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ABSTRACT

Typical approaches for video face recognition aggregate faces in a
feature space to obtain a single feature representing the entire video.
Unlike most previous approaches, we aggregate the faces directly in
order to additionally obtain a single representative face as an inter-
mediate output, from which a more discriminative feature vector is
extracted. To overcome the limitation of a fixed number of input
images of the state of the art in face aggregation, we incorporate a
permutation invariant U-Net architecture capable of processing an
arbitrary number of frames, which is employed in a generative ad-
versarial network. We demonstrate the effectiveness of our method
on three popular benchmark datasets for video face recognition. Our
approach outperforms the baselines on the YouTube Faces dataset,
obtaining an accuracy of 96.62 %. Besides, we show that our method
is robust against motion blur.

Index Terms— Video Face Recognition, Face Aggregation,
Generative Adversarial Network, Biometrics

1. INTRODUCTION

Compared to still image Face Recognition (FR), current FR ap-
proaches for videos still face numerous challenges as video frames
are typically acquired under arguably poor conditions leading to a
high variety in head poses, expressions, and motion blur. This re-
quires the model to recognize when a frame does not contain useful
information and consequently mitigate its influence. Besides, archi-
tectures need to be designed such that they are capable of handling
an arbitrary number of frames.

The majority of video FR approaches [1H9] first extract feature
vectors from every frame separately and aggregate them based on
their relevance into a single feature vector representing the entire
video. However, feature extractors are trained on identification and,
therefore, do not directly embed feature quality. Thus, estimating the
relevance of every feature after its extraction is limited. Moreover,
since videos consist of a high number of frames, extracting features
from every frame introduces a high computational cost.

As depicted in [Figure 1] we propose a framework to aggregate
the valuable information from an image set Z consisting of IV frames
I, into a single image A. This disentanglement of aggregation and
recognition not only performs the aggregation when the input quality
can be extracted directly but also provides the aggregated image as
an additional output. We can state the overall task as follows:
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Fig. 1: Overview of our approach: /N images I, are aggregated into
one image A, whose feature f, represents the whole video Z.
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with the superscripts -* and subscripts -5 denoting the k-th image
of identity ¢ and F'(-) a feature extraction network. Hence, we not
only aggregate IV images into a single image A, but also want to
ensure an easier differentiation of identities in the feature space, i.e.,
more discriminative features. Through this aggregation, the influ-
ence of outliers is mitigated by only aggregating relevant informa-
tion into A.
The contributions of our work can be summarized as follows:

* We propose the first approach to face aggregation capable of
aggregating an arbitrary number of faces in a permutation
invariant manner.

* Our exhaustive evaluation shows that our method outper-
forms the state of the art and is robust against motion blur
degradation.

2. RELATED WORK

Video FR approaches can be divided into set- and sequence-based
methods. While set-based algorithms are considering an orderless
set of images, sequence-based methods take into account the tempo-
ral dependency between frames.

Early set-based approaches extract features from every face sep-
arately and compute pairwise distances [[1] or apply average/max-
pooling to obtain a single feature vector [2]. However, these ap-
proaches disregard that not every face contains an equal amount of
information. This caused new approaches to emerge, which adap-
tively aggregate the features based on their quality: The quality of
every feature is predicted directly from the features using a cascaded
attention network [3| 4], from intermediate feature maps [[10]], or
from the input utilizing a separate network [11]]. Also, the quality
for every component of a feature vector is estimated by [5}/6].

Like [3L{4], Gong et al. [7,8] predict feature quality based on
the feature vector. However, they incorporate LSTMs and thus are
considered sequence-based approaches. The Discriminative Aggre-
gation Network (DAN) [[12] uses 20 concatenated faces as the input
for the aggregation network to obtain a single face, from which the
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Fig. 2: Our approach for video FR: N faces I,, are aggregated by a permutation invariant U-Net yielding a single face image A, whose
feature f, is representative for all NV input images. The branch for the first face I, through the face aggregator is highlighted.

feature vector for FR is extracted. Kang et al. [9]] aggregate features
within the feature extractor utilizing a pairwise relational network to-
gether with LSTMs. Rao et al. [|13] predict feature quality by apply-
ing attention-aware reinforcement learning in the feature and image
space.

