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Abstract— Scarce data is a major challenge to scaling robot
learning to truly complex tasks, as we need to generalize
locally learned policies over different task contexts. Contextual
policy search offers data-efficient learning and generalization
by explicitly conditioning the policy on a parametric context
space. In this paper, we further structure the contextual policy
representation. We propose to factor contexts into two com-
ponents: target contexts that describe the task objectives, e.g.
target position for throwing a ball; and environment contexts
that characterize the environment, e.g. initial position or mass of
the ball. Our key observation is that experience can be directly
generalized over target contexts. We show that this can be easily
exploited in contextual policy search algorithms. In particular,
we apply factorization to a Bayesian optimization approach
to contextual policy search both in sampling-based and active
learning settings. Our simulation results show faster learning
and better generalization in various robotic domains. See our
supplementary video: https://youtu.be/MNTbBAOufDY.

I. INTRODUCTION

Enabling robots to operate in truly complex domains
requires learning policies from a small amount of data and
generalizing learned policies over different tasks. Policy
search methods with low-dimensional, parametric policy
representations enable data-efficient learning of local poli-
cies [1]. Contextual policy search (CPS) [2], [3] further en-
ables generalization over different task settings by structuring
the policy. CPS uses an upper-level policy π(θ|s) to select
parameters θ of a lower-level policy given context s, where
the context s specifies the task. The goal is to learn a policy
π(θ|s) that maximizes the expected reward E[Rs,θ].

We propose to further structure the contextual policy
representation by introducing a factorization of the context
space. In particular, we factorize a context vector s into
two components: (1) target contexts st that specify task
objectives, e.g. for a ball throwing task the target coordinates
of the ball, and (2) environment contexts se that character-
ize the environment and the system dynamics, e.g. initial
position of the ball. Formally, we assume that the expected
reward is given by Rs,θ =

∫
p(τ |se,θ)R(st, τ )dτ , where

τ is a trajectory with unknown dynamics p(τ |se,θ), and
R(st, τ ) is the reward function. The key difference between
st and se is that the dynamics only depend on se. We
can exploit this property and re-evaluate prior experience
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Fig. 1: Ball throwing task, where the robot is asked to hit
target context st1 given initial position se of the ball. The
robot chooses parameters θ1 that generates a ball trajectory
τ ∼ p(τ |se,θ1) landing at st2. Despite a low reward,
knowing that τ led to st2 is beneficial if the robot is asked
again to throw near st2.

in light of a new target context, leading to improved
data-efficiency and better generalization.

For example, assume a robot is learning to throw balls at
different targets st (Fig. 1). The robot is asked to aim at st1.
It chooses parameters θ1, executes the throw, and observes
a ball trajectory τ 1 that hits target st2, st2 6= st1. This yields
a reward R(st1, τ 1). Assume the robot is now asked to aim
at target st2. Standard CPS methods try to generalize prior
experience solely based on the upper-level policy π(θ|s), e.g.
by assuming that rewards obtained under similar contexts are
correlated. Context factorization instead allows to treat the
two context types differently. The target context st2 can be
used to evaluate R(st2, τ 1) directly, yielding the exact reward
we would get for τ 1 when targeting st2. That is because a
trajectory is independent from the target context. The same
is not true for environment contexts, and thus we must rely
on the upper-level policy to generalize over them.

We demonstrate the benefits of factorization by applying
it to CPS approaches based on Bayesian optimization (BO)
[4]; however, other CPS methods would be also possible.
First, we consider a passive learning setting, where the
context is given to the robot, and introduce a factored variant
of BO for CPS (BO-CPS) [5], [6]. We then consider an
active learning setting [7], where the robot can choose the
context during learning. We introduce factored contexts to
ACES [8], a CPS method based on entropy search [9].
For moderately low-dimensional search spaces, e.g. when
learning pre-structured policies, such global optimization
techniques achieve high data-efficiency by directly searching
for the optimal parameters using a surrogate reward model.

