
Towards Full-scene Volumetric Video Streaming via Spatially
Layered Representation and NeRF Generation

Jianxin Shi1,2, Miao Zhang2, Linfeng Shen2, Jiangchuan Liu2,∗,
Yuan Zhang3, Lingjun Pu1,∗, Jingdong Xu1

1DISSec, ISN, CS, Nankai University, 2Simon Fraser University, 3Communication University of China

ABSTRACT
Immersive full-scene volumetric video (VV) showcases the rich-
ness and detail of the 3D world, yet poses significant streaming
challenges given its massive data volume. Existing 3D tile-based
viewport approaches struggle to effectively adapt to full-scene VV
owing to their small video buffer limitation, high tile segmentation
overhead, and lack of full-scene consideration.

In response, by exploiting spatially independent attributes of
elements in VV, we present V2NeRF, a novel full-scene VV stream-
ing system featured by layered representation. It harmonizes the
implicit neural radiance field (NeRF) with explicit point clouds to
represent the static background and dynamic foreground, thereby
avoiding large data transfer. Moreover, we propose a lightweight
non-visible background removal method and a two-stage decou-
pled architecture to address the issues of intensive computation
requirements and multiscale adaptation scheduling. An efficient
buffer-aware simulated annealing algorithm is developed, alongside
the utilization of a perceptually-learned metric, to enhance user
experience. Extensive prototype evaluations demonstrate V2NeRF’s
superior streaming and viewing performance.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Full-scene volumetric video, Spatially layered representation, NeRF
generation, Explicit point cloud
ACM Reference Format:
Jianxin Shi, Miao Zhang, Linfeng Shen, Jiangchuan Liu, Yuan Zhang, Lingjun
Pu, Jingdong Xu. 2024. Towards Full-scene Volumetric Video Streaming via
Spatially Layered Representation and NeRF Generation. In The 34th edition
of the Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV ’24), April 15–18, 2024, Bari, Italy. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3651863.3651879

1 INTRODUCTION
Volumetric video (VV) captures content in 3D, enabling a six degrees-
of-freedom (6DoF) motion for viewers with immersive experience.
*Corresponding authors (jcliu@sfu.ca, pulingjun@nankai.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NOSSDAV ’24, April 15–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0613-4/24/04. . . $15.00
https://doi.org/10.1145/3651863.3651879

3D Tiling

(a) Object-based video.

Time

(b) Full-scene volumetric video.

Figure 1: Illustrations of the object-based and full-scene VV.

It has been suggested as the future media for a broad spectrum of
applications from education and entertainment, to the business and
manufacturing industry [21, 31]. Since the VV content is to be mod-
eled with dense explicit 3D data, e.g., point cloud (PtCl), streaming
VV over the Internet incurs huge bandwidth consumption. There
have been studies leveraging tile-based viewport, occlusion, and
distance visibility to reduce data usage [9, 27]. Most of them focus
on streaming individual objects, e.g., a single person.

A full-scene VV could be re-constructed by the composition of
individually streamed objects [12, 29], as depicted in Fig. 1. It is
known, from the earlier experience of MPEG-4 object-based coding
and streaming [13], that synchronization, visual compensation, and
compatibility are critical issues in the reception and composition,
even just for 2D video [32]. Given the much smaller video buffer size
in VV (around 500ms, due to advanced motion prediction [8, 9]) and
the high tile segmentation overhead (e.g., 1.6× the original video
size [9]), a simple implementation of separate objects often lead to
unpleasant viewing experiences like motion sickness and frequent
stalls in a re-constructed full-scene VV.

In this work, we carefully examine full-scene VV streaming
and arrive at two critical observations: (O1) The spatial features
and independent attributes of elements can naturally facilitate the
separation of content into the static background and dynamic fore-
ground containing the moving objects; (O2) The static background
content also needs to be updated as the viewport changes, yet de-
livering the entire static scene to the client in real time, all at once,
is nearly impossible due to the sheer amount of 3D data.

As such, we suggest enabling the full-scene VV streaming by
seamlessly fusing the latest advancements in implicit neural radi-
ance field (NeRF) [23, 24] with explicit 3D data for background and
foreground respectively. NeRF generates photorealistic rendering
in representing the intricate and detailed static 3D scene through a
lightweight deep model (e.g., compressed at MB level [28]) from any
view. Recent exploratory studies [2, 18, 20] also consider NeRF as

https://doi.org/10.1145/3651863.3651879
https://doi.org/10.1145/3651863.3651879

NOSSDAV ’24, April 15–18, 2024, Bari, Italy Jianxin Shi et al

an attractive option. To incorporate it into full-scene VV streaming,
however, we need to address the following non-trivial challenges:

(C1) Intensive computation requirements. Explicit 3D data and
implicit NeRF generation typically involve complex computations
(e.g., require hardware acceleration) incurred by perspective projec-
tion [9, 30] and deep neural network [29, 38], making them highly
resource-intensive and time-consuming. Meanwhile, foreground
projection with various contents would compete with NeRF gener-
ation for the limited time budget (i.e., frame duration).

(C2) Multiscale adaptation scheduling. Foreground content is en-
coded based on the group of pictures (GoP) for better compression,
while NeRF generation operates at the frame level. Ubiquitous net-
work fluctuations and time-varying computing resources/requirements
necessitate an adaptation scheme to ensure smooth playback [37].
Unfortunately, there is a lack of related research to support such
coupled multiscale scheduling.

