different specific modeling languages and on the other hand the
disciplines are not restricted to use the best fitting modeling language for the specific
modeling task.

3.2 Specification of mechatronic PSS

The framework for a crossdisciplinary development specifies the required elements of a
mechatronic PSS and their connections. The goal of the specification however is not to define
a new modeling language for developing PSS, rather the framework shall be used to
aggregate the information of the different specific models, and thus, make them usable for
other disciplines, keep the system information consistent and facilitate the reuse of system
elements. Furthermore, communication barriers between the involved disciplines are reduced,
as the different elements are considered jointly at the beginning of the development process.
Each discipline then has to consider to which element in the integration-framework the
objects of its specific modeling language correspond to.

According to the Meta-Object Facility (MOF) (Object Management Group 2011a) the
specification is divided into the M3-, M2-, M1-Layer (Meta-Meta-Level, Meta-Level, Model-
Level) as shown in Figure 19.

PART B: PUBLICATIONS 113

Figure 19: Specification of the elements for the integration-framework

According to the graph-based representation, the framework is defined on the meta-meta-level
(M3-layer) as nodes, which are connected by edges. These graphs can be expressed as tuple
G=(V,E) wherein the elements of V represent the nodes (also called vertices) and the
elements of E the edges (Diestel 2005). Each edge ε ∈ E(G) is connected to exactly two nodes
υ ∈	V(G) or connects one node with itself. Each ε and υ has attributes where all required
information of the element is stored (for lack of space the attributes are not shown in Fig. 2.).
The most abstract object in the framework is "Element" containing general attributes, such as
"ID", "name" etc. Each sub-object inherits the attributes from its higher-level object (depicted
through the triangle-symbol in Fig. 2.), e.g. all ε and υ inherit "name", "ID" from "Element".

The instances of ε and υ define on the M2-layer the "domain model" of a mechatronic PSS
and are described in the following: The nodes υ ∈	V(G) can be divided into "Development
Artifact" and "Solution Artifact". Development artifacts describe what the final system shall
or has to fulfill and how this can be verified. The development artifacts are not part of the
actual PSS but are needed during its development. Development artifacts include
"Requirements", "Use case" and "Test case". The elements of the PSS itself are summarized
as solution artifacts. They contain the building blocks of the system, including hardware

PART B: PUBLICATIONS 114

(mechanics, electronics), software, services, and actors (stakeholders interacting with the
system e.g. customers), and the specific functions of the system (e.g. the course of fulfilled
activities).

In order to define how the nodes interact with each other they are connected with edges either
as "Relationship" or as "Flow" from one block to another. Thus, the edges depict on the one
hand flow connections between blocks, specifying which "Information/signal", "Material" or
"Energy" flows in the system, and on the other hand the edges show logical connections,
wherein the "Control"-flow is used for modeling successive steps of activities and the
"Relationship"-edge defines dependencies between nodes (e.g. which "Block" satisfies which
"Requirement").

These described elements on the M2-layer define the PSS on a high level of abstraction. Each
discipline, focusing on certain system aspects, can add different information to the respective
elements by defining them in their specific modeling language and mapping them to the
framework. Therefore, as defined on the M3-layer, each element contains attributes, which
specify the element more detailed. Next to general attributes, as described above, specific
attributes were identified for each element. During the development of a specific PSS,
attributes, which are of no relevance within the entire system (e.g. if the attribute "transport
restrictions" defined for "mechanics" is not required) do not have to be taken into account,
while other project specific attributes have to be added to the specification. In the same way
flows, relationships, development or solution artifacts can be deleted or further ones can be
added to the framework, if required. Thus, in the first step of a PSS-development the
specification has to be checked for the specific system and if necessary has to be adapted.

In the M1-layer the actual model is set up. Fig. 2 shows exemplified some modeling elements.
The modeling of these elements however is carried out in the different specific modeling-
languages, representing always semantically the same defined elements. The attributes of each
element are either stored as text or are depicted in the specific modeling language graphically,
e.g. in SysML the input and output ports, which are defined in the integration-framework as
attributes of the " blocks, are represented graphically in the diagrams, as SysML focuses on
modeling connections and flows between the objects of a system.

4. Application Example

In order to convey how the proposed integration-framework can be applied practically we
looked at a simplified example from the eBike sharing system “PSSycle” which was recently
developed as a demonstrator within the context of the research project SFB768 (see
acknowledgment). The idea behind this PSS is to sell mobility instead of the eBike itself and
to offer the user additional features like navigation. Attached to the handlebar of the eBike,
there is an onboard computer with a touchscreen, which serves as an interface to the user.
Having registered for the service, the eBike can be rented by simply entering one’s credentials
and the integrated lock will open automatically. This process is modeled by means of an
event-driven process chain (EPC) as it is often used in service engineering (see Fig. 3; for an
explanation of the EPC modeling elements see Krcmar 2009).

PART B: PUBLICATIONS 115

On the other side, the system-structure has been modeled in a SysML internal block diagram
(see Object Management Group 2011b for modeling elements). The structural model shows
how the components of the system are linked with each other and how they interact. For
example, the onboard computer and the back office server communicate via HTTP messages
while the microcontroller interacts with the electric lock by applying a voltage.

In order to integrate the information of both models in the scheme of the framework the
different elements of the EPC and the SysML model are mapped to the elements of the
framework (Fig. 2). As can be seen in Figure 20, certain elements of the PSS are modeled in
both specific modeling languages, e.g. the onboard computer. While the EPC defines more
specifically which events lead to the functions, executed on the onboard computer, the
structural SysML-model specifies the ports of the onboard computer and how it is connected
to other elements

PART B: PUBLICATIONS 116

Figure 20: Excerpt of the mapping concept for the eBike-sharing-system

In each case the type of the element to which it was mapped is denoted by double brackets.
E.g. a control flow from the EPC is mapped to an edge of the type «control flow». Thus, by
using the framework, the jointly used modeling elements only have to be modeled once and
can be used in other modeling languages.

PART B: PUBLICATIONS 117

5. Conclusions and Outlook

In this paper an integration-framework for the interdisciplinary development of PSS has been
presented. By analyzing the different views on a PSS in the common modeling approaches
and languages of the different involved disciplines, mechanics, electrics/electronics, software,
and service engineering, a specification of PSS was derived. The specification contains the
jointly required modeling artifacts (nodes) and defines how they are connected with each
other (edges). During the modeling task each discipline adds within their modeling language
relevant information to the PSS-elements. By mapping the specific elements on the elements
of the integration-framework, this information can be used also by the other involved
disciplines. However, currently this information has to be transferred manually from the
specific tools. Therefore, in future research the integration-framework will be implemented in
a neutral data-format, such as XML, and an automatic transformation from the specific
modeling-languages, using a suitable transformation method (Czarnecki and Helsen 2003),
will be established. The framework can then be evaluated through the application of a use
case, including different specific modeling languages. Furthermore, an extension of the
framework to include further aspects of the PSS development, such as e.g. production process
planning, will be considered. Through the usage of the framework an efficient
interdisciplinary PSS development is achieved. Enabling a more sophisticated system view
for all stakeholders, reducing faults, and minimizing required iteration steps, leads to
significant time savings during the development and thus, to a faster time to market of the
developed PSS.

Acknowledgment

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) for
funding this work as part of the collaborative research centre ‘Sonderforschungsbereich 768 –
Managing cycles in innovation processes – Integrated development of product-service-
systems based on technical products’ (SFB768).

PART B: PUBLICATIONS 118

Publication 6

Publication 6: Supporting the cross-disciplinary development of product-service systems through model
transformations

Supporting the cross-disciplinary development of product-service
systems through model transformations

Thomas Wolfenstettera , Konstantin Kernschmidtb, Christopher Münzbergc, Daniel Kammerlc,
Suparna Goswamia, Udo Lindemannc, Birgit Vogel-Heuserb, Helmut Krcmara

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, suparna.goswami,

krcmar}@in.tum.de

b Institute of Automation and Information
Systems

Technische Universität München
Munich, Germany

(Kernschmidt and Vogel-Heuser
2013)@ais.mw.tum.de

cInstitute of Product Development,
Technische Universität München,

Munich, Germany
{christopher.muenzberg, daniel.kammerl, lindemann}@pe.mw.tum.de

Abstract

During the development of product-service systems (PSS), various artifacts are modeled by
the different involved disciplines, e.g. mechanics, electrics, electronics, software and services.
Each of these artifacts represents different aspects of the PSS as a whole. In order to reuse the
respective information that are contained in each artifact but which are represented using
different ways of modeling, transformations are needed. In this paper we present a conceptual
methodology how the relevant PSS elements and their attributes can be transformed from one
specific language to another, in order to facilitate the cross-disciplinary use of model-based
information during the development process of mechatronic PSS.

Keywords – model transformation, product-service systems, cross-disciplinary development

PART B: PUBLICATIONS 119

1. Introduction

Producing companies increasingly shift from offering traditional products towards more
sophisticated and integrated solutions that better meet the customers’ needs. In doing so, these
companies try to achieve competitive advantages. Such integrated offers, called product-
service systems (PSS), contain product components (including mechanics,
electrics/electronics and software) as well as service components (Schenkl et al. 2013). For
the development of such integrated solutions, adequate cross-disciplinary model-based
engineering is essential, as an entire PSS hardly can be developed by a single discipline.
Collaborative modeling however, poses several challenges. On the one hand each discipline
uses its own specialized modeling approaches to depict their specific view on the system. On
the other hand, the system information is distributed among the different disciplines and their
models. However, due to dependencies between the different solution components,
inconsistencies between the different models can arise. Additionally, the traceability of
artifacts through the different disciplines lacks with current methods. During the entire PSS-
lifecycle (containing the planning, development, production, delivery and decomposition
Hepperle et al. 2010) a strong interaction of the service and product lifecycle exists. In the
development phase, knowledge of the different disciplines, e.g. requirements or model
elements, has to be shared. To enhance cross-disciplinary knowledge sharing and to overcome
the described challenges a concept for a PSS integration framework (PSS-IF), to enable the
cross-disciplinary development of PSS, has been developed (Kernschmidt et al. 2013). In this
paper the PSS-IF is extended and a transformation methodology between discipline specific
models using the PSS-IF is shown. The open structure of the framework allows the
integration of further modeling languages at a later point of time, which makes it flexible for
modeling languages that have not been considered yet and reduces the barriers for introducing
the framework into the existing development process. Through the application of the
framework a sophisticated PSS development can be achieved.

The structure of the paper is as follows: In the next sections, existing model-based
engineering approaches and model transformations are discussed. Subsequently, the
architecture of the PSS-IF is introduced. In section 5 the transformation process using the
framework is shown. Finally, the paper is concluded and an outlook on future work is given.

2. State of the Art

The development of PSS requires a tight collaboration of the disciplines mechanical,
mechatronic and service engineering. In literature and practice a variety of modeling
approaches for the different involved disciplines exist, focusing on different aspects, e.g. the
analysis of systems, development of functions and solutions, the support of process
management, or detailed discipline specific design. For mechanics (mechanical engineering)
literature suggests several modeling approaches, which are applied for designing mechanical
products throughout the complete product development process (Ponn and Lindemann 2008).
However, today’s systems are mostly no longer pure mechanical, but the percentage of
electrical/electronic and especially software parts in a system increases. In mechatronic
engineering the disciplines of informatics, mechanical and electrical/electronic engineering

PART B: PUBLICATIONS 120

are combined, so specific tools for e.g. mechanical or software engineering are not sufficient.
The combination of different designing disciplines longs for a more comprehensive view of
the system. In order to integrate the specific knowledge, model-based systems engineering
was introduced and the Systems Modeling Language (SysML, Bernard et al. 2010)
developed. SysML is based on UML, the standard modeling language in software
development. As SysML was developed for a wide range of systems it can be adapted to its
specific scope using profiles, e.g. SysML4Mechatronics (Kernschmidt and Vogel-Heuser
2013).

Table 10: Cross-Domain Modeling Approaches

To acquire new customers, industry tends to open up new business strategies. So there is a
change from mainly sales oriented strategies to value delivery. This is realized by adding
service to an existing product portfolio. This way, for designing these PSS an additional
discipline, service engineering has to be incorporated in the design process. Applied modeling
approaches in service engineering are for example service blueprints, e³-value and i*
(Shostack 1982; Gordijn and Akkermans 2003; Yu 2009).

Hardly one discipline-specific modeling approach can address all identified perspectives,
because each discipline has its own focus (Eisenbart et al. 2012; Eisenbart et al. 2013). Hence,
in the fields of machine and plant manufacturing, mechatronic systems and PSS various
modeling methods and languages exist, which address the integration of knowledge of the
different disciplines throughout a development process. These cross-discipline modeling
approaches concentrate information of different design disciplines. They allow for merging
discipline-specific models in order to grant an overall system view. Cross-discipline modeling

Ferrarini et al. (2011) specification and design of automated production systems,
methods for model-based manufacturing plant specification
and design

Boching (2012) framework for IT-based support of planning and developing
PSS

Maussang et al. (2009) step-by-step PSS design process to capitalize the information
during the design process

Anderl et al. (2012) methods, processes and IT-solutions for interdisciplinary
virtual product development

Thramboulidis (2010) integrated framework for the construction of mechatronic
systems using SysML

Becker and Pfeiffer
(2008)

holistic modeling method for PSS, including product and
service components and their interdependencies

Anackeret al. (2011) specification technique to design advanced mechatronic
systems

Gausemeier et al.
(2010), Pahl et al.(2006)

specification technique for PSS, procedure model and tool
support

Eisenbart et al. (2012) matrix-based representation of cross-domain functional
models

Sakao et al. (2009a) consistent depiction of physical and human processes with a
focus on customer’s added value

PART B: PUBLICATIONS 121

offers improved actuality, the integrity of the overall model and a higher consistency (Becker
et al. 2010). In comparison to discipline specific approaches these models usually work on a
higher level of abstraction. In literature a great number of approaches for cross-discipline
modeling can be found. Table 1 gives an overview of these approaches. These cross-
discipline modeling approaches have different foci, so they support the project management,
the planning or the design phase, because one complete model covering a large number of
modeling perspectives can quickly become confusing (Eisenbart et al. 2013).

Discipline-specific as well as cross-discipline modeling approaches have advantages the other
kind cannot offer. Based on the existing approaches a list of the characteristics of discipline-
specific and cross-discipline models is given in Table 11.

Table 11: Characteristics of Discipline-Specific and Cross-Discipline Modeling

(Eisenbart et al. 2012) state that an approach that enables a cross-disciplinary development
process, which satisfies the required integration of all disciplines in the development of PSS
and aggregates the information from their different specific modeling languages, is missing.

So we developed an integration-framework which can be used by all stakeholders to define
the elements of the PSS, includes the information from the involved disciplines and also
enables a mapping to discipline-specific languages (Kernschmidt et al. 2013). In this approach
the advantages of discipline-specific and cross-discipline modeling approaches can be
combined. In order to utilize such an approach, model transformations from the different
DSLs are required. Therefore, in the next section the different types of model transformations
are described and evaluated.

discipline-specific cross-discipline

Possibility to display discipline-
specific aspects

possibility of tracing artifacts across discipline
borders

higher level of detail display of domain interconnections

higher information level
consolidated/ cross-disciplinary

modeling base

specialized software tools common language needed

problem specific model reduced communication barriers

 holistic understanding

 integration among all domains

PART B: PUBLICATIONS 122

3. Model Transformations

In general, several types of graph-based model-to-model transformation methods can be
considered for the intended purpose. We roughly categorize them into direct and indirect
transformation methods and additionally regarding their flexibility regarding the syntax of a
specific data format. Figure 21 gives an overview of the different possible transformation
approaches.

Direct transformation methods define rules for the transcription from source to destination
discipline-specific language (DSL) directly without producing an intermediate result. Direct
syntax-dependent transformations require both DSL to use the same technical space, e.g. the
Extensible Markup Language (XML). Syntax-independent direct transformations are not
coupled to the technical space of a particular DSL. They can be realized by parsing the source
model into the syntax of the target language’s technical space and then mapping it onto a
structure conforming to the target DSL’s meta-model (Mens and van Gorp 2006). Direct
transformation methods have the advantage that they can be defined to enclose the maximal
possible transmittable detail from one DSL to another (Varró and Pataricza 2004). However,
such approaches impose limitations to the entirety of languages that can be supported, due to
their binding to a concrete syntax. Syntax-independent direct transformations resolve this
issue by abstracting the transformation description from the technical space of the language
involved. Still, all direct transformation methods require an explicit implementation for each
pair of source and target DSLs. To address this issue of exponentially growing complexity,
indirect transformation methods can be used, since they rely on a stable and well defined
intermediate language (IL). A particular transformation between two DSLs is performed by
first transforming from the source DSL into the IL and then transforming from the IL to the
target DSL (Czarnecki and Helsen 2006). Once again, such methods can be either fixed or
flexible. In the case of a fixed IL, its abstract syntax is directly implemented as a data
structure. Thus, the IL is described directly with the vocabulary of the programming language
in use. However, this approach becomes costly if the evolution of the IL is taken into
consideration. In the case of flexible IL transformations, the IL is not bound by concepts of
the underlying programming language, but rather is only expressed in those concepts.
Consequently, the IL can be defined on a level of abstraction on which evolutionary changes
of the IL which merely imply a structural change can the implemented by configuration.
Flexible IL transformation therefore provides a viable, flexible and powerful approach with
minimum costs for the consideration of additional DSLs (Bézivin et al. 2006).

PART B: PUBLICATIONS 123

Figure 21: General types of transformation possibilities

4. Basic Concepts of the PSS-IF

In order to define an IL for the cross-disciplinary development of PSS those elements and
their connections, which are required by the different involved disciplines, have to be
specified and form the basis of the PSS-IF (Kernschmidt et al. 2013). In the following the
necessary concepts for the transformation from one DSL to another, including all relevant
information, are described.

PSS-IF meta-model

On the abstract level the meta-model defines the language in which the elements of a PSS-IF
model are described. Figure 22 shows the taxonomy of elements that are part of PSS-IF. The
PSS-IF meta-model basically consists of node types and edge types, both of which can have
attributes. Node types are used for the description of the different entities in a model, whereas
edge types are used to define the associations (relationships and interactions) between
different types of nodes. Associations between node types are defined through connection
mappings, which are always bound to a certain edge type, i.e. an edge type can have many
connection mappings, allowing it to associate different pairs of node types. A connection
mapping is an association assigned to a particular edge type, which includes an incoming and
an outgoing node type. For instances, "State" and "Activity" can be connected by an edge of
type "ControlFlow”.

Furthermore, inheritance can be defined among the node and edge types. The root node and
edge types are also the roots of the inheritance hierarchies for nodes and edges within the
meta-model. Thus, it is guaranteed that the set of attributes provided above is automatically
defined for all instances of both node and edge types. If a node or edge type inherits from a
non-root node or edge type, the attributes are inherited transitively, together with all attributes
of all ancestors throughout the generalization closure. In a PSS-IF model each node is an

Direct Syntax‐
Dependent

Transformations

Direct Synatx‐
Independent

Transformations

Fixed
Intermediate
Language

Transformations

Flexible
Intermediate
Language

Transformations

PART B: PUBLICATIONS 124

instance of a node type and each edge is an instance of an edge type in the PSS-IF meta-
model.

Figure 22: Excerpt of the PSS-IF meta-model

Viewpoints

For each DSL, a viewpoint is defined which captures only those parts of the PSS-IF meta-
model that can be represented in the corresponding DSL. Viewpoints define how the PSS-IF
meta-model is seen from the perspective of a certain DSL. More specifically, a viewpoint
represents the meta-model of a DSL using the vocabulary, namely the node and edge types,
specified in the PSS-IF meta-model. For this purpose, viewpoints are defined by applying a
certain set of atomic transformation operations to the meta-model of a DSL. These atomic
transformation operations comprise e.g. renaming, merging or splitting node or edge types.
Since, any transformation results in a viewpoint, they can be applied consequently, each one
operating on the result of the previous. Furthermore, viewpoints are defined in such a way
that they can be used for both reading from and writing to a model.

PART B: PUBLICATIONS 125

Generic graph

The generic graph component of the PSS-IF is a simple undirected graph consisting of nodes
and edges, which can have string-named attributes with string values, as well as the name of
their assumed type. In this sense, the graph is an untyped and unstructured equivalent of a
PSS-IF model. In the transformation process, the generic graph is used as an intermediate
format, separating the concrete syntax and the abstract syntax of each supported language.
The concrete syntax is handled by an I/O mapper, while the abstract syntax is defined by the
viewpoint and is processed by a model mapper. By using a generic graph, it is possible to
separate the handling of concrete and abstract syntax of each language from each other.
Therefore, the concrete syntax is handled by a specific utility, which rather relates to the
syntax than to the language.

I/O mappers

The I/O mapper components are responsible for the serialization and de-serialization of the
generic graph. In this sense, they have the task to produce an abstract representation of the
tool specific data structure in any particular DSL. As the output of I/O mappers is a generic
graph representation, they can be used for more than one DSL if the same data format is used.

Model mappers

The task of the model mappers is to transform the generic graph into a PSS-IF model and
back under the provision of a corresponding PSS-IF viewpoint. In this sense, model mappers
handle the translation between the abstract syntax of the external representation and the
abstract syntax of the DSL's viewpoint in PSS-IF. In the simplest case, a particular model
mapper simply uses the provided viewpoint to directly transfer information between a model
and a graph, processing all nodes, edges and attributes. In more complex cases, pre- or post-
processing of the graph is necessary to receive a structure compatible with the viewpoint
defined for the particular language.

The data from an external representation is read into a generic graph and then processed with
the PSS-IF viewpoint of the respective DSL. In the same manner, when exporting a view, a
model is converted to a generic graph in accordance with the DSL’s viewpoint and the
generic graph is then serialized in accordance with the specifics of the concrete syntax of the
DSL.

Finally, mappers encapsulate the whole transformation process between the PSS-IF meta-
model and a corresponding model. A mapper thus offers two functionalities, one for reading a
model from an external representation and one for writing a model. Each DSL has its own
mapper and each mapper combines, in the appropriate order, the DSL's viewpoint creation,
data transformation, any pre- and post-processing strategies, and the correct serialization
utility.

PART B: PUBLICATIONS 126

5. Transformation Process

As described above the PSS-IF enables the transformation from one DSL into another. The
transformation process between two DSLs A and B is conducted as shown in Figure 23. A
PSS-IF model instance is obtained from an external representation by transcoding the external
representation (Model M in DSL A) into a generic graph, obtaining the viewpoint of the
current DSL and finally mapping the generic graph to a model in accordance with the
viewpoint. Symmetrically, a file is generated from a PSS-IF model by first obtaining the
viewpoint for the current DSL, using it to translate the model into a generic graph and then
serializing the graph using the corresponding I/O mapper. Each transformation process
invocates both types of mappers. First, source data is de-serialized and transformed into a
PSS-IF meta-model conformant representation. Second, the obtained model is written into an
external representation.

Figure 23: Schematic representation of the transformation process

6. Conclusion and Outlook

In this paper a conceptual methodology for model transformation using an integration-
framework for the interdisciplinary development of PSS has been presented. By transforming
the specific models of a PSS that are created by the different involved disciplines (mechanics,
electrics/ electronics, software and services) the information and modeling artifacts can be (re-
)used by the different disciplines. The presented framework-based transformation approach
can handle both, structural as well as behavior models. For example, a mechanical engineer
may model basic features and properties of the hardware components of a PSS. A service
engineer will then build on this information to create business process models that define how
customers interact with the system. And finally, a software developer enhances the overall
system model by specifying which software components are used in certain activities of the
business processes.

PART B: PUBLICATIONS 127

By using the framework, efficient interdisciplinary PSS development is supported. Enabling a
more sophisticated and comprehensive system view for all stakeholders, reducing faults, and
minimizing required iterations, leads to significant time savings during the development and
thus, to a faster time to market of the PSS. In order to enhance the development of PSS
further, a formal definition of the dependencies and relationships of the modeling artifacts of
all involved disciplines is necessary. The PSS-IF and the presented transformation approach
form a first step for enabling synchronization of different discipline-specific models. We will
evaluate our approach regarding semantic and syntactic correctness as well as completeness
(Mens and van Gorp 2006) by implementing a proof-of-concept prototypical tool that allows
to integrate various DSL. Also, further research will be conducted to provide model
management including appropriate formal methods.

Acknowledgment

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) for
funding this work as part of the collaborative research center ‘Sonderforschungsbereich 768 –
Managing cycles in innovation processes – Integrated development of product-service-
systems based on technical products’ (SFB768).

PART B: PUBLICATIONS 128

Publication 7

Publication 7: Towards a Requirements Traceability Reference Model for Product Service Systems

Towards a Requirements Traceability Reference Model for
Product Service Systems

Thomas Wolfenstettera, Simon Bründlb, Kathrin Füllera, Markus Böhma, Helmut Krcmara

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, fuellerk,

markus.boehm, krcmar}@in.tum.de

b Institute for Information Systems and New
Media,

Ludwig-Maximilians-Universität München
Munich, Germany

bruendl@bwl.lmu.de

Abstract

Differentiation opportunities for providers of traditional products and services are declining
due to increasing global competition. As a result, companies are transforming into solution
providers offering integrated bundles of products and services, so called Product Service
Systems (PSS). The development of PSS requires intense collaboration of different disciplines
(e.g. mechanical, software or service engineering) to produce a solution that fits the
customers’ needs. However, each discipline relies on specific engineering models, produces
heterogeneous artifacts and uses different languages to describe them. For successful
integration of the different PSS components, developers need a joint system model that allows
understanding interdependencies and tracing the evolution of artifacts. In this context
traceability is of utmost importance since requirements are specified solutions independent
across different disciplines. Our research addresses this challenge by proposing a
corresponding reference model. Based on a literature analysis, modeling workshops with
experts in various engineering disciplines have been conducted. Integrating the insights from
literature and workshops, a reference model has been iteratively developed and evaluated.
This model contributes to research on cross-domain traceability of requirements and other
artifacts. From a practical perspective, the reference model can be used to develop tools
supporting collaborative PSS engineering and improving cross-disciplinary understanding.

Keywords

Requirements Traceability, Reference Model, Product Service Systems

PART B: PUBLICATIONS 129

1. Introduction

Companies in the manufacturing sector increasingly struggle to differentiate themselves from
their competitors as in a highly globalized world the design and quality of products are often
not enough to realize competitive advantages. A product-centric approach is therefore no
longer sufficient to successfully and sustainably generate value for the customers. However,
companies can create value by adding services to products. The increased service character of
the product results in a stronger differentiation from competitors and therefore in an increased
competitiveness in the market (Tukker 2004).

Consequently, many manufacturers expand their portfolio from products to so-called Product
Service Systems (PSS).

According to Baines et al. (2007), a PSS combines tangible product and intangible service
components. The trend towards PSS is mainly customer-driven. There is a growing customer
demand for complete solutions to individual problems and needs, instead of solely buying
goods or services (Sawhney et al. 2006). A PSS therefore strives to deliver a solution that
specifically targets the customer’s needs. To achieve this objective, the components of a PSS
need to be adapted to individual customer needs which includes intense collaborations and
integration of the customer in the design and development process. Additionally, the design of
PSS includes various disciplines, such as product, software and service engineering
(Wolfenstetter et al. 2014).

Further, the different components are likely to have different life cycles, facing companies
with the challenge of managing inherent dependencies between the different components. Yet,
cross-disciplinary integration does usually not take place in practice. The development of
products and service is carried out in separate processes using discipline-specific models
(Tukker 2004). Existing theory on development processes is highly specialized to the
respective discipline, making integration and cooperation between the different disciplines a
difficult task (Berkovich et al. 2012). In the development of PSS modifications to the product
eventually lead to modifications to the service bundle. Vice versa, service related changes
may lead to drastic changes to the product. However, the controllability of these
interdependencies is absolutely essential. Therefore, a multidisciplinary approach for PSS
development is required (Mont and Tukker 2006). In practice, however, the development of
products and services is often carried out independently, which leads to an inadequate
consideration of the mutual influences of product and service components. For successful
development of a PSS it is not enough to understand the characteristics of these three
disciplines, it is also necessary to address interfaces and interdependencies between the
disciplines (Herzfeldt et al. 2011).

In conclusion, to design a seamlessly integrated PSS developers require an integrative
traceability model uniting the different disciplines and their requirement and design artifacts.
Artifacts of one discipline thus need to be linked to the artifacts of other disciplines in order to
guarantee full integration and traceability. An important building block in this context is a
traceability reference model for PSS. Reference models are an abstract framework to define a

PART B: PUBLICATIONS 130

set of concepts and to indicate the relationships among them. A reference model is influenced
by the environment, and describes entities and relationships. A general reference model for
requirements traceability has been proposed by Ramesh and Jarke (2001). This model,
however, originated in the field of software traceability and thus takes a rather discipline-
specific perspective on the traceability challenge. Although a number of other, mainly
discipline-specific reference models and traceability information models have been proposed
within the research community, none of these models focuses on PSS and inter-disciplinary
development processes (Cleland-Huang et al. 2014). Although some might argue that the
challenges related to traceability are largely the same in each context, we believe that a
comprehensive traceability reference model that takes into account the special characteristics
of integrated systems that involved multiple disciplines is of great value for the development
of PSS. While traditional approaches mainly focus on providing an evidence for the
customers that their requirements are fulfilled by the product as it is delivered, a traceability
reference model for PSS needs to foreground continuous improvement or customization of the
solution to changing customer needs, which is the key value proposition of PSS. In this regard
we are among the first to explicitly consider the need for traceability of the service
components.

