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Abstract

Traditional software controlled data cache prefetching is
often ineffective due to the lack of runtime cache miss and
miss address information. To overcome this limitation, we
implement runtime data cache prefetching in the dynamic
optimization system ADORE (ADaptive Object code RE-
optimization). Its performance has been compared with
static software prefetching on the SPEC2000 benchmark
suite. Runtime cache prefetching shows better performance.
On an Itanium 2 based Linux workstation, it can increase
performance by more than 20% over static prefetching on
some benchmarks. For benchmarks that do not benefit from
prefetching, the runtime optimization system adds only 1%-
2% overhead. We have also collected cache miss profiles to
guide static data cache prefetching in the ORC R©compiler.
With that information the compiler can effectively avoid
generating prefetches for loops that hit well in the data
cache.

1. Introduction

Software controlled data cache prefetching is an effi-
cient way to hide cache miss latency. It has been very
successful for dense matrix oriented numerical applications.
However, for other applications that include indirect mem-
ory references, complicated control structures and recursive
data structures, the performance of software cache prefetch-
ing is often limited due to the lack of cache miss and miss
address information. In this paper, we try to keep the ap-
plicability of software data prefetching by using cache miss
profiles and a runtime optimization system.

∗This work is supported in part by the U.S. National Science Founda-
tion under grants CCR-0105574 and EIA-0220021, and grants from Intel,
Hewlett Packard and Unisys.

1.1. Impact of Program Structures

We first give a simple example to illustrate several is-
sues involved in software controlled data cache prefetching.
Fig. 1 shows a typical loop nest used to perform a ma-
trix multiplication. Experienced programmers know how

void matrix_multiply(long A[N][N], long B[N][N], long C[N][N]) 
{ int  i, j, k;

for ( i = 0; i < N; ++i ) 
                for (j = 0; j < N; ++j ) 

                     for (k = 0; k < N; ++k )
            A[i][j] += B[i][k] * C[k][j];

}

Figure 1. Matrix Multiplication

to use cache blocking, loop interchange, unroll and jam, or
library routines to increase performance. However, typi-
cal programmers rely on the compiler to conduct optimiza-
tions. In this simple example, the innermost loop is a can-
didate for static cache prefetching. Note that the three ar-
rays in the example are passed as parameters to the func-
tion. This introduces the possibility of aliasing, and results
in less precise data dependency analysis. We used two com-
pilers for Itanium system in this study: the Intel R©C/C++
Itanium R©Compiler (i.e. ECC V7.0) [15] and the ORC open
research compiler 2.0 [26]. Both compilers have imple-
mented static cache prefetch optimizations that are turned
on at O3. For the above example function, the ECC com-
piler generates cache prefetches for the innermost loop, but
the ORC compiler does not. Moreover, if the above exam-
ple is re-coded to treat the three arrays as global variables,
the ECC compiler generates much more efficient code (over
5x faster on an Itanium 2 machine) by using loop unrolling.
This simple example shows that program structure has a sig-
nificant impact on the performance of static cache prefetch-
ing. Some program structures require more complicated
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analysis (such as interprocedural analysis) to conduct effi-
cient and effective cache prefetching.

1.2. Impact of Runtime Memory Behavior

It is in general difficult to predict memory working set
size and reference behaviors at compile time. Consider
Gaussian Elimination, for example. The execution of the
loop nest usually generates frequent cache misses at the be-
ginning of the execution and few cache misses near the end
of the loop nest. Initially, the sub-matrix to be processed
is usually too large to fit in the data caches; hence frequent
cache misses will be generated. As the sub-matrices to be
processed get smaller, they may fit in the cache and produce
fewer cache misses. It is hard for the compiler to generate
one binary that meets the cache prefetch requirements for
both ends.

The memcpy library routine is another example. In some
applications, the call to memcpy may involve a large amount
of data movement and intensive cache misses. In some other
applications, the calls to the memcpy routine have few cache
misses. Once again, it is not easy 1 to provide one memcpy
routine that meets all the requirements.

void daxpy( double *x, double *y, double a, int n ) 
{ int i ;

for ( i = 0; i < n; ++i  ) 
y[i] += a * x[i];

}

Figure 2. DAXPY

1.3. Impact of Micro-architectural Constraints

Microarchitecture can also limit the effectiveness of soft-
ware controlled cache prefetching. For example, the issue
bandwidth of memory operations, the memory bus and bank
bandwidth [14][34], the miss latency, the non-blocking de-
gree of caches, and memory request buffer size will affect
the effectiveness of software cache prefetching. Consider
the DAXPY loop in Fig. 2, for example. On the latest Ita-
nium 2 processor, two iterations of this loop can be com-
puted in one cycle (2 ldfpds, 2 stfds, 2 fmas, which can fit
in two MMF bundles). If prefetches must be generated for
both x and y arrays, the requirement of two extra memory
operations per iteration would exceed the “two bundles per
cycle” constraint. Since the array references in this exam-
ple exhibit unit stride, the compiler could unroll the loop
to reduce the number of prefetch instructions. For non-unit

1A compiler may generate multiple versions of memcpy to handle dif-
ferent cases.

stride loops, prefetch instructions are more difficult to re-
duce.