So far we assumed that we can re-evaluate the reward
function R(st, τ ) for arbitrary target contexts. This assump-
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tion is reasonable in real robot applications, where rewards
typically encode objectives defined by the system designer.
However, if the agent only has access to samples from the
reward function, we can still exploit factored contexts by re-
evaluating the current trajectory w.r.t. the achieved outcome.
This approach can be seen as an extension of hindsight
experience replay (HER) [10], a recently proposed data
augmentation technique for goal-oriented RL algorithms.

We analyze the proposed methods first on a toy task.
We then validate the benefits of context factorization on
three simulated robotics environments from the OpenAI
Gym [11], where we employ dynamic movement primitives
[12] to efficiently generate trajectories. We show that context
factorization is easy to implement, can be broadly applied to
CPS problems, and consistently improves data-efficiency and
generalization for various robotic tasks.

II. RELATED WORK

There are several CPS approaches that generalize over
a context space. One group of work first learns different
local policies and then uses supervised learning to interpolate
policy parameters over contexts [13], [14]. These methods
are suitable for problems where local policies are available or
easy to learn, but they are inefficient otherwise. The second
group of work jointly learns local policies and generalizes
over the context space [15], [16], [2]. These approaches were
applied to a variety of real-world tasks, including playing
table tennis [16], darts [16] and hockey [2]. Although all
tasks involve target contexts, generalization over contexts
solely relies on correlation. Similarly, CPS approaches based
on BO [6], [8], [17], [18] learn a probabilistic reward model
that generalizes over the context space through correlation. In
this paper, we extend two BO approaches with factorization,
namely BO-CPS [5], [6] and ACES [8].

To the best of our knowledge, there is no prior work that
explicitly factors the context space. Similar ideas are implic-
itly used by Kober et al. [16] who learn a contextual policy
for discrete targets while performing a higher-level task.
While they map experience gained in one context to another,
they do so for estimating discrete outcome probabilities and
not for improving the policy. GP-REPS [19] iteratively learns
a transition model of the system using a Gaussian process
(GP) [20], which is then used to generate trajectories offline
for updating the policy. The authors consider generating
additional samples for artificial contexts, but they do not
define an explicit factorization.

The idea of replacing the goal of a trajectory has recently
been explored in HER [10], which increases data-efficiency
in goal-based RL tasks with sparse rewards. The key idea is
to augment the dataset with additional experience by replac-
ing the original target context of a rollout to be the achieved
outcome. Instead of replacing the target context after each
rollout, we replace the target context of all previous episodes
before each rollout and re-evaluate the entire dataset. Our
approach additionally generalizes over environment contexts
that are typical in CPS problems. If we have only access to

sample rewards, we show how context factorization can be
used to extend HER to CPS.

III. BACKGROUND
A. Bayesian Optimization for Contextual Policy Search

In a CPS problem, the agent observes a context s ∼ γ(s)
before each episode, where the context specifies the task
setting and γ(s) is a distribution over contexts. To solve
the task, the agent maintains an upper-level policy π(θ|s)
over parameters θ of a lower-level policy, e.g. a dynamic
movement primitive [12]. Executing the lower-level policy
with parameters θ generates a trajectory τ ∼ p(τ |s,θ) that
yields reward R(s, τ ). The goal of the agent is to learn an
upper-level policy that maximizes the expected reward,

E[Rs,θ] =

∫∫∫
γ(s)π(θ|s)p(τ |s,θ)R(s, τ )dτdθds.

BO-CPS [5], [6] frames CPS as a BO problem. BO is a
global search method for optimizing real-valued functions,
assuming only access to noisy sample evaluations. Starting
from a prior belief about the objective, BO employs an
acquisition function to guide the sampling procedure. In BO-
CPS, a probabilistic reward model p(R|D, s,θ) is learned
from N data samples D = {si,θi,Ri}Ni=1, which allows to
evaluate potential parameters θ for a query context sq . BO-
CPS commits to a GP prior [20] with predictive posterior
p(R|D, sq,θ) = N (µsq,θ, σ

2
sq,θ

), and uses the GP-UCB
acquisition function [21],

GP-UCB(sq,θ) = µsq,θ + κσsq,θ, (1)

where κ trades off exploration and exploitation. The policy
parameters θ are selected by the upper-level policy π, which
optimizes the acquisition function given the query context,

π(θ|sq) = δ (θ − θ∗|sq) , (2)

where θ∗|sq = arg maxθ GP-UCB(sq,θ), and δ(·) is the
Dirac delta function. The algorithm is summarized in Alg. 1.