Solution. In ourV2NeRF system design, we first propose the non-
visible background removal scheme (C1). The moving foreground
objects always block the background content, as depicted in Fig
1(b). Thus, the fundamental idea is to avoid the NeRF inference of
occluded parts. To this end, we devise a lightweight non-visible
pixel skipping approach by modifying the ray transmittance of
pixels. With the removal scheme, increased foreground content
results in a high occlusion ratio and thus less NeRF computation.
Conversely, in situations with reduced foreground, the PtCl pro-
jection is reduced, despite the associated lower occlusion, leaving
more computing time for NeRF generation. This effectively miti-
gates the computation competition. Second, two-stage optimization
architecture (C2) is developed where multiscale scheduling is de-
coupled into fine-grained computing adaptation by adjusting the
NeRF-generated resolution, and coarse-grained network adaptation
by controlling the PtCl density level. The consistency constraint
and soft oversupply penalty are proposed to maintain the con-
nection between the network and computing, thereby increasing
resource utilization. An efficient, lightweight buffer-aware simu-
lated annealing algorithm is developed, and the popular quality
metric learned-perceptual-image-patch-similarity (LPIPS) [39] is
utilized to maximize the quality of experience (QoE).

Our system prototype achieves full-scene VV streaming over var-
ied broadband and 5G network traces. Moreover, extensive evalua-
tions and ablation studies validate its effectiveness and demonstrate
its robust performance. The results show that V2NeRF improves
perceptual quality by 24%, reduces rebuffering time by 83%, and
increases user experience by 54% on average over benchmarks. The
main contributions are summarized as:

• To the best of our knowledge, we are the first to enable
free-viewpoint, photorealistic, full-scene VV streaming.

• We present V2NeRF, which integrates implicit NeRF genera-
tion and explicit 3D PtCl to realize a layered full-scene VV
representation.

• We develop a lightweight non-visible background removal
method and a two-stage architecture to optimize the inten-
sive computation and multiscale adaptation.

• We implement a prototype of V2NeRF and verify its excellent
performance on a wide variety of network conditions.

MLPMLP

Ray

Points , （x,y,z, ）Input:
Position+Direction

Pixel

Ray Distance

c Emitted color:

()C r

O
u
tp

u
t

(a) Implicit neural radiance field generation.

Figure 2: An overview of neural radiance field representation.

2 BACKGROUND AND MOTIVATION
Exploration: explicit volumetric video. PtCls and polygon

meshes are the primary explicit representations of VVs. In the con-
text of full-scene VVs, PtCl coding is better suited and offers better
flexibility and scalability, as its geometry information is unordered,
unstructured, and unconnected [7, 37]. While compression methods
(e.g., Draco [5] and G-PCC [6]) have been well-studied, the size
of full-scene frame still reaches gigabytes level [11, 15]. Full-scene
VV content can be captured in many ways, such as acquired by
RGB-D cameras (e.g., Microsoft Azure Kinect) [12], or synthesized
from 3D models (e.g., characters, objects, and environments) [34].
There is thus a key insight that 3D contents in a VV can be spatially
separable based on its inherent spatial attributes [29, 38].

Motivation: implicit neural radiance field. Recent advances
in NeRF [23, 24] have proven its huge potential in 3D represen-
tation. Given user motion, it can generate a photorealistic view,
effectively avoiding large 3D data transmission. As shown in Fig. 2,
NeRF models a 3D scene as a continuous volumetric field function
parameterized by a multilayer perceptron (MLP), which it maps
a 3D position x = (𝑥,𝑦, 𝑧) and a viewing direction d = (𝜃, 𝜙) to a
volume density 𝜎 and emitted color c. To generate a single pixel
color in user view, it first computes the ray corresponding to pixel r,
then evaluates the NeRF at a series of points {𝑡𝑖 } along the ray. The
outputs 𝜎𝑖 and c𝑖 at each point are composited together into a single
color value C(r) (i.e., pixel color) using the volume rendering. Yet,
NeRF is mainly suitable for nearly static content. Vanilla NeRF fails
to enable VV streaming, since its inherent limitations in handling
large-scale movements and long duration [2, 23, 38].

Proposal: spatially layered representation. To enable stream-
able full-scene VVs, we advocate a spatially layered representation.
A typical full-scene VV can be disentangled into a static back-
ground and a dynamic foreground according to the mobility of
objects [29, 38]. In our design, NeRF is employed to generate back-
grounds for different viewports, thereby significantly reducing the
bandwidth requirements. The NeRF model only requires a single
transfer over the network, while allowing long-term free-viewpoint
rendering. For the unstructured foreground content with moving
objects, PtCls are used to achieve the appearance of dynamic enti-
ties in a continuous manner. Meanwhile, foreground prefetching
can take advantage of a long video buffer without being impeded
by the short viewport prediction window.

3 V2NERFMECHANISM
3.1 System Overview
The goal of V2NeRF is to stream video-on-demand (VoD) full-scene
VV stored on an Internet server to the client and render it in the
2D display plane. The system architecture is depicted in Fig. 3.

Towards Full-scene Volumetric Video Streaming via Spatially Layered Representation and NeRF Generation NOSSDAV ’24, April 15–18, 2024, Bari, Italy

GPU

MLPMLP

Pre-trained
Background NeRF

Foreground Point Clouds

35% 60% 85% 100%

Manifest FileDifferent Densities：

Init

Requests

GoP-based Video Buffer
for Foreground Foreground

Point Cloud

Decoding

H
T

T
P

 I
n
te

rf
ac

e

Coarse-grained
Network

Adaptation
MLPMLP

6DoF Motion

Background
NeRF

Generation

Frame-level

Motion

Prediction

Network
Condition

Computing
Condition

Fine-grained
Computing
Adaptation

Framebuffer

Non-visible Removal

 Positions

for Pixels

Occupation

Skip

Ray
Direction

Resolution

Frame
Blending......

Ray

Foreground
Perspective
Projection

Motion

Network

GoPs

Foreground Requests

Server Client

§3.3.2

§3.1.1 §3.1.2

§3.3.1

§3.2

Figure 3: The system architecture of V2NeRF. Solid lines represent data flows, while dashed lines represent information flows.

