
Evolvable Hardware for Space Applications

Adrian Stoica, Alex Fukunaga, Ken Hayworth, Carlos Salazar-Lazaro

Center for Integrated Space Microsystems
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena CA 91109, USA

Abstract. This paper focuses on characteristics and applications of evolvable
hardware (EHW) to space systems. The motivation for looking at EHW
originates in the need for more autonomous adaptive space systems. The idea
of evolvable hardware becomes attractive for long missions when the hardware
looses optimality, and uploading new software only partly alleviates the
problem if the computing hardware becomes obsolete or the sensing hardware
faces needs outside original design specifications. The paper reports the first
intrinsic evolution on an analog ASIC (a custom analog neural chip), suggests
evolution of dynamical systems in state-space representations, and
demonstrates evolution of compression algorithms with results better than the
best-known compression algorithms.

1 Introduction

Spacecraft autonomy plays a key role in future space missions. During remote
missions, spacecraft are separated from Earth by distances that delay communications
by many minutes (e.g. ~ 10 minutes one-way in communications with the Mars
rover), which precludes real-time human operator control of the spacecraft. An
intelligent, autonomous spacecraft must be able to cope with unexpected situations,
and should be able to adapt to new environments. Spacecraft adaptation is largely
controlled by on-board electronic hardware, hence a special need exists for adaptive
electronic hardware.

Evolvable hardware (EHW) is adaptive hardware that self-organizes/reconfigures
under the control of an evolutionary algorithm [1]. Extrinsic EHW refers to evolution
in a software simulation (using models of the hardware behavior), followed by a
download of the configuration of the most fitted solution to a programmable
hardware. In intrinsic EHW the configuration bits are downloaded from the beginning
to hardware, and the degree of adaptation/fitness is evaluated by observing the
behavior of the real hardware. Successful evolution has been reported in simulations
of analog (e.g. [2], [3]) and digital (e.g. [4]) circuits and in real digital hardware (e.g.
[5] [6]). No intrinsic EHW on analog chips has been reported, an important reason
being that the lack of commercial programmable analog chips suitable for EHW. The
analog circuits evolved in simulations (e.g. [2], [3]) can not be extended directly to
practical HW implementations. On the other hand, some researchers believe that the
M. Sipper et al (Eds.): ICES’98, LNCS 1478, pp. 166-173, 1998.
 Springer-Verlag Berlin Heidelberg 1998

analog domain would be more suitable for evolution, and there were interpretations
that even evolution on (digital) FPGA may have benefited from effect of analog
underlying circuitry [5].

This paper addresses some EHW issues relevant to space applications. The paper is
organized as follows: Section 2 discusses characteristic aspects of space-oriented
EHW. Section 3 describes experiments in intrinsic evolution on application specific
analog chips: a test in evolving a function approximator, and evolution of a vision-
based tracking behavior for a mobile robot. Section 4 introduces a novel approach to
EHW representing the system to be evolved in a behavioral AHDL (Analog Hardware
Descriptive Language), in a state-space description. Section 4 presents an application
of EHW to adaptive compression.

2 Space-oriented evolvable hardware

There are several characteristic aspects that need to be considered when addressing
space-oriented EHW. It is very important to have a systems approach, understanding
clearly that EHW is part of a bigger system for which optimality is sought. One needs
to understand who/what provides the means for calculating a fitness function for
candidate solutions, whether there is a target functionality or reward mechanism
stored in some memory on-board, or reinforcement comes from the environment.
Also, of most importance is to know how safe is EHW for the space system and also
if evolution can provide a response in useful time.