B. Active Contextual Entropy Search

Active contextual entropy search (ACES) [8] is an ex-
tension of entropy search (ES) [9] to the active CPS set-
ting, where both the parameters θ and the context s are
chosen by the agent before an episode. ACES maintains a
conditional probability distribution p(θ∗|D, s) = p(θ∗ =
arg maxθ f(s,θ)|D, s), expressing the belief about θ being
optimal in context s. The most informative query point
is chosen by maximizing the expected information gain
integrated over the context space,

ACES(sq,θq) =
∑C

c=1
Gsc(sq,θq), (3)

where {sc}Cc=1 is a set of randomly chosen representer
points. The expected information gain in context sc after
performing a hypothetical rollout with (sq,θq) is given by

Gsc(sq,θq) = H[p(θ∗|D, sc)]− E
[
H[p(θ∗|D+, sc)]

]
, (4)

where the expectation is taken over p(R|D, sq,θq, sc), and
D+ = D∪{sq,θq, R} is an updated dataset that contains the



Algorithm 1 BO-CPS [6]
repeat

Observe sq ∼ γ(s)

Learn reward model p(R|D, s,θ) from D (Eq. 6)
Select θq ∼ π(θ|sq) (Eq. 1, 2) using reward model
Execute rollout τ ∼ p(τ |sq,θq) with the robot
Add (sq,θq, R(sq, τ )) to D

until Policy π converges

Algorithm 2 BO-FCPS (ours)
repeat

Observe sq ∼ γ(s), where sq = (stq, s
e
q)

Construct dataset Dq from D (Eq. 5)
Learn reward model p(Rt

q|Dq, s
e
q,θ) from Dq (Eq. 6)

Select θq ∼ π(θ|sq) (Eq. 1, 2) using reward model
Execute rollout τ ∼ p(τ |seq,θq) with the robot
Add (seq,θq, τ ) to D

until Policy π converges

hypothetical query point. In practice, Eq. 3 requires further
approximations, which are explained in the original work [9],
[8]. The algorithm is summarized in Alg. 3.

C. Dynamic Movement Primitives

Dynamic movement primitives (DMPs) are often used as
lower-level policies in robot learning tasks. A DMP [12]
is a spring-damper system whose hyper-parameters can be
flexibly adapted while retaining the general shape of the
movement. These include the final position yf , final velocity
ẏf and temporal scaling τ . The motion is further modulated
by a non-linear forcing function fw(z) = w>Φ(z) with
basis functions Φ(z) parameterized by phase variable z. The
parameters w determine the shape of the movement and
can be obtained by imitation learning. Each generated DMP
trajectory is followed by the control policy of the robot,
which implements a low-level feedback controller.

IV. FACTORED CONTEXTUAL POLICY SEARCH

In this section, we introduce context factorization and
show how it can be integrated into CPS algorithms.

We propose to factorize a context vector s into two types
of contexts, s = (st, se):
• target contexts st which specify the task objective, and
• environment contexts se which characterize the envi-

ronment and the system dynamics.
Formally, we assume that the reward function is given by
R(st, τ )1, where the trajectory τ is generated by unknown
system dynamics, τ ∼ p(τ |se,θ). Importantly, while the
dynamics function depends on environment contexts, it does
not depend on target contexts. This means that we can
exchange the target context of a rollout without altering
its trajectory, allowing to re-evaluate a rollout under dif-
ferent target contexts. For example, in our ball throwing
task (Fig. 1) we can re-evaluate a previously observed
trajectory pretending we were aiming at a different target.
We cannot do the same with environment contexts, e.g. the
initial ball pose, because a different initial pose would result
in a different trajectory. In the following, we exploit factored
contexts to reduce the data requirements of CPS algorithms.
To what extend factorization can be exploited depends on
the knowledge of the reward function R(st, τ ). First, we