2. Research Design

As reference models derive their relevance from the abstraction of best practice approaches,
the combination of theoretical foundations and experiences from practice ensures that the
reference model captures all types of artifacts that are relevant for tracing the development of
a PSS. Thus, to develop the traceability reference model we followed a three-step approach,
consisting of an initial literature review, subsequent workshops with domain experts and a
‘paper’-based evaluation.

The objective of both, the literature review and the expert workshops, was to identify relevant
artifacts for the traceability reference model as well as the relevant relationships between
artifacts. Artifacts can be defined as encapsulated information objects describing real world
entities or abstract concepts that are relevant in the system lifecycle. In terms of model-based
design and development approaches, an artifact is considered as a structured abstraction of
model elements (Fernández et al. 2010). In principle, artifacts arise as a result of an activity in
the development process, e.g. requirements elicitation or change management (Berkovich et
al. 2012). By focusing on the result of a development activity that is condensed in form of an
artifact it is possible to abstract from the different discipline-specific methods and processes
that can be employed to provide the artifact (Fernández and Wieringa 2013).

For the literature review we searched in domain-specific literature databases, including
Google Scholar, IEEE Xplore, and ACM digital library, to identify papers on data models for
requirements traceability in the areas of PSS, product, software and service development. We
identified 61 relevant papers from which we derived basic requirements engineering artifacts
and their relationships. Based on our literature review, we derived a preselection of potential
artifacts from the identified generic approaches for traceability.

PART B: PUBLICATIONS 131

In the second step, we conducted 9 expert workshops to gather practical experience in PSS
design and development. The goal of these workshops was 1) to evaluate the importance of
the pre-selected artifacts in the various domains from a practical perspective, and 2) to
identify additional artifacts that are important in the context of traceability for PSS and 3) to
specify the type of relationships (trace links) between those artifacts (Spanoudakis and
Zisman 2005).

We acquired experts from requirements engineering, change management, product
development, engineering management, information systems, systems engineering, software
engineering as well as production and manufacturing technology. The workshops were
performed individually with one expert at a time in order to obtain an independent picture for
each domain. Each of the experts was given a list of domain-specific artifacts that were
identified through the literature review. First, each expert evaluated whether or not a certain
artifact is relevant from a traceability perspective. Second, they were asked to specify
additional artifacts that should be included in the requirements traceability reference model.
Third, all artifacts that were considered relevant were entered as nodes into a modelling tool
(MagicDraw). On this basis participants should then specify the relationships between
artifacts from their point of view. By doing so, each workshop resulted in a discipline-specific
traceability model that reflects the respective expert’s point of view.

These nine discipline-specific models were then merged into a comprehensive traceability
reference model. For this purpose, similar artifacts were grouped and, if possible, mapped
onto the generic artifacts specified in the PSS integration framework by Kernschmidt et al.
(2013). In a third step, the resulting reference model was then circulated among the
participating experts. The experts were asked to evaluate the reference model and provide
their feedback. Seven experts approved the reference model directly, two suggested minor
extensions which were then incorporated. The resulting integrated traceability reference
model is presented in section 3. To improve readability, it is split into eight sub models.

3. Results
3.1. General Model Constructs

Based on the literature review, we concluded that each model that is used in the development
of PSS can be represented as a graph. All of the experts that we consulted agreed on this
perception. Furthermore, most of the modeling languages that are commonly used in product,
software, service or systems engineering, such as the Unified Modeling Language (UML), the
Systems Modeling Language (SysML) or the Business Process Modeling Language (BPMN)
use a graph representation to describe the structure or behavior of the regarded system.

Following (Kernschmidt et al. 2013) the basic meta-model construct of such graph
representations is an Element. Elements can be separated into Nodes, Edges and Attributes
(see Figure 24). Attributes are used to capture the properties of Nodes and Edges. Nodes can
be further categorized into Development Artifacts and Solution Artifacts and Stakeholders.
Development Artifacts represent rather abstract artifacts, such as documents, that are merely
used during the development of a PSS. Solution Artifacts on the other hand comprise all

PART B: PUBLICATIONS 132

structural, behavioral or functional entities that the PSS consists of. Stakeholders represent the
different types of individuals that are involved in the development of the PSS or that are
affected by the PSS in any life cycle stage and whose requirements thus need to be
considered.

Edges can be further divided into Flows and Relationships. Flows denote some kind of
transfer between two Solution Artifacts. They can be further categorized into Control Flows,
Information Flows, Energy Flows, Material Flows and Value Flows. Relationships on the
other hand can connect any types of Nodes. Here, we differentiate between Inheritance,
Inclusion (e.g. <<contains>>, <<refines>>), Referential (e.g. <<has>>, <<relates to>>),
Chronologic (e.g. <<evolves to>>) and Causal (e.g. <<causes>>, <<creates>>).

Development Artifact

NodeEdge

Relationship Flow

Element

Solution Artifact

Attribute

<<has>> <<has>>

Control Flow

Information Flow

Energy Flow

Material Flow

Value Flow

Inheritance

Inclusion

Referential

Chronologic

Causal

Stakeholder

other RelationshipsInheritance Flow

Figure 24: General Model Constructs

3.2. Development Artifacts

Development Artifacts capture information that is relevant to the development of a PSS, but
that is not part of the final solution (functional, behavioral, or structural components of the
PSS). As illustrated in Figure 25, Development Artifacts can be grouped into Requirements,
Specification Artifacts, Test Artifacts, Production Artifacts and Management Artifacts.

PART B: PUBLICATIONS 133

Stakeholder

Requirement

Development Artifact

Test Artifact Management Artifact

Production Artifact

Specification Artifact

<<causes>> <<accounts for>>

<<specifies>>

<<verifies>>

<<relates to>>

Figure 25: Development Artifacts Submodel

A Requirement is a container for meta-information about a certain requirement, such as ID,
title, version or priority. The requirement itself, however, is described by a Specification
Artifact (c.f. Section 3.4). Each Requirement should be verified by a Test Artifact that
documents information about the criteria to test a Solution Artifact as well as test results and
additional information. In the development of PSS any kind of verification procedure can act
as a Test Artifact, e.g. simulations, physical experiments, or manual evaluation by a
Stakeholder. In this regard a major challenge in PSS provision is to verify whether the key
value propositions to the customer are fulfilled, since service can only be evaluated at the
moment it is performed. Therefore, customer experiences constitute an important Test
Artifact. In addition to that, Requirements are related to specific Stakeholders. Each
Requirement can be connected via <<cause>> relationships to a certain Stakeholder denoting
that the Stakeholder is the source of that Requirement. Another possible relation is
<<accounts for>>. This relationship between a Requirement and a Stakeholder implies that
the Stakeholder is responsible for the Requirement. Furthermore, some Development Artifacts
may <<relate to>> certain Stakeholders, e.g. a Production Artifact <<relates to>> the
production manager in charge.

3.3. Generic Stakeholders

In the development of a PSS or during service provision, a great number of Stakeholders are
involved (see Figure 26). The complex network of stakeholders that need to be considered
along the entire lifecycle is a challenge that is especially prominent with PSS for several
reasons. Firstly, PSS do not only constitute a new product but in fact a new business model
that impacts the entire organization of the PSS provider. Therefore, the requirements and
capabilities of each department in the organization have to be considered. Secondly, when
selling traditional products, the ownership and consequentially most responsibilities lie with
the customer. Thus, the customer would have to deal with stakeholders that are merely
relevant during usage, maintenance and disposal. With PSS the responsibility remains with
the provider along the entire lifecycle. Thirdly, the PSS provider does not only have to

PART B: PUBLICATIONS 134

consider the stakeholders of the core product but also stakeholders of every service
component offered in a PSS.

Overall we can differentiate between multiple generic types of Stakeholders. Internal
Stakeholders refer to the different organizational units of the PSS provider, such as Sales &
Marketing, Manufacturing, Procurement, Disposal or Service Provision. A big challenge is
that service engineers are rather market- and customer oriented generalists while mechanical
engineers and software developers are more technically oriented. To foster mutual
understanding it is therefore crucial to be able to trace back any artifacts created in the
development process to the person in charge. In contrast, External Stakeholders are not part of
the organization. External Stakeholders can be categorized in e.g. Society, Law & Regulation,
Standards, External Systems, or Competitors. In the development of PSS especially
Customers and Users are a key source for Requirements since PSS providers are generally
interested in stable and long-term customer relationships in order to minimize setup costs.
Further, the frame conditions imposed by Value Creation Partners, such as suppliers or
logistics providers that are involved in service delivery have to be considered. The relevance
of value chain requirements is enhanced by the fact that while the supply chain of traditional
products predominantly flows in one direction while PSS providers are faced with closed-loop
supply chains. This means they have to manage the return, refurbishment and replacement of
expendable components of the PSS along the value chain. While Internal Stakeholders are
primarily responsible for realizing certain PSS requirements or components, External
Stakeholders are in most cases the source of Requirements and are involved in the value
creation process (Mont 2002).

Figure 26: Generic Stakeholders Submodel

Stakeholder

Internal Stakeholder External Stakeholder

Society

Customer

Law & Regulation

User

Research & Development

Manufacturing

Sales & Marketing

Support & Maintenance

Information Technology

Finance & Administration

Value Creation Partner

External System

Procurement

Disposal

Standard

Service Provision

Competitor

PART B: PUBLICATIONS 135

3.4. Requirements

According to Berkovich et al. (2012), Requirements of a PSS can be categorized based on the
level of abstraction (see Figure 27). Unlike the requirements process in product development
processes, the requirements elicitation for PSS usually does not start from the intended
functionality or characteristics of the product. Instead, it is necessary to identify the general
customer Needs and define the overall Business Goals.

Figure 27: Requirements Submodel

The rather abstract Business Goals can be separated into Customer Goals as well as Provider
Goals. Having defined the general business goals, the next step is to <<refine>> those goals
and come up with System Requirements, i.e. identifying the Stakeholder Requirements as well
as system requirements and Business Process Requirements. Again, System Requirements can
be further <<refined>> and broken down according to the Function-Behavior-Structure
principle. This is true for each of the disciplines involved in PSS development. On the system
level Requirements are still discipline-neutral, i.e. it is not yet specified whether a requirement
will be satisfied by hardware, software, service or a combination of those. This freedom of
choice is characteristic for PSS and increases the effort of evaluating various conflicting
design alternatives but it also allows greater flexibility in customizing the solution towards the
actual customer needs. On the next refinement level, Design Requirements can be categorized
in Result oriented Requirements, Process oriented Requirements and Resource oriented
Requirements. Resource oriented Requirements mainly specify the structure of hardware
components, the data and information necessary for the software or other potentials that are
required for service delivery, such as employee skills. Behavior oriented Requirements refer

Business Goal

System Requirement

Design Requirement

Requirement

Domain Requirement
HW Engineering Req.

SW Engineering Req.

Service Engineering Req.

Production Req.

Customer Goal

Provider Goal

Business Process Req.

<<refines>>

<<refines>>

<<refines>>

Result oriented Req.

Process oriented Req.

Resource oriented Req.

System Environment Req.

Stakeholder Req.

<<conflicts>>

<<depends on>>

<<evolves to>>

Need

<<leads to>>

PART B: PUBLICATIONS 136

to the general behavior of hardware structure, the workflows in software or production
systems as well as the service delivery process. In a last refinement step the Design
Requirements can be broken down into Domain Requirements by translating them into the
language of the developers. On this level, Service Engineering Requirements, Software
Engineering Requirements, Hardware Engineering Requirements and Production
Requirements are defined.

Requirements may <<conflict>> each other, meaning that the associated specifications are
contradicting so that complete fulfillment of both requirements is not possible. A
<<dependency>> relation denotes that the requirements have a strong interrelation so that
changing one Requirement will likely impact the other Requirement. In this case the affected
Stakeholders need to be notified. The <<evolves to>> relation refers to version management.
It is used to document the evolution of Requirements over time, so that the different versions
can be traced back to their original specification.

3.5. Specification Artifacts

Specification Artifacts serve the detailed description or conceptual modelling of Requirements
or Solution Artifacts. They can occur in Text form, using some kind of Illustration or more
structured forms of knowledge representation like Diagrams. Overall, the range of different
types of Specification Artifacts that is used in PSS engineering is wider than in traditional
engineering because of the heterogeneity of the disciplines involved. Figure 28 shows an
exemplary selection of Diagrams that commonly serve as Specification Artifacts.

Use Case Diagrams are often used to describe the interaction of Stakeholders and the system.
They primarily support the requirements engineer in identifying the overall functions and
features that need to be provided. Structure Diagrams or Entity Relationship Models are used
to formally specify the structural composition of the system respectively its’ architecture.
Furthermore, the intended system behavior or relevant processes can be specified using
Activity Diagrams, Business Process Models or Service Blueprints. Moreover, Value Flow
Models may be used for illustrating the Value Flows within the value creation network.

Figure 28: Specification Artifacts Submodel

Specification Artifact

Text

Illustration

Diagram

...

Use Case Diagram

Structure Diagram

Activity Diagram

Value Flow Model

Business Process Model

Service Blueprint

Entity Relationship Model

...

PART B: PUBLICATIONS 137

3.6. Management Artifacts

In the context of requirements tracing Management Artifacts primarily capture changes that
<<affect>> Requirements, Solutions Artifacts or Production Artifacts. A Management Artifact
can be a Change, an Issue, a Change Proposal, a Change Request, a Change Order or a
Cycle. Figure 29 gives an overview over the Management Artifacts and the according
relations.

Management Artifact

Change Proposal

Change Request

Change

Change Order

Cycle

Requirement

Solution Artifact

Issue

Production Artifact

<<affects>>

<<affects>>

<<affects>>

<<causes>>

<<causes>> <<refers to>>

<<refers to>>

<<refers to>>

<<includes>>

<<includes>>

<<includes>><<evolves to>>

<<evolves to>>

Decision

<<causes>>

Need

<<influences>>

Test Artifact

<<reveals>>

Figure 29: Management Artifacts Submodel

Changes can be related to Cycles (reoccurring patterns) that affect the development of a PSS,
its’ production or service provision. Prominent examples of Cycles are maturity of
technology, the customer life cycle or the life cycles of components of the PSS. Especially
these different component life cycles impose a challenge for PSS providers since the overall
service delivery depends on the compatibility of the PSS’s components. A Cycle can act as a
trigger that <<causes>> an Issue. Additionally, Issues can be <<revealed>> through
verification and validation procedures which are represented through Test Artifacts. As the
responsibility of a PSS provider does not end with the shipment of the product to the customer
the provider has to keep track of issues that evolve during the entire service delivery period
which often has no temporal delimitation and requires continuous replacement of
expendables, software updates or changes of the service level agreements. Following
Chucholowski et al. (2014), an Issue (e.g. a goal derivation) then <<causes>> a Change
Proposal. If the Change Proposal seems promising it <<evolves to>> a Change Request. At
this stage further implications of the Change are evaluated. After a Decision by the
Stakeholders that are responsible the Change Request further <<evolves to>> a Change Order

PART B: PUBLICATIONS 138

meaning that it is implemented. The artifacts Change Proposal, Change Request, and Change
Order each refer to one single Change.

3.7. Solution Artifacts

Solution Artifacts refer to components that comprise the PSS itself, namely its functions, its
behavior and its structure. Consequentially, Solution Artifacts can be differentiated into
Structure Elements, Behavior Elements and Function Elements. In this conjunction, a
Structure Element (c.f. III.H) can <<perform>> a certain Behavior Element (e.g. a car that
drives). Again, a Behavior Element <<realizes>> a Function Element (e.g. Taking the
passenger to the desired location). This Function Element <<creates>> a certain Value for the
customer in order to <<satisfy>> a Need. The Value proposition is the pivotal element of each
PSS business model as fulfilling customer Needs is the raison d’etre of each PSS. Each
Solution Artifact thus should be dedicated to fulfill the Value proposition. Behavior Elements
can be used to specify the behavior of a system, respectively processes and workflows. They
can be separated into State and Activity. These Activities may be <<performed>> by
Stakeholders or certain components of the system. In turn, each Activity may <<produce>> or
<<require>> certain Structure Elements (e.g. a data query may require a data base and
produce a piece of information). In general, only Solution Artifacts that <<satisfy>> some
Requirement should be part of a PSS in order to prevent over-engineering (see Figure 30).

Figure 30: Solution Artifacts Submodel

Solution Artifact

Structure Element Behavior Element Function Element

Requirement

«satisfies»

State

Activity

Stakeholder

«accounts for»

Value

Need

<<produces>>

<<performs>> <<realizes>>

<<creates>>

<<satisfies>>

<<performs>><<requires>>

<<Control Flow>>

PART B: PUBLICATIONS 139

3.8. Structure Elements

In general, the Structure Elements that constitute a PSS can be divided into Product Elements
and Service Resources (See Figure 31). Overall, Structure Elements can be seen as the
fundamental resources and potentials that enable the intended service delivery processes in
order to create Value for the customer and satisfy a Need. Again, Structure Elements can be
linked by <<Energy Flows>>, <<Material Flows>> or <<Information Flows>>. Further,
structural decomposition, i.e. modularization of the PSS, is indicated by <<contains>>
relationships between one Structure Element and another. The modules of a PSS may be
homogeneous (e.g. pure hardware modules) or heterogeneous modules (e.g. mechatronic
modules that contain hardware and software elements).

Actor

Service ResourceProduct Element

Hardware Element

Software Element

Mechanical Element

Electronic Element

Structure Element

<<Information Flow>>

Information

Skill

<<Material Flow>>

<<Energy Flow>>

<<Value Flow>>

<<contains>>

Interface

<<provides>>

<<requires>>

<<matches>>

Stakeholder

<<has role>>

Figure 31: Structure Elements Submodel

In alignment with the disciplines involved in PSS engineering we found that Product
Elements can be further split up into Software Elements and Hardware Elements, which are
again comprised of Electronic Elements and Mechanical Elements. While in traditional
product development it is sufficient to trace the fulfillment of Requirements to hardware and
software elements that can be formally specified and evaluated, PSS providers additionally
need to consider the often rather informally specified Service Resources. In terms of the
Service Resources we differentiate between intangible resources like Information and Skills
that are necessary prerequisites for service provision as well as tangible resources like Actors
that perform certain Activities within the service process. Moreover, the aspect of Value co-
creation which is a central concept in service engineering can be captured by <<Value

PART B: PUBLICATIONS 140

Flows>> between service provider, the customer and other Actors within the value creation
network. <<Value Flows>> denote the assessment of the value of exchange relationships
between different Stakeholders within the value network, such as funds, goods, information or
services. The resulting network of <<Value Flows>> can be used to estimate the fairness of
PSS business models and consequentially the likelihood for long-term relationships among
the partners. Overall, long-term relationships are more likely to evolve if the business model
is perceived as fair, meaning that each partner within the value network receives the same
amount of value that it gives.

Against the background of modularization and inter-disciplinary collaboration in the
development of PSS the definition of Interfaces plays a vital role for PSS. Interfaces can be
seen as a definition of allowed inputs or outputs of a Structure Element and can thus be used
for means of standardization. Consequentially, Interfaces may be <<provided>> or
<<required>> by Structure Elements. If Interfaces <<matches>> other Interfaces the
associated Structure Elements are compatible with each other.

4. Exemplary Use Cases

In order to demonstrate the practical applicability of the proposed reference model we can
consider the following example of a car sharing PSS (See Figure 32 and Figure 33). A car
sharing system is a typical example for a PSS that appears in different forms in various
markets. In many cases the providers of car sharing systems had to go through a long period
of negative return on investment as they underestimated the complexity of developing
integrated solutions that sufficiently satisfy the requirements of the various stakeholders. To
reduce complexity of this use case we only illustrate an extremely simplified excerpt and only
use exemplarily selected constructs of our reference model.

PART B: PUBLICATIONS 141

Figure 32: Exemplary Use Case: Traceability of Requirements Refinement

We consider a common need of an average citizen, namely the availability of means for
individual mobility. In order to resolve this need, a potential PSS provider might want to
develop a business model that offers free-floating rental cars to its customers that can be used
within a certain area. One of the customer goals that can be derived from this need is that the
vehicles should be available on demand without prior reservation. As the cars are floating
freely within the business area of the provider a central business process requirement is that
the current location of each car has to be known, meaning that the cars have to be tracked. In
order to do so each car needs to be equipped with some kind of tracking device.
Consequentially one of the further refining software engineering requirements is that the
tracking software needs to be integrated with the tracking device which again needs to be
tested. Based on these requirements the developers have decided for a GPS device which
consists of hardware and software elements. Again, these solution items have relationships to
other elements of the PSS, e.g. the battery which powers the GPS receiver. The GPS device as
a whole continuously updates the position of the car, thus satisfying the business requirement
of tracking the car. This contributes to realizing a function that allows displaying the current

PART B: PUBLICATIONS 142

location of available cars to potential customers, e.g. using a smart phone app. Altogether, the
various function elements comprising the car sharing PSS create value for the customer, thus
satisfying the original need.

Figure 33: Exemplary Use Case: Traceability of Changes

The proposed reference model can further be used to trace changes that occur during the
phase of service provision. A common issue with free-floating rental cars is that customer are
unable to find adequate parking lots at their desired destination. This issue mainly appears
during times of heavy congestion in urban areas, a problem that arises on a regularly basis,
especially during the rush hours or on weekends. In the use case example presented in Fig. 10,
this issue is revealed through customer feedback. As this issue appears repeatedly, the car
sharing provider evaluates its options to improve service quality by eliminating the issue. A
feasible change proposal is the provision of exclusive parking lots for its cars. Having decided
on the implementation of the service change a new requirement regarding the reservation of
parking lots is recorded. Further evaluation of the proposed service change shows in impact
on the service as well as the software components. To be able to offer exclusive parking lots
to its customers, the PSS provider needs to negotiate with a new stakeholder, the city
administration. The city administration demands adequate compensation for providing
reserved parking lots. Further, in order to ensure a high quality of the parking lot service, the

PART B: PUBLICATIONS 143

PSS provider needs to actively manage its offers and allocate new parking lots if necessary.
However, the new parking lot service does not only impact the service components of the
PSS. Also the infotainment software in the car may need to be changed so that the navigation
system displays free parking lots at the destination.

5. Discussion

Our literature review shows that there has already been a significant amount of research on
requirements traceability in general. The publications that were reviewed address a broad
variety of aspects and propose solutions for the basic challenges that are relevant in this
context. However, most publications on traceability specialize on software or systems
engineering and thus address the issues from their discipline-specific perspective. In other
disciplines such as mechanical engineering requirements traceability has yet not been in the
focus of research. Especially in the service engineering domain, we were unable to find
adequate traceability models. This way, we are among the first to explicitly model the socio-
technical aspects of services resources, such as information and required skills. Some of the
traceability models that we reviewed suggest that different stakeholders should be considered
in order to be able to trace requirements back to their sources. However, they do not explicitly
model the various types of stakeholders that need to be considered. Furthermore, integrated
approaches that consider the characteristics of each discipline, relevant for PSS development
have not yet been proposed. However, for seamless integration of the various discipline-
specific artifacts related to PSS design a cross-disciplinary reference model for requirements
traceability is necessary. This helps to reduce development costs and create additional value
for the customer.

The proposed references model describes the artifacts that are relevant for achieving
traceability across disciplines and defines the semantic relationships connecting those
artifacts. Central issues for the practical applicability of a traceability reference model are its
flexibility and adaptability towards a specific project context (Gotel et al. 2012). Our model
takes this aspect into account by structuring the proposed traceability artifacts and
corresponding semantic trace links into several granularity levels. Furthermore, the structure
of the reference model is designed in a way that makes it extensible. The logical
decomposition of artifacts and semantic relationships using hierarchical inheritance allows
adding further, more detailed relationship and artifact types, if needed for special project
purposes. Based on our literature review and the workshops, we found that a reference model
for requirements traceability for PSS has to address four challenges: (1) pre-specification
traceability, (2) inter-requirements traceability, (3) post-specification traceability and (4)
traceability of changes.

Our reference model supports pre-specification traceability by identifying the relevant
stakeholders in PSS development and linking them to requirements (c.f. Figure 25 and Figure
26). In doing so, we can ensure that the origin of each requirement is captured. This is
important since the development of PSS is characterized by the involvement of many
different stakeholders whose needs change frequently. While in many cases requirements
elicitation starts with defining the desired functions and characteristics of the product, our

PART B: PUBLICATIONS 144

reference model emphasizes the value proposition of a PSS and the satisfaction of original
customer needs by defining these as the true source of requirements.

Regarding inter-requirements traceability, we found that starting from abstract business goals,
requirements should be refined until discipline-specific component requirements can be
specified. In this process a complex network of interrelated requirements evolves iteratively.
This aspect is addressed in the Requirements Submodel (c.f. Figure 27). For post-
specification traceability the entire spectrum of discipline-specific artifacts along the PSS life
cycle needs to be considered. Primarily, this includes tracing the satisfaction of Requirements
through Solution Artifacts, namely Function Elements, Behavior Elements and Structure
Elements (c.f. Figure 30).

Furthermore, tracing the evolution and changes of the various artifacts is essential especially
regarding the continuously changing requirements that are the result of different life cycles of
PSS components. Cycle orientation is a key success factor for PSS, since providers need to
constantly adapt and enhance their value proposition to various cyclical changes. The history
of Changes is captured in the Management Artifacts Submodel (c.f. Figure 29). This allows
for constant evaluation of how changes in one discipline affect artifacts that are relevant for
the other disciplines.

6. Conclusion and Outlook

In this work, we proposed a requirements traceability reference model for PSS. Based on a
review of literature and modeling workshops with experts from various disciplines involved
in PSS design and development, we identified discipline-specific artifacts and relations
among them. The results of the literature review and the workshops formed the foundation for
the creation of an integrated traceability reference model targeted towards cross-disciplinary
development of PSS.

This paper contributes to theory by identifying characteristics of PSS and discipline-specific
artifacts. By studying discipline-specific artifacts relevant for PSS development and defining
the relations between those artifacts we contribute to a better understanding of requirements
traceability in PSS development. From a practical perspective, the proposed model may
promote cross-discipline understanding, in which the various stakeholders can access a
common solution model. The reference model encompasses the relevant discipline-specific
information in the form of artifacts and provides a first step to safeguard the traceability of
requirements. By identifying the relationships between development and solution artifacts, the
cross-checking of requirements and associated system components is possible. Using this
reference model may correspondingly reduce errors, improve communication and result in a
tighter integration of the disciplines involved in PSS development.

As a next step we plan to implement the proposed reference model in a software tool
supporting requirements traceability in PSS engineering to evaluate its practical applicability.
Possible extensions of the reference model include determining predefined attributes of the
artifacts and the consideration of relations with the business models of the PSS providers.

PART B: PUBLICATIONS 145

Further research is needed regarding automated gathering of traceability data from discipline-
specific engineering tools that are commonly used for creating and documenting artifacts.

Acknowledgment

We thank the German Research Foundation (DFG) for funding this work as part of the
collaborative research center ‘Sonderforschungsbereich 768 – Managing cycles in innovation
processes – Integrated development of product-service-systems based on technical products’
(SFB768).

PART B: PUBLICATIONS 146

Publication 8

Publication 8: Introducing TRAILS: A Tool supporting Traceability, Integration and Visualisation of
Engineering Knowledge for Product Service Systems Development

Introducing TRAILS: A Tool supporting Traceability, Integration
and Visualisation of Engineering Knowledge for Product Service

Systems Development

Thomas Wolfenstettera, Mohammad R. Basiratia, Markus Böhma, Helmut Krcmara

a Chair for Information Systems
Technische Universität München

Munich, Germany
{thomas.wolfenstetter, basirati, markus.boehm, krcmar}@in.tum.de

Abstract

Developing state of the art product service systems (PSS) requires the intense collaboration of
different engineering domains, such as mechanical, software and service engineering. This
can be a challenging task, since each engineering domain uses its own specification artefacts,
software tools and data formats. However, to be able to seamlessly integrate the various
components that constitute a PSS and also being able to provide comprehensive traceability
throughout the entire solution life cycle it is essential to have a common representation of
engineering data.

To address this issue, we present TRAILS, a novel software tool that joins the heterogeneous
artefacts, such as process models, requirements specifications or diagrams of the systems
structure. For this purpose, our tool uses a semantic model integration ontology onto which
various source formats can be mapped. Overall, our tool provides a wide range of features
that supports engineers in ensuring traceability, avoiding system inconsistencies and putting
collaborative engineering into practice. Subsequently, we show the practical implementation
of our approach using the case study of a bike sharing system and discuss limitations as well
as possibilities for future enhancement of TRAILS.