 The safety of space systems (such as satellites, spacecraft, planetary probes or
rovers) being so critical, our current focus is on evolving adapted sensors and sensory
information processing systems, rather than, for example, spacecraft control. The
operations from the moment signals reach the sensors until a decision is made, or a
coded signal is sent to ground, are fully inter-related and ultimately could be co-
evolved in their ensemble to a global optimal signal processing efficiency. In practice,
it may be simpler to consider them separately, and evolve independently. The
operations could be, for example, signal acquisition (e.g. sensor adaptation in terms
of sensor sensitivity domain/profile, focus of attention, etc.), signal pre-processing
(e.g. filtering, amplification), extraction of information for on-board decisions (such
as sensor-pointing), and preparation of a signal for transmission to Earth (e.g.
compression).

The EHW directions we have explored aim to address some aspects from each of
the above operations. We performed experiments in intrinsic evolution on analog
ASICs, trying to understand more about intrinsic EHW and integration of such chips
into higher level systems such as control of sensor arrays, antennas and solar panels,
instrument pointing (in this sense we evolved circuits with desired I/O characteristic).
We addressed the evolution of electronic circuits, which can be used for filtering or
other signal transformations, exploring the design of evolvable CMOS chips based on
transistor and elementary circuit blocks (current mirrors, differential pairs, etc) (which
will be described in another paper). We addressed evolution of complex dynamic
systems, which can be used to learn decision mechanisms or system behaviors. Thus,

167Evolvable Hardware for Space Applications

we developed a novel approach to EHW, which relies on a state-space representation
of systems. We developed a simple test to explore the capability of evolving
autonomous vision-based navigation. Finally, we approached evolution of algorithms
for on-board signal processing, more precisely compression algorithms. In the context
of space applications, compression is a very important problem because of the limited
communications bandwidth between a spacecraft and the ground. EHW has already
shown to be capable of deriving efficient adaptive compression [14].

3 Intrinsic evolution on programmable analog ASICs

This section reports results of intrinsic evolution on dedicated (special purpose)
analog chips (ASIC), more precisely analog neural chips. The domain of evolutionary
neural networks [5], as well as various analog neural chips have existed for several
years, but no results on evolving on the chip have been reported. Previously, our
group has explored other approaches for hardware-in-the-loop and on-chip learning,
including gradient-descent approaches [7]. A main reason for performing intrinsic
(hardware-in-the-loop) learning on an analog chip is that, unlike the digital case
where very good models exist in advance, in analog there is always a slight
discrepancy between a model and the physical implementation, and therefore a
system evolved in software (extrinsic) may exhibit an offset behavior when
downloaded to hardware. The tasks described in this section are small and should be
regarded as demonstrating an idea rather than applications.

The chip used in the experiments, code-named NN-64, belongs to a family of
programmable analog neural network chips developed at JPL [7] [8]. The chip
consists of 64 neurons, each with 64 digitally programmable synapses and performs
analog processing on analog input signals. The synapses have analog inputs received
from chip inputs or from other neurons on the chip, which they multiply (using a
multiplying DAC) with a digital weight, providing an analog signal to the somatic
level. At the somatic level the analog contributions of the synapses are summed and
passed through a sigmoid non-linearity, providing analog neural outputs. Signal
processing from synaptic input to neural output takes ~250ns, while reprogramming
the weights requires loading in rows of 64, 8 bits at a time, 64 rows for the full chip
(or in random access). Loading at 33 MHz takes less than 2 microseconds per neuron,
and about 120 microseconds for the full chip; the speed in the current setup where the
download is controlled by software is about 3 orders of magnitude lower.

Test 1. The purpose of this test was to evolve on-chip a neural functional
approximation. A feedforward, three layer 5-3-1 network was used to learn a simple
function of one variable. The target was a bell shape Gaussian response at a linear
increasing input. The genome was 23 bytes long, coding the values for the 23 8-bit
synaptic weights. Each neuron was pre-biased to have a 2V output in the absence of
the input signal. The fitness function was determined based on the sum of the squared
errors between the calculated target function, and the circuit response, as measured at
15 input values. We used the Population-Based Incremental Learning (PBIL), an
algorithm that "evolves" a probability vector that biases a randomized generation of

168 A. Stoica et al

bit strings representing candidate solutions, and has been found to be competitive with
genetic algorithms for a wide variety of optimization problems [9]. A population of
200 networks was evolved for 160 generations. The result can be compared to the
target in Fig. 1 (left). The response at a ramp signal is illustrated in the oscilloscope
caption in Fig. 1 (right).