• 3.1.1 Content Server. Unlike object-based VVs, our volumet-
ric content consists of foreground PtCls and a pre-trained back-
ground NeRF model. According to the Dynamic Adaptive Stream-
ing over HTTP (DASH) protocol, the foreground PtCl video is
partitioned into serialized GoPs with a fixed duration, denoted as
C = {𝐶1,𝐶2, ...,𝐶𝑁 }. Each GoP is encoded into multiple density
levels (i.e., similar to 2D resolution), indicated as K = {1, 2, ..., 𝐾}.
The higher density PtCl contains more details and thus provides
better visualization, making it suitable for higher resolution ren-
dering [9, 37]. The background NeRF model is trained based on
multi-view RGB images. With techniques such as hashing trans-
formation [24] and dictionary fields [10], the training process for
NeRF is lightweight, incurring only minute-level of time cost on
the consumer-level GPU. Furthermore, the size of the NeRF model
in our system is only approximately equivalent to the 2-second
foreground PtCls. The information related to the VV and NeRF, in-
cludingmodel features, content size, and content quality, is recorded
in the manifest file and accessible as an HTTP resource.
• 3.1.2 Client. It first requests the manifest file and the pre-trained
NeRF model to allow the player to initialize. The network adap-
tation module then formulates requests for the foreground PtCl
GoPs, taking into account the network and computing conditions,
and transmits them via the HTTP interface. Then, the downloaded
GoPs are filled into the video buffer, which can be configured with a
large size to handle network fluctuations. During data transmission,
the cached GoPs are decoded into raw PtCl frames.1 The motion
prediction forecasts the immediate user’s 6DoF motion. Unlike GoP-
based works [8, 9], this prediction is only for the next 𝜌 =3 frames,
which is well-studied [19, 21]. Here, the motion prediction is used to
migrate later computation uncertainty without compromising the
effectiveness of the video buffer in handling network uncertainty
like the previous viewport-aware schemes (e.g., [9, 27]). Next, the
client projects the foreground PtCl onto the 2D viewing plane using
perspective projection. The NeRF model generates the correspond-
ing background image. Finally, the foreground and background are
blended into a unified viewing frame, then filled into the inherent
Framebuffer [33] in the video card, and prepared for rendering.

Despite the great advantages in terms of transmission and pho-
torealistic representation, the system implementation in practice
needs to address the following challenges: (C1) Intensive computa-
tion requirements and (C2) Multiscale adaptation scheduling.

1The decoding process can be done concurrently with the data transfer and run in the
CPU without additional time overhead (e.g., average 6.87ms per frame decoding [37]).

3.2 Non-visible Background Removal
To address C1, the main idea is to avoid the NeRF inference of

non-visible background. For NeRF inference, the two-dimensional
image view is flattened into one-dimensional vectors. Each pixel
obtains its ray position according to its location in the image, which
serves as part of the NeRF input. Subsequently, each pixel queries
the MLP model to generate its RGB color. To avoid NeRF inference
of the non-visible region, an intuitive scheme is to prevent the ray
positions of occluded pixels from also being taken as NeRF inputs.
Yet, this would involve extra pixel deletion and recovery of the
original pixel arrangement, resulting in an unnecessary time cost.
As such, we propose a non-visible pixel skipping method. During
the ray casting process for a pixel, if the transmittance of the ray is
lower than the minimum threshold, the ray is marked as converged
and the marching process is terminated. Motivated by this, we
proactively set the transmittance of occluded pixels to the minimum
value and integrate this attribute into the ray vector through matrix
operations, to realize the skipping operations in NeRF generation,
as depicted in Fig. 4(a). The time cost of our removal approach
running on RTX 3090 GPU ranges from 0.16ms to 0.185ms at various
resolutions.2 Meanwhile, it maintains a slow increase with growing
resolution because of well-designed matrix operations.

As video content and user viewing behavior evolve, the amount
of occlusion is significantly affected by factors such as the viewing
distance and the number of foreground objects. Fig. 4(b) illustrates
the degree of occlusion corresponding to different scenarios and
shows the influence of the occlusion ratio on the background com-
putation (i.e., the generation time of frame). As the occlusion ratio
increases, there is a significant reduction in the NeRF computation,
demonstrating a linear relationship. It is represented as 𝑓 (𝑜), where
𝑜 is the occlusion ratio, quantifying the percentage reduction in
NeRF computation. In turn, reduced foreground means fewer PtCl
projections and more available computation time for NeRF.

3.3 Multiscale Adaptation Scheduling.
A holistic scheme to tackle the multiscale challenge is unreliable
because of the time-varying network and computation conditions.
Thus, we propose a two-stage optimization architecture to decouple
the multiscale scheduling, while maintaining connections between
the transmission and computation.

2Here, the maximum resolution is 864×560, and a fine-grained resolution ladder {1,
12/13, 6/7, 4/5, 3/4} is used to avoid sharp quality fluctuations for a better experience.

NOSSDAV ’24, April 15–18, 2024, Bari, Italy Jianxin Shi et al

...

Reshape

Ray Positions

...

NeRF

Skip

...

Transmittance to Min

Blending
Reshape

(a) Non-visible pixel skipping method. (b) Computation reduction

Figure 4: Overview of non-visible background removal.

• 3.3.1 Fine-grained computing adaptation. As shown in Fig. 3, fore-
ground perspective projection and NeRF generation both operate
at the frame level and require hardware acceleration (e.g., GPU). To
maintain the stable frame rate (e.g., 𝜂 = 24), a frame-level comput-
ing adaptation is required here to cope with changing computing
requirements and resources. For example, the foreground PtCl pro-
jection with different density levels will affect available hardware
time for NeRF generation. Meanwhile, the non-visible background
removal also impacts the generation computation in real time. We
accomplish this adaptation by adjusting the resolution of the back-
ground image generated by NeRF. A higher resolution provides a
better visual experience but requires a longer inference time due
to the increased number of pixels, and vice versa. Here, the frame
sequences are denoted as F = {𝐹1, 𝐹2, ..., 𝐹𝐼 }. The control variable
𝑥𝑖 𝑗 ,∀𝑗 ∈ {1, 2, ..., 𝐽 } is used for resolution selection, meaning that
the generated resolution is 𝑗 for the 𝑖-th frame.