Keywords

Model-based Systems Engineering, Traceability, Product Service Systems, Model Integration

PART B: PUBLICATIONS 147

1. Introduction
1.1. Motivation

In an increasingly digitized economy more and more companies realize that products
themselves are no more the main contributors to value creation in their business. Instead,
value for the customer is being created in service-oriented business models. Already today,
most developed economies owe a far greater share of their national income to service
provision than to manufacturing of physical products (Meier et al. 2010). Even in traditional
manufacturing industries, global competition forces companies to focus on building long-term
relationships with their customers by providing product-supporting services, such as
maintenance, or offering the product itself as a service (Marques et al. 2013). Furthermore,
environmental considerations cause enterprises to move from a product-based economy to a
service-based economy which limits their susceptibility to environment issues (Maussang et
al. 2009). As a consequence, the concept of product service systems (PSS), i.e. integrated
systems that combine product and service components, is increasingly gaining popularity as a
strategic measure to deal with these issues.

PSS development thus involves various stakeholders from different engineering domains who
need to develop hardware, software and service components based on descriptions of the
customers’ needs and seamlessly integrate them into a comprehensive solution while at the
same time reacting flexibly to changing requirements and a dynamic system environment. For
example, changing legislation regarding privacy protection might impact the way customer
related data is handled by the PSS provider in order to ensure compliance. This not only
impacts the service processes in which this data is being collected, but also software systems
that store and process the data and even might force the PSS provider to change hardware
components that rely on customer data in order to provide their functions. In this example a
simple requirements change entails an adaptation or possibly redevelopment of various
components of the PSS, requiring engineers from different disciplines to communicate with
each other, coordinate the changes made to the system as a whole and anticipate how
changing one component influences other parts of the PSS. As a result, not only the degree of
involvement of stakeholders from different domains increases. There is also need for tight
collaboration and communication among all stakeholders involved. Therefore, a major
challenge for PSS engineering is to provide integrated conceptual models and comprehensive
representation techniques to support cross-domain collaboration (Vasantha et al. 2012).

Moreover, the cross-domain engineering process is not the only aspect that differentiates the
development of PSS from traditional product development. By its very central idea the
concept of PSS focuses on integration of business models, products and services along the
entire life cycle in order to create additional value for the customer (Vasantha et al. 2012).
Like in every long-term relationship, expectations and capabilities, both on the provider and
on the customer side evolve over time. Consequentially, PSS providers need to deal with
changing requirements to be satisfied. Therefore, they need to monitor the traceability
relationships between requirements and affected parts of the PSS solution including both,
tangible product components as well as intangible services (Maussang et al. 2009).

PART B: PUBLICATIONS 148

The complexity of PSS engineering also manifests itself in the heterogeneity of artefacts,
which are created and used along the PSS life cycle. For instance, in the process of
developing a PSS every engineering domain involved follows their own domain-specific
approaches when creating the various types of development artefacts that are required along
the process, such as process models, requirements specifications, design structure matrices,
use case diagrams or component diagrams. As artefact we hereby understand every tangible
information object that is created along the life cycle of a system to describe its e.g. design,
architecture, functions as well as the processes and the organization associated with it. All of
these artefacts are highly interdependent as they ultimately specify components of the PSS,
which finally need to function together reliably.

Managing the relationships between PSS engineering artefacts is necessary for developers to
anticipate the change impact of an artefact on others and to prevent inconsistencies as well as
to trace the evolution of the individual artefacts and the PSS as a whole. For this purpose, the
structural architecture of a PSS together with the dynamics of the service processes and the
evolution of requirements that are linked to them needs to be captured. Moreover, all of this
engineering knowledge needs to be presented in a way that allows engineers to get a
comprehensive overview of the problem as well as the solution domain (Meier et al. 2010).
By doing so, it is possible to dynamically adapt the solution to changing needs of customers
and the evolving environment in which the PSS competes.

However, current industry practice shows that PSS development relies on a multitude of
different modelling languages and tools that are largely incompatible with each other. Thus,
today the analysis of dependencies within a PSS requires tremendous manual efforts and the
integrability of components as well as mutual impact can only be checked relatively late in
the development process.

In a nutshell, PSS development is a highly complex process with high number of
dependencies between heterogeneous artefacts. However, in practice traditional engineering
methods often struggle when coping with the challenges of PSS development, thus producing
callow solution designs that cannot live up to their full potential. Although there exists a wide
range of approaches for modelling the different components of a PSS (Meier et al. 2010;
Vasantha et al. 2012), the design of integrated products and services along with the issue of
traceability has not been supported sufficiently by software tools (Baines et al. 2007; Meier et
al. 2010; Cavalieri and Pezzotta 2012).

Also, tools and modelling languages which are used in PSS development do not support
integrated analysis of PSS artefacts and their relationships which can lead to inconsistencies
or unanticipated changes even in late phases of development. Therefore, there is lack of a tool
to support modelling and analysing PSS artefacts and their relationships from a holistic
viewpoint.

PART B: PUBLICATIONS 149

1.2. Approach

We tackle this issue by proposing a tool that supports PSS development by providing means
to integrate the various domain-specific artefacts into a comprehensive "semantic
engineering" graph. This graph represents the various PSS artefacts, such as requirements,
components, processes, activities, stakeholders, use cases or tests as nodes and the
relationships and flows between those artefacts as edges. The tool facilitates capturing the
relations between different artefacts through the whole PSS life cycle. It further visualises the
semantic engineering graph or particular views (subset of nodes or edges) to the user and
provides features to analyse and edit the graph.

To achieve the aforementioned goal, our research intends to establish a theoretical foundation
and then present the corresponding software tool that enables cross-domain traceability and
model integration among PSS elements. Based on this agenda, we name our software tool
TRAILS, TRAceability, model Integration and Life-cycle management Support.

Our proposed approach is not focused on capturing and describing every little detail of the
system components that can be modelled in the respective domain-specific modelling
languages (e.g. single function calls in software code, detailed geometry of hardware parts or
activities of a service process that are modelled exact to the second), but it is more
concentrated on a project management level, allowing requirements engineers or project
managers to analyse the overall relationships between system components, requirements,
stakeholders or other artefacts that are relevant in the development process. At this point, we
also want to emphasize, that our approach and tool are primarily designed to support the
model-based engineering (MBE) of PSS but not model-driven engineering (MDE), i.e.
automatic generation of software code or service guidelines from models. In case of PSS we
think that at the moment MBE is more feasible then MDE since PSS are complex socio-
technical systems. Therefore models can play an important but not a dominant role in the
design and development of PSS. Since PSS development requires an integrated view on the
system under development, the tool features multiple integration approaches demonstrating
the result as a semantic engineering graph (network). This approach is enhanced with
allowing multiple views on the resulted graph for each specific purpose.

To this end, first, we define a reference ontology that specifies the conceptual entities that are
used in the multiple engineering domains involved in the development of a PSS. The
development of this integration ontology, is based on literature reviews within the engineering
domains involved as well as expert interviews, PSS case studies and modelling workshops. In
TRAILS this integration ontology is used as a framework that defines element types and their
associations that are used during PSS design and development. In TRAILS model integration
is being performed by transforming each type of model that is supported by the tool into the
format defined by the integration ontology and then linking similar or related artefacts.

PART B: PUBLICATIONS 150

1.3. Structure of Article

The structure of this paper is as follows. In section 2, first we give an overview of available
modelling methods used in PSS engineering, then existing software tools for PSS are
analysed. Afterwards, in section 3, the model transformation methods are discussed and we
explain the model transformation process used in TRAILS. Following, in section 4, the basic
concepts of TRAILS are introduced which is followed by describing available features of our
tool in section 5. In section 6, a case study demonstrates the use of TRAILS' different features
in a use case. In section 7 we discuss limitations and possible future improvements of our
approach. Finally, section 8 gives a summary of the research presented in this paper.

2. Related Work

Analysing the literature related to PSS design and development we find that research is more
focused on methodologies and modelling techniques rather than providing tools to support the
presented methods. Except two works on computer aided design tools targeted at PSS
development and modelling which we discuss subsequently, we did not find any additional
tools that are explicitly design for supporting the development of PSS. In this section we first
summarise proposed PSS modelling methods in literature and then briefly explain both tools
we found.

2.1. PSS Modelling Methods

A considerable number of modelling methods for PSS development have been proposed in
literature, most of which aim at systematising the functions or value proposition of a PSS
from the customer's perspective and focusing on the service aspect of the PSS (Qu et al.
2016). Here, one group of methods focuses particularly on the hierarchical configuration of a
PSS from services or other components (Klingner and Becker 2012). In contrast, some works
aimed at covering PSS innovation phases comprehensively, therefore they offered several
modelling techniques, each focusing at a particular situation in a PSS development.

Most of the approaches for modelling a PSS presented in literature are based on service
blueprinting proposed by Shostack (1982) more than 30 years ago. Geum and Park (2011) for
example extend the service blueprint with new notations to capture the flow of product usage
and service usage from the provider to the customer and the relationship between products
and services. Lee and Kim (2012) focus on functional modelling of a PSS. They modify the
service blueprint by adding a function layer to show interactions between service provider and
service consumer more explicitly. Geng and Chu (2011) use a conceptual service blueprint
adding a user task model (to improve process-oriented design of a PSS with requirement
analysis from user perspective) and a function model (to show the relation between
requirements and PSS concepts). Service blueprinting and its extensions are mainly focused
on visualisation of service processes in the context of a PSS. This technique elaborates the
provided service activities at every stage of the PSS life cycle and specifies the level of
customer involvement or visibility of certain activities to the customer. Although adopting
service blueprint gives a thorough overview of the service activities they contain, it lacks the

PART B: PUBLICATIONS 151

details for designing a PSS specially the relations between needs, services and (physical) PSS
components.

Lim et al. (2012) analyse the modelling techniques used for visualisation of PSS. They divide
methods based on the aspect of PSS which is modelled. According to their study, most
research focuses on the service processes of a PSS which among them, service blueprint got
more attention for visualisation. Another studies aim at modelling the stakeholders of a PSS
focusing on the relations between them, proposing alternative presentations of the service
processes using a matrix called PSS board which shows how the PSS provider and the
partners works to fulfil the customers' need in different stages of the service process.
Maussang et al. (2009) argue that there is a gap between product development and the need
for technical specifications of physical objects and the system approach. In order to close this
gap, they suggest to use the graph of inter-actors and functional block diagrams for designing
a PSS. They argue that functional block diagram is a useful tool for PSS modelling and
analysis as functional representation of a PSS during its conceptual design phase is necessary.

According to Van Halen et al. (2005), appropriate tools are required to deal with high
complexity of a typical PSS. They propose a methodology that offers a wide range of
modelling methods for strategic analysis in different phases of PSS development. With
several papers published in this area, we find that model integration is a common concept in
the systems engineering process. However, most work in this area is on a rather high level,
analysing the suitability of certain integration strategies, i.e. vertical vs. horizontal (Frank et
al. 2014). Although there are approaches that utilize ontologies for modelling the
dependencies between the various components of a PSS (Hajimohammadi et al. 2017), they
remain at a high level of abstraction, thus suggesting that existing products and services are
bundled together in order to form a PSS. In contrast to this, our approach is able to capture
PSS where product and service components are engineered from scratch or at least modified
in order to be integrated seamlessly.

2.2. PSS Computer Aided Modelling Tools

Several studies which reviewed the state of art of PSS engineering, discuss that there is need
for software tools to support the modelling of PSS (Baines et al. 2007; Meier et al. 2010).
Beuren et al. (2013) emphasize the need for tools that provide visualisation and modelling of
different components of PSS including tangible and intangible elements to improve the
understanding of a PSS engineering project. Morelli (2006) highlights the importance of a
graphic representation technique for modelling PSS requirements. He also claims that while
there are plenty of graphical notations in information sciences, they cannot be used for
representing all elements involved in a PSS, like space, time and physical outlines.

Following this view, Sakao et al. (2009b), discuss that a variety of the tools available for
product development concentrate on physical and domain-specific details, but there is no
particular tool that aims at designing integrated systems of services and products
simultaneously. In order to close this gap, they propose a tool, called Service Explorer, which
supports designing services according to value created by products' functions and user

PART B: PUBLICATIONS 152

requirements. Service Explorer provides several modelling techniques, a database for
managing services and some reasoning engines to help developers.

Komoto and Tomiyama (2008) argue that Service Explorer (Sakao et al. 2009b) cannot
explicitly elaborate the relations between services and products which is required for
designing a PSS. They present a tool which combines service modelling with a life cycle
simulator. The tool allows to analyse alternative PSS designs by quantitatively calculating
economic and environmental performances from a holistic viewpoint. A relatively similar
approach has been presented by Nemoto et al. (2015). They present a framework and software
tool that allows to formalize design knowledge from previous engineering projects and
existing PSS and use those insights for configuring a new PSS offering, but on a rather high
level of abstraction.

2.3. Implications for Comprehensive PSS Engineering Tool
Support

The works we discussed are mostly from the service design view and lack consideration of
physical elements in modelling. However, we argue that there is no single modelling
technique for development of a PSS that tackles the issues sufficiently. Since PSS are rather
complex socio-technical systems, many different perspectives are required to be investigated
for a comprehensive design.

The need for a tool that supports engineers in analysing the dependencies among artefacts has
been recognized for a plethora of different use cases, e.g. for building the links between
requirements engineering and safety analysis (Vilela et al. 2017) or integrating product life
cycle management with service life cycle management of a PSS offering (Wiesner et al.
2015). Also Tang et al. (2006) argue that for complex software systems there needs to be
traceability from rationale to design. The same is even more important for PSS were an even
bigger picture needs to be taken into account. It is however surprising that the need for an
automated traceability tool has been recognized more than 3 decades ago (Dorfman and Flynn
1984) and that still today satisfying solutions to this problem are scarce. In fact, a recent
literature review on requirements engineering for PSS listed conflict detection and resolution
among requirements, dynamic requirement change forecasting smart requirement
management and proactive response as the main challenges to be tackled in the future (Song
2017). Therefore, we aim at enabling an inclusive view by supporting visualisation of
traceability links between different components of a PSS in a model integration ontology.

3. Model Integration

As discussed in section 1, PSS development involves various stakeholders which rely on their
domain-specific models, diagrams or other development artefacts. Therefore, every artefact is
created using specialized software tools, is specified in a domain-specific modelling language
and is serialized as one of many different persistent data formats. Besides, domain-specific
models represent knowledge only from a particular perspective and just a fraction of the

PART B: PUBLICATIONS 153

system is captured. Consequently, a thorough understanding of the comprehensive system
design and the cross-domain dependencies is missing.

One way to address this problem is to use a single modelling language across all involved
engineering domains. However, this approach comes with a huge disadvantage. The more
concepts and logics a modelling language is capable of expressing, the more complex and
complicated to comprehend it gets. Thus, establishing a single comprehensive modelling
method covering all different aspects of a system leads to a complex and confusing
representation (Eisenbart et al. 2012).

On the other hand, analysis of a PSS using models from different perspectives lacks
consideration of relations between these models since many elements are interdependent.
According to Chen et al. (2008), the lack of interoperability across the different departments
of an enterprise is caused by interoperability barriers on four different levels (data, service,
process and business). In our approach we focus on overcoming the issue of interoperability
of data, since this is the fundamental layer for the integration of PSS components across
conceptual, technological and organisational barriers. However, we encourage others the
advance our work in order to support interoperability on a higher level.

We address the interoperability issue on the data level by proposing an integration ontology
which specifies the generic artefact types (entities) that are used by the various DSML as well
as the types of semantic relationships that can exist between those artefacts. This framework
enables stakeholders with separate perspectives to analyse the relationships between their
models and the others'.

To integrate models in one cross-domain representation, transformations from different
domain-specific models are required. Thus, first we discuss briefly what types of model
transformations exist; later the approach of this work for integration of different models is
presented.

3.1. Model Transformation

Since in practice, most of the models are graph-based or can be transformed into a graph (also
natural language expressions can be viewed as a graph), we analyse mainly the graph-based
transformations. In general, several types of graph-based model-to-model transformation
methods exist. We categorize these methods based on two general criteria and explain each
category separately.

Graph-based transformation methods can be direct or indirect based on whether models are
transformed directly to each other or an intermediate model is applied. If the transformation
mechanism requires both source and target models to be in the same technical space, we call
it syntax-dependent transformation. On the contrary, syntax-independent transformations are
not based on a particular language.

With regards to the introduced criteria, we classify all graph-based transformations into four
categories (c.f. Table 12).

PART B: PUBLICATIONS 154

Table 12: General Types of Model Transformations

Direct Syntax-dependent Direct Syntax-independent

Fixed Intermediate Language Flexible Intermediate Language

Direct transformation methods define a set of rules which transfer source model to target
model without use of an intermediate model. Direct syntax-dependent transformations
requires both source and target models to use the same technical space (e.g. XML). In
contrast, direct syntax-independent methods are not coupled to a particular technical space.
This type of transformations first parses the source model into the syntax of target model's
technical space, then map the parsed model to the structure conforming to the target model's
meta-model (Mens and van Gorp 2006). While direct syntax-dependent methods can enclose
the maximal possible transmittable detail from the source model to the target model (Varró
and Pataricza 2004), such methods are very limited regarding the languages which can be
supported due to their binding to a concrete syntax. Syntax-independent direct
transformations resolve this issue by decoupling the transformation description from the
technical space of the involved languages. For every pair of source and target models, direct
transformations requires an explicit implementation. For example, Medvidovic et al. (2003)
present a model integration approach that uses direct mappings from one modelling language
to another. However, this approach is primarily focused on syntactical issues than on
semantics (meaning) of the relationships between artefact and it requires individual mappers
for each pair of modelling languages that is to be covered. This problem has been addressed
by indirect transformations.

Indirect transformations rely on a well-defined intermediate language and each transformation
process involves transforming from the source model to the intermediate language and
afterwards, transforming from intermediate language to the target model (Czarnecki and
Helsen 2006). We refer to a syntax-dependent indirect transformation as fixed intermediate
language transformation and similarly syntax-independent indirect transformation as flexible
intermediate language transformation. The intermediate language of a fixed method is defined
in the same technical space of the source and the target models. Flexible indirect methods are
not bound to the underlying syntax of a technical space, but rather the intermediate language
is only expressed in its concepts. Thus, with higher level of abstraction, the intermediate
language can support more models and be more flexible regarding in future improvements
and changes (Bézivin et al. 2006). The great advantage here is that one does not require a
separate set of transformation rules between every two domain-specific modelling language
but only between each domain-specific modelling language and the intermediate language.

PART B: PUBLICATIONS 155

4. TRAILS Integration Method

In its core, TRAILS is founded on two basic concepts, model integration and model
transformation with the latter being a prerequisite for the first. In a nutshell, the basic ideas
behind TRAILS is to interrelate all available engineering information within a semantic graph
by transforming various kinds of domain-specific models and other engineering artefacts into
a format that conforms to a cross-domain model integration ontology. We explain these basic
concepts in the following in order to lay a solid ground for further explaining the core features
of TRAILS.

4.1. Model Integration Ontology

As presented in detail in some of our earlier publications (Kernschmidt et al. 2013;
Wolfenstetter et al. 2014; Wolfenstetter et al. 2015b), we developed an ontology of PSS
engineering artefacts whose evolution needs to be captured in order to ensure traceability.
However, this ontology is not solely focused on ensuring traceability but also on the more
generic issue of integrating engineering information which is an essential prerequisite for
ensuring traceability. In this sense, it defines the fundamental ontological concepts in the
context of PSS development and during service provision, such as requirements, actors,
business processes or decisions made in the engineering process. Additionally it specifies
which types of semantic relationships can exist between those ontological concepts. For
example, a solution component satisfies a requirement or an actor performs an activity. For
the purpose of merging the engineering knowledge distributed over several domain-specific
models, every artefact that is imported into TRAILS is translated to comply with this model
integration ontology. This means that the domain-specific ontologies that are defined by the
meta-models of the domain-specific modelling languages are mapped onto a common
language using the proposed ontology as a meta-model. In the following we explain the
structure of the model integration ontology in detail.

The model integration ontology uses on the most abstract level three basic Elements to
describe the artefacts of PSS engineering and their dependencies. These Elements are Nodes,
Edges and Attributes with each of them being hierarchically further decomposed into more
concrete types of ontological concepts.

The general purpose of Attributes is to capture descriptive information such as duration,
weight, price or colour of ontological entities as well as meta-information (e.g. name, id, date
of creation etc.); basically everything that cannot be considered as an entity itself. Naturally,
attributes can have attributes themselves, for example names or units. Furthermore, it is
possible to define Relationships between Attributes to e.g. define the mechanics of unit
conversions.

Regarding Edges the TRAILS model integration ontology differentiates between Flows and
Relationships (c.f. Figure 34). On the one hand, Flows characterise the transferral or
transmission of value, material, energy or information between two entities or describe the
order of activities in a process, i.e. Control Flow. On the other hand, there is the concept of

PART B: PUBLICATIONS 156

Relationships which are universally valid while Flows have a cause and are bound to a
defined period of time in which they occur. In this context, the TRAILS integration ontology
distinguishes Causal Relationships (e.g. create), Chronologic Relationships (e.g. evolves to),
Referential Relationships (e.g. refers to), Inclusion Relationships (e.g. part of) and Inheritance
Relationships.

Figure 34: TRAILS Model Integration Ontology: Edge Types

As with Nodes, we further differentiate between two generic types (c.f. Figure 35). Solution
Artefacts represent the solution to the original customer problem, i.e. the features, behaviour
and (component) structure of the PSS itself. Development Artefacts specify the problem
domain and the process of working on a solution to these problems, i.e. the development
process. Additionally, since PSS are socio-technical systems, humans that interact with the
PSS or are by other means related to the development of the PSS or to service provision are
summarised as stakeholders and on more concrete levels of the ontology decomposed into the
various sub-types.

PART B: PUBLICATIONS 157

Figure 35: TRAILS Model Integration Ontology: Node Types

As discussed, Development Artefacts are supposed to contain information related to the
development and they are not part of the resulting PSS. On a more detailed level, we
distinguish between five different sub-types of Development Artefacts in PSS engineering.
First, Requirement Artefacts are used to structure and define the problem for which the final
PSS represents a solution.

In the context of PSS engineering, requirements can be broken down into four levels of
abstraction. On the highest level, business goals of the PSS are being defined. Based on these
business goals, system level requirements are derived which represent for example the needs
of stakeholders, environmental considerations and business process demands. In the next step,
design level requirements are elicited to address the details of system level requirements.
Again, at the most detailed abstraction level the design level requirements are translated into
domain-specific requirements which all different involved domains(e.g. software engineering,
mechanical engineering or service engineering) can work with.

Specification Artefacts are means to describe requirements or system designs by using
different techniques. Specification Artefacts can take various forms. Most commonly they
appear as natural language texts, graph-based models or other sorts of diagrams. However,
also sketch drawings, other kinds of illustrations and even videos could serve as Specification
Artefacts.

PART B: PUBLICATIONS 158

Test Artefacts are any kind of artefact that serve in the process of checking whether the
solution satisfies the requirements. Hence, the variety of potential Test Artefacts ranges from
mathematical or logical proofs to computational simulations, experiments to informal
methods, such as stakeholders' feedbacks.

Production Artefacts capture and represent knowledge that is relevant for the manufacturing
process of hardware components of the PSS. This includes for example, the machinery within
the assembly line, equipment used during the process or the specification of the
manufacturing process itself. This way it is possible to link physical PSS components to the
manufacturing process and trace whether changes to the design of hardware components
impact the set-up for component manufacturing.

Management Artefacts keep track of issues initiated in development of a PSS. For example a
change request or a decision information are considered as Management Artefacts. They are
predominantly of use when tracing the evolution of other types of Development Artefacts over
time.

Stakeholders represent different types of roles who are involved in the PSS life cycle.
Handling complex network of stakeholders in a PSS is challenging due to several reasons.
Since a PSS requires a new business model, the entire organization of PSS provider is
affected and consequently new requirements for each department should be addressed.
Besides, by adding services to a core product, new range of stakeholders will be included in
development of a PSS. In the ontology we distinguish between two general types of
stakeholders: Internal Stakeholders and External Stakeholders. Internal stakeholders refer to
all units and collaborators to providing the PSS. In contrast, external stakeholders are not part
of the PSS providing organization.

Solution Artefacts refer to components which construct the PSS including products and
services. In the meta-model we classified Solution Artefacts into Function Elements,
Behaviour Elements and Structure Elements. Solution Artefacts satisfy Requirement Artefacts
and they are verified by Test Artefacts.

Structure Elements are fundamental resources constituting a PSS which are categorized to
Product Elements and Service Elements. Both tangible resources, like material, and intangible
resources, like information, contribute to structure elements. The system performs some
workflows and processes in order to accomplish a target function. These workflows and
processes are presented in the Behaviour Element and the functions of the system are
presented in Function Element.

PART B: PUBLICATIONS 159

4.2. Model Transformation Process

To consolidate the engineering information that is contained in the various domain-specific
models, TRAILS transforms these models into a semantic graph that conforms to the model
integration ontology presented in the preceding section.

In order to support model transformations between different technical spaces and serialization
formats, the model transformation process itself is divided into two independent steps. First,
so-called I/O mappers are used to de-serialize various data formats, such as ReqIF, XMI or
even CSV, and representing them as a generic graph structure. In this context, generic graph
representation means that the resulting data structure consists of only untyped nodes, edges
and attributes. At this point, the concrete syntax that is used by domain-specific modelling
and engineering tools has been transformed into an abstract syntax that still conforms to the
the meta-model of the source modelling language. As a second step, model mappers
transform the generic graph into a semantic graph that conforms to the specifications defined
by the model integration ontology. To ensure a high level of transformation accuracy,
TRAILS uses customized model mappers for each domain-specific modelling language.
However the general mode of operation is similar for each model mapper.

Each model mapper contains a set of rules that specify an equivalent for every node, edge or
attribute of the respective meta-model within the model integration ontology. In the most
simple case, each element can be mapped on one equivalent element of the same type (e.g. a
node type being mapped to another node type). However, in other cases mapping patterns are
more complex. For instance, a set consisting of two nodes that are linked by a certain type of
edge could be mapped to one single node with a certain attribute. Overall, each model mapper
uses a sequence of atomic transformation operators illustrated in

Figure 36: Generic Transformation Operators

Probably the most intuitive transformation operator is to map one type of element from the
source model to an analogical element of the target model, i.e. edge to edge, node to node and
attribute to attribute. In this case, the mapping operator works bi-directionally and each

PART B: PUBLICATIONS 160

element can be considered as the equivalent of the other. Simply speaking, this operation does
merely just change the name of corresponding type to the one defined in the target model. Of
course, performed on nodes and edges, this operation entails analogous operations on their
attributes as well.

The insert transformation operator is mainly performed on two nodes that are connected by
an edge. For a certain pattern (node A connected by edge 1 to node B) this operator splits the
edge into two and inserts a predefined node X at the junction. Amongst others, this operator is
used for in cases were the meta-model of a domain-specific modelling language would not
allow a direct edge between two nodes. For example, the Event-driven Process Chain (EPC)
meta-model does not allow a control flow from one activity to another, but only between
activities and event. So when transforming a UML activity diagram via the model integration
ontology to an EPC model, additional event nodes need to be inserted. As depicted in Figure
36, there is also an analogous skip operator that performs the inverse of the insert operator.
This means, when detecting a node X that is connected to A and B via an edge of type 1 it
removes X and links A and B directly.

When transforming models, it is often the case that for certain elements in the source model
their equivalent in the target model misses important attributes. In this context, it is often
necessary to create an additional node to capture the information that would otherwise get
lost. Also, some modelling languages allot that certain nodes only appear in connection with
other nodes. For example, in UML use case diagrams, use case always need to be directly or
indirectly linked to actors. Vice versa, the hide operator ignores for example nodes in the
source model that are not intended in the target model. Wherever possible, it preserves the
information contained in the discarded node by adding it to the one that is maintained.

Another inverse pair of atomic transformation operators are used to split or merge nodes.
When specified for a certain type of node within the source model the split operator creates
two separate nodes of another type than the original node connected by a pre-defined edge.
This kind of operator is required usually if an element in the source model has no direct
equivalent in the target model. In this case, after the transformation the information that was
before carried by one node is split onto two separate nodes. An example for this approach can
be found when transforming a BPMN diagram into a format compliant to the model
integration ontology. While gateways in BPMN contain the decision that is being made as
well as the logical consequence (i.e. which control flow is being followed after the decision)
the concept specified differently in the integration ontology. Here, the activity and the logical
conjunction (AND, OR, XOR) are treated as two separate nodes. Therefore, when importing a
BPMN diagram TRAILS will apply the split operator and vice versa, the merge operator
when exporting to BPMN.

By separating the model transformation process into I/O mapping and model mapping each
I/O mapper can be used for transforming various modelling languages or meta-models
respectively. Correspondingly, each model mapper is able to transform a specific type of
meta-model into a graph representation that conforms to the model integration ontology for
PSS that is used in TRAILS. Apart from importing various domain-specific models, TRAILS

PART B: PUBLICATIONS 161

is also capable of exporting the integrated PSS engineering information into domain-specific
model languages and data formats. For this purpose, the model transformation process, as
described before is reversed.