Fig. 1. A function learned on the chip (intrinsic EHW): (left) closeness to target;
(right) response on the oscilloscope.

Test 2. The purpose of this test was to evolve visuo-motor tracking behavior for a
mobile robot. A single neuron mapped low-resolution visual images to steering
controls. The video input was preprocessed to provide a low-resolution, 3x3 image.
The neuron output was a value in the [-1, 1] interval. In terms of steering controls [-1,
1] mapped to [-90, 90] degrees turn in respect to robot’s frontal direction (-90
signifying a 90 degrees anti-clockwise turn, +90 signifying a 90 degrees clockwise
turn, etc.). A training set collected in a human-controlled driving session was
simplified to obtain 12 training patterns like the ones shown in Fig. 2 (input: pixel
image, output: steering value). Evolution took place on the chip (intrinsic), the fitness
being measured against the stored desired behavior (stored training set). The problem
can be seen as evolving the weights for a 9 to 1 neural function approximation. Again,
we used PBIL with a population of 200 individuals for 160 generations. The resulting
neural controller had an approximation error below 5% (on the training set), which
proved sufficient for driving the robot around the track.

Fig. 2. Examples from the training set used for learning, and Khepera robot
following a marked trail.

Steering = 0.3Steering = -0.7

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

169Evolvable Hardware for Space Applications

4 Evolution of dynamical systems in state-space representations

The behavior of systems, including electronic systems, can be described in terms of
an analog descriptive language. Different levels of design abstractions appear in an
analog modeling hierarchy (see for example [10]): primitive (device), functional
(macromodel), and behavioral (high-level language description) level. The
representations commonly used for evolving hardware are primitive or functional.
The approach briefly exposed here, and treated in more detail in [11], relates to a
behavioral description: a state-space representation expressed by differential
equations. Moreover, an intrinsic evolution is proposed, using specially designed
hardware that implements this representation: an analog computing machine, which
we built and tested in a simple prototype form. In brief the representation we refer to
is the state-space representation:

where x(t) is a vector of continuous signal values coming into the system, y(t) is a
vector of continuous output signal values, and q(t) is a vector of continuous internal
state values, the “memory” of the system. The functions f() and g() are vector valued
and in general non-linear. Figure 3 illustrates an example of the equivalence between
a circuit in its schematic description and the state-space representation, graphically
displayed by drawing the vector field f().

The prototype programmable analog computer implements with enough flexibility
the description in terms of differential equations. Fast context switching allows the
state-space of a dynamic system to be decomposed into a lookup-table of smaller
vector representations. A search is employed in terms of modifications of the vector
field towards a target that ensures certain optimality. This technique called the
“modeling clay” approach to bio-inspired hardware is described in detail in [11].

Fig. 3 An active filter circuit from [12] and the three-dimensional state-space of the circuit
dynamics with two Q1xQ2 vector field planes plotted at different points along the x-axis