Recall that the system aims to maximize the user viewing expe-
rience, which is typically captured using three aspects [19, 37]: (i)
Perceptual quality (𝑄𝐹

𝑖
). The popular perceptually-learned metric

(LPIPS) [39] is used instead of traditional metrics, such as PSNR and
SSIM, to evaluate the viewing quality, given its superior ability to
capture the nuances of human perception. Notably, a lower LPIPS
value indicates better perceptual quality. Thus, the viewing quality
of the generated 𝑖-th frame is expressed as 𝑄𝑖 =−𝐿𝑃𝐼𝑃𝑆 (𝑥𝑖 𝑗). (ii)
Rebuffering (𝑅𝐹

𝑖
) that represents how long the video stalls because

the Framebuffer is empty. The PtCl projection time is indicated as
𝑇 (𝐹𝑖𝑘), where the 𝑖-th frame is in the 𝑛′-th chunk and its density
level is 𝑘 . The NeRF generation time is denoted as𝑇 (𝑥𝑖 𝑗) (1− 𝑓 (𝑜𝑖)),
where 𝑓 (𝑜𝑖) is the percentage reduction in computation due to oc-
clusion. The rebuffering time incurred by computation is given by
𝑅𝐹
𝑖
= [𝑇 (𝑥𝑖 𝑗) (1 − 𝑓 (𝑜𝑖)) + 𝑇 (𝐹𝑖𝑘) −𝐵𝐹𝑖]

+, where [.]+ = max{., 0};
and 𝐵𝐹

𝑖+1 = [𝐵𝐹
𝑖
−𝑇 (𝑥𝑖 𝑗) (1− 𝑓 (𝑜𝑖))−𝑇 (𝐹𝑖𝑘)]+ + 1/𝜂 is the available

playback time (i.e., Framebuffer occupancy). (iii) Smoothness (𝑆𝐹
𝑖
).

To avoid frequent viewing quality changes in frame level, we con-
sider the quality switching between all adjacent frames within a
given period 𝜏 , instead of traditional variations between only two
consecutive frames. It is denoted as 𝑆𝐹

𝑖
= 1/𝜏 ∑𝑖−𝜏

𝑡=𝑖 |𝑄𝐹
𝑡 −𝑄𝐹

𝑡−1 |.
The objective of this stage is formulated asP1=max 1

𝐼

∑𝐼
𝑖=1 (𝑄𝐹

𝑖
−

𝛼𝑅𝐹
𝑖
− 𝛽𝑆𝐹

𝑖
), where 𝛼 and 𝛽 are adjustment factors [19, 21, 37]. For

a seamless frame blending, the perceptual quality of the generated
background should be consistent with the foreground PtCls. To
achieve this, we propose the plane quality alignment scheme and
establish the mapping relationship ℎ(𝐶𝑛′𝑘) between various PtCl
density levels and their plane viewing quality by careful enumera-
tion method. The high-density PtCls can be backward-compatible

with lower-quality background. For the consistency representation,
the background quality is constrained by the highest quality per-
ceptible on PtCls: 𝑥𝑖 𝑗 ≤ ℎ(𝐶𝑛′𝑘).
• 3.3.2 Coarse-grained network adaptation. V2NeRF adapts to vary-
ing network conditions by controlling the density of foreground
PtCls and utilizing a long video buffer operating at the GoP level.
This control variable is represented as 𝑦𝑛𝑘 ,∀𝑘 ∈ K , meaning that
the desired density level is 𝑘 for the 𝑛-th GoP. The video buffer
occupancy is 𝐵𝐺𝑛 . While traditional network adaptation expects to
prefetch high-quality content while avoiding playback stalls, overly
dense PtCls are not always beneficial in the system, as their high
projection computation would potentially squeeze the available
GPU time for NeRF generation, resulting in unnecessary bandwidth
waste and viewing quality reduction.

As such, the goal is captured by: (i) Density quality (𝑄𝐺
𝑛), which

denotes the downloaded density level of PtCl: 𝑄𝐺
𝑛 =𝑦𝑛𝑘 . (ii) Stall

penalty (𝑅𝐺𝑛) that represents the stall duration when the video buffer
is empty. It is denoted as 𝑅𝐺𝑛 = [𝐷𝑛𝑘/𝑊𝑛−𝐵𝐺𝑛]+, where𝐷𝑛𝑘 signifies
volume of GoP 𝐶𝑛𝑘 ; and𝑊𝑛 is the available bandwidth. The buffer
occupancy is updated by 𝐵𝐺

𝑛+1 = [𝐵𝐺𝑛 −𝐷𝑛𝑘/𝑊𝑛]++𝛿 , where 𝛿 is
GoP duration. (iii) Oversupply penalty (△𝐺𝑛). This strives to prevent
prefetching the oversupply of PtCl density, which would not be
fully utilized in display due to the need for compatibility with low-
quality background. It helps ensure that NeRF generation is not
squeezed unnecessarily. To this end, the penalty is calculated as the
difference between the perceptual quality of PtCl and the generable
quality by NeRF, represented as △𝐺𝑛 = [ℎ(𝑦𝑛𝑘)−1/𝑀

∑𝑀
𝑚=1 𝑥

′
𝑚𝑗

]+,
where𝑚 is the index of last 𝑀 = 6 viewed frames. Note that 𝑥 ′

𝑚𝑗

denotes generated background quality without the consistency
representation constraint. Thus, the objective represents as P2 =
max 1

𝑁

∑𝑁
𝑛=1 (𝑄𝐺

𝑛−𝜆𝑅𝐺𝑛−𝛾△𝐺𝑛), where 𝜆 and𝛾 are adjustment factors.