5. TRAILS Features

TRAILS pivotal mission is to support various stakeholders along the PSS life cycle in
integrating, analysing and enhancing the knowledge that is often spread across and hidden in
the multiple different engineering artefacts. The tool therefore provides a number of features
related to import, merging, editing and analysing graph-based models from various
engineering domains.

5.1. Importing Models

The core ability of TRAILS is that different types of model specification formats can be
imported and transformed into the cross-disciplinary representation defined by the TRAILS
Model Integration Ontology. Furthermore, the entire semantic graph that results from
integrating the various types of PSS engineering artefacts can later be entirely or in parts
transformed into other formats supported by the tool.

One type of specification formats supported by TRAILS is for example the rather text-
oriented Requirements Interchange Format (ReqIF). ReqIF is a format based on XML
which enables stakeholders with different modelling and requirement authoring tools to
collaborate by exchanging their requirements' information.

Since PSS intend to be solutions to specific needs it is crucial for the PSS provider to fulfil the
customer's requirements as complete as possible. Requirements engineering is thus one of the
most important activities both during PSS development as well as service provision. Due to
the dynamic business environment in which PSS compete, requirements eventually change
over time and the PSS needs to be adapted accordingly. By linking the information that is
contained in requirements documents to system design models of the product components or
process models related to service delivery it is possible to anticipate the impact of changing
requirements on the PSS design more accurately and anticipate the consequences. The
information that is needed in this context can be imported from distinct requirements
engineering tools using the ReqIF format.

Two other important modelling languages that are relevant in PSS engineering are the
Unified Modelling Language (UML) and its almost twin brother, the Systems Modelling
Language (SysML). UML, the older of both brothers, originated from software engineering
and was developed to provide a common platform for system architects and software
developers to communicate over system analysis and implementation.

When recognizing the advantages of a notation that allows logically decomposing complex
systems, UML subsequently entered the mechanical engineering domain and was adapted to
fit its characteristics. The resulting modelling language SysML extends a subset of the basic
UML diagram types but also introduces new concepts, such as ports. So, while UML is a

PART B: PUBLICATIONS 162

more software-oriented modelling language, SysML aims at modelling and designing
complex systems that rather stem from the mechanical engineering domain. However, both of
them offer various diagrams for specifying a systems structure as well as its dynamics.

While UML and SysML can be used to specify the rather technical aspects of a PSS, namely
the hardware and software components, the service engineering domain mostly relies on
notations to specify business processes. Widely used modelling techniques for business
processes are the Business Process Modelling Notation (BPMN) as well as Event-driven
Process Chains (EPC). An EPC, for example, is an ordered graph of events and functions
that enables describing alternative and parallel execution of processes and it is enhanced with
logical operators like AND, OR, etc. The structure and notation of both, BPMN and EPCs, is
very similar and they are often supported by the same software tools, e.g. MS Visio. We thus
chose this software tool as an example to show the import of such process models.

 Although they are not commonly referred to as modelling languages, TRAILS supports the
import of (and export to) other important formats. For example, the Resource Description
Framework (RDF) is a general technique for conceptual description of resources. It is widely
used in the context of semantic web applications for specifying entities and their semantic
relationships to each other forming an ontological graph that explains real world concepts.
TRAILS uses the RDF format to define the structure of the model integration ontology it uses
internally as a model representation format. Furthermore, it is used to define the model
mapping rules that are applied when importing and exporting models in another language.
RDF models can be serialized in various formats, the most important being probably the
RDF-XML format and the Terse RDF Triple Language (TTL) which is a serialization
format that is easier for humans to read than the widely used RDF-XML format. Since RDF is
a technology that is used across various domains in order to structure and represent
knowledge in a graph-based form, we chose to support both formats in TRAILS.

5.2. Merging Models

Since PSS aim to be customer-centric solutions in which the individual components need to
be integrated seamlessly to provide the desired service and guarantee a enhanced customer
experience, developers need to be able to evaluate how the design and the behaviour of the
individual components impacts each other. In order to do so, it is helpful to identify and
explicitly model the dependencies and overlaps among the various domain specific
development artefacts involved in the PSS development.

For this purpose, TRAILS allows to merge the various models of a PSS, each describing a
specific viewpoint on the system as a whole, by identifying common concepts or entities in
the different models. After importing the different domain specific models into TRAILS they
are merged into a semantic graph with the nodes of this graph representing entities or real
world concepts, respectively.

Each time a new model is imported, TRAILS can perform model merging operation to
determine the overlaps of the newly imported domain-specific model with the integrated
model in the database. In order to identify model overlaps, i.e. similar nodes or sub graphs,

PART B: PUBLICATIONS 163

TRAILS uses three types of similarity calculation methods, each consisting of multiple
approaches. First, model overlaps can be determined by calculating the similarity of the
descriptions or captions of model elements. Examples of such approaches are String Edit
Distance or Levenshtein Distance that reflect how similar the captions of two model elements
are. Second, TRAILS is able to determine the similarity of model elements by evaluating their
attributes. In general, model elements that have some identical attributes tend to be similar or
at least closely related. And third, TRAILS uses a method we call context similarity
evaluation. This method determines the similarity of two nodes based on the similarity of
their neighbours. According to this method, two nodes have a high similarity if their adjacent
nodes in the graph appear to have the same type, name or other attributes. In model-based
engineering it is reasonable to expect that model elements with similar adjacencies are closely
related or identical.

The different model similarity indicators can be combined flexibly to allow for optimal
merging results. TRAILS then presents the results of the similarity calculation to the user
ordered by a combined similarity measure. For each pair of likely similar elements the user
can the select to merge two nodes into one, link the nodes using an edge that describes their
relationship (e.g. new version of) or ignore the similarity. By offering comparison algorithms
that can be combined flexibly, TRAILS provides the means to implement automated
procedures for traceability maintenance as proposed by Maeder and Gotel (2012) when it
comes to changes along the engineering life cycle.

5.3. Adaptable Cross-domain Model Integration Ontology

As stated before, when importing models from external software tools that are described in a
certain domain-specific modelling language or format, TRAILS maps those imported models
onto a cross-domain ontology (cf. Section 4.1) that has the expressive power to integrate the
viewpoints of multiple engineering domains.

Although the TRAILS model integration ontology incorporates concepts from various
domain-specific modelling languages, it is not feasible to consider every modelling language
or format ever invented. In fact, more or less every company uses some self-developed legacy
software tools or data formats that they customized to their needs. They vary from customized
and extended off-the-shelf engineering tools to simple spreadsheets enhanced by using
macros.

In order to deal with the issue of having to interoperate with non-standard software tools and
data formats, the TRAILS integration ontology can be modified and extended by the user
according to individual, context-dependent needs. This feature allows the ontology to be
adapted to specific needs of the application environment, such as specific industry or project
characteristics. This way, it is also possible define additional ontological concepts that are
needed in order to import artefacts which are specified in further modelling languages or data
formats that are not part of TRAILS standard implementation. However, if the integration
ontology is altered, in some cases rules for model mapping have to be adapted as well. In
TRAILS, the integration ontology as well as mapping rules can be accessed, managed and

PART B: PUBLICATIONS 164

modified directly within the graphical user interface. Furthermore, the files containing this
information can be exchanged with other users.

5.4. Editing Models

Although TRAILS supports the user in producing an integrated model of the PSS from a
number of different sources by offering smart merging algorithms, in some cases there is need
for manual editing. This way, the user is able to add missing links or clean up duplicate
information, both of which are very likely to cause inconsistencies within the product design
and specification. Again, in some cases such inconsistencies ultimately lead to product
failures and costly callback if they remain undetected.

Furthermore, it is possible to create new nodes, add them to the integrated PSS model and
complement or adjust attributes. Hence, the user can add details to the system specification
that could not have been expressed in the source modelling tools. By doing so, the user is able
to enrich the system model by adding additional information that is required for e.g. change
management or requirements tracing. Thus, instead of limiting itself to just importing,
processing and interpreting data that has been created using other software tools TRAILS
allows the user to edit or delete the nodes and edges that the imported models consist of.

5.5. Customizable Appearance and Standard Graph Layouts

The fundamental idea of TRAILS is to structure and illustrate the entire knowledge about the
product or solution being developed and the development process itself as a semantic graph.
This graph consists of nodes which represent any kind of artefact created in the engineering
process as well as edges which represent different types of relationships among these
artefacts.

As a consequence, the visual appearance of this graph determines the comprehensibility of the
model and consequentially the usability of the TRAILS software tool. PSS engineers not only
need to understand the increasingly complex technical products that are part of the PSS
solution but also the dynamics of the business processes in which the service is provided to
the customer. Therefore, intuitive presentation of engineering information and the possibility
to interact with the semantic graph are crucial features. This way, TRAILS supports the user
in revealing hidden information through rearranging the graph or highlighting certain nodes or
edges.

Specifically, TRAILS allows automatically arranging the displayed graph in one of several
pre-defined standard graph drawing strategies, such as circular or force-based layouts.
Furthermore, the user can rearrange nodes manually and expand or compress nodes that
contain sub-graphs.

In addition to that, the tool offers the possibility to customize the appearance of nodes and
edges. The user can select the standard colours for each type of node and edge in order to
facilitate visual differentiation. Moreover, it is possible to choose between multiple node
shapes or embed individual icons or images for each type of node.

PART B: PUBLICATIONS 165

5.6. Customized Filtering and Viewpoint Creation

The analysis of integrated engineering information as it can be performed using TRAILS is in
some ways a double-edged sword. On the one hand it is desirable to collect and integrate as
much information as possible from various domain-specific models, documents and other
sources. On the other hand, one quickly obtains a tremendously complex network of
interrelated artefacts that in all its details is hardly comprehensible for the human analyst at
first sight.

However, most analysis tasks only concern a minor fraction of the nodes and edges that form
the integrated PSS model. In addition to various graph layout options, TRAILS provides a
customized filtering feature. This feature allows the user to filter the graph according to node
types, edge types and even attribute values in order to decrease the amount of information
visualized to what is actually needed for performing the analysis. With the possibility to only
display a certain fraction of the nodes and edges that form the graph the user is better able to
e.g. follow the evolution of a particular requirement over time or oversee just the information
flows within the PSS.

In TRAILS these customized filters are referred to as viewpoints on the semantic graph.
These viewpoints can be defined manually by the user or loaded from pre-defined templates
that serve specific purposes or reflect a certain role in the engineering process, e.g. the
requirements analyst. Once defined, a viewpoint can be saved to the viewpoint selection for
future use. In addition to simplifying the visual appearance of the integrated PSS model,
viewpoints allow restricting access for certain roles, e.g. when engineering information needs
to be shared with external stakeholders.

5.7. Matrix View and Spreadsheet Integration

In some engineering disciplines like mechanical or industrial engineering matrix-based
engineering tools such as design structure matrices (DSM) or domain mapping matrices
(DMM) are continuously popular. Although these tools are often naturally grown legacy
systems, they are widely used across various industries and most companies use at least one
tool of this kind in their engineering process.

For some use cases, like generating supplementary nodes or capturing a larger number of
traceability relationships, matrices constitute a more convenient form of visualisation. Using
matrices a larger number of nodes can be arranged in a space-saving manner allowing for a
more compact overview of the overall system structure. Hence, besides the default graph
view, TRAILS also provides the possibility to visualize the semantic traceability graph as a
matrix. Similar to the graph view, TRAILS allows customized filtering and viewpoints in the
matrix view as well. Moreover, all graph editing operation can be performed the same way
using the matrix view. This way, the user is able to switch between both forms of
visualisation flexibly using the perspective the fits best for the respective task (Tilstra et al.
2010).

PART B: PUBLICATIONS 166

Another reason why many companies still use such matrix-based engineering tools is is that
they can be implemented using standard office software for spreadsheet calculation. This way,
matrix-based engineering tools can be flexibly used and easily adapted. In order to ease
integration with such tools, TRAILS allows exporting the semantic traceability graph or parts
thereof to common spreadsheet formats so that the data can be analysed using existing matrix-
based analysis tools.

5.8. Multi-user Capabilities and Database Server

As technical products become more and more complex, so have the processes of their
development. Today, the development of technical products usually involves a team of
specialists from multiple engineering domains to design and integrate the various
components, i.e. hardware, software and in many cases services. Hence, the typical
engineering process and with it engineering software tools are increasingly shaped by the
need for collaborative and concurrent team activities.

The need for supporting collaborative engineering through adequate tools is even more
prominent when multiple companies are involved in solution design and service delivery. The
various stakeholders from different companies sometimes distributed globally need to be able
to work concurrently on a central instance that serves as a single point of truth for the
integrated PSS model.

For this purpose, TRAILS provides the possibility to store all engineering data on a central
graph database server. In our current implementation we use the open-source framework
Apache Jena as database to store RDF data together with Fuseki Server for serving RDF data
over standard internet protocols, such as HTTP. This way, multiple installations of TRAILS
can be used concurrently and synchronize updates with the central database.

6. Case Study: Bike Sharing System

In this section, we explain a bike sharing system situation as a PSS example to clarify how
TRAILS can support PSS development. The bike sharing system is not a hypothetical
example but was implemented as a functioning prototype at our university with multiple
departments collaborating extensively. Overall, service processes where designed, software
components (such as central database systems and a mobile application) where implemented
and the necessary modifications to a bike where engineered and built in order to set up a
functional prototype of a bike that operates within a free floating bike sharing system. This
way, it was possible to have control and unlimited access to the whole PSS engineering
process which would not have been the case in a real industry example. Even though TRAILS
was evaluated in a much more detailed case study than can be presented here, we admit that
several industry case studies are desirable in order to evaluate the true potential of our
software tool. Nonetheless, we think that a simplified version of our case study gives the
reader a better idea of what TRAILS is and how it functions.

In order to understandably present our case we only describe the high level architecture of the
system. In this conjunction, our goal is not to present every feature of TRAILS in detail, but

PART B: PUBLICATIONS 167

to give the reader a general overview of the idea behind our tool using an intuitive application
scenario. Bike sharing systems are a typical example of a PSS with the aim of providing
mobility as a service to customers. In our case study the PSS provider o
ers bikes on an on-demand basis to customers at multiple sharing stations within the city
limits. The bikes can be rented by registered customers simply by entering their customer ID
and PIN at one of the bike sharing stations and one of the bikes would be released. The
customer can then use it on a pay-per-minute basis and then return it at the same or any other
of the bike sharing stations. After returning the bike, the amount due is charged to the
customer’s credit card. From an architectural perspective, the bike sharing system is
composed of stations that feature a keyboard and screen as a user interface. Besides, stations
are equipped with an external power supply and they communicate with the back-office fleet
management system using a mobile telecommunications module (UMTS module). Bikes can
be locked to the stations via an electric lock. This lock is released when the customer rents
one of the bikes. The back-office fleet management system, which operates in the
background, is further linked to a central database as well as a payment system (c.f. Figure
37).

Figure 37: SysML block diagram of the stationary bike sharing system

As in a PSS we are not only dealing with products, but also services, to achieve a full
understanding of the bike sharing system, it is necessary to consider the dynamic service
processes (c.f. Figure 38). When a bike is needed, the customer walks to the next sharing
station and enters his user ID into the user interface. The sharing then checks the user ID for
validity by communicating with the central database. If the user ID is valid, the system will
change to the next screen, where the customer can enter his PIN, which again will be checked
for validity in the database. If this PIN is also correct, the sharing station then releases one of
the bikes by opening its electric lock.

PART B: PUBLICATIONS 168

Figure 38: EPC of the rental process in the stationary bike sharing system

We consider the case that the bike sharing provider re-investigates market trends as well as
technological possibilities in order to improve its customer service and reach out to new
market segments. The bike sharing provider reaches the conclusion that it should change its
business model from offering stationary bike sharing to offering a free-floating system where
customers can pick up or leave the bike anywhere in the city area. Figure 39 depicts a
requirements document containing selected requirements for the free-floating system that
influence some of the existing structural components and services processes which need to be
adapted according to the new business model.

Figure 39: Excerpt of requirements document for free floating bike sharing system

In order to satisfy these requirements, architecture of the bike sharing system needs to be
adapted. As the sharing system no longer depends on fixed stations, there has to be an

PART B: PUBLICATIONS 169

alternative way for customers to locate the nearest available bike. In the new system
architecture a smart-phone application that customers can install on their device will display
the location of bikes on a map. This smartphone application needs to be able to communicate
with the central fleet management system, which will store and continuously update the
position and availability of nearby bikes. Furthermore, the user interface and electric lock that
used to be part of the fixed sharing stations now need to be integrated into the bikes
themselves. In order to be able to communicate with the back-office fleet management system
for updating the bikes location or checking the users’ credentials the bikes need to be
equipped with a UMTS module as well as a GPS receiver. All of the electric equipment
furthermore needs to be powered by a battery attached to the bike.

Figure 40: SysML block diagram of the free floating bike sharing system

Apart from the system structure, the service processes need to be adapted as well. As an
example, we again take the rental process (c.f. Figure 41). This process has been adapted in
order to fulfil the requirements of the new business model. If a bike is needed the customer
first opens the bike sharing application on his smart-phone, which then checks for nearby
bikes and displays them on a map. The customer can then select one of those bikes and
reserve it for the next few minutes, until he reaches the bike. A reservation request is directly
sent to the fleet management system (FMS), which then updates the bike’s status in the
database and forwards the reservation request to the bike. When the customer then reaches the
bike, he can proceed as normal by entering his user ID and PIN into the user interface
attached to the bike. The credentials are sent to the fleet management system and if correct,
finally the electric lock opens.

PART B: PUBLICATIONS 170

Figure 41: EPC of the rental process in the free floating bike sharing system

In order to record the changes of the system architecture as well as the rental process in
TRAILS we need to capture the changes in all affected development artefacts, i.e. the SysML
block diagrams, the EPC process models and the ReqIF requirements document. As we map
the different versions onto each other and also link the altered requirements to the solution
artefacts that fulfil those requirements, we can easily understand which parts of the system
need to be adapted an how. In order to do so, the different versions of the SysML block
diagram need to be imported into TRAILS. When merging several source models into one
comprehensive description of the system and its evolution, TRAILS offers several
comparison algorithms that support the user in identifying model overlaps and common
elements. Figure 42 shows this step in the process of merging the block diagram of the
stationary bike sharing system being merged with the altered requirements document.

PART B: PUBLICATIONS 171

Figure 42: Configuration of comparison algorithms for merging models

At this stage, the user can select which of the comparison calculations (as introduced in
Section 5.2) should be performed. Here, it is also possible to select multiple comparison
algorithms and calculate a combined weighted similarity score. TRAILS then evaluates the
similarity of elements within the two models that are being merged and displays them as a
sortable list. The user may then decide which of the pairs of nodes should be linked or merged
into one. The result of comparing the block diagram of the stationary bike sharing system
with the requirements document can be seen in Figure 43. For this merging process an equally
weighted combination of vector space model comparison and string edit distance was chosen
in order to identify similarly named entities. In this example we see that even though the
algorithm has to operate on a very simplified requirements document that contains only
captions and not the requirement descriptions themselves, we can easily identify solution
artefacts and requirements that are related.

PART B: PUBLICATIONS 172

Figure 43: Merging Results of Requirements with Block Diagram for a Stationary Bike Sharing System

Having merged the specification of the system architecture, TRAILS provides a visualisation
of the combined model. This way, the user can explore the model visually in order to get a
clearer understanding of the inherent system structure and complement missing links between
related elements of the models. As illustrated in Figure 44, TRAILS not only shows which of
the requirements impact a certain solution component but also shows the internal break down
structure of the requirements document. Consequently, the user is able to deduce the
dependencies between individual requirements. In this context the user can furthermore
chosen which types of semantic relationships to highlight or which to fade out, thus
increasing clarity of the visualised dependencies.

PART B: PUBLICATIONS 173

Figure 44: Linking Requirements to Solution Components

To trace the changes regarding the system components that result from evolving the bike
sharing business model from stationary to free float, a next step would be to merge the the
current system architecture as depicted in the SysML block diagram with the future
architecture that was specified according to the new requirements. By doing so, engineers can
see at first glance which components have been changed. However, changes not only manifest
themselves in the architectural setup of the system, they also incur in the system behaviour,
i.e. the business processes. Again, changes in the business processes may impact the system
architecture. Thus, it is advantageous to visualise which components are involved in
performing certain service processes. Figure 45 shows the result of merging the SysML block
diagram that reflects the structure of the PSS with the EPC diagram illustrating the bike rental
process. Through visualisations like this, engineers can easily identify which components are
likely to be impacted by a change in the business processes.

PART B: PUBLICATIONS 174

Figure 45: Linking activities to system components

Although the models in our case study are only a very rudimentary description of a bike
sharing system, they permit some insights into the traceability and model integration support
that is offered by TRAILS. Once imported and merged into a comprehensive system model,
TRAILS stores the resulting semantic graph in a central server-based database that can be
accessed by multiple clients. Throughout the development process new versions of the
solution or development artefacts can be continuously merged with the existing model on the
database. TRAILS will then constantly update the evolution of these artefacts and enable
users to query the semantic graph in order to get new insights.

7. Discussion

As discussed in the first section of this paper, there is no tool that supports integration and
holistic analysis of heterogeneous PSS engineering artefacts along with the dependencies
between those. To address this issue, we developed a tool prototype that enables integrating
models from different domains of PSS engineering, the visualisation of the relationships
among the merged elements and managing the changes through a version management
mechanism. In this section, we discuss the strengths and weaknesses of this tool prototype
including its features and the methods and technologies employed.

Capturing of PSS Artefacts in a Semantic Engineering Graph
As its main functionality, TRAILS allows capturing the relationships between all types of
artefacts like actors, use cases, decisions, process activities, product components and so on.
The graph-based presentation enables easy understanding of the dependencies among an
within artefacts. While most modelling tools only allow the user to view the relationships of

PART B: PUBLICATIONS 175

element within a specific model and others like document management systems focus on the
evolution of as well as the relationships between certain documents, TRAILS is able to do
both, using a graph representation the captures the semantics of engineering knowledge.
However, this advantage can only be realized if TRAILS is capable of processing various
domain-specific meta-models and tool-specific data formats.

Traceability and Change Management
TRAILS keeps the history and evolution of the artefacts by recording the reasons for changes,
the stakeholders involved in realizing a change and all versions of the artefacts. Furthermore,
TRAILS does not only track which models have changed but also which of the entities within
a model have changed. Therefore, engineers are not only supported in understanding the
current structure of the PSS but also they are able to follow its evolution. Consequently, our
tool may increase the awareness of stakeholders during development, which leads to a higher
acceptance of the design decisions and supports making better decisions in further
development. Although its fundamental technical architecture would allow a further in-depth
analysis based on e.g. logical reasoning, TRAILS is however currently dependent on the user
to estimate the further consequences of changes in requirements or solution artefacts and to
document the reason for a change.

Extendible Ontology
Model integration and transformation in order to identify the semantic relationships between
entities of heterogeneous models are a central concept of TRAILS. To this end, the integration
ontology (see Section 4.1), forms the backbone of model integration by playing the role of a
middle language. Moreover, the integration ontology is designed to be adaptable to specific
organisational requirements. Therefore, it essentially defines generic types of artefacts, which
are common in the development of PSS. Along with this, the ontological entities that these
artefacts contain as well as the types of semantic relationships that can exist between them are
defined. In addition, hierarchical inheritance structures of artefacts within the ontology ensure
the compatibility of TRAILS with many modelling languages. However, at the current stage
there are some limitations. To this end, undefined semantic relationships in the integration
ontology are resolved through abstraction during the integration process. This means that if a
certain type of node or edge is unknown in the integration ontology and no transformation
rules have been defined for this situation, the rules for the parent node or edge type are
applied. In this case, TRAILS will still be capable of importing the artefact but some of the
semantic information that is contained in the original model can be lost, e.g. a very specific
type of relationship is replaced with a more generic type.

Visualisation
Another key idea behind TRAILS is that visualisation of the integrated engineering models in
a way that the structure and dynamics of a PSS can be understood intuitively. By presenting
the integrated engineering knowledge in an appealing and convenient form to the user, they
can perform visual analysis of the models making use of the fact that humans are capable of
visually detecting complex patterns than machines can't. Accordingly, the main features
actualizing this goal are: graph layouts and customizable shapes for graph elements. Besides,
TRAILS provides a matrix presentation, which automatically is derived from the graph-based

PART B: PUBLICATIONS 176

presentation. In addition, user can create custom views that highlight some types of nodes and
edges while hiding others. However in this context, visual analytics should not been seen as a
substitute for rule-based analysis or reasoning but more as a complementing instrument.

Simulation
In many cases, there are various alternative PSS designs combining different features of
products and services. As every design decision leads to a different performance and costs for
the final PSS, it is of high importance to evaluate and prioritise PSS design alternatives
(Alfian et al. 2014). However, service components of a PSS impose highly stochastic
behaviours to the system, which makes evaluation of a PSS design challenging (Kimita et al.
2012). PSS literature widely proposes simulation as the method to assess PSS designs. To this
end, numerous interdependent aspects and measurements need to be addressed in a PSS
simulation, such as product and service usage factors e.g. usage frequency and duration, life
cycle-related factors, e.g. reusability and maintenance, and environmental impacts (Kimura
and Kato 2002; Garetti et al. 2012). PSS simulation thus needs to consider various of these
factors in order to deliver realistic results.

As argued by Zacharewicz et al. (2017) tight model alignment is an essential prerequisite to
analyse dynamic dependencies through simulation. In its current version, TRAILS aims at
enabling a rather loose coupling between domain-specific modelling avoiding complex and
hard to maintain interfaces (or connectors) between different domain-specific modelling tools.

As TRAILS enables integrating different models such as life cycle models as well as
structural models, it establishes the basis for such complex simulations. To this point
however, the simulation has not been the focus of our work as we primarily aimed at
supporting the model-based engineering approach before implementing functions that support
model-driven engineering.

However, we believe that TRAILS is perfectly suited to host a simulation engine (e.g. based
on system dynamics) that allows analysing dynamic dependencies, such as the impact of
resource availability on the result of business processes.

Comparison with other Tools
To better clarify TRAILS scope of abilities, it is necessary to compare it with other types of
existing tools. Therefore, in the following we compare TRAILS with two major similar types
of tools.

There are a plethora of Requirements Engineering Tools available such as DOORS12,
Rational Requisite13, Integrity14, etc. However, TRAILS does not aim at general management
of requirements, but enabling traceability of requirements through models of development
artefacts and processes. In addition, as Trails has been designed to support managing the life

12 http://www-03.ibm.com/software/products/en/ratidoor
13 https://www-01.ibm.com/software/in/awdtools/reqpro/
14 http://www.ptc.com/application-lifecycle-management/integrity

PART B: PUBLICATIONS 177

cycle of a PSS with a focus on the development stage, it gives a high level understanding of
how each requirement is being satisfied by the PSS.

The other category of tools which TRAILS can be compared is general Modelling Tools like
Visual Paradigm15, Microsoft Visio16, etc. General modelling tools usually illustrate distinct
viewpoints on a specific real world concept, i.e. the component structure of a hardware
product or the logical order of activities within a business process. If the intention is to
understand a certain part of the PSS from a specific viewpoint, one should use such modelling
tools. However, TRAILS takes a different approach by integrating multiple models or
perspectives into a system under development as well as the development process itself.
Therefore, TRAILS enables stakeholders to comprehend the inter-dependencies within the
PSS components.

In summary, the current version of TRAILS mainly offers the architectural foundations to
implement advanced engineering intelligence features. Today, its core functionality is to
import various models specified in DSML and data formats into a comprehensive PSS model
that comes as a semantic graph. In doing so, TRAILS relies on the resource description
framework as a format for representing the engineering information within a semantic graph.
It is therefore of a great importance to draw the limitations of our approach, not only to better
reflect the scope of this study, but also to expose limitations which we want to encounter in
future work, as we discuss subsequently.

8. Conclusion and Future Work

PSS are complex socio-technical systems that containing multiple physical, software and
service components that need to be seamlessly integrated in order to deliver the desired value-
in-use to the customer. Consequentially, the development and life cycle management of PSS
demands stakeholders from various engineering domains to work together with each of them
using special development methods, modelling languages and engineering software tools. As
repeatedly stated in literature, visualisation and analysis of relationships between the different
engineering artefacts is essential for stakeholders to understand the interdependencies among
components of the system. To close this gap, we presented the our software tool, TRAILS,
which enables integrating models from different engineering domains, capturing and
visualising the semantic relationships among and within merged engineering artefacts.

To this end, first we focused on developing an integration ontology, which acts as a meta-
model to enable model transformation and integration. Besides, the proposed ontology can act
as a traceability reference model capturing trace links between various engineering artefacts.
However, in order to make the tool more flexible in terms of compatibility with third party
engineering tools a desirable feature for the further development of TRAILS is the possibility
to specify model transformation rules through drag and drop combination of atomic
transformation operators. This way, domain experts can add new DSMLs or data formats to

15 https://www.visual-paradigm.com
16 https://products.office.com/visio/

PART B: PUBLICATIONS 178

TRAILS without having to touch the software code by just configuring the transformation
process.