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X=0
Q1

Q2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Q1

Q2

X=2

Q1

Q2

x

X Q2

Q1

- -

- -

R1

RG

RQ

R

R

R

RF2
C

RF1
C

))();(()(

))();(()(

txtqgty

txtqftq
rrrr

rr
r

&
r

=
=

170 A. Stoica et al

5 Evolution of algorithms for on-board signal processing:
results in lossless compression

In space applications compression is necessary in order to enable the downlink of
massive amounts of science data (images). (The application of EHW for image
compression was pioneered by Salami et al [13]). Because image compression is
extremely computationally intensive, a low-power, fast, hardware implementation of
a compression algorithm is desirable. An EHW system could be used to automatically
generate a hardware-based image compression algorithm specially adapted for the
class of images captured by the spacecraft. Image compression for space
communications can be approached both in intrinsic and extrinsic EHW mode. For
example, suppose a deep space probe needs to send thousands of similar images (e.g.,
atmospheric images) from the mission target (say, Pluto) back to Earth. The
spacecraft could send several exemplar images back to the ground, where an FPGA
configuration adapted for the class of images is evolved and uploaded to the
spacecraft (extrinsic EHW). Alternatively, the spacecraft could evolve image-specific
compression strategies directly using on-board hardware (intrinsic EHW). The work
presented in the following relates to the first alternative. A nonlinear model used by
the compression algorithm is evolved, which can be then compiled to an FPGA
configuration, and finally downloaded (up-link to the spacecraft) to the real FPGA.

A genetic programming (GP) system was developed to perform adaptive image
compression based on predictive coding. Predictive coding uses a compact model of
an image to predict pixel values of an image based on the values of neighboring
pixels. A model of an image is a function model(x,y), which computes (predicts) the
pixel value at coordinate (x,y) of an image, given the (known) values of some
neighbors of pixel (x,y). Typically, when processing an image in raster scan order
(left to right, top to bottom), neighbors are selected from the pixels above and to the
left of the current pixel. To complete the compression, the error image (the
differences between the predicted pixel value and the actual pixel value) is
compressed using an entropy coding algorithm such as Huffman coding or arithmetic
coding. If we transmit this compressed error signal as well as the model and all other
peripheral information, then a receiver can reconstruct the original image by applying
an analogous decoding procedure.

The GP system evolves s-expressions that represent nonlinear predictive models
for lossless image compression. The error image is compressed using a Huffman
encoder. Because the computational cost of evolving nonlinear predictive models
using standard GP systems would be prohibitively expensive, we have implemented a
highly efficient, genome-compiler GP system which compiles s-expressions into
native (Sparc) machine code to enable the application of GP to this problem. The
terminals used for genetic programming were the values of the four neighboring
pixels (Image[x-1,y-1],Image[x,y-1], Image[x+1,y-1], Image[x-1,y]), and selected
constant values: 1, 5, 10, 100. The functions used were the standard arithmetic
functions (+,-,*, %), and MAX/MIN (which return the max/min of two arguments).
A detailed presentation of this system and of the results obtained is reported in [14].

171Evolvable Hardware for Space Applications

The system was evaluated comparing the size of the compressed files with a
number of standard lossless compression algorithms on a set of gray scale images.
The images used were science images of planetary surfaces taken from the NASA
Galileo Mission image archives. The compression results (file size) of the following
algorithms are shown in Table 1:

• evolved - the evolved predictive coding compression algorithm.
• CALIC - a state-of-the art lossless image compression.
• LOCO-I - recently selected as the new ISO JPEG-LS (lossless JPEG) baseline

standard.
• gzip, compress, pack - standard Unix string compression utilities (gzip implements

the Lempel-Ziv (LZ77) algorithm, compress implements the adaptive Lempel-
Ziv-Welch (LZW) algorithm, and pack uses Huffman coding).

• szip - a software simulation of the Rice Chip, the current standard lossless
compression hardware used by NASA.

It is important to note that in our experiments, a different model was evolved for
each image. In contrast, the other approaches apply a single model to every image.
Thus, the time to compress an image using the genetic programming approach is
several orders of magnitude greater than the time it takes to compress an image using
other methods. (This may be reduced if one can evolve models that perform well for a
class of images, as opposed to models specialized for individual images). However,
the time to decompress an image is competitive with other methods.

Table 1. Compression ratios of various compression techniques applied to set of
test images.

Image
Name

Original
size

evolved CALIC LOCO-I Com-
press

gzip pack szip

Earth 72643 30380 31798 32932 42502 40908 55068 40585
Earth4 11246 5513 5631 5857 7441 6865 8072 7727
Earth6 20400 9288 10144 10488 11339 10925 13264 12793
Earth7 21039 10218 11183 11476 13117 12520 15551 13269
Earth8 19055 9594 10460 10716 11699 11350 13298 12465

The results obtained show that for science data images, an evolvable-hardware
based image compression system is capable of achieving compression ratios superior
to that of the best known lossless compression algorithms.