Stride-based prefetching is easy to perform efficiently.
Prefetching for pointer chasing references and indirect
memory references [23][25][29][35][22] are relatively chal-
lenging since they incur a higher overhead, and must be
used more carefully. A typical compiler would not attempt
high overhead prefetching unless there is sufficient evidence
that a code region has frequent data cache misses.

Due to the lack of cache miss information, static cache
prefetches usually are less aggressive in order to avoid un-
desirable runtime overhead. Therefore we attempt to con-
duct data cache prefetching at runtime through a dynamic
optimization system. This dynamic optimization system au-
tomatically monitors the performance of the execution of
the binary, identifies the performance critical loops/traces
with frequent data cache misses, re-optimizes the selected
traces by inserting cache prefetch instructions, and patches
the binary to redirect the subsequent execution to the op-
timized traces. Using cache miss and cache miss address
information collected from the hardware performance mon-
itors, our runtime system conducts more efficient and effec-
tive software cache prefetching, and significantly increases
the performance of several benchmark programs over static
cache prefetching. Also in this paper, we will establish a
secondary process for comparison to feedback cache miss
profile to the ORC compiler so that the compiler could
perform cache prefetch optimizations only for the code re-
gion/loop that has frequent cache misses.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the performance monitoring features on
Itanium processors and the framework of our runtime op-
timization system. Section 3 discusses the implemention
of the runtime data cache prefetching. In Section 4, we
present the performance evaluation of runtime prefetching
and a profile-guided static prefetching approach. Section 5
highlights the related works and Section 6 offers the con-
clusion and future work.

2. Runtime Optimization and ADORE

The ADORE (ADaptive Object code REoptimization)
system is a trace based user-mode dynamic optimiza-
tion system. Unlike other dynamic optimization systems
[10][3][7], its profiling and trace selection are based on
sampling of hardware performance monitors. This section
explains performance monitoring, trace selection and opti-
mization mechanisms in ADORE. Runtime prefetching is
part of the ADORE system and will be discussed in detail
in Section 3.
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2.1. Performance Monitoring and Runtime Sam-
pling on Itanium processor

Intel’s Itanium architecture offers extensive hardware
support for performance monitoring [19]. The Itanium-
2 processor provides more than one hundred counters to
measure the performance events such as memory latency,
branch prediction rate, CPU cycles, retired-instruction
counts, and pipeline stalls. Two usage models are supported
using these performance counters: workload charateriza-
tion, which gives the overall runtime cycle breakdown, and
profiling, which provides information for identifying pro-
gram bottlenecks. Both models are programmable and fully
supported in the latest IA64 Linux kernel. Based on these
two models, Stéphane Eranian developed a generic kernel
interface called perfmon [28] to help programmers access
the IA64 PMU (Performance Mornitoring Unit) and collect
performance profiles on Itanium processors. The sampling
of ADORE is built on top of this kernel interface.

In ADORE, sample collection is achieved through a
signal handler communicating with the perfmon interface.
Perfmon samples the IA64 PMU every N CPU cycles (e.g.
N = 300, 000 cycles). Once the kernel sample buffer fills
up, it throws a buffer-overflow signal to invoke the signal
handler routine to move the samples out to a user buffer for
trace selection/optimization.

Each PMU sample consists of three accumulative
counter values required by ADORE: CPU cycles, Retired
Instruction Count, and Data Cache Load Miss Count. In
addition, ADORE needs the samples of the Branch Trace
Buffer (BTB) registers and the Data Event Address Reg-
isters (DEAR). BTB is a circular register file recording
the most recent 4 branch outcomes and the source/target
address information. DEAR holds the most recent ad-
dress/latency information related to a data cache load miss,
a TLB miss or an ALAT miss. For example, ADORE will
sample DEAR for the latest data cache miss events with
load latency ≥ 8 cycles. Finally, each sample is in the
form of an n-tuple: <sample index, pc address of sam-
ple, CPU Cycle, D-Cache Miss Count, Retired-Instruction
Count, BTB values, DEAR values>.

2.2. Dynamic Optimization System

ADORE is implemented as a shared library on Linux
for IA64 that can be automatically linked to the applica-
tion at startup. It is also a runtime trace optimizer like Dy-
namo [3], but ADORE relies on the Itanium hardware per-
formance monitor (HPM) to identify hotspots instead of us-
ing interpretation. A trace is a single entry, multi-exit code
sequence. In Dynamo, a trace is selected once the reference
count of the target block of a backwards taken branch ex-
ceeds a threshold. In ADORE, trace selection is based on
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Main Thread
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Figure 3. ADORE Framework

int __libc_start_main (…) { 
… 
dyn_open( ); 
on_exit (dyn_close); 
exit ((*main)(argc, argv, __environ)); 

} 

Figure 4. Startup code

the branch trace samples collected by HPM. Fig. 3 illus-
trates the framework of ADORE. In ADORE, there are two
threads existing at runtime, one is the original main thread
running the unmodified executable; the other is a dynamic
optimization thread in charge of phase detection, trace se-
lection and runtime prefetching. When the Linux system
starts a program, it invokes a libc entry-point routine named

libc start main, within which the main function is called.
We modified this routine by including our startup codes as
shown in Fig. 4.