In a case study example we presented a comprehensive PSS model that consists of only five
sub-models (two of them being modified versions of already existing models). However, in a
real industrial case, such a model comprises a much higher number of different sub-models,
each of them featuring a higher level of detail. Thus, in a realistic setting, the semantic graph
would accumulate to several thousand nodes. As a consequence, TRAILS features like role-
based and intuitive filtering need to receive increased efforts. In this context we also see many
promising prospects in further developing TRAILS to realise the potentials of visual
analytics. If engineers are capable of intuitively comprehending the dependencies within a
system, they will most likely be able to provide better solutions.

As next steps, we also will add enhanced team work features to TRAILS. As development of
PSS involves high number of people, features to support collaborative work is necessary.
Collaborative engineering features are critical for an engineering tool like TRAILS.
Currently, the TRAILS back-end database server has limited support for several concurrent
users and managing different versions of a PSS structure caused by editing of different users.
Regarding better multi-user support, the TRAILS back-end offers various potentials for
enhancement including secure user management and data transfer (currently data is served via
HTTP), a revision control system, change management and update broadcasts in order to
better suit the needs of concurrent engineering.

Since TRAILS uses RDF to represent engineering knowledge within a semantic graph, there
is the possibility to enhance the tool by exploiting other standard semantic web technologies,
such as SPARQL, OWL or RIF. By doing so, TRAILS can be equipped with advanced
semantic search functions. Besides, an inconsistency management mechanism can be
developed. For example, based on a user-defined set of rules, inconsistencies among PSS
elements, which are imported and merged from domain-specific models, can be detected.
Right now there is no automatic inconsistency detection and resolution. Hence, manual
inspections are needed to identify conflicts between different models. However, manual
inspection is often an exhausting and complicated process suffering from human faults that
lead to inaccuracy and incompleteness.

In future, TRAILS should be able to automatically check or support the manual inspection in
order to identify the semantic traceability graph inconsistencies. Such inconsistencies could
be violation of fundamental physical or logical laws (deadlock in a work-flow because of
cyclic control flows; self-containment; negative component weight; dimensions of a
component are bigger than its containment; incorrect conversion of measurement units), a
mismatch between a requirement and the solution artefact that is supposed to fulfil this
requirement, contradicting requirements that refer to the same solution artefacts, an unbound
requirement (requirement that is not fulfilled by any solution artefacts), a solution artefact that
does not fulfil any requirement (over engineering), a mismatch between the attributes of a
subsystem and its components (the aggregate weight of components is higher than the
specified weight of the compound). Also, we will implement functionality that aims at using

PART B: PUBLICATIONS 179

the information captured by TRAILS to simulate service provision in order to optimize the
PSS overall architecture.

To sum up, we argued that complex engineering projects, such as the development of PSS
that involve a variety of engineering domains have need for a tool enabling the integration of
heterogeneous engineering artefacts into a comprehensive model for purposes like
traceability, change management or various analysis tasks. Having introduced our overall
concept to tackle this issue, we introduced our prototypical tool TRAILS and presented its
core features. We then demonstrated the possible application of TRAILS in an academic PSS
engineering project using the example of a bike sharing system. Discussing the current
development state, the basic concepts and comparing TRAILS to other types of engineering
tools, we concluded that TRAILS is subject to a number of limitations and showed potentials
for further enhancing the tool. Nevertheless, in summary the holistic concept of TRAILS, i.e.
enabling the integration of various heterogeneous engineering artefacts through abstraction
and model transformations provides a fundamental value-added for various stakeholders
within the life cycle of a PSS.

Acknowledgements

We thank the German Research Foundation (DFG) for funding this work as part of the
collaborative research centre Sonderforschungsbereich 768 - Managing cycles in innovation
processes - Integrated development of product-service-systems based on technical
products’(SFB768).

PART C: DISCUSSION 180

PART C: DISCUSSION

Discussion 181

1 Discussion

As digitalization initiatives gain pace in many companies, more and more engineering
knowledge is being codified in various forms of digital documents, models or in data bases.
This knowledge can be automatically interpreted by machines if it is represented in a properly
structured format. By doing so, the large potentials of proper knowledge management can be
realized in engineering and companies that are making use of this knowledge are awarded
with competitive advantage (Probs et al. 2010). If the knowledge of the individual engineer is
being preserved and organized, it can be turned into organizational knowledge that can be
reused by others. In general, the reuse of knowledge leads to improved processes and better
final engineering designs (Hicks et al. 2002, Rezayat 1999). A key pre-requisite for proper
knowledge capturing, management and consequentially knowledge reuse is comprehensive
traceability of engineering artifacts. It allows to join and connect information from various
sources and hence allows for knowledge to become contextualized (Ramesh 2002). The
concepts developed in this thesis aim at exactly this target. In the following we summarize
and discuss the results contained in the publications of this thesis. We further explain possible
implications for research and practice, we identify some major limitations of our research and
finally we highlight some promising starting points for future research.

1.1 Summary of Findings

In Publication 1 we identify and explain nine types of features that differentiate the
development of PSS from traditional engineering. First of all, the development of a PSS is
coined by the need for seamless (1) integration of the product and service components.
Additionally, these components are characterized by (2) different life cycles and furthermore
many other cycles shape development and service provision. Thus, the development of a PSS
as well as service provision require an (3) intense collaboration of different engineering
domains. As PSS impose (4) solutions to individual customer needs they often need to be
designed as modular system architectures. The individual combination of PSS modules,
sometimes individually for each customer, further results in a (5) high variability of service
provision. Consequentially, a (6) high degree of customer integration is necessary in both,
development and service provision. Moreover, PSS development as well as service provision
imposes (7) organizational challenges and it drives the importance of (8) value network
integration and in many cases, PSS are associated with a certain (9) sustainability goal.

These characteristics of PSS engineering also lead to a similar number of design
recommendations that PSS providers should follow. In particular, PSS providers should focus
on offering solutions that are both, economically and environmentally sustainable, by
focusing on the essential needs of the customer. In order to do so, they need to identify the
essential solution independent requirements at the early stages of the development process
and consider various alternatives of service provision models. This strategy also implies to
actively integrate the customer along all phases of the PSS lifecycle. Since the development
of a PSS requires an intense collaboration of different engineering domains, PSS providers
need to foster the collaboration between stakeholders of all those domains. One important

Discussion 182

factor to facilitate this collaboration is to implement a traceability strategy and manage the
interdependencies between the domain-specific development artifacts.

Having identified major features, that differentiate the development of PSS from traditional
products or services, we used this fundament to determine, whether existing Traceability
approaches were suited for PSS engineering (cf. Publication 2). Our analysis showed, that
none of the existing approaches was recommendable for PSS without restrictions. At the same
time, each approach has a certain characteristic that is advantageous for a certain task of
traceability in PSS engineering. Hence, we concluded that systematic combination and
enhancement of those approaches offers great potential to develop an approach tailored to the
features of PSS development.

From a process perspective, traceability is in general concerned with three fundamental tasks.
First, trace links and other kinds of traceability information need to be captured. Second, they
must be kept up to date continuously and third, one needs to ensure that traceability
information is being used properly. Since these tasks are largely independent from the
specifics of the development project under consideration, this thesis primarily focuses on
viewing traceability from a conceptual perspective and building conceptual models and tools
that can be used along the traceability process as a whole. A first major building block in this
context is a common model or vocabulary for PSS engineering that depicts development and
solution artifacts that are essential to ensuring traceability as well as their relationships among
each other. Such a model can be realized in form of an ontology that specifies the semantic
relationships between the various ontological concepts that appear in the context of PSS
development and service provision. A major difficulty in designing such a model is to make it
universal and at the same time adaptable to the specifics of an organization or a development
project if needed. Hence, to derive such a comprehensive yet customizable traceability
reference model for the development of PSS, we also resorted to the expert interviews and
case studies we conducted in multiple industries in order to identify the various needs of
engineers, software developers project managers and other types of stakeholders. The single
models, that resulted from this step were later to be integrated into a single model.

The results of one of these case studies are illustrated in Publication 3 showing the
relationships between the central artifacts of requirements engineering and engineering
change management. In this context we found for example, that an engineering change can be
viewed as an abstract concept that manifests itself generally in three types of documents. A
change proposal evolves to a change request and after a final decision turns into a change
order that is to be executed. Furthermore, changes can relate requirements as well as solution
artifacts or even production artifacts. In another industry case study (cf. Publication 4) we
analyzed what kind of requirements traceability data structures are needed when following an
agile approach in the engineering process. During this case study we developed a data model
that allows traceability from requirements to solution artifacts and tests within an agile project
setting.

The case studies we conducted show, that there is a further challenge to overcome when
developing a reference model for traceability and providing adequate tools help support

Discussion 183

practitioners in implementing it. As discussed in publication 1, the development of PSS
requires an interdisciplinary system understanding and development process. However, in
practice each engineering domain commonly uses specific modeling languages and tools,
which focus on certain aspects of the system.

There are two ways of solving this issue. First, one could develop one new modeling language
for each and every purpose that fulfills the requirements of all engineering domains involved.
However, such a true universal modeling language would not only be hardly possible to
develop, it would also be impossible to learn for the developers due it's inevitable complexity.
Such a language would be over-engineered for almost every single purpose. The second way
of solving this "integration" issue is much more feasible and desirable at the same time. It's
basic idea to abstract from the various specialties each modeling language has to offer and
only extract those parts of the artifact descriptions that are required for traceability.

In Publication 5 we therefore introduce a concept for a cross-disciplinary model integration
ontology that enables the various domains involved in the development of a PSS to map the
elements of their specific modeling approaches to a joint representation. By doing so, we
abstract from the detailed grammar (meta-model) that is inherent to any domain-specific
modeling language and focus on building a categorization system that structures the various
artifacts and relationships that are being used in these languages.

As a next logical step, we develop a conceptual methodology for model transformation using
this integration ontology (cf. Publication 6). By using various kinds of development artifacts,
such as use case diagrams, class diagrams, business process models or other domains specific
models that are generated during the engineering process anyway, since they are used for
other purposes, it is possible to keep the overhead efforts for ensuring traceability down to a
minimum. Furthermore, by transforming multiple models of a PSS that are created by the
different involved domains (e.g. mechanics, electrics/ electronics, software and services) the
information and modeling artifacts can be (re-)used by the different domains. The presented
transformation approach is based on the integration ontology introduced in Publication 5. It
can handle both, structural as well as behavior models. Besides supporting the capturing of
trace links in PSS engineering as well as keeping them up to date, our semi-automated
approach for the integration of PSS models allows for a more sophisticated and
comprehensive system view for all stakeholders that can be of aid in many areas of PSS
development. Especially for the successful integration of the different components that
constitute a PSS, a joint system model that allows understanding interdependencies is
essential.

With the integration ontology presented in Publication 5 and the model transformation
approach introduced in Publication 6 it is now possible to derive a reference model for
traceability in PSS engineering whose information requirements can be fulfilled with
relatively limited effort since existing data sources (especially models) can in many cases be
tapped automatically. The reference model we propose in Publication 7 specifies the artifacts
relevant for traceability in a manner that is abstracted from the various domain-specific
representations. Furthermore, our reference model defines the semantic relationships

Discussion 184

connecting those artifacts. In this context, the hierarchy of the types of artifacts and semantic
relationships is aligned with the integration framework presented in Publication 5.

Since the practical applicability of a traceability reference model is largely determined by its
flexibility and adaptability towards a specific engineering context, structures the proposed
traceability artifacts and corresponding semantic trace links into several granularity levels. If
needed, additional artifact types and types of semantic relationships can be added at each level
or their required or optional attributes can be adjusted. This way, the structure of the reference
model remains extensible.

Finally, in Publication 8 we introduce our prototypical software tool TRAILS, which aims at
supporting PSS engineers in ensuring traceability in complex engineering projects which
involve stakeholders from different engineering domains. TRAILS allows to import various
types of domain-specific specification artifacts from different third-party software tools and
join them into a common representation that conforms with our PSS model integration
ontology introduced before and display the result as a graph or table. Furthermore, TRAILS
allows to edit imported models (or specification formats, respectively), it offers a
customizable appearance with standard graph layouts and it offers customized filtering of the
ontological entities and semantic relationships.

1.2 Implications for Research

We believe that the analyses, concepts and solutions presented in this thesis contributes to
several fields of research, most prominently (1) requirements engineering, (2) model-based
systems engineering and (3) product service systems research. Overall, perhaps the most
important contribution of this thesis is that our approach involves insights and concepts from
all of these three research fields. We strongly believe, that digging into the results of this
thesis, might serve as an example for researchers from all of those fields to think outside the
box and look for potential use cases for the concepts and solutions they develop or, if facing a
problem search for inspirations in any other field. In the following we discuss the
contributions of this thesis to each of the three fields of research:

Contribution to Requirements Traceability Research

Requirements engineering is in many cases still seen as a rather document driven domain. In
this context, requirements are often specified using natural language text documents.
However, since solutions are increasingly designed and engineered according to the principles
of model-based engineering, the research on requirements engineering more and more focuses
on how requirements can be specified using other kinds of artifacts, such as (semi-)formal
diagrams or even mock-up sketches and videos.

Still, today the quality of a requirements document is believed to manifest itself in the degree
to which requirements are formulated unambiguously or not to say legally unassailable. By
writing bullet proof requirements documents that can contain thousands of pages, principals
strive for legally binding documents to guard themselves against contractors falling short of
what they promise. In such documents, every little detail is defined to a hair, making it
difficult for developers to even comprehend what kind of system is desired. Requirements

Discussion 185

engineers therefore need to ask themselves, whether this situation is exactly what makes
development projects miss their goals.

In this context, we believe that requirements traceability should be about more than simply
being able to check whether all requirements as specified in documents are satisfied by the
solution design and that there are test cases to prove this. In fact, we view semantic trace links
as a multi-facetted tool whose application area ranges from change management and
knowledge management to project monitoring. Looking into research on requirements
traceability however, we see that today the domain is mostly focused on software engineering.
As a consequence, we are among the first, to extend the perspective of requirements
traceability to a cross-domain setting, such as the development of PSS.

Researchers can build upon our analysis of traceability approaches in various domains to
develop methods that fit the need of complex cross-disciplinary engineering projects. Also,
we present a traceability approach that is not only knowledge-oriented instead of document
oriented but also helps to pave the way to using artificial intelligence in requirements
engineering. As a beneficial by-product, using ontologies and semantic web technologies for
ensuring requirements traceability, opens a whole new world to requirements analysis an
automated reasoning regarding the effects of changes.

Contribution to Research on Model-based Systems Engineering

Not only in industry practice, but also within the research community, the model-based
systems engineering paradigm increases its popularity continuously. Especially in academia
however, the model-based approach is often associated with the engineering of technical
systems, especially the development of cyber physical systems, only.

A pivotal element in this context is SysML. Accordingly, the Systems Modeling Language is
used in more and more industry sectors and application areas in general. Within the course of
this development, SysML is being confronted with an increasing amount of requirements
regarding its expressive power. As engineers shift from other modeling techniques to SysML,
the complexity of the standard grows. As a counter measure to that, researchers are already
working only SysML dialects with limited expressive power which are easier to learn.
Anyway, the need for integration of various types of model artifacts and formats is
continuously high as no graphical modeling notation, such as SysML will ever have absolute
expressive power and if it attempts to, it will be useless because of complexity.

Perhaps our core contribution is that our approach avoids this dilemma by abstracting the
specification details for single components that are captured in domain-specific models from
the the more generic information about an engineering artifact captured by an integrated
comprehensive PSS model that is needed for collaboration among the engineering domains
involved. This way, our approach facilitates the integration of domain-specific models by
abstracting from specific details of the modeling language or data format, that are not relevant
in the integrated model perspective. In this sense, researchers can use our model integration
ontology as a blueprint approach for linking knowledge in model-based systems engineering.

Discussion 186

Based on the example of PSS engineering, our research shows how popular concepts from the
model-based systems engineering field can be applied to cross-disciplinary engineering and
we provide a prototypical tool for this purpose. Moreover, we show how traceability can be
realized on a much more detailed level in the context of model-based systems engineering
than through just SysML Requirements Diagrams or textual references which are still
currently used in requirements specification documents.

We further contribute to model-based systems engineering by widening the scope of the
domain. The overall goal of model-based systems engineering, as it is commonly described in
literature, is to provide plans for a physical object which is then produced. From our
perspective however, this limited scope falls short of representing dynamically changing
systems such as PSS. In such systems the physical and software part are only means to an end
and the service that is provided to the customer and with it, the business model plays the
dominating role.

Finally, our approach shows how to use ontologies and semantic analysis in a model-based
systems engineering context. In this regard, it is important to find the right balance between
comprehensiveness and level of detail of the model representation. While higher fidelity in
the specification allows for deterministic automated model analysis to provide more precise
analysis results, more generic model representations need to resort to heuristic stochastic
analysis techniques, which are in general less exact. However, comprehensiveness of the
model allows for a much broader analysis, revealing hidden and indirect dependencies that
remain unrecognized if only domain-specific models are regarded independently from each
other. Overall, we believe that the combination of these two research fields: model-based
systems engineering and semantic technologies can lead to promising applications of artificial
intelligence in engineering.

Contribution to PSS Research

As argued before, PSS models are mostly rather high level and used more for ideation in early
development stages. After the essential PSS components have been identified, development
mostly takes place in the individual domains, separated from each other. As a consequence,
when it comes to finally integrating the different PSS components, it becomes obvious that
the overall systems does not fit together seamlessly. At this stage, time to market is often the
dominating factor and the PSS is literally “taped” together, forming a dirty solution attempt,
rather than an integrated solution that is thoughtfully tailored towards customer needs.

With our approach we try to bring a certain degree of formalism into the development of PSS,
thus justifying the term “PSS engineering”. Using model-based approaches to specify and
document PSS engineering artifacts, it is possible to detect conflicts between different
solution components of a PSS much easier and often earlier in the development process.
However, our approach for model integration together with our prototypical software tool
TRAILS cannot relieve developers from making deliberate decisions based on their know-
how and experience. Our approach can rather be considered as an instrument that supports the
human engineer in performing analysis and to get a general overview of the PSS in order to
make decisions on complex engineering issues.

Discussion 187

The approach presented in this thesis bridges the gap between the high level of details that is
usually found in domain-specific modeling approaches and the rather generic descriptions of
customer needs, solution components and business models which is inherent to most
modeling approaches found in PSS literature.

From our perspective on PSS engineering (c.f. Figure 5), hardware and software components
form the fundament for the service delivered by the PSS and the overall business model.
Therefore, all components of the PSS, namely business model, service processes, software
and hardware components need to be carefully aligned and harmonized in order to mutually
highlight each other’s strengths and cancel out deficits. However, in literature on PSS we
have often found that many PSS researchers exaggerate the role of service in PSS so much,
that one could even think other parts where not necessary. With this work, we therefore want
to deliver the message that all domains: hardware, software and service should be viewed as
equally important.

With regard to PSS engineering researchers often highlight the lack of conceptual models that
describe the problem domain (Becker et al. 2010). However, with the far-ranging landscape of
domain-specific modeling approaches that are already employed by the various engineering
domains, it is in our eyes contra-productive to create a self-contained and independent
conceptual model for the PSS domain as a whole. With our approach we are among the first
to present an integrative conceptual model that builds upon existing domain-specific
modeling approaches, rather than presenting yet another perspective on the environment of
PSS engineering that is built up from scratch.

1.3 Implications for Practice

Using our approach, engineers can use their domain-specific modeling tools and do not have
to care about integrateability of the specifications they produce. In practice we often realize
that the dependencies between individual engineering artefacts need to be determined and
documented manually, at least to some degree. Hence, establishing traceability entails an
amount of manual effort that is not to be neglected. Especially in large engineering projects
documenting artifacts, trace links and their evolution produces a tremendous amount of data.
In this large data pool, inaccurate, obsolete or inconsistent information likely get lost in the
shuffle (Ramesh & Edwards, 1993). In traditional service engineering for example,
requirements engineering is often seen as irrelevant, since service are believed to need to
evolve over time. However, we believe the requirements engineering for services and
especially traceability between the requirements and the service process help service
providers to train employees, monitor service reception by the customer or reuse certain
elements when designing new services.

The manual generation of trace links is often subjective and consequentially error-prone.
Also, trace links and associated traceability information are subject to heterogeneous
granularity and relevance. This means that even if in general information is documented,
answering specific questions might still be impossible due to data gaps and variations in the
data quality (Gotel & Finkelstein, 1994). Moreover, the manual effort for establishing
traceability, as discussed by Lee et al. (2003), is one of the major reasons why traceability is

Discussion 188

not implemented in practice. In many cases, the various stakeholders are not motivated to
document any traceability information as they neither see themselves as the ones who profit
from this information for their work, nor is it part of their usual job description.

The consistency of the trace link network also depends on frequent updates whenever changes
occur. If traceability information is not kept up to date reliably, managers make misinformed
decisions or engineers implement flawed designs (Lee et al., 2003).

As comprehensive traceability also involves documenting which stakeholder is accountable
for a certain artefact or an activity within the development process of the PSS, this
information can be misused as an input for employee’s performance evaluations. In practice
engineers see traceability often critical as they fear to be under constant performance pressure
(Ghazarian, 2008).

When setting the traceability strategy, one has to decide on the level of granularity at which
traceability information is being captured and trace links are being recorded. Too coarse
grained traceability misses out on important details while capturing information on a rather
fine grained level makes the effort surpass the value added (Ramesh & Jarke, 2001).

The human interpretation of trace links can lead to heterogeneous results as each stakeholder
might interpret the semantics of a particular trace link differently (Ramesh & Jarke, 2001).
The varying perspectives often need to be aligned by direct communication among the
stakeholders. Yet again, knowledge that is exchanged or created during these conversations is
often not captured explicitly in the traceability database thus hiding important information
from others to whom it might be relevant as well (Gotel & Finkelstein, 1994).

Overall, we believe that our approach for ensuring traceability can be used in various areas of
engineering. Thus, the specialization on requirements traceability should only be seen as a
major use case for this dissertation.

1.4 Limitations

Although the previous sections have shown the many advantages that the suggested approach
in this thesis offers for the engineering and managing the lifecycle of PSS, there are also some
issues connected to establishing traceability in general and using this approach in particular.
These issues are discussed in the following.

General limitations regarding the research approach

As presented in part A section 3, the research presented in this thesis was performed
following the design science research (DSR) paradigm. Is special characteristic of DSR is its
focus on creating, evaluating and enhancing artifacts. Moreover, DSR encourages the
researcher in repeating these activities iteratively, resulting in an ever better design of the
artifacts under consideration after each cycle. As a consequence, this research strategy avoids
getting lost in a never ending problem analysis phase and along with that procrastinating the
development of an initial prototypical artifact design. However, it also makes it hard to strike
new paths except when finding oneself trapped in a dead end. This way, our research aimed

Discussion 189

more at building a functional model integration ontology along with a working prototype of
our software tool TRAILS, rather than trying to find the optimal structure of the ontology or
the implementing the tool with the optimal technology and runtime execution efficiency.

The evaluation of our model integration approach along with our software tool TRAILS is
largely based on a single case study, namely the development of a bike sharing systems (c.f
Publications 5, 7 and 8). By doing so, it was possible to perform an in-depth evaluation of our
concepts and tool for this particular PSS. However, the informative value of the evaluation
regarding the various industries in which PSS business models are applicable, would
undoubtedly be higher if multiple case studies from different areas could have been analyzed.
Also, although in the course of developing our model integration ontology, we conducted
qualitative interviews with experts from different engineering domains (c.f. Publication 7) and
project managers from various industries, we could not interview a company that sees itself as
a pure PSS provider. However, most of the companies interviewed combined at least two
engineering domain (e.g mechanical and software engineering) in their product development
processes.

Furthermore, although the consideration of many different aspects from theory as well as
from practice brings many advantages, it also brings in conflicting requirements and views
regarding solution development. Hence, it is necessary to set a clear and limited scope of
which engineering domains, fields of research and potential use cases of the aspired IT artifact
are at the focus. Although the approach and tool presented in this thesis can find their
application in many areas of engineering, during their development we explicitly focused on
PSS and the engineering challenges associated with them. This means, that special
characteristics of a particular engineering domain where not considered in detail if they had
no significant impact on the overall PSS and the integration of its components.

Limitations regarding the model integration ontology

As argued before, the focus of our ontology rather lies on the integration of existing
engineering artifacts that are documented using domain-specific modeling languages and data
formats than on specifying or modeling theses artifacts in the first place. First and foremost
the resulting ontology acts as a meta-model to enable model transformation and integration. In
this context we explicitly do not aim at capturing the PSS and the corresponding engineering
process in every detail. Consequentially, the specification of details is something we
deliberately leave to domain-specific modeling approaches and artifacts.

Although during the development of the model integration ontology we analyzed existing
ontologies in various application areas, our primary goal was not interoperability or
conformity with these ontologies, but rather compatibility with domain-specific modeling
approaches. Hence, the structure of our ontology was derived from what we identified as the
common conceptual core of different domain-specific modeling approaches instead of
building the ontology from scratch based on the definition of concepts in each engineering
domain that can be found in respective scientific literature.

Discussion 190

Within the scope of this thesis we focused on a limited number of domain-specific modeling
approaches. For modeling the system environment we considered just one approach, namely
e3-value modeling. In the area of modeling the system results we focused on Requirements
Diagrams (SysML), I*, Use Case Diagrams (UML, SysML) and Function Trees. Regarding
the system behavior, we particularly took BPMN, EPC, Activity Diagrams (UML, SysML),
Sequence Diagrams (UML, SysML), Service Blueprints and Petri Nets into consideration.
And for modeling of the system structure our analysis most notably involved Block Diagrams
(SysML), Class Diagrams (UML) and Design Structure Matrices. Other modeling approaches
were only marginally considered without spending much time on any in-depth analysis. This
way, it is very likely that the integration ontology may need to be extended or adapted if
certain specifics of other modeling approaches are to be incorporated in the future.

Limitations regarding the prototypical software tool

In general TRAILS should not be seen as a software tool that is ready to be rolled out to the
market but rather as a academic prototype for research purposes. In fact, our goal with
TRAILS is to show the general feasibility of a tool that works according to the concepts and
principles described in this thesis regarding traceability and model integration.

Following the Design Science Research basic guidelines, our primary objective when
developing of our software tool TRAILS, was to present a working prototype rather than
search for the ideal solution. For this reason, we decided for a modular software architecture
that allows flexibly adding or replacing the implementation of software features by separating
the model management core functions from e.g. the presentation layer or the synchronization
with the central graph database. Consequentially, while iterating through the cycles of DSR,
we evaluated the suitability of certain technologies and revealed obstacles along this way.

In fact, the basket of technologies that are utilized by the tool evolved over time as during our
research we learned that many of the challenges we faced were similar to what the semantic
web community is facing (a research area we originally had not planned to consider). For
example, the serialization format that was originally used in the course of model integration
was GraphML before we switched to RDF and OWL as they are more flexible, more popular
and allow us to make use of further features of semantic web technologies, such as logical
reasoning.

Although TRAILS is capable of importing some standard data formats, such as ReqIF or XMI
that are being used several tools, the model import feature has only been tested with a few
major tools and only with the current version available. Thus, import from other tools might
still cause some issues that need to be fixed. Furthermore, in the current version of TRAILS
all mapping rules between domain-specific models or data formats respectively are hard-
coded. However, in order to improve compatibility with third-party software (especially with
tools that have not been tested yet in connection with TRAILS), we believe that a model
mapping engine that can be flexibly adjusted at runtime would constitute a great
improvement.

Discussion 191

During evaluation of the model import features of TRAILS we created the various models in
the context of our bike sharing system case using popular commercial-off-the-shelf software
tools, most a which are industry standard (e.g. MagicDraw for UML/SysML modeling or
Microsoft Visio for EPCs). We tested TRAILS using this academic case study of developing
a bike sharing systems. Although we are certain, that this case study is a realistic PSS
example, we have to admit that a further evaluation using more extensive models and also a
broader scope of models from different engineering domains and even case studies from
different industries would be desirable. Until now, the performance of TRAILS in large
engineering projects has yet not been tested and we expect that some improvements regarding
the computing resource consumption have to be carried out in order to deliver acceptable
response times and with it a smooth user experience.

1.5 Future Research

Reflecting on our results we want to highlight three major starting points for future research
to advance from. A first promising starting point is the (1) extension of the integration
ontology in order to cover additional artifact types and augment its applicability for additional
use cases. Second we think that there is great potential in the (2) enhancement of TRAILS,
our prototypical traceability and model integration software tool by adding additional features
and improving the existing ones. Finally, the third point, as already mentioned in the
limitations section, is a detailed (3) empirical evaluation of our results in terms of their
performance in real industry cases. Following the structure of the subsections before, we
explain each of these three starting points subsequently:

Extension of the Integration Ontology

In its current state, the integration ontology considers aspects from all life cycle phases of a
PSS, but all in all, the clear focus is the development stage of the PSS components. For some
use cases, such as analyzing the manufacturability or estimation of service delivery costs
however, information from other PSS life cycle management domains is required. This
comprises for example the production of the physical components, deployment of the
software or maintenance related information during the service provision phase. In order to
reflect more details from these life cycle phases of a PSS, the integration ontology might
therefore need to be extended. In this context it also seems desirable to consider further
modeling approaches and types of specification documents.