3. METHODOLOGY

3.1. Network Architecture

depicts our proposed framework with its three modules be-
ing described in the following subsections:

3.1.1. Face Aggregator

In order to overcome the limitation of requiring a fixed number
of input faces as in [12]] and aggregate the set of N input images
T ={I,, I,,---In} into a single image A, the architecture must
be permutation invariant and capable of processing an arbitrary
amount of input images. As opposed to typical feature aggregation
approaches [3,/41(7,/8,/10,/11]], aggregating images is a more complex
task. Even though all input images contain the same identity, their
pairwise pixel distance is too high, which renders computing the
(weighted) average of the input images impossible. Hence, the in-
formation needs to be aggregated at multiple depths throughout the
network to obtain a realistic image.

Our approach incorporates the global concatenation from [[14]
into a modified U-Net architecture [[15]]. All images are processed in
parallel and in the same way as weights are shared for every image.
However, the global concatenation operation allows every image to
include information from the remaining images. Given the interme-
diate feature tensor X,, € R" > of the n-th image with height
H, width W, and C channels, we obtain the output of the global
concatenation layer Y, € R *#>2C through concatenation along
the channel dimension with the max-pooling over all images:

Y, =X, ®max(X;) )
J

The integration of global concatenation layers at multiple depths
enables repeated back-and-forth information exchange between
members of the set in a permutation invariant manner.

After an initial 3 X 3 convolutional layer, the encoder block con-
sists of a global concatenation followed by a 1 x 1 convolutional

layer to merge the local with the global features, and a 3 x 3 con-
volutional layer. To reduce the feature map dimension, the last con-
volution is applied with stride 2. Four encoder blocks are stacked to
downsize the initial input resolution 112 x 112 to feature maps of
size 7 X 7.

The decoder block consists of a 4 x 4 deconvolutional layer,
global concatenation, and two convolutional layers of size 1 x 1
and 3 x 3. In addition to the global concatenation in the encoder, we
further concatenate the output from the encoder of the corresponding
resolution to allow the model to skip the lower latent resolutions.
The decoder blocks are stacked four times resulting in the initial
input dimension at the output.

We conclude the face aggregator with max-pooling over all
branches to obtain a single image and add two 3 X 3 convolutional
layers for global optimizations. As activation function, we apply
exponential linear unit [[16] after every convolutional and deconvo-
lutional layer.

3.1.2. Discriminator

The discriminator’s task is to judge whether its input is a real face
or a fake face aggregated by the face aggregator. Our discrimina-
tor comprises four convolutional layers with leaky ReLU activation
function [[17]. The former two layers reduce the feature map size to
28 x 28 using a stride of 2. After further processing of the subse-
quent two layers, the discriminator is concluded by a single neuron,
which is connected to every pixels of the previous feature map. By
employing this fully connected layer, the discriminator is capable of
valuing every pixel differently. This is important as we expect the
discriminator to base its decision rather on the face in the center than
on the background.

3.1.3. Feature Extractor

Similar to [[12]], we utilize a feature extractor to guide the aggregation
of the images. We use a pretrained ResNet-50 [18]] with ArcFace
layer according to [2] to obtain meaningful and well-generalizing
features f € R°!2,

3.2. Loss Functions

To train our face aggregator, we use a weighted sum of several losses
%, which are explained in the following:

c-gG = Adis=-gc|is + )\recfrec + Aach-ggjv + Atv=-gtv (5)



with the scalars Agis, Arec, Aadv, and Ay to balance the losses.

3.2.1. Discriminative Loss L

To ensure more discriminative features, we employ the discrimina-
tive loss from the DAN [[12]] in a triplet loss manner [1]. We extract
the features f,, fp, fy and f; of the aggregated image A, an im-
age of the same identity from a different video P, an image from a
different identity IV, and the input images I,,, respectively.

Lis = (IFa—Felli =), + (B=IIFs—FNl3),.  ©

a=minl|f,, — fol; ™

with = 32 denoting a constant margin and the subscript . mean-
ing max(0, -). While the first term ensures that the feature distance
between the aggregated image A and a positive image P is smaller
than between all input frames I, and P (cf. [Equation 2), the second
term maximizes the distances between A and a negative image IN

(cf. [Equation 3).