Function dyn open and dyn close are used to open/close
the dynamic optimizer. dyn open carries out four tasks.
First, it creates a large shared-memory block for the orig-
inal process. This is the trace pool, which stores the op-
timized traces. Second, it initiates the perfmon kernel in-
terface. Perfmon resets the PMU (Performance Monitoring
Unit) in the Itanium processor, determines the sampling rate
and creates a kernel sampling buffer, which is called System
Sampling Buffer(SSB) in this paper. Third, dyn open in-
stalls the signal handler to copy all sample events from the
SSB to a larger circular User Event Buffer (UEB) every time
the SSB overflows. Finally, it creates a new thread for dy-
namic optimization that has the same lifetime as the main
thread. Next, dyn close is registered by the library function
on exit so that it can be invoked at the end of main program
execution. dyn close frees the memory and notifies the op-
timizer thread that the main program is complete.
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2.3. Coarse-Grain Phase Detection

Recent research [31][13][6] shows that a running pro-
gram often exhibits multiple phases during execution. In
order to detect execution phases, ADORE implements
a coarse-grain phase detector. This phase detector is
lightweight, quick to respond, and reasonably accurate in
detecting stable phases and catching phase changes. Since
a stable phase may have different meanings in different con-
texts, we define a stable phase for the purpose of prefetch-
ing as a stage in which the program is repeatedly executing
the same set of code with a relatively stable CPI and cache
miss rate. The phase detection algorithm used in ADORE
is as follows:

We define a profile window as the period of time for the
SSB to fill up. Let SIZEUEB = SIZESSB ∗ W , where
W is a positive number (W = 16 in ADORE). Hence the
UEB can consist of up to W profile windows. By setting
the sampling interval to R cycles/sample and SIZESSB

to N samples, the SSB will overflow every R × N cycles.
The UEB will then contain the latest performance profile of
W × R × N cycles. For instance, if W = 8, R = 250, 000
and N = 4, 000, the UEB can contain the most recent 8
seconds of performance history on a 1GHz machine.

To decide whether the main program incurs a phase
change or starts a stable phase, the phase detector is in-
voked every 100 milliseconds to check whether a new pro-
file window has been added to the UEB. If so, it computes
the CPI (Cycles Per Instruction), DPI (D-cache Load
Miss Per Instruction) and PCcenter for this profile window.
The PCcenter is computed as the arithmetic mean of all of
the pc addresses from the samples in that window. Thus,
each profile window in UEB has three values: CPI , DPI ,
PCcenter. If the phase detector detects there are consecu-
tive profile windows having low standard deviations of the
above three factors, it signals that a stable phase has oc-
curred. Likewise, high deviations suggest a change of the
current stable phase. We compute the PCcenter to estimate
the center of the code area of each profile window and com-
pute the standard deviations to determine the fluctuation of
code area centers of consecutive profile windows. To im-
prove accuracy, the algorithm removes noise in the above
computations. For runtime cache prefetching, we ignore
phases that do not have high cache miss rate. Moreover, if a
phase turns out to be from the trace pool, this phase will be
skipped to avoid re-optimization (But we may continue to
monitor the execution of the optimized trace to detect and
fix nonprofitable ones).

Our study shows that occasionally a stable phase cannot
be detected for a long time, i.e., the deviations are always
greater than the thresholds. In such cases, the phase detector
doubles the size of the profile window in case the window
is too small to accommodate a large phase.

2.4. Trace Selection

The trace selector starts to build traces after a stable
phase has been detected. We will only briefly discuss trace
selection here and trace patching in Section 2.5 since the
focus of this paper is runtime cache prefetching.

Trace selection starts by reading all samples in the UEB
(User Event Buffer). Remember that the Branch Trace
Buffer in performance monitoring allows for 4 consecu-
tive branch outcomes to be recorded in each sample. These
branch outcomes form a fraction of path profile [4]. The
trace selector uses one hash table to save the path profiles
and a secondary hash table to save all the branch targets.
When selecting a trace, the trace selector starts from the
target address having the largest reference count and builds
the traces based on the path profiles. This work is not too
hard, but there are issues unique to the Itanium processor
family. For instance, IA64 instructions are encoded in bun-
dles of 2-3 instructions with different template types. It is
common that the second slot in a bundle is a taken branch.
Thus we have to break the current bundle and connect the
prior instruction stream with the instructions starting from
the taken branch’s target address, discarding the remaining
instruction in the fall-through path. Furthermore, the IA64
ISA [18] provides predication, so a single basic block may
have disjoint execution paths that complicates data analy-
sis. Nested predicates also makes branch conversion (flip a
taken branch into fall-through) difficult.

Instructions along the hottest path are added to the cur-
rent trace until a trace stop-point is reached. This stop-point
can be a function-return, a back-edge branch that makes the
trace into a loop, or a conditional branch whose taken/fall-
through bias is balanced. Upon this point, the trace selec-
tor adds the current trace into a trace queue and continues
to select the next trace. After trace selection is completed,
control will be transferred to the dynamic optimizer.