1In general, the reward function may also depend on se and θ. We omit
this dependence for improved readability; the principle remains the same.

assume that the reward function is fully known or that it
can be evaluated for arbitrary targets st. This allows to
construct highly data-efficient algorithms, as we demonstrate
on a passive (Section IV-A) and active (Section IV-B) CPS
algorithm. In Section IV-C, we drop the assumption of a
known reward function and propose an extension of hindsight
experience replay [10] to the CPS setting using context
factorization.

A. Bayesian Optimization for Factored CPS

Context factorization can be easily incorporated into BO-
CPS. The resulting algorithm, Bayesian optimization for
factored contextual policy search (BO-FCPS), is shown in
Alg. 2. It maintains a dataset D = {sei ,θi, τ i}Ni=1

2 that
can be used to re-evaluate past experiences for a new query
context sq = (stq, s

e
q). Given reward function R(st, τ ), we

construct a query-specific dataset,

Dq = {sei ,θi, R(stq, τ i)}Ni=1, (5)

for learning a specialized reward model,

p(Rt
q|Dq, s

e
q,θ) = N (Rt

q|µsq,θ, σ2
sq,θ), (6)

before each rollout. This model is specific to the current
target context stq . Jointly, the set of all possible reward mod-
els {p(Rt

q′ |Dq′ , s
e,θ)} w.r.t. arbitrary targets stq′ generalizes

directly over the target context space. Thus, each reward
model only needs to generalize over environment contexts
se and policy parameters θ, leading to a reduced input space
compared to the original reward model. This has the added
benefit of a smaller search space during optimization. The
parameters θ for context sq are found by optimizing the
acquisition function given the target-specific reward model
(Eq. 1, 2). We employ the DIRECT [22] algorithm for
optimization, followed by L-BFGS [23] to refine the result.

We can formally compare BO-FCPS and BO-CPS if
we assume that both approaches share the same dataset
D = {si,θi, τ i,R(sei , τ i)}Ni=1 and the same GP hyper-
parameters. In this case, the reward model of BO-FCPS
evaluated at a particular target context stq is always at least
as accurate as the one learned by BO-CPS. To see this, recall
that BO-FCPS differs from BO-CPS in two ways: (1) BO-
FCPS re-computes the rewards for stq , and (2) BO-FCPS

2Instead of storing the entire trajectory, in practice we may only record
its sufficient statistics for computing the reward, i.e. an outcome o = φ(τ ).



Algorithm 3 ACES [8]
repeat

Sample representer points {sc}Cc=1 (Section III-B)

Learn reward model p(R|D, s,θ) from D (Eq. 6)
Select (sq,θq) = arg maxs,θ ACES(s,θ) (Eq. 3)
Execute rollout τ ∼ p(τ |sq,θq) with the robot
Add (sq,θq, R(sq, τ )) to D

until Policy π converges

Algorithm 4 FACES (ours)
repeat

Sample representer points {sc}Cc=1, sc = (stc, s
e
c)

Construct datasets {Dc}Cc=1 from D (Eq. 5)
Learn reward models {GPc}Cc=1 from {Dc}Cc=1 (Eq. 6)
Select (seq,θq) = arg maxse,θ FACES(se,θ) (Eq. 7)
Execute rollout τ ∼ p(τ |seq,θq) with the robot
Add (seq,θq, τ ) to D

until Policy π converges

does not consider the rewards at other target contexts stq′ 6=
stq . Re-computing the rewards is trivially beneficial because
BO-FCPS knows the true reward for target context stq given a
trajectory τ , whereas BO-CPS needs to infer the reward from
correlations between target contexts. Disregarding rewards at
other target contexts stq′ 6= stq does not degrade the predictive
performance of our model either. That is because for a given
context-parameter pair the only source of uncertainty w.r.t.
their expected reward is in the execution of the trajectory
τ and its effect on the environment. Since the trajectory
does not depend on the target context, evaluating the same
trajectory under different target contexts does not reveal more
information about the trajectory itself.