5 Summary

In this paper we have discussed characteristic aspects of space-oriented evolvable
hardware, and identified a set of specific applications. The paper contains the first
reported intrinsic analog EHW results. A novel approach to EHW based on a
representation of systems in terms of state-space was introduced. An EHW based
image compression system was described, which achieves compression ratios
superior to that of the best known lossless compression algorithms.

172 A. Stoica et al

Acknowledgements

The research described in this paper was performed at the Center for Integrated
Space Microsystems, Jet Propulsion Laboratory, California Institute of Technology
and was sponsored by the National Aeronautics and Space Administration. The
authors wish to thank Drs. A. Thakoor, T. Daud, B. Toomarian, S. Thakoor, C. Assad
for the ideas shared during discussions on evolvable hardware, and to the anonymous
reviewers for their comments and suggestions.

References

1. De Garis, H. “Evolvable Hardware: Genetic Programming of a Darwin Machine”. Int.
Conf. on Artificial Neural Networks and Genetic Algorithms, Innsbruck, Austria, Springer
Verlag, 1993

2. Grimbley, J. B. Automatic Analogue Network Synthesis using Genetic Algorithms, 1st

IEE/IEEE Conf: Genetic Algorithms in Engineering Systems, UK, 1995
3. Koza, J., Bennett III, F. H., Lohn J., Dunlap, F., Keane M. A., and Andre, D.

“Automated Synthesis of Computational Circuits Using Genetic Programming”. In Proc.
of Second Annual Genetic Programming Conference, Stanford July 13-16, 1997

4. Hemmi, H., Hikage, T. and Shimohara, K. AdAM: A Hardware Evolutionary System , In Proc. of
ICEC, (193-196), 1997

5. Thompson, A. Silicon Evolution. In: Proceedings of Genetic Programming 1996 (GP96),
J.R. Koza et al. (Eds), pages 444-452, MIT Press 1996

6. Higuchi, T., Murakawa, M., Iwata, M., Kajitani, I., Liu, W. and Salami, M. , “Evolvable Hardware at
Function Level.” In Proc. of ICEC, (187-192), 1997

7. Duong, T. A. et al., "Learning in neural networks: VLSI implementation strategies," In:
Fuzzy Logic and Neural Network Handbook, Ed: C.H. Chen, McGraw-Hill, 1995

8. Eberhardt, S. et al, "Analog VLSI Neural Networks: Implementation Issues and Examples
in Optimization and Supervised Learning," IEEE Trans. Indust. Electron. v39 (6):p. 552-
564, Dec. 1992.

9. Baluja. I. Genetic Algorithms and Explicit Search Statistics. In Advances in Neural
Information Processing Systems 9. Proceedings of the 1996 Conference. 1997. p.319-25

10. Stoica, A. On hardware evolvability and levels of granularity. Proc. of the International
Conference “Intelligent Systems and Semiotics 97: A Learning Perspective, NIST,
Gaithersburg, MD, Sept. 22-25, 1997

11. Hayworth, K., The “Modeling Clay” approach to bio-inspired electronic hardware, To
appear in Proc. ICES98, 1998.

12. Horowitz, P., Winfield, H.: The Art of Electronics 2nd ed Cambridge Univ. Press 1989
13. Salami, M., Murakawa, M., Higuchi, T., Data compression based on evolvable hardware,

Proc. Evolvable Systems Workshop, International Joint Conference on Artificial
Intelligence, 1997

14. Fukunaga A, Stechert A. Evolving nonlinear predictive models for lossless image
compression with genetic programming. To appear in Proceedings of 3rd Annual Genetic
Programming Conference (GP-98) , Madison, Wisconsin USA , July 22 – 25, 1998

173Evolvable Hardware for Space Applications