2.5. Trace Patching

Trace patching involves writing optimized traces into the
trace pool. At this stage, the trace patcher prepares an un-
used memory area in the trace pool for each trace. Labels
and branch targets must then be mapped into the trace pool.
During patching, branch instructions that jump to the orig-
inal code of other traces will be modified to branch to the
new traces. Furthermore, the first instruction bundle of each
trace in the original code is replaced by a new bundle that
has only a branch instruction jumping to the optimized trace
in the trace pool. The replaced bundle is not simply over-
written; it is saved so that if the dynamic optimizer wants to
unpatch the trace later on, it only needs to write this bundle
back.
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3. Runtime Prefetching

The purpose of runtime software prefetching is to in-
sert prefetch instructions into the binary code to hide mem-
ory latency. In the current version of ADORE, data cache
prefetching is the major optimization implemented. Our
experiments show that by inserting prefetch instructions at
runtime, half of the SPEC2000 benchmark programs com-
piled with O2 gain performance.

Just like the traditional software prefetching, our run-
time optimizer merges the prefetching code directly into
the traces to hide large cache miss latency after identifying
the delinquent loads in hot loops. The approach of runtime
prefetching in ADORE is as follows: (a) Use performance
samples to locate the most recent delinquent loads. (b) If the
load instruction is in a loop-type trace, extract its dependent
instructions for address calculation. (c) Determine its data
reference pattern. (d) Calculate the stride if it has spatial or
structural locality. Otherwise, insert special codes to pre-
dict strides for pointer-chasing references. (e) Schedule the
prefetches.

3.1. Tracking Delinquent Loads

Each sample contains the latest data cache miss event
with latency no less than 8 cycles. On the Itanium based
systems, this much latency implies L2 or L3 cache misses.
In general, there are more L1 cache misses. However,
the performance loss due to L2/L3 cache misses is usu-
ally higher because of the greater miss latency. Therefore
prefetching for L2 and L3 cache misses can be more cost
effective.

To track a delinquent load, the source address, the la-
tency and the miss address of each cache miss event are
mapped to the corresponding load instruction in a selected
trace (if any). With path profile based trace selection, it is
possible that one delinquent load appears in two or more se-
lected traces. But in most of the cases, there is only one loop
trace that contains the load instruction, and the current im-
plementation runtime prefetching is targeted for loop traces
only. Finally, prefetching in ADORE is applied to at most
the top three miss instructions in each loop-type trace, i.e.,
the load instructions with the greatest percentage of overall
latency.

3.2. Data Reference Pattern Detection

For software prefetching, there are three important data
reference patterns in loops: direct array reference, indirect
array reference and pointer-based reference. It is not obvi-
ous what pattern a delinquent load belongs to at the binary-
level. For pointer-chasing prefetching, some papers [11]

 // i++; a[ i++]=b;  
// b= a[ i++]; 

 
Loop: 
    … 

    add   r14= 4, r14 
    st4    [r14] = r20, 4 
    ld4   r20 = [r14] 

    add   r14 = 4, r14 
    … 
    br.cond    Loop 

// c = b[a[k++] – 1]; 
 

 
Loop: 
    … 

    ld4   r20=[r16], 4 
    add   r15 = r25, r20 
    add   r15 = –1, r15 

    ld1   r15=[r15] 
    … 
    br.cond    Loop 

// tail = arcin→ tail; 

// arcin = tail→ mark; 
 

Loop:  
   … 
   add   r11= 104, r34 

   ld8    r11= [r11] 
   ld8   r34= [r11] 
   … 

   br.cond    Loop 

    A. direct array                         B. indirect array                   C. pointer chasing 

Figure 5. Data Reference Patterns and Depen-
dence Code Slices

 

   add   r27= 64, r14 
 
Loop: 
   ... 

   … 
   lfetch [r27], 12 
   … 

   ... 
   br.cond  Loop 

   add    r27=  64, r16  
   add    r30=128, r16 
Loop: 
   … 

   ld4.s  r28= [r27], 4  
   add    r29= r25, r28 
   add    r29= –1, r29 

   lfetch [r30], 4  
   lfetch [r29] 
   br.cond    Loop 

 
Loop: 
   … 
   add      r28= 0, r11 

     // r11 changed 
   sub      r28= r11, r28 
   shladd  r28= r28, 2, r11 

   lfetch   [r28] 
   … 
   br.cond    Loop 

 A. direct array                    B. indirect array                    C. pointer chasing 

Figure 6. Prefetching for Different Reference
Patterns

[34] propose checking the load address to see if it is re-
ferring the memory heap. This is impractical for software
based prefetching. To recognize the above three reference
patterns, the runtime prefetcher in ADORE analyzes the
dependent instructions for the address calculation of each
delinquent load.