3.2.2. Reconstruction Loss Ly

Besides Zuis, we further guide the face aggregator by ensuring that
f A represents the corresponding identity. We compare two different
forms of reconstruction loss:

The reconstruction loss proposed in [[12] aims to reduce the
intra-class variance by minimizing the distance between the feature
of the reconstructed image f, and the average feature of all input

frames:
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However, the downside of £~ is that f, is trained to match
only the video’s local features. In order to overcome this limitation
and consider global features covering the entire dataset, we propose
to incorporate a variant of the center loss [[19]:
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with the center ¢’ of the j-th identity, which is updated as follows:

N
fot > fln} (10)
1=1

with » = 0.5 denoting the update rate. Compared to Zee, which is
constrained on the current video, the %" considers all samples of
the same subject averting the effect of outliers in the current video
and producing more robust results.

cj:(l—r)cj—NLJrl

3.2.3. Adversarial Loss Ly

To ensure that the aggregated image A looks realistic, we utilize
the face aggregator as a generator in a Generative Adversarial Net-
work (GAN) structure to employ adversarial loss. While the gener-
ator is trying to synthesize a realistic looking image to deceive the
discriminator, the objective of the discriminator D(-) is to distin-
guish the aggregated image A from the real data - in our case, the
image from another video P:

Ziaw = —log(D(A)) (11)

Ly = —log(1 — D(A)) — log(D(P)) (12)

3.2.4. Total Variation Loss %,

To cope with artifacts being created by the deconvolution layers in
the decoder of the face aggregator, we also incorporate the total vari-
ation loss [20]]:

HW-1 H—-1,W
v = Z (Asy — A:c,y+1)2 + Z (Acy — Aw+1,y)2 13)
x,y=1 x,y=1

with A, , denoting the pixel in z-th row and y-th column, and H
and W being the height and width of the image, respectively.

4. EXPERIMENTS

4.1. Training Details

We first train the feature extractor on the refined MS-Celeb-1M
dataset [21] containing 5.8 M images of over 85k identities. As
preprocessing, we align the faces utilizing the landmarks obtained
by MTCNN [22]. Our feature extractor achieves a face verification
accuracy of 99.63 % on the LFW benchmark [23]].

We preprocess the VoxCeleb2 dataset [24] by extracting 5
frames per utterance, which yields 5.3 M images of 6k identities
divided into 1.1 M videos. We train the face aggregator with %5
Mdgis = My = 1, Adee = 0.5, and Ay = 10™%) using Z" as
reconstruction loss, and train the discriminator with .Z3, in an al-
ternating manner with Adam optimizer [25]. We train for 6 epoch
with a batch size of 6 and an initial learning rate of 5 - 10>, which
is decreased to 1.25 - 107° after 3 epochs. The input images are
aligned as during the pretraining of the feature extractor and are
augmented with left-right flipping, random contrast, brightness and
saturation, and motion blur with a filter kernel size of up to 9 pixels
with a probability of 50 %. Even though our architecture supports
an arbitrary number of input images N, we train with constant
N = 10 to obtain comparable results with DAN [12]]. Nevertheless,
we demonstrate in the evaluation that our approach is also capable
of aggregating N # 10 images. Note that compared with [12]], we
do not need an additional pretraining step on MSE loss to initialize
the face aggregator and facilitate the convergence as our approach
also converges with randomly initialized weights.

4.2. Benchmark Details

We evaluated our proposed framework on face verification using the
popular YouTubeFaces (YTF) dataset [26]], which comprises 3425
videos of 1595 identities with 48 to 6070 frames per video. We
follow the benchmark protocol of DAN [12] by resampling the video
to N - naye frames. Then, we aggregate every N consecutive frames
separately into, in total, n., images, whose average feature vector is
used to represent the entire video. As a distance measure, we employ
euclidean distance after > normalizing the features. Besides the
related work, we compare our approach with the average of all N -
Navg features avg and the DAN trained with our feature extractor and
on VoxCeleb2, denoted by DAN™, for a fair comparison.

We further analyze the face identification performance fol-
lowing the 1:N mixed media protocol of the IJB-B and 1JB-C
datasets [27,/28]], in which sets contain a mix of still images and
video frames. 1JB-B contains ~ 67k pieces of media of 1845 sub-
jects, whereas 1JB-C consists of ~ 138k pieces of media of 3531
subjects. Both datasets are split into two disjoint galleries allow-
ing open- and closed-set identification. As a baseline, we compute
the average of all features and compare it with the aggregation of
all video frames into a single representative image followed by
averaging the resulting features.



Table 1: Effect of different loss functions on the verification accuracy on the YTF dataset. The last column denotes results averaged over all
benchmark parameters. Results marked with ¢ were obtained by duplicating the input frames due to the limitation of the architecture.