3.4 Buffer-aware Optimization
The system expects to efficiently tackle the above nonlinear discrete
optimization problems (P1 and P2), which have a large solution
space and inter-decision interaction. One potential option is to
explore a deep reinforcement learning (DRL) approach like Pensieve
[22]. Yet, this requires pre-training and customization for a specific
environment [35]. It also results in a significant inference overhead
in terms of time and computing resources. Meanwhile, recent works
[35, 36] indicate that buffer-based approaches (e.g., [26]) are more
practical than the learning-based methods.

As such, we propose the buffer-aware Simulated Annealing (SA)
algorithm. SA is a probabilistic approach that can approximate
global optimum and reduce search complexity [14]. At runtime,
we consider a finite horizon of the next 𝜔 frames or 𝜀 GoPs. For
fine-grained computing adaptation, the algorithm begins with a
buffer-aware scheme. When the Framebuffer occupancy exceeds
the reserved value 𝑅𝑒𝑠𝐹 , it is reset to 𝐵𝐹

𝑖
− =𝐶𝑢𝑠𝐹 , where 𝐶𝑢𝑠𝐹 is

a cushion value designed to offset the fluctuation effects of com-
putation. If not, the system directly selects the lowest quality to
quickly recover buffer occupancy to avoid rebuffering. Next, the SA
algorithm first sets the generated quality of all the next 𝜔 frames
to the minimum level. It proceeds to improve the quality of each
frame by one level. If the optimized objective for the finite horizon
increases as a result of the change, it will be accepted. Otherwise, it

Towards Full-scene Volumetric Video Streaming via Spatially Layered Representation and NeRF Generation NOSSDAV ’24, April 15–18, 2024, Bari, Italy

FCC Traces 5G Traces
Bandwidth Dataset

0.145

0.150

0.155

0.160

LP
IP

S

Lowest

Highest

B
etter

Ours
noNBR

Greedy
noFGC

DRL
noCOP

(a) Perceptual quality.

FCC Traces 5G Traces
Bandwidth Dataset

0

5

10

15

R
eb

uf
fe

rin
g

(s
)

B
etter

Ours
noNBR

Greedy
noFGC

DRL
noCOP

(b) Total rebuffering time.

FCC Traces 5G Traces
Bandwidth Dataset

0

6

12

18

LP
IP

S
C

ha
ng

e/
fr

am
e

B
etter

×10−4
Ours
noNBR

Greedy
noFGC

DRL
noCOP

(c) Quality smoothness.

FCC Traces 5G Traces
Bandwidth Dataset

−0.15

−0.16

−0.17

−0.18

V
ie

w
in

g
Ex

pe
rie

nc
e

B
etter

Ours
noNBR

Greedy
noFGC

DRL
noCOP

(d) Quality of user experience.

Figure 5: The performance comparison of proposed V2NeRF with other benchmarks under various network conditions.

may still accept the new decision with a probability of exp(−△ /𝑡).
Here, △ denotes the decrease in the optimized goal, and 𝑡 is the
current annealing temperature, to prevent potential local maxi-
mum. Finally, the decided quality should satisfy the consistency
constraint. For coarse-grained network adaptation, the network is
constantly changing. It firstly predicts the bandwidth of the next
𝜀 GoPs. Bandwidth prediction has been widely studied [31]. Here,
we adopt the existing method in [26]. Then, a similar buffer-aware
SA algorithm is used to obtain the density decision of PtCls, where
𝑅𝑒𝑠𝐺 and 𝐶𝑢𝑠𝐺 denote the reserved value and cushion value for
the video buffer. To make the algorithm fast and lightweight, the
finite horizons 𝜔 and 𝜀 are empirically set to 2 and 3. Based on the
Framebuffer/video buffer size, the 𝑅𝑒𝑠𝐹 and 𝑅𝑒𝑠𝐺 are set to 0.1/𝜂
and 4𝛿 ; and the 𝐶𝑢𝑠𝐹 and 𝐶𝑢𝑠𝐺 are set to 0.3/𝜂 and 6𝛿 .

4 PROTOTYPE EVALUATION
We perform extensive experiments to evaluate the system’s stream-
ing and viewing performance from the following aspects:
⊲ Exp. 1: Evaluation of detailed and overall user experiences com-
pared to other schemes under time-varying network conditions.
⊲ Exp. 2: Analysis of the individual contributions of each compo-
nent to the V2NeRF’s overall performance.
⊲ Exp. 3: Assessment of the overhead associated with V2NeRF.

4.1 System Configurations
The test platform comprises two desktop computers, designated
as the server and the client. They are interconnected via a gigabit
router. The server runs on Ubuntu 20.04 LTS and utilizes Apache
Tomcat software for DASH services. The client is equipped with
an NVIDIA RTX 3090 GPU and Intel i5-12600K CPU and operates
a script player in Python to facilitate the NeRF generation and
full-scene VV playback. It maintains a 5-second video buffer for
the foreground PtCl prefetching and a 3-frame Framebuffer for
content rendering. The influence of network conditions, such as
delay, jitter, and packet loss, is abstracted as end-to-end throughput.
Thus, we utilize two real-world throughput datasets: (i) FCC dataset
[3], representing the American fixed broadband measurements (i.e.,
2023.5-2023.7); (ii) 5G dataset [25], comprising 5G data collected
during video streaming with an Irish mobile operator. They respec-
tively represent two typical network fluctuations. In line with PtCl
data volume, we randomly select 10 throughput traces averaging
around 60Mbps, corresponding to the 80th and 60th percentile val-
ues of CDF in FCC and 5G. On the server, all traces are emulated
using the built-in traffic control (TC) tool of Linux. Given the lack of

publicly accessible, high-fidelity full-scene VVs, inspired by digital
asset composition [34], we built a synthetic dataset that integrates
8i PtCls [4] and Google 360◦ scenes [1]. The dynamic 8i PtCls are
used as the foreground content, while the static 360◦ scenes are
as the background environment. We chose the three PtCl videos
from 8i: Longdress, Redandblack, and Loot as illustrated in Fig. 4(b);
and the Garden scene from the Google dataset. Since original PtCl
videos only have 300 frames, we loop them to extend the duration
to 3 minutes. Each PtCl video is encoded using G-PCC [6] into five
density levels from r01 to r05. Similar to [30], user viewing traces
are generated using pre-defined random motion paths. The sys-
tem only requires the next 3-frame (i.e., Framebuffer size) motion
prediction. As a result, a lightweight linear regression method is
proved sufficient [9, 21].