Note that while a better reward model at a given target
context leads to better greedy performance, e.g. during offline
evaluation, it does not necessarily imply higher cumulative
rewards during learning. Furthermore, in practice both the
dataset D and the GP hyper-parameters would be different.
Empirically, BO-FCPS does achieve both higher online and
offline performance, as we show in Section V. We defer a
more extensive theoretical analysis to future work.

B. Factored Active Contextual Entropy Search

In the active learning setting, the agent chooses both the
policy parameters θ and the context s. Applying GP-UCB
is problematic as it would not take the varying difficulty of
tasks into account [7]. Instead, we follow ACES [8] and use
an ES-based acquisition function, which aims to choose the
most informative query points for global optimization [9].

We integrate factored contexts into ACES as follows. In
each iteration, we map previous experience to all representer
points {sc}Cc=1 in the context space, i.e. we construct C
different datasets {Dc}Cc=1 as in Eq. 5. From these datasets,
we construct a set of GP models {GPc}Cc=1 that we use to
evaluate the ACES acquisition function. In particular, we
employ the corresponding GPc : p(Rt

c|Dc, s
e
c,θ) when the

expected information gain Gs(sq,θq) after a hypothetical
query (sq,θq) is evaluated for s = sc. Similar to BO-FCPS,
we therefore directly use the target-specific GPs instead of
relying on the correlation between target contexts.

Note that the choice on the target-type query context stq
is actually indifferent if we ignore rewards during training,
and thus we only need to select (seq,θq) by maximizing

FACES(seq,θq) =
∑C

c=1
Gsc(seq,θq). (7)

We call the resulting algorithm factored active contextual
entropy search (FACES). The algorithm is shown in Alg. 4.

C. Hindsight Experience Replay for Factored CPS

So far we have assumed that the agent has access to the
reward function R(st, τ ). If we cannot query the reward
function at arbitrary points, it is still possible to leverage
factored contexts. In particular, we replace the current target
context stq after a rollout by the achieved target stτ and
evaluate it again, yielding reward R(stτ , τ ). Thus, the only
requirement is to be able to obtain the sample reward
R(stτ , τ ) in addition to the actual reward R(stq, τ ). The addi-
tional data point (seq,θq, R(stτ , τ )) can then be added to the
training dataset D, and standard CPS methods such as BO-
CPS, cost-regularized kernel regression [16] or contextual
relative entropy policy search (C-REPS) [3], [2] can be used
without further modifications. Such an approach can be seen
as an extension of HER to the CPS setting. We believe we
are the first ones that explicitly make this connection.

V. EXPERIMENTS AND RESULTS

We perform experiments to answer the following ques-
tions: (a) does context factorization lead to more data-
efficient learning for passive and active BO-based CPS algo-
rithms; (b) how does the choice of acquisition function influ-
ence the performance; (c) does context factorization improve
generalization; (d) is our method effective in more complex
robotic domains? We address questions (a)-(c) through ex-
periments on a toy cannon task, and (d) on three simulated
tasks from the OpenAI Gym [11]. For the Gym tasks, we
employ an extension [24] of the DMP framework [12] to
efficiently generate goal-directed trajectories.

A. Toy Cannon Task

The toy cannon task is a popular domain for evaluating
CPS algorithms [25], [6], [8]. As shown in Fig. 2a, a
cannon is placed in the center of a 3D coordinate system
and has to shoot at targets on the ground in the range of
[−11, 11]×[−11, 11]m. The contextual policy maps from 2D
targets st ∈ R2 to 3D launch parameters θ ∈ R3: horizontal
orientation α ∈ [0, 2π], vertical angle β ∈ [0.01, π/2 − 0.2]
and speed v ∈ [0.1, 5] ms. The reward function is given by
R(st, τ ) = −‖st − stτ‖ − 0.05v2, where stτ is the achieved
hitting location of a trajectory τ . To increase the difficulty of
the problem, we add Gaussian noise (σn = 1◦) to the desired