3.2.1. Direct/Indirect Array References

Fig. 5 illustrates the three data reference patterns recog-
nized by ADORE’s dynamic optimizer. Cases A and B in
Fig. 5 show that direct array reference (single-level memory
access) and indirect array reference (multi-level memory
access) patterns exhibiting spatial locality. Load instruc-
tions in bold fonts are delinquent loads. Other instructions
are related to address computation taken from the selected
loop-type traces. For example, the stride of case A in Fig.
5 is calculated by incrementing r14 by 4 three times. So
the stride is 4 + 4 + 4 = 12. Case B in Fig. 5 shows
a 2-level memory reference, in which both level of refer-
ences have significant miss penalties. For such cases, two
different code slices should be inserted to prefetch for both
level of memory access, and the prefetch for the first level
reference must be in several iterations ahead of that for the
second level reference (See Fig. 6).
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3.2.2. Pointer Chasing Reference

Pointer-based references are difficult for software
prefetching. Wu [35] proposes a profile-guided prefetching
technique to find the regular strides in irregular programs.
His method requires profiles of address data of consecutive
iterations. In the current runtime prefetching in ADORE,
an approach similar to induction pointer [33] is used to
help approximate the data traversal of pointer-chasing ref-
erences. However, to insert correct prefetches, the dynamic
optimizer must find the recurrent pointer from dependance
analysis. Case C in Figure 5 gives a typical example in
181.mcf. In this example, r11 is the pointer critical to the
data traversal because r11 is used to compute the miss ad-
dress and “ld8 r34=[r11]” is the delinquent load. Therefore
r11 is chosen to apply the induction pointer based prefetch-
ing in this case.

The prefetching algorithm is straightforward. For the
above example, an unused integer register remembers the
value of r11 at the beginning of the loop. After r11 is up-
dated, the address distance is calculated and multiplied by
an ”iteration ahead” count. Finally this amplified distance
is used to prefetch future data along the traversal path (See
Fig. 6). This approach has been shown to be useful for
linked lists with partially regular strides. As for data struc-
tures like graphs and trees, this approach is less applicable if
cache misses are evenly distributed along all traversal paths.

3.3. Prefetch Generation

New registers are needed in computing prefetching ad-
dress. On many RISC machines with base+offset address-
ing mode, the computation of prefetching address can be
avoided by folding the prefetch distance into the base ad-
dress. For example, “lfetch [r11+80]”. However, due to the
lack of this addressing mode in IA64 ISA, we must generate
explicit instructions to calculate prefetching address. There
are multiple ways to obtain new registers on Itanium: (1)
Dynamically allocate more registers using alloc, (2) Spill
existing registers, (3) Work with the compiler to reserve
some registers. In the current implementation, we use the
third approach. Specifically, we ask the static compiler to
reserve four global integer registers (r27 − r30) and one
global predicate registers (p6) from the IA64 register files.
We have also tried the first approach, but that requires the
identification of the immediately dominating alloc, which
may fail if multiple allocs are used in a subroutine. How-
ever, the use of reserved registers makes our system less
transparent, so we are now looking for a robust mechanism
to acquire free registers at the runtime.

Fig. 6 illustrates the inserted prefetch instructions for
all three reference patterns in the above examples. Notice
for cases A and B, initialization codes must be inserted on
top of the loop to preset the prefetch distance. Since accu-

rate miss latency of each cache miss event is available in
ADORE, the prefetch distance is easily computed as: dis-
tance = �average latency / loop body cycles�. In addition,
for small strides in integer programs, prefetch distances are
aligned to L1D cache line size (not for FP operations since
they bypass L1 cache).

3.4. Prefetch Code Optimization

Prefetch code often exhibits redundancy, hence
should be optimized as well. For example, in Fig. 6, case A,
one “lfetch [r27], 12” is sufficient for both data prefetching
and stride advancing. Such optimization is important be-
cause it reduces the number of instructions executed and
consumes fewer registers.

3.5. Prefetch Scheduling

Prefetch code should be scheduled at otherwise
wasted empty slots so that the introduced cost is kept as
small as possible. For instance, it would be better if each
lfetch/ld.s be put in an instruction group having a free mem-
ory slot. Ineffective insertion of prefetches may increase
the number of bundles and cause significant performance
loss. Details of the Itanium microarchitecture can be found
in [18][19].

3.6. Implementation Issues

Although architectural state preservation and precise ex-
ception handling [17] are among the critical issues to be
solved in dynamic optimization systems, the two optimiza-
tions, trace layout and prefetching, implemented in ADORE
are considered safe. Prefetch instructions use reserved reg-
isters and non-faulting loads (ld.s), so they do not gener-
ate exceptions or change the architecture state. The orig-
inal program’s execution sequence has not been changed
either, because the traces are only duplicates of the origi-
nal code, and the current optimizer does not schedule other
instructions. Self-modified code can be detected by write-
protecting text pages.

4. Performance Results

4.1. Methodology

To evaluate the performance of runtime prefetching,
nine SPEC FP2000 benchmarks and eight SPEC INT2000
benchmarks [32] are tested with reference inputs 2. Our

2Other benchmarks either cannot be compiled properly at all optimiza-
tion levels or do not have a stable execution time in our experiment. For
benchmarks having multiple data inputs, only the first input data is used in
our measurement.
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Figure 7. Performance of Runtime Prefetching

test machine is a 2-CPU 900MHz Itanium 2 zx6000 work-
station. The Operating system is Redhat Linux 7.2 (kernel
version 2.4.18.e25) with glibc 2.2.4. The ORC R©compiler
v2.0 [26] is chosen to compile the benchmark programs.