4.2 Experiment Setup
NeRFmodel. We employ recently proposed Instant-NGP [24] as

the NeRF model, which exhibits superiority in training/generation
speed (i.e., minute-level/millisecond-level) and generation quality
(i.e., photorealistic-level) for the static full-scene content, thanks
to its multiresolution hash encoding technique. Consistent with
[23, 24], the given scene is equipped with an individual model.

Metrics. (i) Perceptual quality: LPIPS [39]. (ii) Rebuffering time,
the accumulated rebuffering (s) during video playback. (iii) Smooth-
ness penalty, the frame-average quality variation in LPIPS. (iv) View-
ing experience (QoE), the optimized goal of fine-grained computing
adaptation. Refer to [19, 21, 37], the adjustment factors 𝛼 and 𝛽
are empirically set to 10 and 1; while 𝜆 and 𝛾 are set to 1 and 1.1
to trade-off the quality benefits and penalties of poor experience.
Those parameters can be easily adjusted by content providers to
suit their service patterns.

Baselines. (i) Greedy, a standard bandwidth and computing
resource-based greedy approach, tries to get the maximum reward
possible in multiscale adaptation decisions. (ii) DRL [22], which
applies a DRL method to address the adaptation problem. Similar
to [22], we train the DRL model offline with a simulation program,
followed by online fine-tuning and deployment.

Ablation strategies. To assess the impact of each system com-
ponent, we consider: (i) noNBR, which only involves the multi-
scale adaptation without implementing the Non-visible Background
Removal. (ii) noFGC. Here, the Fine-Grained Computing is replaced
by a fixed generated quality selected based on end-device perfor-
mance. (iii) noCOP. Since previous studies have underscored the
necessity of network adaptation, this scheme is to evaluate the effect
of excluding the Coarse-grained Oversupply Penalty component.

NOSSDAV ’24, April 15–18, 2024, Bari, Italy Jianxin Shi et al

T
im

e
C

o
st

 (
m

s/
fr

am
e)

NeRF Generation (73.4%)

Fine-grained Computing Process

Foreground Projection (25.9%)

Non-visible Removal (0.43%)

Frame Blending (0.21%)

Algorithm (0.06%)

2
0

0
4

0
1

0
3

0

Figure 6: The average time cost of each system component.

4.3 Results and Analysis
(Exp. 1) Testing on various network conditions. Fig. 5 presents

the performance comparison of detailed metrics and overall user
experience. Since LPIPS is a learned perceptual metric, to facilitate
a fair comparison among various schemes, we utilize the normal-
ized LPIPS growth metric, i.e., (LPIPS−LPIPSlowest)/(LPIPShighest−
LPIPSlowest), which allows for a quantifiable assessment of quality
differences. As shown in Fig. 5(a)-(c), the Greedy scheme maximizes
the current optimized goal, but it fails to resist the fluctuations in
transmission and computation. As a result, it incurs the unaccepted
rebuffering time (i.e., 11.05s in FCC and 10.75s in 5G) and quality
variation (i.e., with an increase of 1.22× in FCC and 82% in 5G over
Ours). Thanks to the buffer-aware SA algorithm, our scheme can
effectively deal with the uncertainty in the system. Compared with
the DRL approach, V2NeRF improves the perceptual quality by
1.03× in FCC and by 57% in 5G. The primary reason for this dispar-
ity lies in the significant inference overhead involved in DRL, both
in terms of time and computing resources which significantly affect
the NeRF generation computation. Meanwhile, DRL’s inherent lim-
itations in adapting to various environments lead to a substantial
increase in rebuffering time, i.e., 8.6s in FCC and 13s in 5G. From the
perspective of user experience, as shown in Fig. 5(d), our approach
achieves a 74.4% increment over Greedy and a 75.3% increment
over DRL. This indicates the effectiveness and robustness of our
algorithm under various network conditions.

(Exp. 2) Testing on ablation studies. To gain a deeper insight
into performance gains, we assess the impact of each design com-
ponent. From Fig. 5(a), we can find that the perceptual quality of
noNBR decreases by 15.8% and quality change increases by 35.4%
compared to full V2NeRF setup. This is attributed to noNBR’s inabil-
ity to remove non-visible background computation, necessitating a
reduction in generated quality to save computation time. Benefiting
from the proposed algorithm, the noNBR maintains a low rebuffer-
ing time, i.e., 0.68s. Compared with the noFGC, Ours achieves an
8.6% increment in perceptual quality in FCC and a 5.7% increment
in 5G. Since noFGC adopts a fixed generated quality, which fails to
counter the computation fluctuations and incurs a long rebuffering
time, for instance, 11.02s in FCC and 7.6s in 5G. The noCOP, lack-
ing the oversupply penalty, weakens the connection between the
network and computing, resulting in inefficient resource utilization.
For example, its perceptual quality decreases by 5.7%, rebuffering
time increases by 2×, and quality change increases by 2.1×. Fig. 5(d)
shows that Ours achieves a 45% improvement in viewing experi-
ence over noNBR, a 68.4% improvement over noFGC, and a 29.7%
improvement over noCOP.