(a) Toy cannon setup
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Fig. 2: (a) Visualization of the toy cannon task. (b)-(c) Offline performance evaluated on a fixed set of contexts from a
15× 15 grid. Results are averaged over 10 randomly generated environments. Shaded areas denote one standard deviation.

t = 50 t = 100 t = 150

C-REPS -496 (± 17) -955 (± 56) -1357 (± 62)
BO-CPS -461 (± 28) -843 (± 70) -1148 (± 151)
BO-FCPS-HER (ours) -447 (± 24) -809 (± 71) -1111 (± 140)
BO-FCPS (ours) -303 (± 34) -414 (± 44) -499 (± 56)

TABLE I: Online learning performance on the toy cannon
task averaged over 10 random seeds. We report mean cumu-
lative rewards obtained during the first t iterations.
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(b) BO-FCPS (ours)

Fig. 3: Achieved rewards in target context space after 150
episodes, where no contexts were sampled from the upper-
right and lower-left corner during training.

launch angle during training and randomly place hills in the
environment. The learning agent is unaware of the hills and
the target contexts carry no information on the elevation.

First, we compare both our factored BO approach (BO-
FCPS) and our factored HER-style BO approach (BO-FCPS-
HER) to standard BO-CPS. Each algorithm uses the GP-
UCB acquisition function. We employ a zero-mean GP prior,
p(f) ∼ GP(0, k(x,x′)), with squared-exponential kernel
k(x,x′) = σ2

f exp
(
− 1

2 (x− x′)>Λ−1(x− x′)
)
, where x =

(s,θ), and Λ = diag(`) contains positive length-scale
parameters `. The GP hyper-parameters are optimized by
maximizing the marginal likelihood. We also compare to C-
REPS, which performs local policy updates instead of global
optimization. We use a linear Gaussian policy with squared
context features that is updated every 30 episodes subject to
the relative entropy bound ε = 0.5.

The offline performance of each algorithm is shown in
Fig. 2b. BO-FCPS requires only 60 episodes to find a good
policy, a considerable improvement over standard BO-CPS.
BO-FCPS-HER improves on BO-CPS as well, although the
variance is much larger. This is because the GP hyper-
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Fig. 4: Learning curve for active learning setting averaged
over 10 randomly generated environments, evaluated offline
based on contexts placed uniformly on an 8×8 grid. Shaded
areas denote one standard deviation.

parameter optimization sometimes got stuck in a local mini-
mum, overfitting to the context variables while ignoring the
influence of the parameters θ. We hypothesize that a full
Bayesian treatment would mitigate this issue. C-REPS is not
competitive on this low-dimensional task since the policy
adapts too slowly. The above findings are confirmed by the
online performances, which are summarized in Table I.

In Fig. 2c, we evaluate the dependence of BO-FCPS on
the acquisition function. We compare three variants: BO-
FCPS with GP-UCB (UCB), entropy search (ES) and a
random acquisition function. Using GP-UCB over ES leads
to slightly faster learning as ES tends to explore too much.
Likewise, random exploration is not sufficient for data-
efficient learning. We therefore focus on GP-UCB.

Next, we demonstrate why evaluating previous rollouts for
the given target context leads to improved generalization. We
only present contexts st ∈ [−11, 0] × [0, 11] ∪ [0, 11] ×
[−11, 0] during training, while the agent has to generalize
to the entire context space during evaluation. As depicted in
Fig. 3, BO-FCPS generalizes much better to unseen contexts
due to a much more accurate reward model at locations
where it has already shot to. When evaluated in previously
unseen contexts, the mean rewards achieved by BO-FCPS
were higher by 4.0; while the improvement was 3.05 in
contexts that were sampled during training.