Accuracy [%)]

|
Losses | N
|

Method = 1 5 10 |
Zidv oZiis x;“ég z'zzn zv Navg = 2 2 2 4 6 8 ‘ AVg
avg 95.80 96.40 96.32 9634 96.34 96.52 | 96.29
DAN* N4 Vv Vv 95.44 ¢ 96.100 96.24 9648 96.20 96.56 | 96.17
N4 N4 Vv 95.58 95.90 96.26 96.42 9634 96.62 | 96.19
Vv Vv N4 95.52 96.08 96.24 96.44 96.28 96.42 | 96.16
Vv Vv 95.44 95.72 96.40 9642 9642 96.36 | 96.13
ours Vv vV Vv Vv 95.58 96.44 96.36  96.44 96.28 96.44 | 96.26
Vv Vv Vv Vv 95.90 96.52 96.56 96.60 96.48 96.62 | 96.45
Vv Vv Vv 95.58 96.26 96.40 96.58 96.62 96.52 | 96.33
Vv Vv N4 95.58 96.14 96.42 96.40 96.60 96.58 | 96.29

4.3. Comparison with State of the Art

The verification accuracy on the YTF dataset is illustrated in
It is evident that our approach outperforms most but not all
state-of-the-art methods, which is mainly due to a more powerful ar-
chitecture for the feature extractor as in [2l/7,{11]] or higher input res-
olution [3,/10]. Moreover, we did not further finetune the model on
the YTF dataset as [12L/13]]. Our model surpasses the baselines avg
and DAN™, and thus can not only be considered the best performing
face aggregation network but also provides the aggregated image as
an additional output compared to feature aggregation methods.

The results on the [JB-B and IJB-C datasets are depicted in
We outperform all baselines by a substantial margin in terms
of True Positive Identification Rate (TPIR) at Rank-1 and 0.01 False
Positive Identification Rate (FPIR). Furthermore, due to the face ag-
gregation we reduce the computational cost on feature extraction by
77.1% (IUB-B) and 80.9 % (IJB-C).

Table 2: Comparisons of the verification accuracy with the state of
the art on the YTF dataset.

Method Accuracy [%] \ Method Accuracy [%]
DAN [12] 95.01 MARN [[7]] 96.44
FaceNet [1] 95.12 C-FAN [6] 96.50
NAN [3] 95.72 ADRL [[13] 96.52
QAN [10] 96.17 REAN [8] 96.60
FAN [5] 96.21 ArcFace [2] 98.02
PRN [9] 96.3 DDL [11] 98.18
avg 96.52 DAN* 96.56
ours 96.62

Table 3: The average TPIR [%] at Rank-1 and FPIR = 0.01 of both
galleries on the IJB-B and [JB-C datasets.

1JB-B 1JIB-C
Method Rank-1 FPIR =0.01 Rank-1 FPIR = 0.01
avg 89.54 75.81 89.18 72.06
DAN™ 89.69 74.43 89.71 74.96
ours 90.44 75.93 90.67 77.44

4.4. Robustness Analysis

Since motion blur is frequently occurring in video-related tasks, we
analyze the robustness of our approach by synthetically applying
motion blur to 9 out of N = 10 images. As depicted in [Table 4]
our approach clearly outperforms avg and DAN™. This demonstrates
that the face aggregator can correctly identify the untouched frame
and mainly uses it for the aggregation.

Table 4: Verification accuracy [%] for N = 10 and 1. = 4 on the
YTF dataset for different motion blur filter sizes applied to 9 images.

Filter Size 7 9 11 13 15 17

avg 96.28 9590 9540 9478 93.76 92.66
DAN™* 9648 95.68 9448 9392 9128 89.44
ours 96.50 96.48 96.40 96.18 9582 95.92

4.5. Ablation Study

[Table T]analyzes the influence of different losses and different bench-
mark parameters on the verification accuracy. In accordance with
the findings from Rao et al. [[12]], we see that utilizing the adversarial
Loss Z.av is beneficial. Moreover, using the global center loss Zeo"
increases the performance.

Regarding the benchmark parameters, we see that our approach
is flexible concerning the number of input frames N as it outper-
forms both baselines for N € {1,5}. For N = 10 and na; = 2, the
baseline avg averages 20 features, whereas our approach creates 2
images, from which the features are averaged. Hence, when compar-
ing our method’s accuracy for this case 96.56 % with the accuracy
of avg when averaging two images 95.80 % (N = 1 and nay, = 2),
we can clearly see that our approach achieves a precise fusion of all
relevant information into solely 2 images.

5. CONCLUSION

In this paper, we present a novel approach for video FR based on
prior face aggregation. Compared to previous methods, we lift the
limitation of aggregating only a fixed number of faces by incorpo-
rating a permutation invariant U-Net. Our analysis shows that we
outperform state of the art on multiple established video FR bench-
marks. Moreover, by synthetically applying motion blur, we show
that our approach yields satisfying results despite the lack of details.
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