Looking back to the expert interviews and case studies we performed in different companies
and industries in the context of requirements traceability we observe that modeling
approaches along with the artifacts used do not only vary between different engineering
domains but also between different industries and even companies. Bearing this fact in mind,
we can easily realize that considering all modeling approaches and artifacts currently existing
on the planet within the integration ontology is a Sisyphean challenge that could never be
performed by an individual. Moreover, it would contradict the original intention behind the
integration ontology, namely reducing the level of detail and therefore the complexity of
artifacts for the purpose of providing a comprehensive overview of the system. So, instead of
extending the expressive power of the model integration ontology to the infinite, a better

Discussion 192

strategy is to define fixed extension points and position the model integration ontology under
the umbrella of an upper ontology, thus making it compatible with other ontologies. This
would open up whole new use cases for the integration ontology.

Publication 7 argues how our integration ontology can be used as a reference model for
traceability among engineering artifacts. However, we think that it can be turned into much
more, namely a reference model of PSS in general. So far, our integration ontology defines
for example a hierarchical decomposition of requirements into different levels (Business
Goals, System Requirements, Design Requirements and Domain Requirements). Taking this
decomposition some steps further, this could result in a comprehensive library of
requirements types that are either relevant or not for certain types of PSS (or PSS
components, respectively). For example, the requirement type “IT-security requirement”
would generally be relevant for software components whereas the requirement type “safety
requirement” would be relevant for hardware components only. This way, PSS engineers
would be provided with a template for the requirements specification that is to be enriched
with content at an instance level.

Taking this idea even further, one wouldn’t need to stop with the requirements specification.
When looking at different existing PSS we couldn’t miss to recognize that some types of
value propositions, service processes or even types of generic software or hardware
components where very similar from one PSS to another and they kept repeating. Making use
of this fact, our vision is a PSS construction kit that offers templates for PSS components. E.g.
a PSS that involves renting out physical goods to customers will mostly likely require a
maintenance process. This maintenance process again would most likely require maintenance
staff. For maintenance staff there would be some requiremens regarding worker safety,
privacy laws, working hours, training requirements and so on.

A result would be some kind of PSS library containing generic best practice examples for
certain types of PSS. This in turn would enable the definition of reference architectures for
certain PSS components or PSS types as a whole by defining templates and building blocks
for PSS development based on existing PSS artifacts. Based on such a PSS design catalogue,
engineers could be to some degree guided through the development process by best practice
templates. A PSS provider would then just have to work out details and adapt those processes
to his environment. As an analogy for this application scenario, we can look at larger vendors
of enterprise resource planning software. In order to create a software system that can serve in
various industries, the developers of enterprise resource planning tools took best practice
examples of business processes that could serve as a reference for all sorts of enterprises as a
blueprint for their tool’s workflows. As these enterprise resource planning tools matured,
more and more companies adapted to the business process standard as defined by the tools
thus strengthening their reference character.

In order to provide a fundamental collection of PSS best practice artifacts, we propose
conducting case studies of existing PSS in various industries that have gained some market
acceptance. Based on such case studies one would be able to identify similar PSS components

Discussion 193

and accordingly specify generalized engineering artifacts that can be re-used in other PSS
engineering projects.

Enhancement of TRAILS

Although our prototypical software tool TRAILS already covers the in our eyes most
fundamental features for the application area it was designed for, namely traceability and
model integration, we think that it is worth to continue its further advancement through
thorough evaluation, the enhancement of existing features as well as the development of new
features.

For example, the import of models from third-party software tools occasionally produces
errors when special features of the external tool are used or if the data formats used are
proprietary. TRAILS would thus benefit from a smart and robust import mechanism that is
able to import even files that do not conform to standard data exchange formats, such as
ReqIF or XMI. Such a mechanism would then present the imported and interpreted
information (e.g. as unstructured plain text) to the user and provide functions that allow the
user to turn this information into the desired format by defining the mappings between
element (entities, relationships and attributes) identified in the source format and elements of
the target format used by TRAILS. Ideally this would work using an intuitive graphical user
interfaces that allows such mapping definitions via drag-and-drop combination of atomic
transformation operators into a transformation sequence. This transformation sequence would
need to be defined once for each type of element in the source format and a import rule engine
would then learn from such alterations and deliver a better import result for the future
automatically. By implementing such a feature in TRAILS we believe that domain experts
could easily add new modelling languages or data formats easily to TRAILS without having
to touch the software code by just configuring the transformation process.

Another aspect that would need to be regarded when further imporving TRAILS is
collaboration. As discussed before, PSS engineering is a task that involves stakeholders from
various domains and often a larger team that is directly concerned with development and
service provision. As always, the productive collaboration of a larger engineering team
requires intensive coordination, communication and cooperation, especially if the team is
distributed over different locations or even organizations (Fuks et al. 2007). As a consequence
collaborative engineering features are critical for an engineering tool like TRAILS. Although
it is already possible with TRAILS to store the data in a central graph data base using a client-
server architecture and retrieve it from there, larger models and concurrent access and
manipulation of the integrated model call for more sophisticated features regarding secure
user and access management, revision controls as well as anticipatory synchronization of
locally-stored and server-side data, so that a user only works on a currently required sub-
graph of the comprehensive PSS model.

In this context, with many people working on the same data, it is also desirable to able to
automatically detect, manage and dissolve inconsistencies in the model. Apart from
conflicting versions of the same element inconsistencies can also manifest themselves as
violations of fundamental physical or logical laws. This can be for example, a deadlock in a

Discussion 194

work-flow because of cyclicity, the self-containment of components or an incorrect
conversion of measurement units (e.g. between the metric and the US customary system).
Furthermore, with regard to requirements engineering there are often mismatches between a
requirement and the solution artifact that is supposed to fulfil this requirement or
contradicting requirements that refer to the same solution artifacts. Also an requirement that is
not fulfilled by any solution artifacts or a solution artefact that does not fulfil any requirement
may be vied as an inconsistency in the comprehensive PSS model. We thus aspire to augment
TRAILS we inconsistency management feature that allow to automatically detect
inconsistencies in the model through logical reasoning and continuously checking the model
against pre-defined rules, ranging from basic laws of physics to generally accepted good
engineering practices.

In our vision, TRAILS will evolve to something we call “Semantic Engineering Network”.
Similar to what for example facebook does with people; it connects PSS solution components
and other engineering artifacts. One can review the history (i.e. the evolution) of an artifact
like one can review somebody’s wall on social media. Moreover, it is possible to query to
semantic engineering graph like the social graph on facebook in order to find answers to
specific questions (including finding inconsistencies in the model). For this purpose, the
architecture of TRAILS is already based on RDF. As a next step, one can now make use of
other semantic web technologies, such as SPARQL, OWL or RIF in order to equip TRAILS
with advanced semantic search, logical reasoning and rule checking functions.

Empirical Evaluation

As stated before, one limitation of the research presented in this dissertation is that due to the
research strategy chosen, we focused on the development and iterative improvement of our
model integration ontology and our software tool TRAILS. In this process we evaluated our
results against the recommendations found in literature on PSS, requirements traceability and
model-based engineering on the one hand and conducted expert interviews as well as a PSS
engineering case study (developing a bike sharing system) on the other hand. At this stage,
where we have a working prototype of TRAILS and the proof of concept of the model
integration ontology completed, we believe it is time to take the evaluation to the next level.

In order to demonstrate the applicability of our approach, both, the model integration
ontology and TRAILS should be evaluated using real industry use cases. As a first step in this
direction we propose to test model transformation and integration using data from model-
based engineering project in multiple industries. These do not necessarily have to be PSS
engineering projects since the focus should lie on testing whether TRAILS is able to work
with different sets of real industry data and determine its performance with more extensive
models. Subsequently, TRAILS should of course be also tested with data from PSS
engineering projects or at least engineering projects that involve a multitude of different
engineering domains.

In addition to merely evaluating TRAILS and the model integration ontology by feeding them
with industry data, it is also advisable to demonstrate their application to industry experts,
analyze their feedback and observe them working with the tool in order to improve usability.

Discussion 195

Due to the complexity of the application area and the software landscape in engineering, it
might at this stage be to soon to conduct piloting studies within a real engineering project.
Instead we think that expert evaluation of our approach could be initially done in modeling
workshops in a controlled setting. Here, each expert would receive a detailed introduction to
TRAILS and then would be asked to perform specific tasks using the tool, such as finding
certain piece of information within the model or importing and integrating multiple domain-
specific models. Afterwards during an interview or focus group session, expert could share
their experiences working with the tool, argue on advantages and disadvantages of TRAILS
when compared to other engineering tools of the application area and illustrate potentials of
further improvement.

Conclusion 196

2 Conclusion

Iterating through the cycles of design science research, our goal was to create a novel
approach for ensuring traceability throughout the entire life cycle of a PSS. For this purpose,
we analyzed the concept of traceability in PSS engineering from multiple perspectives, in
theory as well as in practice. Our research has started with an analysis of the special
characteristics of PSS engineering and their implications on traceability along the entire life
cycle of a PSS. In this study we identified nine major characteristics that differentiate the
development of PSS from traditional engineering. Based on this result, we determined
whether existing traceability approaches were suitable for PSS engineering. We came to the
conclusion, that out of the existing approaches we analyzed, none was without restrictions
recommendable for PSS but each approach was targeted at solving a specific challenge
associated with traceability and if combined and enhanced they could together serve as a
valuable starting basis for the development of a traceability approach for PSS. To approach
traceability from a practical viewpoint, we furthermore conducted multiple case studies
involving experts from different industries and engineering domains.

From our analyses we concluded, that the most important prerequisite for traceability in a
cross-disciplinary setting, such as the development of PSS, is being able to integrate all
information that is required in order to ensure traceability in a common representation that
allows for an evaluation of the artifacts and their semantic relationships. Consequently, we
introduced our PSS integration ontology which allows joining artifacts from the various
domains involved in PSS engineering as well as an approach to automatically transform the
traceability information contained in domain-specific models into a generic format. On the
basis of all preceding results, we specified a traceability reference model that is explicitly
tailored towards PSS engineering. Altogether, our model integration ontology for domain-
specific PSS models form an optimal fundament for the development of software tools that
appropriately support traceability in the life cycle of a PSS.

Our prototypical software tool TRAILS allows to integrate graph-based models and other
types of specification artifacts that are commonly used in the different engineering domains
involved in the development of a typical PSS. We evaluated TRAILS together with the
underlying ontology-based approach for model integration in a case study that is concerned
with the development of a free-floating bike sharing system, where users can search for
available bikes using a smartphone app, rent them out and return them at any desired location.

Although we have to admit, that our research is subject to some limitations due to the research
strategy that was chosen as well as regarding the design of our model integration ontology
and the prototypical implementation of our software tool TRAILS, we are certain that the
results presented in this dissertation provide valuable input for others to advance from here
and build upon our results. Taking a look at possible future research we especially want to
highlight three starting points that in our eyes seem promising, namely extension of our model
integration ontology, enhancement of TRAILS as well as an empirical evaluation of our
results during industry case studies.

References 197

References

Adzic, G. (2011): Specification by Example: How Successful Teams Deliver the Right
Software. 1st ed.: Manning.

Ahn, S.; Chong, K. (2006): A Feature-oriented Requirements Tracing Method. A Study of
Cost-Benefit Analysis. In. International Conference on Hybrid Information Technology.
Washington DC, pp. 611–616.

AIS, Institute for Automation and Information Systems (2014): The Pick and Place Unit.
Available online at http://www.ais.mw.tum.de/forschung/demonstratoren/ppu/, checked on
12/1/2016.

Aizenbud-Reshef, N.; Nolan, B. T.; Rubin, J.; Shaham-Gafni, Y. (2006): Model traceability.
In IBM Systems Journal 45 (3), pp. 515–526.

Akao, Yōji (1990): Quality function deployment. Integrating customer requirements into
product design. Cambridge, Mass: Productivity Press.

Alfian, Ganjar; Rhee, Jongtae; Yoon, Byungun (2014): A simulation tool for prioritizing
product-service system (PSS) models in a carsharing service. In Computers and Industrial
Engineering 70, pp. 59–73.

Alonso-Rasgado, Teresa; Thompson, Graham; Elfström, Bengt-Olof (2004): The design of
functional (total care) products. In Journal of Engineering Design 15 (6), pp. 515–540.

Anacker, Harald; Dorociak, Rafal; Dumitrescu, Roman; Gausemeier, Jürgen (2011):
Integrated tool-based approach for the conceptual design of advanced mechatronic systems.
In: Systems Conference (SysCon), 2011 IEEE International. IEEE, pp. 506–511.

Anderl, Reiner; Eigner, Martin; Sendler, Ulrich; Stark, Rainer (2012): Smart engineering:
interdisziplinäre Produktentstehung: Springer-Verlag.

Andersson, Fredrik; Sutinen, Krister; Malmqvist, Johan (2003): Product Model for
Requirements and Design Concept Management: Representing Design Alternatives and
Rationale. In: 3th Annual International Symposium INCOSE 2003.

Antoniol, G.; Canfora, G.; Casazza, G.; Lucia, A. de; Merlo, E. (2002): Recovering
traceability links between code and documentation. In IEEE Transactions on Software
Engineering 10 (28), pp. 970–983.

Arkley, P.; Riddle, S. (2006): Tailoring Traceability Information to Business Needs. In IEEE
(Ed.): Proceedings of the 14th IEEE International Requirements Engineering Conference.
International Requirements Engineering Conference. Minneapolis/St. Paul, MN, 11.-15.
September 2006, pp. 239–244.

Aurich, Jan C.; Fuchs, Christian; Wagenknecht, Christian (2006): Life cycle oriented design
of technical Product-Service Systems. In Journal of Cleaner Production 14 (17), pp. 1480–
1494.

Baines, T. S.; Lightfoot, H. W.; Evans, S.; Neely, A.; Greenough, R.; Peppard, J. et al. (2007):
State-of-the-art in product-service systems. In Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture 221 (10), pp. 1543–1552. DOI:
10.1243/09544054JEM858.

Barbieri, Giacomo; Kernschmidt, Konstantin; Fantuzzi, Cesare; Vogel-Heuser, Birgit (2014):
A SysML based design pattern for the high-level development of mechatronic systems to
enhance re-usability. In: IFAC World Congress, pp. 3431–3437.

References 198

Bartolomeo, Matteo; dal Maso, Davide; Jong, Paulien de; Eder, Peter; Groenewegen, Peter;
Hopkinson, Peter et al. (2003): Eco-efficient producer services—what are they, how do they
benefit customers and the environment and how likely are they to develop and be extensively
utilised? In Journal of Cleaner Production 11 (8), pp. 829–837.

Baskerville, Richard L. (1997): Distinguishing action research from participative case studies.
In Journal of systems and information technology 1 (1), pp. 24–43.

Bauer, S.; Paetzold, K. (2006): Influence of DfX criteria on the design of the product
development process. In S. Vajna (Ed.): Proceedings of the 6th Workshop on Integrated
Product Development. 6th Workshop on Integrated Product Development. Magdeburg, 18.-
20.09.2006.

Baxter, David; Roy, Rajkumar; Doultsinou, Athanasia; Gao, James; Kalta, Mohamad (2009):
A knowledge management framework to support product-service systems design. In
International journal of computer integrated manufacturing 22 (12), pp. 1073–1088.

Becker, Dipl-Inf Michael; Klingner, Dipl-Inf FH Stephan (2013): Formale Modellierung von
Komponenten und Abhängigkeiten zur Konfiguration von Product-Service Systems. In:
Dienstleistungsmodellierung 2012: Springer, pp. 114–140.

Becker, Jörg; Beverungen, Daniel; Knackstedt, Ralf; Glauner, Christoph; Stypmann, Marco;
Rosenkranz, Christoph et al. (2009): Ordnungsrahmen für die hybride Wertschöpfung. In:
Dienstleistungsmodellierung: Springer, pp. 109–128.

Becker, Jörg; Beverungen, Daniel F.; Knackstedt, Ralf (2010): The challenge of conceptual
modeling for product‐service systems: status-quo and perspectives for reference models and
modeling languages. In Information Systems and e-Business Management 8 (1), pp. 33–66.

Becker, Jörg; Krcmar, Helmut (2008): Integration von Produktion und Dienstleistung.
Hybride Wertschöpfung. In Wirtschaftsinformatik 50 (3), pp. 169–171.

Becker, Jörg; Pfeiffer, Daniel (2008): Solving the Conflicts of Distributed Process Modelling:
Towards an Integrated Approach. In: ECIS, pp. 1555–1568.

Berente, Nicholas; Lyytinen, Kalle (2007): What is being iterated? Reflections on iteration in
information system engineering processes. In Conceptual Modelling in Information Systems
Engineering, pp. 261–278.

Bergenthal, Jeff (2011): Final Report of the Model Based Engineering (MBE) Subcommittee.
Available online at
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Com
mittees/M_S% 20Committee/2011/February/NDIA-SE-MS_2011-02-15_Bergenthal. pdf,
checked on 6/1/2017.

Berkovich, M.; Esch, S.; Leimeister, J. M.; Krcmar, H. (2010a): Towards Requirements
Engineering for Software as a Service. In: Proceedings of Multikonferenz
Wirtschaftsinformatik (MKWI 2010). Göttingen, Germany.

Berkovich, M.; Leimeister, J. M.; Krcmar, H. (2010b): Ein Bezugsrahmen für Requirements
Engineering hybrider Produkte. In: Proceedings of Multikonferenz Wirtschaftsinformatik
(MKWI 2010). Göttingen, Germany.

Berkovich, Marina; Esch, Sebastian; Leimeister, Jan Marco; Krcmar, Helmut (2009):
Requirements engineering for hybrid products as bundles of hardware, software and service
elements – a literature review. In: Proceedings of the 9th International Conference on
Wirtschaftsinformatik.

References 199

Berkovich, Marina; Esch, Sebastian; Mauro, Christian; Leimeister, Jan Marco; Krcmar,
Helmut (2011a): Towards an Artifact Model for Requirements to IT-enabled Product Service
Systems. In Wirtschaftsinformatik 2011, p. 16.

Berkovich, Marina; Leimeister, Jan Marco; Hoffmann, Axel; Krcmar, Helmut (2012): A
requirements data model for product service systems. In Requirements Eng. DOI:
10.1007/s00766-012-0164-1.

Berkovich, Marina; Leimeister, Jan Marco; Krcmar, Helmut (2011b): Requirements
Engineering for Product Service Systems - A State of the Art Analysis. In Bus Inf Syst Eng 3
(6), pp. 369–380. DOI: 10.1007/s12599-011-0192-2.

Berkovich, Marina; Mauro, Christian; Leimeister, Jan Marco; Weyde, Felix; Krcmar, Helmut
(2011c): Towards Cycle-Oriented Requirements Engineering. In Abraham Bernstein, Gerhard
Schwabe (Eds.): Proceedings of the 10th International Conference on Wirtschaftsinformatik
2011, vol. 2. International Conference on Wirtschaftsinformatik. Zurich, Switzerland.
Internationale Tagung Wirtschaftsinformatik. Raleigh: Lulu, pp. 963–973.

Bernard, Y.; Burkhart, R. M.; Koning, H. P. de; Friedenthal, S.; Fritzson, P.; Paredis, C. et al.
(2010): An Overview of the SysML-Modelica Transformation Specification. In: Proc. of
INCOSE, pp. 11–15.

Beuren, F. H.; Gomes, M. G.; Miguel, P. A. (2013): Product-Service Systems. A Literature
Review on integrated Products and Services. In Journal of Cleaner Production 47, pp. 222–
231.

Beverungen, D.; Knackstedt, R.; Hatfield, S.; Biege, S.; Bollhöfer, E.; Krug, C. et al. (2009):
Hybride Wertschöpfung - Integration von Produktion und Dienstleistung. Berlin: Beuth
Verlag.

Bézivin, Jean; Büttner, Fabian; Gogolla, Martin; Jouault, Frédéric; Kurtev, Ivan; Lindow,
Arne (2006): Model transformations? transformation models! In: Model driven engineering
languages and systems: Springer, pp. 440–453.

Bochnig, Holger (2012): Assistenzsystem zur Ausgestaltung hybrider Leistungsbündel. In:
Integrierte Industrielle Sach-und Dienstleistungen: Springer, pp. 89–111.

Boehm, B. (2000): Requirements that handle IKIWISI, COTS, and rapid change. In Computer
33 (7), pp. 99–102.

Boehm, M.; Thomas, O. (2013): Looking beyond the Rim of one’s Teacup. A
multidisciplinary Literature Review of Product-Service Systems in Information Systems,
Business Management, and Engineering & Design. In Journal of Cleaner Production 51,
pp. 245–260.

Böhmann, Tilo; Krcmar, Helmut (2007): Hybride Produkte. Merkmale und
Herausforderungen. In Manfred Bruhn, Bernd Stauss (Eds.): Wertschöpfungsprozesse bei
Dienstleistungen: Forum Dienstleistungsmanagement: Gabler, pp. 240–255.

Böhmann, Tilo; Langer, Philipp; Schermann, Michael (2008): Systematische Überführung
von kundenspezifischen IT-Lösungen in integrierte Produkt-Dienstleistungsbausteine mit der
SCORE-Methode. In Wirtschaftsinformatik 50 (3).

Bonnemeier, Sebastian; Ihl, Christoph; Reichwald, Ralf (2007): Wertschaffung und
Wertaneignung bei hybriden Produkten - Eine prozessorientierte Betrachtung. München
(Arbeitsbericht, Nr. 03 / 2007).

Borchers, J. O. (2000): A Pattern Approach to Interaction Design. New York: ACM.

References 200

Botta, Christian (2007): Rahmenkonzept zur Entwicklung von Product-Service Systems.
Product-Service Systems Engineering. Lohmar: Josef Eul Verlag.

Bouillon, Elke; Güldali, Baris; Herrmann, Andrea; Keuler, Thorsten; Moldt, Daniel; Riebisch,
Matthias (2013a): Leichtgewichtige Traceability im agilen Entwicklungsprozess am Beispiel
von Scrum. In Softwaretechnik-Trends 33 (1), pp. 29–30.

Bouillon, Elke; Mäder, Patrick; Philippow, Ilka (2013b): A survey on usage scenarios for
requirements traceability in practice. In: Requirements Engineering: Foundation for Software
Quality: Springer, pp. 158–173.

Brambilla, Marco; Cabot, Jordi; Wimmer, Manuel (2012): Model-driven software engineering
in practice. In Synthesis Lectures on Software Engineering 1 (1), pp. 1–182.

Brickley, Dan; Miller, Libby (2014): FOAF Vocabulary Specification 0.99. Available online
at http://xmlns.com/foaf/spec/, checked on 7/30/2017.

Bullinger, H.-J; Fähnrich, K.-P; Meiren, T.: Service Engineering - Methodical Development
of New Service Products. Fraunhofer Institute of Industrial Engineering.

Bullinger, Hans-Jörg; Scheer, August-Wilhelm (Eds.) (2003): Service Engineering: Springer
Berlin Heidelberg.

Bullinger, Hans-Jörg; Schreiner, Peter (2006): Service engineering: Ein Rahmenkonzept für
die systematische Entwicklung von Dienstleistungen. In: Service Engineering: Springer,
pp. 53–84.

Burianek, Ferdinand; Bonnemeier, Sebastian; Ihl, Christoph; Reichwald, Ralf (2009):
Grundlegende Betrachtung hybrider Produkte. In Hybride Wertschöpfung‐Konzepte,
Methoden und Kompetenzen für die Preis und Vertragsgestaltung. Lohmar: EUL, pp. 13–31.

Burianek, Ferdinand; Ihl, Christoph; Bonnemeier, Sebastian; Reichwald, Ralf (2007):
Typologisierung hybrider Produkte. Ein Ansatz basierend auf der Komplexität der
Leistungserbringung. Edited by Organisation und Management der Technischen Universität
München Lehrstuhl für Betriebswirtschaftslehre – Information (Arbeitsbericht), checked on
4/5/2012.

Cavalieri, Sergio; Pezzotta, Giuditta (2012): Product‐Service Systems Engineering. State of
the art and research challenges. In Computers in Industry 63 (4), pp. 278–288.

Chandrasekaran, Balakrishnan; Josephson, John R.; Benjamins, V. Richard (1999): What are
ontologies, and why do we need them? In IEEE Intelligent Systems and their applications 14
(1), pp. 20–26.

Chen, David; Doumeingts, Guy; Vernadat, François (2008): Architectures for enterprise
integration and interoperability. Past, present and future. In Computers in Industry 59 (7),
pp. 647–659.

Cheng, Betty H. C.; Atlee, Joanne M. (2007): Research Directions in Requirements
Engineering. In IEEE (Ed.): Proceedings of the 15th IEEE International Requirements
Engineering Conference. 15th IEEE International Requirements Engineering Conference.

Chucholowski, N.; Wolfenstetter, T.; Wickel, M. C.; Krcmar, H.; Lindemann, U.; others
(2014): Towards Cycle-oriented Traceability in Engineering Change Management. In DS 77,
pp. 1491–1500.

Cleland-Huang, J.; Settimi, R.; BenKhadra, O.; Berezhanskaya, E.; Christina, S. (2005):
Goal-centric Traceability for Managing non-functional Requirements. In. 10th European

References 201

Software Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. Lissabon, pp. 362–371.

Cleland-Huang, Jane (2005): Toward Improved Traceability of Non-Functional
Requirements. In TEFSE '05 Proceedings of the 3rd international workshop on Traceability
in emerging forms of software engineering, pp. 14–19.

Cleland-Huang, Jane; Chang, Carl K.; Sethi, Gaurav; Javvaji, Kumar; Hu, Haijian; Xia,
Jinchun (2002): Automating speculative queries through event-based requirements
traceability. In: IEEE Joint International Conference on Requirements Engineering, 2002.
Proceedings. IEEE, pp. 289–296.

Cleland-Huang, Jane; David Schmelzer (2003): Dynamically Tracing Non-Functional
Requirements through Design Pattern Invariants. In Workshop on Traceability in Emerging
Forms of Software Engineering, in conjunction with IEEE International Conference on
Automated Software Engineering.

Cleland-Huang, Jane; Gotel, Orlena C. Z.; Huffman Hayes, Jane; Mäder, Patrick; Zisman,
Andrea (2014): Software traceability: trends and future directions. In: Proceedings of the on
Future of Software Engineering. ACM, pp. 55–69.

Cockburn, Alistair; Highsmith, Jim (2001): Agile software development: The people factor.
In Computer (11), pp. 131–133.

Cook, M. B.; Bhamra, T. A.; Lemon, M. (2006): The Transfer and Application of Product
Service Systems. from Academia to UK Manufacturing Firms. In Journal of Cleaner
Production 14 (17), pp. 1455–1465.

Cooper, Harris M. (1988): Organizing knowledge syntheses: A taxonomy of literature
reviews. In Knowledge in Society 1 (1), pp. 104–126.

Creusen, Mariëlle E. H. (2011): Research Opportunities Related to Consumer Response to
Product Design*. In Journal of Product Innovation Management 28 (3), pp. 405–408.

Curtis, Bill; Krasner, Herb; Iscoe, Neil (1988): A field study of the software design process
for large systems. In Communications of the ACM 31 (11), pp. 1268–1287.

Cycorp (2016): Cyc Development Platforms. Available online at
http://www.cyc.com/platform/, checked on 7/30/2017.

Czarnecki, Krzysztof; Helsen, Simon (2003): Classification of model transformation
approaches. In: Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, vol. 45. USA, pp. 1–17.

Czarnecki, Krzysztof; Helsen, Simon (2006): Feature-based survey of model transformation
approaches. In IBM Systems Journal 45 (3), pp. 621–645.

Davies, Andrew; Brady, Tim; Hobday, Michael (2006a): Charting a path toward integrated
solutions. In MIT Sloan Management Review 47 (3), p. 39.

Davies, John; Studer, Rudi; Warren, Paul (2006b): Semantic Web technologies: trends and
research in ontology-based systems: John Wiley & Sons.

DCMI (2017): DCMI Specifications. Dublin Core Metadata Initiative. Available online at
http://dublincore.org/specifications/, checked on 7/30/2017.

Diestel, Reinhard (2005): Graduate texts in mathematics: Graph theory. Berlin, Heidelberg:
Springer.

References 202

Doppler, Klaus; Lauterburg, Christoph (2008): Change management: den
Unternehmenswandel gestalten: Campus Verlag.

Dorfman, Merlin; Flynn, Richard F. (1984): Arts—an automated requirements traceability
system. In Journal of Systems and Software 4 (1), pp. 63–74.

Drath, Rainer; Lüder, Arndt; Peschke, Jörn; Hundt, Lorenz (2008): AutomationML-the glue
for seamless automation engineering. In: IEEE International Conference on Emerging
Technologies and Factory Automation, 2008. ETFA 2008, pp. 616–623.