(Exp. 3) Testing on system overhead. To evaluate the over-
head associated with V2NeRF, we measure the average time cost
per frame for each component involved in the fine-grained com-
puting process, as shown in Fig. 6. We can find that the proportion
of additional time cost is only 0.7%, including the algorithm time
(0.06%), non-visible removal time (0.43%), and frame blending time
(0.21%). In comparison, the time cost of the DRL is 3.01ms (7.6%),
which imposes a significant system overhead. The total time cost
for computation is measured at 39.4ms per frame, which means our
system achieves real-time processing at 24 frame rates.

5 RELATEDWORK
Volumetric video streaming. Previous studies, such as ViVo

[9] and Vues [21], mainly focus on 3D tile-based viewport adapta-
tion approaches, which involve adjusting the density levels of tiles
to optimize the viewing experience. The cache-assisted strategy
(e.g., [19]), compression-based method (e.g., [15, 31]), and super-
resolution-enhanced (e.g., [37]) are further investigated to reduce
data transfer. Yet, they mainly focus on object-based VV and lack
the consideration for full-scene content. In addition, the viewing
patterns of users for full-scene VVs are significantly different from
regular videos. Users often expect to view content in different
spaces at a given time point for a better spatial experience. This is
difficult to support with existing viewport-aware schemes due to
their incomplete data delivery.

Implicit neural radiance field. NeRF has shown an impressive
ability to learn to represent static or nearly static 3D objects and
scenes [16, 23, 24, 28]. However, it is difficult to deal with objects
with large-scale movements (e.g., topological changes and articu-
lated objects) and capture appearance details of dynamic scenes
[29, 38]. Although some studies (e.g., [17, 29]) attempt to modify
NeRF for some given VVs, they typically require integrating the
time dimension as an additional input to NeRF or employing a
secondary MLP to model and learn deformations for each video
frame. They are far from being practical for full-scene VV streaming
due to the slow rendering speed (e.g., 2 mins per 1080p frame [38]),
large model size alongside lengthy training periods, and short video
duration limitation (e.g., second-level [29]).

6 CONCLUSION
We presented the V2NeRF, which integrates the implicit neural
radiance field and explicit 3D point cloud to realize a streamable full-
scene volumetric video representation. Furthermore, we proposed
a lightweight non-visible background removal method to migrate
intensive computation requirements and a two-stage decoupled
strategy to optimize the multiscale network/computing scheduling.
A suitable buffer-aware simulated annealing algorithm is developed
and the perceptually-learned LPIPS metric is utilized to maximize
the quality of user experience. Extensive evaluations with prototype
implementation verify the superior performance of V2NeRF.

ACKNOWLEDGMENTS
Weappreciate the constructive comments from the reviewers. Jianxin
Shi, Lingjun Pu, and Jingdong Xu are partially supported by the
National Natural Science Foundation of China (No. 62172241).

Towards Full-scene Volumetric Video Streaming via Spatially Layered Representation and NeRF Generation NOSSDAV ’24, April 15–18, 2024, Bari, Italy

REFERENCES
[1] J. T Barron, B. Mildenhall, D. Verbin, et al. 2022. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR ’22). 5470–5479.

[2] R. Cheng, K. Liu, N. Wu, and B. Han. 2023. Enriching telepresence with semantic-
driven holographic communication. In Proceedings of the ACM Workshop on Hot
Topics in Networks (HotNets ’23). 147–156.

[3] Federal communications commission (FCC). 2023. Measuring broadband raw data
releases. https://www.fcc.gov/oet/mba/raw-data-releases/. [Online; accessed
3-Dec-2023].

[4] E. d’Eon, B. Harrison, T. Myers, and P. Chou, A. Geneva, January, 2017. 8i
voxelized full bodies - A voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint
WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006 (Geneva,
January, 2017).

[5] Google. 2023. Draco 3D Data Compression. https://github.com/google/draco.
[Online; accessed 3-Oct-2023].

[6] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai. 2020.
An overview of ongoing point cloud compression standardization activities:
Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on
Signal and Information Processing 9 (2020), e13.

[7] Y. Guan, X. Hou, N. Wu, B. Han, and T. Han. 2023. MetaStream: Live volumetric
content capture, creation, delivery, and rendering in real time. In Proceedings of
the ACM Annual International Conference on Mobile Computing and Networking
(MobiCom ’23). 1–15.

[8] S. Gül, D. Podborski, T. Buchholz, et al. 2020. Low-latency cloud-based volumet-
ric video streaming using head motion prediction. In Proceedings of the ACM
Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV ’20). 27–33.

[9] B. Han, Y. Liu, and F. Qian. 2020. ViVo: Visibility-aware mobile volumetric video
streaming. In Proceedings of the ACM Annual International Conference on Mobile
Computing and Networking (MobiCom ’20). 1–13.

[10] A. hen, Z. Xu, X. Wei, S. Tang, H. Su, and A. Geiger. 2023. Dictionary fields: Learn-
ing a neural basis decomposition. In Proceedings of the Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’23).

[11] K. Hu, Y. Jin, H. Yang, J. Liu, and F. Wang. 2023. FSVVD: A dataset of full scene
volumetric video. In Proceedings of the Conference on ACM Multimedia Systems
(MMSys ’23). 410–415.

[12] K. Hu, H. Yang, Y. Jin, et al. 2023. Understanding user behavior in volumetric
video watching: Dataset, analysis and prediction. In Proceedings of the ACM
international conference on multimedia (MM ’23). 1108–1116.

[13] ISO/IEC 14496-2 Information Technology — Coding of Audio-visual Objects —
Part 2: Visual. 1999. https://api.semanticscholar.org/CorpusID:14775904

[14] S. Kirkpatrick, C D. Gelatt Jr, and M. P Vecchi. 1983. Optimization by simulated
annealing. Science 220, 4598 (1983), 671–680.

[15] K. Lee, J. Yi, Y. Lee, , et al. 2020. GROOT: A real-time streaming system of
high-fidelity volumetric videos. In Proceedings of the ACM Annual International
Conference on Mobile Computing and Networking (MobiCom ’20). 1–14.