4.2. Static Prefetching Guided by Sample Profile

Before evaluating the performance of runtime optimiza-
tion in the ADORE system, we assess a profile-guided
static prefetching scheme in which we modified the exist-
ing prefetching algorithm of the ORC compiler to reduce
the number of prefetches for loops guided by performance
sampling profiles. The sampling profile used here has the
same format as that used in runtime prefetching (Section
2.1) except that the runtime prefetcher uses a smaller most
recent profile.

The existing prefetching algorithm in the ORC compiler
is activated when compiling at O3. It is similar to Todd
Mowry’s algorithm [24]. Like other compile-time prefetch-
ing, this algorithm requires accurate array bounds and lo-
cality information. It also generates unnecessary prefetches
for loads that might at runtime hit well in the data caches. In
our study, we merely modify this algorithm to select loops
for prefetching under the profile’s guidance. We did not
rewrite the whole algorithm to more aggressively prefetch
for data reference patterns such as pointer chasing. We be-
lieve profile-guided software prefetching can be further im-
proved in such cases.

Using the sampling profiles, the static compiler sorts
the delinquent loads in decreasing order of total miss la-
tency. Then these delinquent loads are added one by one
to a list until the total latency caused by the loads in the
list covers 90% of all profiled cache miss latency. Static
prefetching is then invoked as usual (with O3) except that
the compiler now generates prefetches only for loops con-
taining at least one delinquent load in that list. Compar-
ing this method with normal O3 optimization, 83% of loops
scheduled for prefetching have been filtered out on average
(See Table 1). Static code size is reduced by as much as
9%. This result adds evidence to the hypothesis that only a

 loops scheduled for prefetch  normalized execution time   normalized binary size

Spec2000 O3 O3+Profile O3 O3+profile O3 O3+Profile

ammp 113 13 1 0.989 1 0.980

applu 52 19 1 0.998 1 0.998

art 39 20 1 0.985 1 0.964

bzip2 65 11 1 1.007 1 0.927

equake 34 4 1 0.997 1 0.992

facerec 94 12 1 0.997 1 0.970

fma3d 1023 39 1 0.996 1 0.990

gap 553 18 1 1.008 1 0.938

gcc 651 21 1 0.993 1 0.986

gzip 85 2 1 1.004 1 0.939

lucas 59 23 1 0.999 1 0.992

mcf 7 3 1 0.986 1 0.973

mesa 583 14 1 0.995 1 0.911

parser 67 5 1 0.990 1 0.958

swim 19 9 1 1.001 1 0.995

vortex 20 0 1 0.995 1 0.999

vpr 120 5 1 0.990 1 0.987

Table 1. Profile Guided Static Prefetching

few instructions in a program dominate the memory access
latencies during execution, for which runtime prefetching
would be ideal. In fact, the reason that there is no obvi-
ous speedup from this profile-guided prefetching is because
we merely use profile to filter out unnecessary prefetches.
Profile-guided software prefetching may attain greater per-
formance if the profile provides sufficient evidence and in-
formation to guide more aggressive but expensive prefetch-
ing transformations 3.

4.3. Runtime Prefetching

Runtime prefetching is more transparent than profile-
guided static prefetching because it needs no extra run to
collect profiles. In our test, runtime prefetching is applied
to the benchmark programs from two most commonly-used
compilations: O2 and O3. As mentioned, at O2 the ORC
compiler does not generate static prefetching while at O3 it
does. In both compilations, the compiler reserved 4 integer
registers, 1 predicate register and disabled software pipelin-
ing. We disable software pipelining because our dynamic
optimization currently does not handle software-pipelined
loops with rotation registers. However, this limitation may

3This assumes the cache miss profile collected by training run is able
to reliably predict the actual data references.
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Figure 8. Runtime Prefetching for 179.art
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Figure 9. Runtime Prefetching for 181.mcf

not significantly change our results and we will discuss the
performance impact later in this section. All benchmark
programs run reference data inputs.

Fig. 7(a) and Fig. 7(b) illustrate the performance impact
of O2+Runtime-Prefetching and O3+Runtime-Prefetching.
In Fig. 7(a), 9 out of 17 Spec2000 benchmarks have
speedup from 3% to 57%. For the remaining 8 programs
that show no benefit from dynamic optimization, the per-
formance differences are around -2% to +1%. A further
examination of the traces generated by the dynamic opti-
mizer shows that our runtime prefetcher did locate the right
delinquent loads in applu, swim, vpr and gap. The failure
in improving the performance of these programs is due to
three reasons. First, for some programs, the cache misses
are evenly distributed among hundreds of loads in several
large loops (e.g. applu). Each load may have only 2-3% of
total latency and their miss penalties are effectively over-
lapped through instruction scheduling. Furthermore, the
current dynamic optimizer can only deal with the top three
delinquent loads. With only four integer registers available
for the dynamic optimizer, we need a more sophisticated
algorithm to handle a large number of prefetches in a loop.
Second, some delinquent loads have complex address calcu-

lation patterns (e.g. function call or fp-int conversion), caus-
ing the dynamic optimizer to fail in computing the stride in-
formation (in vpr, lucas and gap). Third, the optimizer may
be unable to insert prefetches far enough to hide latencies
if the loop contains few instructions and has small iteration
count. For integer benchmarks, except for mcf, runtime data
prefetching has only slight speedup. gzip’s execution time
is too short (less than 1 minute) for ADORE to detect a sta-
ble phase. vortex is sped up by 2% but that is partly due to
the improvement of I-cache locality from trace layout. gcc,
in contrast, suffers from increased I-cache misses plus sam-
pling overhead and ends up with a 3.8% performance loss.
This may be improved by further tuning on trace selection
or I-cache prefetching.