Dubois, Hubert; Peraldi-Frati, Marie-Agnes; Lakhal, Fadoi (2010): A Model for
Requirements Traceability in a Heterogeneous Model-Based Design Process: Application to
Automotive Embedded Systems. In IEEE (Ed.): Proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS). Oxford, United
Kingdom, 22.-26. März 2010, pp. 233–242.

Durugbo, Christopher (2011): Collaborative networks for product-service systems delivery.
In: Concurrent Enterprising (ICE), 2011 17th International Conference on. IEEE, pp. 1–8.

Durugbo, Christopher (2013): Integrated product-service analysis using SysML requirement
diagrams. In Syst. Engin. 16 (1), pp. 111–123. DOI: 10.1002/sys.21229.

Ebert, C.; Man, J. de: Requirements Uncertainty. Influencing Factors and concrete
Improvements. In: 27th International Conference on Software Engineering, pp. 553–560.

Ebert, Christof (2008): Systematisches Requirements-Engineering und Management.
Anforderungen ermitteln, spezifizieren, analysieren und verwalten. 2 Aufl. Heidelberg:
dpunkt-Verlag.

Ebert, Christof (2012): Systematisches Requirements Engineering. Anforderungen ermitteln,
spezifizieren, analysieren und verwalten. 4., überarb. Aufl. Heidelberg: dpunkt.

Ebert, Christof (2014): Systematisches Requirements Engineering: Anforderungen ermitteln,
dokumentieren, analysieren und verwalten: dpunkt. verlag.

Egyed, Alexander (2001): A scenario-driven approach to traceability. In IEEE Computer
Society (Ed.): Proceedings of the 23rd international conference on software engineering:
IEEE Computer Society, pp. 123–132.

Egyed, Alexander; Biffl, Stefan; Heindl, Matthias; Grünbacher, Paul (2005): A value-based
approach for understanding cost-benefit trade-offs during automated software traceability. In:
Proceedings of the 3rd international workshop on Traceability in emerging forms of software
engineering. ACM, pp. 2–7.

Egyed, Alexander; Grünbacher, Paul (2005): Supporting Software Understanding with
Automated Requirements Traceability. In International Journal of Software Engineering &
Knowledge Engineering 15 (5), pp. 783–810.

Ehrlenspiel, K. (2009): Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz,
Zusammenarbeit: Hanser.

Eigner, Martin (2012): Interdisziplinäre Produktentwicklung-Modellbasiertes Systems
Engineering-korrigiert.

Eisenbart, Boris; Blessing, Lucienne; Gericke, Kilian; others (2012): Functional modelling
perspectives across disciplines: a literature review. In: Proceedings of 12th international
design conference, design.

References 203

Eisenbart, Boris; Qureshi, Ahmed; Gericke, Kilian; Blessing, Luciënne (2013): Integrating
different functional modeling perspectives. In: ICoRD’13: Springer, pp. 85–97.

El Maraghy, Waguih; El Maraghy, Hoda; Tomiyama, Tetsuo; Monostori, Laszlo (2012):
Complexity in engineering design and manufacturing. In CIRP Annals-Manufacturing
Technology 61 (2), pp. 793–814.

Espinoza, Angelina; Garbajosa, Juan (2011): A study to support agile methods more
effectively through traceability. In Innovations in Systems and Software Engineering 7 (1),
pp. 53–69.

Eversheim, Walter; Kuster, Johannes; Liestmann, Volker (2006): Anwendungspotenziale
ingenieurwissenschaftlicher Methoden für das Service Engineering. In H.-J Bullinger, A.-W
Scheer (Eds.): Service Engineering: Entwicklung und Gestaltung innovativer
Dienstleistungen, vol. 3. 3rd ed. Berlin: Springer, pp. 418–441.

Feiler, Peter H.; Gluch, David P. (2012): Model-based engineering with AADL: an
introduction to the SAE architecture analysis & design language: Addison-Wesley.

Fernández, Daniel Méndez; Penzenstadler, Birgit; Kuhrmann, Marco; Broy, Manfred (2010):
A meta model for artefact-orientation: fundamentals and lessons learned in requirements
engineering. In: Model driven engineering languages and systems: Springer, pp. 183–197.

Fernández, Daniel Méndez; Wieringa, Roel (2013): Improving requirements engineering by
artefact orientation. In: Product-Focused Software Process Improvement: Springer, pp. 108–
122.

Fernández-López, Mariano; Gómez-Pérez, Asunción; Juristo, Natalia (1997): Methontology.
From ontological art towards ontological engineering.

Ferrarini, L.; Mantovani, G.; Allevi, M.; Dede, A. (2011): An integrated approach for
specification and design of automated production systems. In: System Integration (SII), 2011
IEEE/SICE International Symposium on. IEEE, pp. 1406–1411.

Fettke, Dipl-Wirt-Inf Peter (2006): State-of-the-Art des State-of-the-Art. In
Wirtschaftsinformatik 48 (4), pp. 257–266.

Floerecke, S.; Herzfeldt, A.; Krcmar, H. (2012): Risiken bei IT-Lösungen – Ein Risikokatalog
für Praktiker aus Anbietersicht. In IM – Die Fachzeitschrift für Informationsmanagement und
Consulting 27 (4), pp. 22–30.

Floerecke, Sebastian; Wolfenstetter, Thomas; Krcmar, Helmut (2015): Hybride Produkte -
Stand der Literatur und Umsetzung in der Praxis. In IM+IO - Die Fachzeitschrift für
Innovation, Organisation und Management 30 (2), pp. 61–66.

Foote, Nathaniel W.; Galbraith, Jay; Hope, Quentin; Miller, Danny (2001): Making solutions
the answer. In The McKinsey Quarterly, p. 84.

Fowler, Martin; Foemmel, Matthew (2006): Continuous integration. In Thought-Works
http://www. thoughtworks. com/Continuous Integration. pdf, p. 122.

France, Robert; Rumpe, Bernhard (2007): Model-driven development of complex software: A
research roadmap. In: 2007 Future of Software Engineering. IEEE Computer Society, pp. 37–
54.

Frank, Moti; Harel, Amir; Orion, Uzi (2014): Choosing the Appropriate Integration Approach
in Systems Projects. In Systems Engineering 17 (2), pp. 213–224.

References 204

Frese, Erich; Lehnen, Marc; Valcárcel, Sylvia (1998): Dienstleistungswettbewerb und
regionale Reichweite. In Hans-Jörg Bullinger, Erich Zahn (Eds.): Dienstleistungsoffensive.
Wachstumschancen intelligent nutzen. Stuttgart: Schäffer-Poeschel, pp. 35–64.

Fricke, Ernst; Gebhard, Bernd; Negele, Herbert; Igenbergs, Eduard (2000): Coping with
changes: causes, findings, and strategies. In Systems Engineering 3 (4), pp. 169–179.

Fritzsche, Peter (2007): Innovationsmanagement für Dienstleistungen durch Service
Engineering. Bedeutung und Ablauf der systematischen Dienstleistungsentwicklung.
Saarbrücken: VDM, Müller.

Fuks, Hugo; Raposo, Alberto; Gerosa, Marco A.; Pimentel, Mariano; Lucena, Carlos J. P.
(2007): The 3c collaboration model. In The Encyclopedia of E-Collaboration, Ned Kock
(org), pp. 637–644.

Galbraith, Jay R. (2002): Organizing to deliver solutions. In organizational Dynamics 31 (2),
pp. 194–207.

Garetti, Marco; Rosa, Paolo; Terzi, Sergio (2012): Life cycle simulation for the design of
product-service systems. In Computers in Industry 63 (4), pp. 361–369.

Gausemeier, Jürgen; Dorociak, Rafał; Kaiser, Lydia (2010): Computer-aided modeling of the
principle solution of mechatronic systems: A domain-spanning methodology for the
conceptual design of mechatronic systems. In: ASME 2010 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference. American
Society of Mechanical Engineers, pp. 1109–1118.

Gebauer, Heiko; Paiola, Marco; Saccani, Nicola (2013): Characterizing service networks for
moving from products to solutions. In Industrial Marketing Management 42 (1), pp. 31–46.

Geisberger, Eva (2005): Requirements Engineering eingebetteter Systeme. Ein
interdisziplinärer Modellierungsansatz. Aachen: Shaker (Berichte aus der Softwaretechnik).

Geng, Xiuli; Chu, Xuening (2011): A new PSS conceptual design approach driven by user
task model. In: Functional Thinking for Value Creation: Springer, pp. 123–128.

Gero, John S. (1990): Design prototypes: a knowledge representation schema for design. In AI
magazine 11 (4), p. 26.

Geum, Youngjung; Park, Yongtae (2011): Designing the sustainable product-service
integration: a product-service blueprint approach. In Journal of Cleaner Production 19 (14),
pp. 1601–1614.

Ghazarian, Arbi (2008): Traceability patterns: an approach to requirement-component
traceability in agile software development. In: Proceedings of the 8th conference on Applied
computer scince. World Scientific and Engineering Academy and Society (WSEAS),
pp. 236–241.

Gläser, Jochen; Laudel, Grit (2010): Experteninterviews und qualitative Inhaltsanalyse:
Springer-Verlag.

Goedkoop, M.; van Halen, C.; Riele, Te H.; Rommens, P. (1999): Product Service Systems,
Ecological and Economic Basics. Arbeitspapier. Dutch Ministries of Environment (VROM)
and Economic Affairs (EZ). Niederlande.

Gordijn, Jaap; Akkermans, J. M. (2003): Value-based requirements engineering: exploring
innovative e-commerce ideas. In Requirements engineering 8 (2), pp. 114–134.

References 205

Gotel, Orlena; Cleland-Huang, Jane; Hayes, J. Huffman; Zisman, Andrea; Egyed, Alexander;
Grünbacher, Paul; Antoniol, Giuliano (2012): The quest for Ubiquity: A roadmap for software
and systems traceability research. In: Requirements Engineering Conference (RE), 2012 20th
IEEE International. IEEE, pp. 71–80.

Gotel, Orlena; Finkelstein, Anthony (1994): An Analysis of the Requirements Traceability
Problem. In IEEE Computer Society (Ed.): Proceedings of the First International Conference
on Requirements Engineering. First International Conference on Requirements Engineering.
Colorado Springs, pp. 94–101.

Gotel, Orlena; Finkelstein, Anthony (1995): Contribution Structures. In IEEE Computer
Society (Ed.): Proceedings of the Second IEEE International Symposium on Requirements
Engineering. Second IEEE International Symposium on Requirements Engineering. York,
UK, 27.-29. March. Los Alamitos, Calif: IEEE Computer Society Press, pp. 100–127.

Grande, M. (2013): 100 Minuten für Konfigurationsmanagement – Kompaktes Wissen nicht
nur für Projektleiter und Entwickler. 1. Auflage. Wiesbaden: Vieweg und Teubner Verlag.

Gräßle, B. Sc Marc; Thomas, Oliver; Dollmann, Dipl-Inform Thorsten (2010):
Vorgehensmodelle des Product-Service Systems Engineering. In: Hybride Wertschöpfung:
Springer, pp. 82–129.

Gruninger, Michael; Fox, Mark S. (1994): An activity ontology for enterprise modelling. In
Submitted to AAAI-94, Dept. of Industrial Engineering, University of Toronto 321.

Guarino, Nicola (1998): Formal ontology and information systems. In: Proceedings of FOIS,
vol. 98, pp. 81–97.

Gürtler, Matthias; Kortler, Sebastian; Helms, Bergen; Berkovich, Marina; Leimeister, Jan
Marco; Krcmar, Helmut et al. (2013): Von Anforderungslisten zum konzeptionellen Design‐
Funktionsbasierte Analyse von Anforderungen an Product-Service Systems. In:
Dienstleistungsmodellierung 2012: Springer, pp. 96–113.

Hailpern, Brent; Tarr, Peri (2006): Model-driven development: The good, the bad, and the
ugly. In IBM Systems Journal 45 (3), p. 451.

Hajimohammadi, Azadeh; Cavalcante, Juliana; Gzara, Lilia (2017): Ontology for the PSS
Lifecycle Management. In Procedia CIRP 64, pp. 151–156.

Hamraz, Bahram; Caldwell, Nicholas H. M.; Clarkson, P. John (2013): A holistic
categorization framework for literature on engineering change management. In Systems
Engineering 16 (4), pp. 473–505.

Hao, Jing (2012): The evolution of product-service system business model: A case study. In:
Management Science and Engineering (ICMSE), 2012 International Conference on. IEEE,
pp. 790–795.

Hayes, Jane Huffman; Dekhtyar, Alex; Janzen, David S. (2009): Towards traceable test-
driven development. In: Traceability in Emerging Forms of Software Engineering, 2009.
TEFSE’09. ICSE Workshop on. IEEE, pp. 26–30.

Hazaël-Massieux, Dominique (2003): The Semantic Web and its applications at W3C. World
Wide Web Consortium. Available online at http://www.w3.org/2003/Talks/simo-
semwebapp/.

Heindl, Matthias; Biffl, Stefan (2005): A case study on value-based requirements tracing. In
ACM (Ed.): Proceedings of the 10th European software engineering conference held jointly

References 206

with 13th ACM SIGSOFT international symposium on Foundations of software engineering.
Lisbon, Portugal: ACM, pp. 60–69.

Hepp, Martin (2011): GoodRelations Language Reference V 1.0. Available online at
http://purl.org/goodrelations/v1, checked on 7/30/2017.

Hepperle, C.; Orawski, R.; Nolte, B.D; Mörtl, M.; Lindemann, U. (2010): An integrated
lifecycle model of product-service-systems. In CIRP IPS2 Conference, Linköping.

Herberg, Arne; Langer, Stefan; Netter, F.; Lindemann, U. (2010): Characterizing triggers of
reactive cycles within design processes based on process observation. In: Industrial
Engineering and Engineering Management (IEEM), 2010 IEEE International Conference on.
IEEE, pp. 972–976.

Herzfeldt, A.; Schermann, M.; Krcmar, H. (2012): A Product Service System Lifecycle
Model for the IT Service Industry. In. Multikonferenz der Wirtschaftsinformatik (MKWI
2012). Braunschweig, pp. 53–64.

Herzfeldt, Alexander; Briggs, Robert O.; Read, Aaron; Krcmar, Helmut (2011): Towards a
Taxonomy of Requirements for Hybrid Products. In: System Sciences (HICSS), 2011 44th
Hawaii International Conference on. IEEE, pp. 1–10.

Herzfeldt, Alexander; Schermann, Michael; Krcmar, H. (2010): Towards a set of
requirements for a holistic IT solution engineering approach. In: Australasian Conference on
Information Systems, pp. 1–10.

Hevner, Alan R. (2007): A three cycle view of design science research. In Scandinavian
journal of information systems 19 (2), p. 4.

Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; Ram, Sudha (2004): Design science in
information systems research. In MIS Q 28 (1), pp. 75–105.

Hicks, Ben J.; Culley, Steve J.; Allen, R. D.; Mullineux, Glen (2002): A framework for the
requirements of capturing, storing and reusing information and knowledge in engineering
design. In International journal of information management 22 (4), pp. 263–280.

Highsmith, J. (2002): What is Agile Software Development? STSC Crosstalk. In Journal of
Defense Software Engineering.

Hildenbrand, Tobias (2008): Improving traceability in distributed collaborative software
development. A design science approach. Frankfurt, M. u.a.: Lang.

Hitzler, Pascal; Krötzsch, Markus; Rudolph, Sebastian; Sure, York (2007): Semantic Web:
Grundlagen: Springer-Verlag.

Holtzblatt, Karen; Beyer, Hugh R. (2013): Contextual Design. In Rikke Friis Dam, Mads
Soegaard (Eds.): The Encyclopedia of Human-Computer Interaction, vol. 2. Aarhus,
Denmark: The Interaction Design Foundation, p. 8. Available online at
http://www.interaction-design.org/books/hci.html, checked on 6/14/2013.

Huang, G. Q.; Mak, K. L. (1999): Current practices of engineering change management in
UK manufacturing industries. In International Journal of Operations & Production
Management 19 (1), pp. 21–37.

Huang, G. Q.; Yee, W. Y.; Mak, K. L. (2001): Development of a web-based system for
engineering change management. In Robotics and Computer-Integrated Manufacturing 17
(3), pp. 255–267.

References 207

Isaksson, Ola; Larsson, Tobias C.; Rönnbäck, Anna Öhrwall (2009): Development of
product-service systems: challenges and opportunities for the manufacturing firm. In Journal
of Engineering Design 20 (4), pp. 329–348.

Jarke, Matthias (1998): Requirements Tracing. In Communications of the ACM 41 (12),
pp. 32–36.

Jarratt, T.; Clarkson, J. (2005): Engineering change. In J. Clarkson, C. M. Eckert (Eds.):
Design process improvement. London: Springer, pp. 262–285.

Jarratt, T. A.W.; Eckert, Claudia M.; Caldwell, N. H.M.; Clarkson, P. John (2011):
Engineering change: an overview and perspective on the literature. In Research in
engineering design 22 (2), pp. 103–124.

Johansson, Juliet E.; Krishnamurthy, Chandru; Schlissberg, Henry E. (2003): Solving the
solutions problem. In McKinsey Quarterly (3), pp. 116–125.

Jones, Dean; Bench-Capon, Trevor; Visser, Pepijn (1998): Methodologies for ontology
development. In: IFIP world computer congress, pp. 62–75.

Kannenberg, Andrew; Saiedian, Hossein (2010): Why Software Requirements Traceability
Remains a Challenge. In Journal of the Quality Assurance Institute 24 (2), pp. 4–7.

Kernschmidt, Konstantin; Vogel-Heuser, Birgit (2013): An interdisciplinary SysML based
modeling approach for analyzing change influences in production plants to support the
engineering. In: Automation Science and Engineering (CASE), 2013 IEEE International
Conference on. IEEE, pp. 1113–1118.

Kernschmidt, Konstantin; Wolfenstetter, Thomas; Münzberg, Christopher; Kammerl, Daniel;
Goswami, Suparna; Lindemann, U. et al. (2013): Concept for an Integration-framework to
enable the crossdisciplinary development of product-service-systems. In IEEE (Ed.):
Proceedings of the International Conference on Industrial Engineering and Engineering
Management (IEEM) 2013.

Kimita, K.; Tateyama, T.; Shimomura, Y. (2012): Process Simulation Method for Product-
Service Systems Design. In Procedia CIRP 3, pp. 489–494.

Kimura, Fumihiko; Kato, Satoru (2002): Life cycle management for improving product
service quality. In: Proceedings of the 9th International Seminar on Life Cycle Engineering,
Erlangen (Germany), pp. 25–31.

Kirova, V.; Kirby, N.; Kothari, D.; Childress, G. (2008): Effective requirements traceability:
Models, tools, and practices. In Bell Labs Technical Journal 12 (4), pp. 143–157.

Klingner, Stephan; Becker, Michael (2012): Formal Modelling of Components and
Dependencies for Configuring Product-Service-Systems. In Enterprise Modelling and
Information Systems Architectures 7 (1), pp. 44–66.

Knackstedt, Ralf; Pöppelbuß, Dipl-Wirt-Inform Jens; Winkelmann, Axel (2008): Integration
von Sach-und Dienstleistungen‐Ausgewählte Internetquellen zur hybriden Wertschöpfung. In
Wirtschaftsinformatik 50 (3), pp. 235–247.

Knethen, Antje von; Paech, B.; Kiedaisch, F.; Houdek, F. (2002): Systematic requirements
recycling through abstraction and traceability. In IEEE (Ed.): Proceedings of the IEEE Joint
International Conference on Requirements Engineering. Joint International Conference on
Requirements Engineering. Essen, Germany, 9-13 Sept. 2002, pp. 273–281.

References 208

Koh, E. C.Y.; Keller, R.; Eckert, C. M.; Clarkson, P. J.; others (2008): Influence of feature
change propagation on product attributes in concept selection. In: DS 48: Proceedings
DESIGN 2008, the 10th International Design Conference, Dubrovnik, Croatia.

Koh, Edwin C. Y.; Caldwell, Nicholas H. M.; Clarkson, P. John (2012): A method to assess
the effects of engineering change propagation. In Research in engineering design 23 (4),
pp. 329–351.

Komoto, H.; Tomiyama, T. (2008): Integration of a service CAD and a life cycle simulator. In
CIRP Annals-Manufacturing Technology 57 (1), pp. 9–12.

Komoto, Hitoshi; Tomiyama, Tetsuo; Nagel, Menno; Silvester, Sacha; Brezet, Han (2005):
Life cycle simulation for analyzing product service systems. In: Environmentally Conscious
Design and Inverse Manufacturing, 2005. Eco Design 2005. Fourth International Symposium
on. IEEE, pp. 386–393.

Kotonya, G.; Sommerville, I. (1998): Requirements Engineering. Processes and Techniques.
1. Auflage. West Sussex: John Wiley & Sons, Inc.

Krcmar, Helmut (2009): Informationsmanagement. 5th edition. Heidelberg: Springer.

Krueger, Charles W. (1992): Software reuse. In ACM Computing Surveys (CSUR) 24 (2),
pp. 131–183.

Langer, Philipp (2013): Angebotsmanagement für hybride IT-Produkte: Prozess-und
Datenmodelle für den Vertrieb kundenindividueller IT-Lösungen: Springer-Verlag.

Langer, Stefan; Herberg, Arne; Körber, Klaus; Lindemann, Udo (2011): Integrated system
and context modeling of iterations and changes in development processes. In: DS 68-1:
Proceedings of the 18th International Conference on Engineering Design (ICED 11),
Impacting Society through Engineering Design, Vol. 1: Design Processes,
Lyngby/Copenhagen, Denmark, 15.-19.08. 2011.

Langer, Stefan; Kreimeyer, Matthias; Müller, Patrick; Lindemann, Udo; Blessing, Luciënne
(2009): Entwicklungsprozesse hybrider Leistungsbündel‐Evaluierung von
Modellierungsmethoden unter Berücksichtigung zyklischer Einflussfaktoren. In:
Dienstleistungsmodellierung: Springer, pp. 71–87.

Langer, Stefan Frederik; Lindemann, Udo (2009): Managing cycles in development
processes-analysis and classification of external context factors. In: DS 58-1: Proceedings of
ICED 09, the 17th International Conference on Engineering Design, Vol. 1, Design Processes,
Palo Alto, CA, USA, 24.-27.08. 2009.

Laperche, Blandine; Picard, Fabienne (2013): Environmental constraints, Product-Service
Systems development and impacts on innovation management: learning from manufacturing
firms in the French context. In Journal of Cleaner Production 53, pp. 118–128.

Laurel, Brenda; Mountford, S. Joy (1990): The art of human-computer interface design:
Addison-Wesley Longman Publishing Co., Inc.

Laurischkat, Katja (2013): Wandel des traditionellen Dienstleistungsverständnisses im
Kontext von Product-Service Systems. In: Dienstleistungsmodellierung 2012: Springer,
pp. 74–95.

Lee, Christopher; Guadagno, Luigi; Jia, Xiaoping (2003): An agile approach to capturing
requirements and traceability. In: Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE 2003). Citeseer.

References 209

Lee, Ji Hwan; Shin, Dong Ik; Hong, Yoo S.; Kim, Yong Se (2011): Business model design
methodology for innovative product-service systems: a strategic and structured approach. In:
SRII Global Conference (SRII), 2011 Annual. IEEE, pp. 663–673.

Lee, S. W.; Kim, Y. S. (2012): Product-Service Systems Design Method Integrating Service
Function and Service Activity and Case Studies. In: Proceedings of the 2nd CIRP IPS2
Conference 2010; 14-15 April; Linköping; Sweden. Linköping University Electronic Press,
pp. 275–282.

Lee, Sora; Park, Yongtae (2010): Evaluation of PSS concepts for successful shift from
product to PSS: an approach based on AHP and niche theory. In: Industrial Engineering and
Engineering Management (IEEM), 2010 IEEE International Conference on. IEEE, pp. 453–
457.

Leffingwell, Dean; Widrig, Don (2003): Managing Software Requirements. A Unified
Approach. Amsterdam: Addison-Wesley Longman.

Leimeister, Jan Marco (2012): Dienstleistungsengineering und-management: Springer-Verlag.

Leimeister, Jan Marco; Glauner, Christoph (2008): Hybride Produkte – Einordnung und
Herausforderungen für die Wirtschaftsinformatik. In Wirtschaftsinformatik 50 (3), pp. 248–
251. DOI: 10.1365/s11576-008-0051-z.

Li, Fang; Bayrak, GAL’lden; Kernschmidt, Konstantin; Vogel-Heuser, Birgit (2012):
Specification of the requirements to support information technology-cycles in the machine
and plant manufacturing industry. In: Information Control Problems in Manufacturing, vol.
14, pp. 1077–1082.

Li, Xiao; Liu, Zheng Gang (2010): An evolution framework of product service system for
firms across service supply chains with integrated lifecycle perspective. In: Logistics Systems
and Intelligent Management, 2010 International Conference on, vol. 1. IEEE, pp. 430–434.

Li, Yang; Maalej, Walid (2012): Which Traceability Visualization Is Suitable in This
Context? A Comparative Study. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell et al. (Eds.): Requirements Engineering:
Foundation for Software Quality, vol. 7195. Berlin, Heidelberg: Springer Verlag (Lecture
Notes in Computer Science), pp. 194–210.

Liebowitz, Jay (1999): Knowledge management handbook: CRC press.

Lim, Chie-Hyeon; Kim, Kwang-Jae; Hong, Yoo-Suk; Park, Kwangtae (2012): PSS Board. A
structured tool for product‐service system process visualization. In Journal of Cleaner
Production 37, pp. 42–53.

Lin, Jinxin; Fox, Mark S.; Bilgic, T. (2006): A Requirement Ontology for Engineering
Design. In Concurrent Engineering: Research and Applications (4), pp. 279–291.

Lindemann, Udo (2009): Methodische Entwicklung Technischer Produkte: Methoden
Flexibel und Situationsgerecht Anwenden: Springer.

Lindemann, Udo; Reichwald, Ralf (2013): Integriertes Änderungsmanagement: Springer-
Verlag.

Liu, Xing; Qian, Xiaobo; Zhou, Xiaojiang (2010): A new approach to realize sustainability—
Integrated design under the product and service system framework. In IEEE (Ed.): 11th
Intenational Conference on Computer-Aided Industrial Design & Conceptual Design.

References 210

Lucas, Francisco J.; Molina, Fernando; Toval, Ambrosio (2009): A systematic review of
UML model consistency management. In Information and Software Technology 51 (12),
pp. 1631–1645.

Lucia, Andrea De; Qusef, Abdallah (2010): Requirements engineering in agile software
development. In Journal of Emerging Technologies in Web Intelligence 2 (3), pp. 212–220.

Luiten, Helma; Knot, Marjolijn; van der Horst, Tom (2001): Sustainable product-service-
systems: the Kathalys method. In: Environmentally Conscious Design and Inverse
Manufacturing, 2001. Proceedings EcoDesign 2001: Second International Symposium on.
IEEE, pp. 190–197.

Mäder, Patrick; Gotel, Orlena (2012): Towards automated traceability maintenance. In
Journal of Systems and Software 85 (10), pp. 2205–2227.

Maeder, Patrick; Egyed, Alexander (2012): Assessing the effect of requirements traceability
for software maintenance. In IEEE (Ed.): Software Maintenance (ICSM), 2012 28th IEEE
International Conference on, pp. 171–180.

Maeder, Patrick; Riebisch, Matthias; Philippow, Ilka (2006): Traceability for Managing
Evolutionary Change. In: SEDE, pp. 1–8.

Maletic, Jonathan I.; Munson, Ethan V.; Marcus, Andrian; Nguyen, Tien N. (2003): Using a
Hypertext Model for Traceability Link Conformance Analysis. In Proc. of the Int. Workshop
on Traceability in Emerging Forms of Software Engineering.

Mannweiler, Carsten; Möhrer, Jürgen; Fiekers, Christoph (2010): Planung investiver Produkt-
Service Systeme. In: Produkt-Service Systeme: Springer, pp. 15–30.

Manzini, Ezio; Vezzoli, Carlo (2003): Product-service Systems and Sustainability:
Opportunities for Solutions: UNEP, Division of Technology Industry and Economics,
Production and Consumption Branch.

Marques, Pedro; Cunha, Pedro F.; Valente, Fernando; Leitão, Ana (2013): A methodology for
product-service systems development. In Procedia CIRP 7, pp. 371–376.

Maussang, Nicolas; Zwolinski, Peggy; Brissaud, Daniel (2009): Product-service system
design methodology: from the PSS architecture design to the products specifications. In
Journal of Engineering Design 20 (4), pp. 349–366.

Medvidovic, Nenad; Grünbacher, Paul; Egyed, Alexander; Boehm, Barry W. (2003):
Bridging models across the software lifecycle. In Journal of Systems and Software 68 (3),
pp. 199–215.

Meier, Horst; Roy, Raj; Seliger, Günther (2010): Industrial product-service systems—IPS 2.
In CIRP Annals-Manufacturing Technology 59 (2), pp. 607–627.

Mens, Tom; van Gorp, Pieter (2006): A taxonomy of model transformation. In Electronic
Notes in Theoretical Computer Science 152, pp. 125–142.