Finally, we consider an active learning setting, where the
agent observes an additional context variable I ∈ [0, 1] that
indicates whether the learning agent should shoot or not. If
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(a) FetchPush-v1
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Fig. 5: Learning curves for the OpenAI Gym tasks. Policies are evaluated after every 10 rollouts, in 25 fixed contexts sampled
once before the experiment. Results are averaged over 10 random seeds. Shaded areas denote one standard deviation.

I ≤ 0.1, the agent receives reward R(st, τ ) = −‖st−stτ‖−
0.05v2 as before, and an action penalty −‖θ‖ otherwise. The
agent should therefore actively select I ≤ 0.1, for which the
reward function is much harder to learn. We compare FACES
to ACES, and use 200 representer points to approximate the
acquisition functions. The results are shown in Fig. 4. Similar
to the passive case, factorization is greatly beneficial: FACES
achieves much faster learning than ACES.

B. Simulated Robotic Tasks

Finally, we apply BO-FCPS to three distinct robotics tasks
from the OpenAI Gym [11], [26], namely:
• FetchPush-v1: Push a box to a goal position.
• FetchSlide-v1: Slide a puck to a goal position that is

out of reach of the robot.
• Thrower-v2: Throw a ball to a goal position.

The BO-FCPS algorithm is used to select the DMP pa-
rameters for performing each task according to the current
context. We deviate from the original task specification of
Thrower-v2 by replacing the joint-space controller in favor
of task-space control to reduce the dimensionality of the
problem. The same controller is employed in the Fetch
environments. Moreover, we use the final distance between
the object and the target context as the reward function in
each environment. For more details, please refer to [11], [26].

For FetchPush and FetchSlide, both the initial object
position se ∈ R2 and the desired goal position st ∈ R2 are
varied. The lower-level policy consists of two 3-dimensional
task-space DMPs that are sequenced together. The first DMP
is used to bring the robot arm into position to manipulate
the object, where the trajectory is modulated by 25 basis
functions per dimension, and the shape parameters w are
learned by imitation. The second DMP is used to execute
the actual movement (i.e. pushing, sliding), starting from
the final position of the first DMP. The upper-level policy
adapts the approach angle α of the first DMP w.r.t. the object,
yielding a goal position y1 that is a fixed distance away from

the object, and the goal position y2 of the second DMP. We
use α ∈ [0, π],y2 ∈ [0, 0.4]× [−0.4, 0.4] for FetchSlide and
α ∈ [0, 2π],y2 ∈ [−0.2, 0.2]2 for FetchPush.

For the Thrower environment, only the desired goal posi-
tion st ∈ R2 is varied. The lower-level policy is a single 3-
dimensional task-space DMP with 25 basis functions, where
the shape parameters are learned by imitation. The upper-
level policy selects the goal position y ∈ [−0.5, 0.5] ×
[1, 1.5] × [−0.5, 0.5] and goal velocity ẏ ∈ [0, 1]3 of the
DMP, resulting in a 6-dimensional parameter vector θ.

Results are shown in Fig. 5. Our proposed approach
consistently outperforms standard BO-CPS, suggesting that
our earlier findings on the toy cannon task apply to more
complex simulated robotic domains as well.

VI. DISCUSSION AND FUTURE WORK

We introduced context factorization and integrated it into
passive and active learning approaches for CPS with BO. The
improvement we can expect from factorization depends on
the characteristics of the task. It is most effective if a large
part of the learning challenge is about generalizing across
contexts, as opposed to learning a good policy for a single
context. In general, the larger the space of target contexts
over environment contexts and policy parameters, the more
factorization is expected to be beneficial.

In this paper, we focused on BO for CPS. One shortcoming
of BO is that it does not scale well to high-dimensional
problems. Future work may address scalability and explore
alternative acquisition functions such as predictive entropy
search [27]. Since context factorization is not specific to BO,
it could also be applied to other CPS algorithms, e.g. C-
REPS [2] or contextual CMA-ES [28]. A simple approach
would be to populate the dataset with additional re-evaluated
samples, similar to HER. Finally, we demonstrated the ben-
efits of factorization in extensive simulated experiments. In
the future, we plan to demonstrate the approach on a real
robot system as well.
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