As expected, runtime prefetching shows different results
when applied to the O3 binaries (Fig. 7(b)). For programs
like mcf, art and equake, the current static prefetching can-
not efficiently reduce the data miss latency, but runtime-
prefetching is able to. The performance improvement is
almost as much as those received from O2 binaries. How-
ever, the remaining programs have been fully optimized by
O3, so the runtime prefetcher skips many traces to opti-
mize since they either don’t have cache misses or already
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have compiler generated “lfetch”. For this reason the per-
formance differences for many programs are around -3% to
+2%.

Now let’s look at an example to understand how runtime
prefetching works for these benchmark programs. In Fig.
8, the left graph shows the runtime CPI change for 179.art
with/without runtime prefetching (O2 binary). The right
graph shows the change of DEAR Load Miss per 1000 in-
structions. There are two clear phases shown in both graphs.
One is from the beginning of the execution; the other starts
at about 1

4 of way in the execution. Phase detection works
effectively in this case. The first phase is detected about
ten seconds after startup and prefetching codes are applied
immediately. Both CPI and DEAR Load Miss Per 1000 in-
structions are reduced by almost half. About one and a half
minutes later, a phase change occurs followed by the sec-
ond stable phase till the end. The phase detector catches
this second phase too. Since the prefetching effectively re-
duces the running time, the second lines in both graphs are
shorter than the top lines. Fig. 9 is the same type of graph
for 181.mcf. Other programs like bzip2, fma3d, swim and
equake also exhibit similar patterns.

Only a small number of prefetches have been in-

SpecFP2000 ammp applu art equake facerec fma3d lucas mesa swim

direct array 0 21 10 6 17 11 6 1 9
indirect array 2 0 6 1 0 2 0 0 0
pointer-chasing 2 0 0 0 0 0 0 0 0
optimized phase # 3 2 2 1 3 4 1 1 1
SpecINT2000 bzip2 gap gcc gzip mcf parser vortex vpr

direct array 10 3 2 0 0 1 2 1
indirect array 6 0 0 0 0 0 0 0
pointer-chasing 0 0 0 0 3 2 0 0
optimized phase # 2 3 2 0 2 1 2 1

Table 2. Prefetching Data Analysis

serted into the trace code to achieve the above speedup.
Table 2 shows the total number of stable phases applied
with runtime prefetching and the individual number of the
three reference patterns prefetched in each benchmark pro-
gram (O2 binary). The majority of speedup comes from
prefetching for direct/indirect array references. Prefetching
for pointer chasing references is not widely applicable be-
cause not many LDS (linked data structure) intensive appli-
cations exhibit regular stride. For such kind of data struc-
tures, runtime prefetching should consider more elaborate
approaches such as correlation prefetching [25].

Since we have disabled software-pipelined loops and re-
served 4 grs when compiling the benchmarks, we must eval-
uate the impact to performance. Fig. 10 measures this im-
pact by comparing the original O2 with our restricted O2.
For most of the 17 programs, the impact of fewer registers
and disabling software pipelining is minor. Four programs
show difference greater than 3%. They are equake, mcf,
facerec and swim. These performance differences come pri-
marily from SWP (Software Pipelining). However, the rea-
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Software Pipelining to Performance

son for disabling SWP is that the current dynamic optimizer
in ADORE cannot insert prefetches into software pipelined
loops where rotation registers are used. In the future, this
limitation can be relaxed. At this time, the performance dif-
ferences can be minimized by applying runtime prefetching
directly to these programs compiled with O3, although the
speedups for other programs might be lower. On the other
hand, for mcf, equake, art, bzip2, fma3d, mesa, vpr, and
vortex, their O2 binaries (without SWP), when optimized
by runtime prefetching, are always faster than the O3 bi-
nary, whether with SWP or not.

At the end of this section, we evaluate the runtime over-
head incurred by our dynamic optimization. In this sys-
tem, the major overhead is introduced by continuous sam-
pling, phase detection and trace optimization. Our experi-
ence suggests the sampling interval be no less than 100,000
cycle/sample. The phase detector polls the sample buffer
in a while-loop. We let it hibernate for 100 milliseconds
after each poll to save cpu time. Furthermore, the current
working mechanism of our phase detection model prevents
trace optimization from being frequent. Consequently, al-
though running on the second processor, the second proces-
sor for the dynopt thread is idle almost all of the time 4.
Fig. 11 shows the benchmark program’s “real clock time”
when prefetch insertion is disabled in ADORE (compared
with O2 binary). It is measured using the shell command
time. The “user cpu time” are not shown here since they
are always smaller than “real clock time” in our experi-
ment. These results demonstrate that the extra overhead of
ADORE system is trivial.