Mien, Lee Hui; Feng, Lu Wen; Gay, R. (2005): An integrated manufacturing and product
services system (IMPSS) concept for sustainable product development. In: Fourth
International Symposium on Environmentally Conscious Design and Inverse Manufacturing,
2005. Eco Design 2005. IEEE, pp. 656–662.

Mohan, Kannan; Ramesh, Balasubramaniam (2006): Change management patterns in
software product lines. In Communications of the ACM 49 (12), pp. 68–72.

Mont, Oksana (2000): Product-Service Systems. Final Report.

References 211

Mont, Oksana (2002): Clarifying the concept of product-service systems. In Journal of
Cleaner Production 10 (3), pp. 237–245.

Mont, Oksana; Tukker, Arnold (2006): Product-Service Systems: reviewing achievements
and refining the research agenda. In Journal of Cleaner Production 14 (17), pp. 1451–1454.

Morcos, M. S.; Henshaw, M. J.D. (2009): A systems approach for balancing internal company
capability and external client demand for integrated product-service solutions. In: Service
Operations, Logistics and Informatics, 2009. SOLI’09. IEEE/INFORMS International
Conference on. IEEE, pp. 32–36.

Morelli, Nicola (2002): Designing Product/Service Systems: A Methodological Exploration.
In Design issues 18 (3), pp. 3–17.

Morelli, Nicola (2006): Developing new product service systems (PSS): methodologies and
operational tools. In Journal of Cleaner Production 14 (17), pp. 1495–1501.

Morkos, Beshoy; Shankar, Prabhu; Summers, Joshua D. (2012): Predicting requirement
change propagation, using higher order design structure matrices: an industry case study. In
Journal of Engineering Design 23 (12), pp. 905–926.

Nemoto, Yutaro; Akasaka, Fumiya; Shimomura, Yoshiki (2015): A framework for managing
and utilizing product-service system design knowledge. In Production Planning & Control 26
(14-15), pp. 1278–1289.

Nerur, Sridhar; Mahapatra, RadhaKanta; Mangalaraj, George (2005): Challenges of migrating
to agile methodologies. In Communications of the ACM 48 (5), pp. 72–78.

Nordin, F.; Kowalkowski, C. (2010): Solutions Offerings. A critical Review and
Reconceptualisation. In Journal of Service Management 21 (4), pp. 441–459.

Noy, Natalya F. (2004): Semantic integration: a survey of ontology-based approaches. In
ACM Sigmod Record 33 (4), pp. 65–70.

Noy, Natalya F.; McGuinness, Deborah L.; others (2001): Ontology development 101: A
guide to creating your first ontology: Stanford knowledge systems laboratory technical report
KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880, Stanford, CA.

Object Management Group (2011a): Meta Object Facility (MOF). Version 2.4.1.

Object Management Group (2011b): “OMG Unified Modeling Language (OMG UML™).
Version 2.4.1.

Object Management Group (2012): OMG Systems Modeling Language (OMG SysML™).
Version 1.3.

Orloff, M. A. (2006): Inventive Thinking through TRIZ: A Practical Guide. Heidelberg:
Springer.

Osterwalder, Alexander; Pigneur, Yves (2010): Business model generation: a handbook for
visionaries, game changers, and challengers: John Wiley & Sons.

Pahl, Gerhard; Beitz, Wolfgang; Feldhusen, Jörg (2006): Konstruktionslehre. Grundlagen
Erfolgreicher Produktentwicklung. Methoden Und Anwendung. 7th ed. Berlin: Springer.

Patel, Manish; Nagl, Sylvia (2010): Coping with Complexity: Modelling of Complex
Systems. In The Role of Model Integration in Complex Systems Modelling, pp. 33–55.

References 212

Pavković, Neven; Štorga, Mario; Bojčetić, Nenad; Marjanović, Dorian (2013): Facilitating
design communication through engineering information traceability. In Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 27 (02), pp. 105–119.

Peffers, Ken; Tuunanen, Tuure; Rothenberger, Marcus A.; Chatterjee, Samir (2007): A design
science research methodology for information systems research. In Journal of Management
Information Systems 24 (3), pp. 45–77.

Phumbua, Sarocha; Tjahjono, Benny (2012): Towards product-service systems modelling: a
quest for dynamic behaviour and model parameters. In International Journal of Production
Research 50 (2), pp. 425–442.

Ping, Wang Li; Jia, Fu (2010): Analysis on supply chain of manufacturing enterprise product
service system. In: Emergency Management and Management Sciences (ICEMMS), 2010
IEEE International Conference on. IEEE, pp. 126–129.

Pinheiro, Francisco A.C. (2004): Requirements Traceability. In JulioCesarSampaio Prado
Leite, JorgeHoracio Doorn (Eds.): Perspectives on Software Requirements, vol. 753: Springer
US (The Springer International Series in Engineering and Computer Science), pp. 91–113.

Pohl, K. (2008): Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. Auflage.
Heidelberg: dpunkt.verlag.

Pohl, Klaus (1996a): PRO-ART: Enabling Requirements Pre-Traceability. In IEEE Computer
Society (Ed.): Proceedings of the 2nd International Conference on Requirements Engineering.
International Conference on Requirements Engineering. Colorado Springs, 15-18. April 1996.
Washington, DC: IEEE Computer Society, pp. 76–84.

Pohl, Klaus (1996b): Process-centered requirements engineering. Taunton, Somerset,
England, New York: Research Studies Press; Wiley.

Pohl, Klaus (2010): Requirements engineering: fundamentals, principles, and techniques:
Springer Publishing Company, Incorporated.

Pohl, Klaus; Rupp, Chris (2010): Basiswissen Requirements Engineering. Aus- und
Weiterbildung zum "Certified Professional for Requirements Engineering" ; Foundation Level
nach IREB-Standard. 2nd ed. Heidelberg: dpunkt-Verl.

Ponn, Josef; Lindemann, Udo (2008): Konzeptentwicklung und Gestaltung technischer
Produkte: optimierte Produkte-systematisch von Anforderungen zu Konzepten: Springer-
Verlag.

Qian, Lena; Gero, John S. (1996): Function–behavior–structure paths and their role in
analogy-based design. In AIEDAM 10 (04), p. 289.

Qu, Min; Yu, Suihuai; Chen, Dengkai; Chu, Jianjie; Tian, Baozhen (2016): State-of-the-art of
design, evaluation, and operation methodologies in product service systems. In Computers in
Industry 77, pp. 1–14.

Qusef, Abdallah (2013): Test-to-code traceability: Why and how? In: Applied Electrical
Engineering and Computing Technologies (AEECT), 2013 IEEE Jordan Conference on.
IEEE, pp. 1–8.

Radatz, Jane; Geraci, Anne; Katki, Freny (1990): IEEE standard glossary of software
engineering terminology. In IEEE Std 610121990 (121990), p. 3.

Ramesh, Balasubramaniam (1998): Factors influencing requirements traceability practice. In
Commun. ACM 41 (12), pp. 37–44.

References 213

Ramesh, Balasubramaniam (2002): Process knowledge management with traceability. In
Software, IEEE 19 (3), pp. 50–52.

Ramesh, Balasubramaniam; Edwards, M. (1993): Issues in the development of a requirements
traceability model. In IEEE (Ed.): Proceedings of the IEEE International Symposium on
Requirements Engineering. International Symposium on Requirements Engineering. San
Diego, CA, USA, 4-6 Jan. 1993, pp. 256–259.

Ramesh, Balasubramaniam; Jarke, Matthias (2001): Towards Reference Models for
Requirements Traceability. In IEEE Transactions on Software Engineering 27 (1), pp. 58–93.

Ramesh, Balasubramaniam; Stubbs, Curtis; Powers, Timothy; Edwards, Michael (1997):
Requirements traceability: Theory and practice. In Annals of Software Engineering 3 (1),
pp. 397–415.

Ravichandar, Ramya; Arthur, James D.; Pérez-Quiñones, Manuel (2007): Pre-requirement
specification traceability: bridging the complexity gap through capabilities. In arXiv preprint
cs/0703012.

Reichwald, R.; Mayer, D.; Bonnemeier, S. (2009): Risikomanagement bei hybrider
Wertschöpfung. In Risikomanagement und kaptialmarktorientierte Finanzierung 1, pp. 209–
228.

Rezayat, Mohsen (2000): Knowledge-based product development using XML and KCs. In
Computer-aided design 32 (5), pp. 299–309.

Riebisch, M. (2004): Supporting evolutionary development by feature models and traceability
links. In IEEE Computer Society (Ed.): Proceedings of the 11th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems. Brno, Czech
Republic, 24-27 May 2004, pp. 370–377.

Robertson, Suzanne; Robertson, James (2006): Mastering the requirements process. 2nd ed.
Upper Saddle River, NJ: Addison-Wesley.

Roht, Olga; Engel, Tobias; Wolfenstetter, Thomas; Goswami, Suparna; Krcmar, Helmut
(2014): An Analysis of Synergy Effects between Closed-Loop Supply Chains and Product-
Service Systems. In POMS International Meeting, Atlanta.

Rosemann, Michael (2013): Komplexitätsmanagement in Prozessmodellen:
methodenspezifische Gestaltungsempfehlungen für die Informationsmodellierung: Springer-
Verlag.

Rouibah, Kamel; Caskey, Kevin R. (2003): Change management in concurrent engineering
from a parameter perspective. In Computers in Industry 50 (1), pp. 15–34.

Roy, Rajkumar; Shehab, Essam; Tiwari, Ashutosh; Sakao, Tomohiko; Ölundh Sandström,
Gunilla; Matzen, Detlef (2009a): Framing research for service orientation of manufacturers
through PSS approaches. In Journal of Manufacturing Technology Management 20 (5),
pp. 754–778.

Roy, Rajkumar; Shehab, Essam; Tiwari, Ashutosh; Sundin, Erik; Lindahl, Mattias; Ijomah,
Winifred (2009b): Product design for product/service systems: design experiences from
Swedish industry. In Journal of Manufacturing Technology Management 20 (5), pp. 723–753.

Sahraoui, A. (2005): Requirements Traceability Issues: Generic Model, Methodology and
Formal Basis. In International Journal of Information Technology & Decision Making 4 (1),
pp. 59–80.

References 214

Sakao, Tomohiko; Panshef, Veselin; Dörsam, Edgar (2009a): Addressing uncertainty of PSS
for value-chain oriented service development: Springer.

Sakao, Tomohiko; Shimomura, Yoshiki; Sundin, Erik; Comstock, Mica (2009b): Modeling
design objects in CAD system for service/product engineering. In Computer-aided design 41
(3), pp. 197–213.

Sauerwein, Elmar; Bailom, Franz; Matzler, Kurt; Hinterhuber, Hans H. (1996): The Kano
Model: How to delight your customers. In: Preprints of the International Working Seminar on
Production Economics, vol. 1. International Working Seminar on Production Economics.
Innsbruck, 19. - 23. Februar 1996, pp. 313–327.

Sawhney, Mohanbir (2006): Going beyond the product. Defining, Designing and Delivering
Customer Solutions. In The service-dominant logic of marketing: Dialogue, debate, and
directions, pp. 365–380.

Sawhney, Mohanbir; Wolcott, Robert C.; Arroniz, Inigo (2006): The 12 different ways for
companies to innovate. In MIT Sloan Management Review 47 (3), p. 75.

Schaffry, A. (2008): Manufacturing Execution Systeme. Available online at
http://www.cio.de/strategien/methoden/847558/index2.html, checked on 8/18/2014.

Scheer, August-Wilhelm (1992): Architektur integrierter Informationssysteme. Grundlagen
der Unternehmensmodellierung. 2nd ed. Berlin u.a: Springer.

Schenkl, Sebastian A.; Behncke, Florian G. H.; Hepperle, Clemens; Langer, Steven;
Lindemann, Udo (2013): Managing cycles of innovation processes of product-service
systems. In: Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on.
IEEE, pp. 918–923.

Schienmann, Bruno (2001): Kontinuierliches Anforderungsmanagement. Prozesse -
Techniken - Werkzeuge. 1st ed.: Addison-Wesley.

Schmitz, G. (2008): Der wahrgenommene Wert hybrider Produkte. Konzeptionelle
Grundlagen und Komponenten. In M. Bichler, T. Hess, H. Krcmar, U. Lechner, F. Matthes,
A. Picot et al. (Eds.). Multikonferenz der Wirtschaftsinformatik (MKWI 2008). Berlin,
pp. 665–683.

Schütte, Reinhard (2013): Grundsätze ordnungsmäßiger Referenzmodellierung: Konstruktion
konfigurations-und anpassungsorientierter Modelle: Springer-Verlag (233).

Schweitzer, Eric (2010): Lebenszyklusmanagement investiver Produkt-Service Systeme. In:
Produkt-Service Systeme: Springer, pp. 7–13.

Sevcenko, M.; Mann, H. (2002): Intelligent user-support system for modeling and simulation.
In: Computer Aided Control System Design, 2002. Proceedings. 2002 IEEE International
Symposium on. IEEE, pp. 205–206.

Shah, Aditya A.; Kerzhner, Aleksandr A.; Schaefer, Dirk; Paredis, Christiaan J. J. (2010):
Multi-view modeling to support embedded systems engineering in SysML. In: Graph
transformations and model-driven engineering: Springer, pp. 580–601.

Shah, Aditya A.; Schaefer, Dirk; Paredis, Christiaan (2009): Enabling multi-view modeling
with sysml profiles and model transformations. In: The 6th International Conference on
Product Lifecycle Management. University of Bath, pp. 527–538.

Sharafi, Armin; Wolf, Petra; Krcmar, Helmut (2010a): Knowledge Discovery in Databases on
the Example of Engineering Change Management. In: Industrial Conference on Data Mining-
Poster and Industry Proceedings, pp. 9–16.

References 215

Sharafi, Armin; Wolfenstetter, Thomas; Wolf, Petra; Krcmar, Helmut (2010b): Comparing
Product Development Models to Identify Process Coverage and Current Gaps. A Literature
Review. In Lian Zhaotong, Wu Zhang, Xie Min, Jiao Roger (Eds.): Proceedings of the
International Conference on Industrial Engineering and Engineering Management. Macau,
2010: Springer, pp. 1732–1737.

Shostack, G. Lynn (1977): Breaking free from product marketing. In The Journal of
Marketing, pp. 73–80.

Shostack, G. Lynn (1982): How to Design a Service. In European Journal of Marketing 16
(1), pp. 49–63. DOI: 10.1108/EUM0000000004799.

Sommerville, Ian (2011): Software Engineering. 9th ed.: Addison-Wesley.

Sommerville, Ian; Kotonya, Gerald (1998): Requirements engineering: processes and
techniques: John Wiley & Sons, Inc.

Song, Wenyan (2017): Requirement management for product-service systems. Status review
and future trends. In Computers in Industry 85, pp. 11–22.

Spanoudakis, George; Zisman, Andrea (2005): Software Traceability: A Roadmap. In Shi
Kuo Chang (Ed.): Handbook of software engineering & knowledge engineering. New Jersey
[etc.]: World Scientific, pp. 395–428.

Spath, Dieter; Demuß, Lutz (2006): Entwicklung hybrider Produkte—Gestaltung materieller
und immaterieller Leistungsbündel. In H. J. Bullinger, A.-W Scheer (Eds.): Service
Engineering. Entwicklung und Gestaltung innovativer Dienstleistungen. 3rd ed. Berlin:
Springer, pp. 463–502.

Stachowiak, Herbert (1973): Allgemeine Modelltheorie. Wien [etc.]: Springer.

Storga, M. (2004): Traceability in product development. In: DS 32: Proceedings of DESIGN
2004, the 8th International Design Conference, Dubrovnik, Croatia.

Štorga, Mario; Marjanovic, Dorian; Savšek, Tomaz; others (2011): Reference model for
traceability records implementation in engineering design environment. In: DS 68-6:
Proceedings of the 18th International Conference on Engineering Design (ICED 11),
Impacting Society through Engineering Design, Vol. 6: Design Information and Knowledge,
Lyngby/Copenhagen, Denmark, 15.-19.08. 2011.

Strens, M.R.; Sugden, R.C. (1996): Change analysis: a step towards meeting the challenge of
changing requirements. In IEEE (Ed.): Proceedings of the IEEE Symposium and Workshop
on Engineering of Computer-Based Systems. Symposium and Workshop on Engineering of
Computer-Based Systems. Friedrichshafen, Germany, 11-15 March 1996, pp. 278–283.

Sturm, F.; Bading, A. (2008): Investitionsgüterhersteller als Anbieter industrieller Lösungen –
Bestandsaufnahme des Wandels anhand einer Umfrage. In Wirtschaftsinformatik 50 (3),
pp. 174–186.

Sun, Huibin; Zhang, Guohai (2012): Study on collaborative design methodologies of product
service systems. In: Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE
16th International Conference on. IEEE, pp. 882–884.

Tan, Adrian Ronald; Matzen, Detlef; McAloone, Tim C.; Evans, Stephen (2010): Strategies
for designing and developing services for manufacturing firms. In CIRP Journal of
Manufacturing Science and Technology 3 (2), pp. 90–97.

References 216

Tan, Adrian Ronald; McAloone, Tim Charles; Gall, Catherine (2007): Product/Service-
System Development. An Explorative Case Study in a Manufacturing Company. In
Proceedings of the International Conference on Engineering Design (ICED2007).

Tang, Antony; Jin, Yan; Han, Jun (2006): A rationale-based architecture model for design
traceability and reasoning. In Journal of Systems and Software 80 (6), pp. 918–934. DOI:
10.1016/j.jss.2006.08.040.

Teng, Sheng-Hsien; Ho, Shin-Yann (1996): Failure mode and effects analysis: an integrated
approach for product design and process control. In International journal of quality &
reliability management 13 (5), pp. 8–26.

Thramboulidis, Kleanthis (2010): The 3+ 1 SysML view-model in model integrated
mechatronics. In Journal of Software Engineering and Applications 3 (02), p. 109.

Tilstra, Andrew H.; Campbell, Matthew I.; Wood, Kristin L.; Seepersad, Carolyn C. (2010):
Comparing Matrix-Based and Graph-Based Representations for Product Design. In: DSM
2010: Proceedings of the 12th International DSM Conference, Cambridge, UK, 22.-23.07.
2010.

Torkar, Richard; Gorschek, Tony; Feldt, Robert; Svahnberg, Mikael; Raja, Uzair Akbar;
Kamran, Kashif (2012): Requirements traceability: a systematic review and industry case
study. In International Journal of Software Engineering and Knowledge Engineering 22 (03),
pp. 385–433.

Tratt, Laurence (2005): Model transformations and tool integration. In Software and Systems
Modeling 4 (2), pp. 112–122.

Tukker, A. (2004): Eight Types of Product-Service System. Eight Ways to Sustainability?
Experiences from SusProNet. In Business strategy and the environment 13 (4), pp. 246–260.

Tukker, A.; Tischner, U. (2006): Product-Services as a Research Field. Past, Present and
Future. Reflections from a Decade of Research. In Journal of Cleaner Production 14 (17),
pp. 1552–1556.

Tuli, K. R.; Kohli, A. K.; Bharadwaj, S. G. (2007): Rethinking Customer Solutions. From
Product Bundles to Relational Processes. In Journal of Marketing 71 (3), pp. 1–17.

Ulrich, K. T.; Eppinger, S. D. (2012): Product Design and Development: McGraw-Hill
Education.

van Aken, Joan Ernst (2005): Management research as a design science. Articulating the
research products of mode 2 knowledge production in management. In British journal of
management 16 (1), pp. 19–36.

van Halen, Cees; Vezzoli, Carlo; Wimmer, Robert (2005): Methodology for product service
system innovation. How to develop clean, clever and competitive strategies in companies:
Uitgeverij Van Gorcum.

van Lamsweerde, A. (2007): Requirements engineering. From system goals to UML models
and software specifications. Hoboken, N.J, Chichester: Wiley.

van Ostaeyen, Joris; van Horenbeek, Adriaan; Pintelon, Liliane; Duflou, Joost R. (2013): A
refined typology of product‐service systems based on functional hierarchy modeling. In
Journal of Cleaner Production 51, pp. 261–276.

Varró, Dániel; Pataricza, András (2004): Generic and meta-transformations for model
transformation engineering. In: \guillemotright 2004—The Unified Modeling Language.
Modeling Languages and Applications: Springer, pp. 290–304.

References 217

Vasantha, Gokula Vijaykumar Annamalai; Roy, Rajkumar; Lelah, Alan; Brissaud, Daniel
(2012): A review of product‐service systems design methodologies. In Journal of Engineering
Design 23 (9), pp. 635–659.

VDI/VDE (2005): Norm 3682 “Formalised process descriptions”.

Velamuri, V. K.; Neyer, A.-K.; Möslein, K. M. (2011): Hybrid Value Creation. A systematic
Review of an evolving Research Area. In Journal für Betriebswirtschaft 61 (1), pp. 3–35.

Versteegen, Gerhard (2003:): Anforderungsmanagement. 1st ed. Berlin: Springer.

Vezzoli, Carlo; Ceschin, Fabrizio; Diehl, Jan Carel; Kohtala, Cindy (2012): Why have
‘Sustainable Product-Service Systems’ not been widely implemented?: Meeting new design
challenges to achieve societal sustainability. In Journal of Cleaner Production 35, pp. 288–
290.

Vezzoli, Carlo; Sciama, Dalia (2006): Life Cycle Design: from general methods to product
type specific guidelines and checklists: a method adopted to develop a set of
guidelines/checklist handbook for the eco-efficient design of NECTA vending machines. In
Journal of Cleaner Production 14 (15), pp. 1319–1325.

Vilela, Jéssyka; Castro, Jaelson; Martins, Luiz Eduardo G.; Gorschek, Tony (2017):
Integration between requirements engineering and safety analysis. A systematic literature
review. In Journal of Systems and Software 125, pp. 68–92.

Vogel-Heuser, Birgit; Witsch, Daniel; Katzke, Uwe (2005): Automatic code generation from
a UML model to IEC 61131-3 and system configuration tools. In: Control and Automation,
2005. ICCA’05. International Conference on, vol. 2. IEEE, pp. 1034–1039.

Vom Brocke, Jan; Simons, Alexander; Niehaves, Bjoern; Riemer, Kai; Plattfaut, Ralf;
Cleven, Anne; others (2009): Reconstructing the giant: On the importance of rigour in
documenting the literature search process. In: ECIS, vol. 9, pp. 2206–2217.

Wang, P. P.; Ming, X. G.; Li, D.; Kong, F. B.; Wang, L.; Wu, Z. Y. (2011): Status review and
research strategies on product-service systems. In International Journal of Production
Research 49 (22), pp. 6863–6883.

Watkins, R.; Neal, M. (1994): Why and how of requirements tracing. In IEEE Software 11
(4), pp. 104–106.

Weber, C.; Pohl, M.; Steinbach, M.; Botta, C. (2002): Diskussion der Probleme bei der
integrierten Betrachtung von Sach- und Dienstleistungen – „Kovalente Produkte“. In. 13.
Symposium „Design for X“. Saarbrücken, pp. 61–70.

Webster, Jane; Watson, Richard T. (2002): Analyzing the Past to Prepare for the Future:
Writing a Literature Review. In MIS Quarterly 26 (2), pp. 13–23.

Wiegers, K. E. (2009): Software Requirements: Microsoft Press.

Wieringa, R. J. (2008): Conceptual modeling in social and physical contexts.

Wieringa, Roel (2009): Design science as nested problem solving. In: Proceedings of the 4th
international conference on design science research in information systems and technology.
ACM, p. 8.

Wiesner, Stefan; Freitag, Mike; Westphal, Ingo; Thoben, Klaus-Dieter (2015): Interactions
between service and product lifecycle management. In Procedia CIRP 30, pp. 36–41.

Wilkinson, Adrian; Dainty, Andy; Neely, Andy; Pawar, Kulwant S.; Beltagui, Ahmad;
Riedel, Johann CKH (2009): The PSO triangle: designing product, service and organisation to

References 218

create value. In International Journal of Operations & Production Management 29 (5),
pp. 468–493.

Williams, Laurie; Cockburn, Alistair (2003): Agile Software Development: It? s about
Feedback and Change. Guest Editors’ Introduction. In Computer (6), pp. 39–43.

Williams, R. D. (1975): Managing the development of reliable software. In ACM SIGPLAN
Notices 10 (6), pp. 3–8.

Winkler, Stefan; Pilgrim, Jens (2010): A survey of traceability in requirements engineering
and model-driven development. In Software and Systems Modeling (SoSyM) 9 (4), pp. 529–
565.

Wolf, Nico; Siener, Martin; Clement, Michael H.; Jenne, Frank; Fuchs, Christian (2010):
Konfiguration investiver Produkt-Service Systeme. In: Produkt-Service Systeme: Springer,
pp. 67–94.

Wolfenstetter, T.; Goswami, S.; Krcmar, H. (2013): Herausforderungen auf dem Weg zu einer
zyklengerechten Requirements Traceability für Produkt-Service Systeme. In
Zyklenmanagement Aktuell 4, pp. 7–9.

Wolfenstetter, Thomas; Floerecke, Sebastian; Böhm, Markus; Krcmar, Helmut (2015a):
Analyse der Eignung domänenspezifischer Methoden der Anforderungsverfolgung für
Produkt-Service-Systeme. In: Wirtschaftsinformatik, pp. 210–224.

Wolfenstetter, Thomas; Füller, Kathrin; Böhm, Markus; Krcmar, Helmut; Bründl, Simon
(2015b): Towards a requirements traceability reference model for Product Service Systems.
In: International Conference on Industrial Engineering and Systems Management (IESM)
2015. IEEE, pp. 1213–1220.

Wolfenstetter, Thomas; Kernschmidt, Konstantin; Munzberg, Christopher; Kammerl, Daniel;
Goswami, Suparna; Lindemann, Udo et al. (2014): Supporting the cross-disciplinary
development of product-service systems through model transformations. In: Industrial
Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on.
IEEE, pp. 174–178.

Wright, I. C. (1997): A review of research into engineering change management: implications
for product design. In Design Studies 18 (1), pp. 33–42.

Wu, Yi; Gao, Junjun (2010): A study on the model and characteristics of product-based
service supply chain. In: Logistics systems and intelligent management, 2010 international
conference on, vol. 2. IEEE, pp. 1127–1131.

Wurtz, Gunther; Ardilio, Antonino; Lasi, Heiner; Warschat, Joachim (2013): Towards mass
individualization: Life-cycle oriented configuration of time-variable product-service systems.
In: Technology Management in the IT-Driven Services (PICMET), 2013 Proceedings of
PICMET’13. IEEE, pp. 9–25.

Wymore, A. Wayne (1993): Model-based systems engineering: CRC press (3).

Xuanju, Yang; Jian, Li (2009): Research on supplier-buyer enterprise contract cooperation
model based on product-service system. In: Industrial Engineering and Engineering
Management, 2009. IE&EM’09. 16th International Conference on. IEEE, pp. 1372–1375.

Yang, Lujing; Xing, Ke; Lee, Sang-Heon (2010): A new conceptual life cycle model for
Result-Oriented Product-Service System development. In: IEEE International Conference on
Service Operations and Logistics and Informatics (SOLI), 2010. IEEE, pp. 23–28.

References 219

Yang, Lujing; Xing, Ke; Lee, Sang-Heon (2011): Life-cycle Oriented Design Model for
Product-service System Development. In IEEE International Conference on Service
Operations and Logistics and Informatics.

Yang, Xiaoyu; Moore, Philip; Pu, Jun-Sheng; Wong, Chi-Biu (2009): A practical
methodology for realizing product service systems for consumer products. In Computers &
Industrial Engineering 56 (1), pp. 224–235.

Yip, Man Hang; Phaal, Robert; Probert, David R. (2014): Stakeholder engagement in early
stage product-service system development for healthcare informatics. In Engineering
Management Journal 26 (3), pp. 52–62.

Yu, Eric S. (2009): Social Modeling and i*. In Alexander T. Borgida, Vinay K. Chaudhri,
Paolo Giorgini, Eric S. Yu (Eds.): Conceptual Modeling: Foundations and Applications:
Essays in Honor of John Mylopoulos. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 99–
121.

Zacharewicz, Gregory; Diallo, Saikou; Ducq, Yves; Agostinho, Carlos; Jardim-Goncalves,
Ricardo; Bazoun, Hassan et al. (2017): Model-based approaches for interoperability of next
generation enterprise information systems. State of the art and future challenges. In
Information Systems and e-Business Management 15 (2), pp. 229–256.

Zisman, Andrea; Spanoudakis, George; Pérez-Minana, Elena; Krause, Paul (2002): Towards a
Traceability Approach for Product Families Requirements. In: Proceedings of the 3rd ICSE
Workshop on Software Product Lines: Economics, Architectures, and Implications. Orlando,
Florida, USA, 19.-25. Mai 2002.

Zolnowski, Andreas; Semmann, Martin; Böhmann, Tilo (2013): Vergleich von Metamodellen
zur Repräsentation von Geschäftsmodellen im Service. In: Dienstleistungsmodellierung 2012:
Springer, pp. 26–48.

	Binder1.pdf
	dissertation_titelblatt_genehmigt

	dissertation_two_final