[16] L. Li, Z. Shen, Z.Wang, L. Shen, and L. Bo. 2023. Compressing volumetric radiance
fields to 1 MB. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR ’23). 4222–4231.

[17] T. Li, M. Slavcheva, M. Zollhoefer, S. Green, et al. 2022. Neural 3D video synthesis
from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR ’22). 5521–5531.

[18] J. Liu, Y. Wang, Y. Wang, Y. Wang, S. Cui, and F. Wang. 2023. Mobile volumetric
video streaming system through implicit neural representation. In Proceedings of
the Workshop on Emerging Multimedia Systems (EMS ’23). 1–7.

[19] J. Liu, B. Zhu, F. Wang, et al. 2023. CaV3: Cache-assisted viewport adaptive volu-
metric video streaming. In IEEE Conference Virtual Reality and 3D User Interfaces

(VR ’23). 173–183.
[20] Kaiyan Liu et al. 2023. Toward next-generation volumetric video streaming with

neural-based content representations. In Proceedings of the ACM Workshop on
Mobile Immersive Computing, Networking, and Systems (ImmerCom ’23). 199–207.

[21] Y. Liu, B. Han, et al. 2022. Vues: Practical mobile volumetric video streaming
through multiview transcoding. In Proceedings of the ACM Annual International
Conference on Mobile Computing and Networking (MobiCom ’22). 514–527.

[22] H. Mao et al. 2017. Neural adaptive video streaming with pensieve. In Proceedings
of ACM Special Interest Group on Data Communication (SIGCOMM ’17). 197–210.

[23] B. Mildenhall, P. P Srinivasan, M. Tancik, et al. 2020. NeRF: Representing scenes as
neural radiance fields for view synthesis. In Proceedings of the European Conference
on Computer Vision (ECCV ’20). 4700–4708.

[24] T. Müller, A. Evans, C. Schied, and A. Keller. 2022. Instant neural graphics
primitives with a multiresolution hash encoding. In Proceedings of the Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’22).

[25] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan. 2020. Beyond throughput, the
next generation: A 5G dataset with channel and context metrics. In Proceedings
of the ACM Multimedia Systems Conference (MMSys ’20). 303–308.

[26] K. Spiteri et al. 2020. BOLA: Near-optimal bitrate adaptation for online videos.
IEEE/ACM Transactions On Networking (TON) 28, 4 (2020), 1698–1711.

[27] S. Subramanyam, I. Viola, J. Jansen, E. Alexiou, A. Hanjalic, and P. Cesar. 2022.
Evaluating the impact of tiled user-adaptive real-time point cloud streaming on
VR remote communication. In Proceedings of the ACM International Conference
on Multimedia (MM ’22). 3094–3103.

[28] T. Takikawa, J. Evans, A.and Tremblay, T. Müller, M. McGuire, A. Jacobson, and
S. Fidler. 2022. Variable bitrate neural fields. In Proceedings of the Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’22). 1–9.

[29] H. Turki et al. 2023. SUDS: Scalable urban dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’23).

[30] L. Wang, C. Li, W. Dai, et al. 2022. QoE-driven adaptive streaming for point
clouds. IEEE Transactions on Multimedia (TMM) 25 (2022), 2543–2558.

[31] Y. Wang, D. Zhao, H. Zhang, C. Huang, T. Gao, Z. Guo, L. Pang, and H. Ma. 2023.
Hermes: Leveraging implicit inter-frame correlation for bandwidth-efficient
mobile volumetric video streaming. In Proceedings of the ACM international
conference on multimedia (MM ’23). 9185–9193.

[32] M. Wijnants, G. Rovelo, P. Quax, and W. Lamotte. 2016. A pragmatically designed
adaptive and web-compliant object-based video streaming methodology: Imple-
mentation and subjective evaluation. In Proceedings of the ACM international
conference on multimedia (MM ’16). 1267–1276.

[33] Wiki. 2023. The introduction of Framebuffer. https://en.wikipedia.org/wiki/
Framebuffer. [Online; accessed 26-Nov-2023].

[34] J. Wu, Y. Guan, Q. Mao, Y. Cui, Z. Guo, and X. Zhang. 2023. ZGaming: Zero-
latency 3D cloud gaming by image prediction. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM ’23). 710–723.

[35] Z. Xia, Y. Zhou, F. Y Yan, and J. Jiang. 2022. Genet: Automatic curriculum
generation for learning adaptation in networking. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’22). 397–413.

[36] F. Y Yan, H. Ayers, Ch. Zhu, S. Fouladi, J. Hong, et al. 2020. Learning in situ: A
randomized experiment in video streaming. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’20). 495–511.

[37] A. Zhang, C. Wang, B. Han, and F. Qian. 2022. YuZu: Neural-enhanced volumet-
ric video streaming. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’22). 137–154.

[38] J. Zhang, X. Liu, X. Ye, et al. 2021. Editable free-viewpoint video using a layered
neural representation. In Proceedings of the Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’21).

[39] R. Zhang, P. Isola, A. A Efros, E. Shechtman, and O. Wang. 2018. The unreason-
able effectiveness of deep features as a perceptual metric. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’18).

https://www.fcc.gov/oet/mba/raw-data-releases/
https://github.com/google/draco
https://api.semanticscholar.org/CorpusID:14775904
https://en.wikipedia.org/wiki/Framebuffer
https://en.wikipedia.org/wiki/Framebuffer

	Abstract
	1 Introduction
	2 Background and Motivation
	3 V2NeRF Mechanism
	3.1 System Overview
	3.2 Non-visible Background Removal
	3.3 Multiscale Adaptation Scheduling.
	3.4 Buffer-aware Optimization

	4 Prototype Evaluation
	4.1 System Configurations
	4.2 Experiment Setup
	4.3 Results and Analysis

	5 Related work
	6 Conclusion
	Acknowledgments
	References