5. Related Work

5.1. Software Prefetching

Many software based prefetching techniques have been
proposed in the past few years. Todd C. Mowry et al. first

4The same speedup can be achieved on a single cpu system.
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Figure 11. Overhead of Runtime Prefetching

presented a general compiler prefetching algorithm work-
ing effectively with scientific program [24]. Later Luk and
Mowry proposed a compiler-based prefetching scheme for
recursive data structures [22]. This requires extra storage at
runtime. Santhanam et al. discussed the major implementa-
tion issues of compile time prefetching on a particular RISC
processor: HP-PA8000 [30]. Jump Pointer [29], which has
been used widely to break the serial LDS (linked data struc-
ture) traversal, stores pointers several iterations ahead in the
node currently visited. Other research tried to improve spa-
tial locality and runtime memory reference efficiency with
improved compilation methods. In a recent work, Gau-
tam Doshi et al. [14] discussed the downside of software
prefetching and exploited the use of rotating registers and
predication to reduce the instruction overhead.

5.2. Profile Guided Software Prefetching

Software prefetching is ineffective in pointer-based pro-
grams. To address this problem, Chi K. Luk et al. presented
a Profile Guided Post-Link Stride Prefetching [23] using a
stride profile to obtain prefetching guidance for the com-
pilers. In an earlier research, Luk and Mowry presented
a correlation-profiling scheme [25] to help software-based
techniques detect data access correlations.

Recently, Chilimbi and Hirzel [8] explored the use of
burst profiling to prefetch for hot data stream in their dy-
namic optimization framework, where three stages (pro-
filing, optimization, hibernation) repeat in a fixed timing
sequence. In the profiling stage, hot stream patterns are
catched in the form of <pc, addr> pairs. The optimizer,
in the next stage, generates detection code and prefetches
into the procedures duplicated from the program’s code seg-
ment. The detection code behaves like a finite state machine
that matches the prefixes of a hot data stream and triggers
prefetching for the suffixes. Although their framework is
also a real dynamic system, the binaries must be statically
instrumented for profiling and pre-linked with a dynamic
optimizer library, which is not required by ADORE.

5.3. Hardware Prefetching

Among the many studies of Hardware prefetching
[12][1][20][11], Collins, et al., attempted to prefetch delin-
quent loads in a multithreaded architecture based on Ita-
nium ISA [12]. Annavaram, et al., proposed a hardware
Dependence Graph Precomputation mechanism (DGP) [1]
aiming to reduce the latency of a pending data cache miss.

Although hardware techniques can exhibit more flexibil-
ity and aggressiveness in data prefetching, they may be ex-
pensive to implement. Design and performance evaluation
of the above schemes are mostly carried out by simulations.

5.4. Dynamic Optimization Systems

Software Runtime Optimization Systems are commonly
seen in Java Virtual Machines (JVM) [9][2][27], where
Just-In-Time engines apply recompilation at runtime to
achieve higher performance. On these systems, JIT usu-
ally employs adaptive profile-feedback optimization (e.g.
by runtime instrumentation or interpretation) to take advan-
tages of Java programs’ dynamic nature.

Dynamo [3] is a transparent dynamic native-to-native
optimization system. Dynamo starts running a statically
compiled executable by interpretation, waiting for hot
traces to show up. Once hot traces are detected, Dynamo
stops the program and generates code fragments for these
traces. Subsequent execution on the same trace will be redi-
rected to the newly optimized code in the fragment cache.
The interpretation approach in Dynamo is expensive, and as
a result, Dynamo tries to avoid interpretation by converting
as many hot traces as possible to the fragment cache. To
achieve this goal, it uses a small threshold to quickly de-
termine if a trace is hot. This approach often ends up with
translating too much code and less effective traces. There-
fore in a recent work called DynamoRIO [5], this feature
has been changed. Other research on dynamic optimization
also explored dynamic translation [7][10], continuous pro-
gram optimization [21] and binary transformation [16].

6. Conclusion and Future Research

In this paper we propose a runtime prefetching mecha-
nism in a dynamic optimization system. The overhead of
this prefetching scheme and the dynamic optimization is
very low due to the use of sampling on the Itanium proces-
sor’s performance monitoring unit. Using this scheme, we
can improve runtime performance by as much as 57% on
some SPEC2000 benchmarks compiled at O2 for Itanium-
2 processors. In contrast, compile time prefetching ap-
proaches need sophisticated analysis to achieve similar or
lower performance gains. For binaries compiled at O3 with
static prefetching, our system can improve performance by

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) 
0-7695-2043-X/03 $17.00 © 2003 IEEE 



as much as 20%. In this paper, we also examined a profile-
guided static prefetching using the HPM based sampling
profiles. The results show that a minor modification of ex-
isting static prefetching to use cache miss profiles can avoid
generating most of the unbeneficial prefetches without los-
ing performance.

For future work on runtime prefetching, we plan to en-
hance our algorithm to also handle software pipelined loops.
The current phase detection scheme in our system does
not work very well on programs with rapid phase changes,
hence needs to be improved. Finally, we are investigating
the possibility of adding selective runtime instrumentation
to collect information not available from HPM.
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