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Abstract. Spelunky is a game that combines characteristics from 2D platform
and rogue-like genres. In this paper, we propose an evolutionary search-based ap-
proach for the automatic generation of levels for such games. A genetic algorithm
is used to generate new levels according to aesthetic and design requirements. A
graph is used as a genetic representation in the evolution process to describe the
structure of the levels and the connections between the rooms while an agent-
based method is employed to specity the interior design of the rooms. The results
show that endless variations of playable content satisfying predefined difficulty
requirements can be efficiently generated. The results obtained are investigated
through an expressivity analysis framework defined to provide thorough insights
of the generator’s capabilities.

1 Introduction

Procedural Content Generation (PCG) is receiving increasing attention due to the ad-
vantages it provides in terms of speeding up the content generation process, enabling
on-line generation, reducing the development budget and facilitating the creation of
endless content variations [1]. Furthermore, since most PCG methods are based on ex-
tensive search in the content space [2], it is likely that utilising PCG approaches for
generating content will yield novel solutions that can be directly used in the game [3, 4]
or employed as a form of inspiration for human designers.

Different techniques have been explored to automatically generate different aspects
of content for different game genres [5, 3, 4, 6] and some of them achieved remarkable
results in commercial games [7-10]. Rogue is one of the early games where PCG is
successfully employed to generate infinite variations of content as the game is being
played. The game inspired many others and the automatic generation of dungeons is
well investigated and used in several well-known games such as Diablo and Dungeon
Siege. Most of the techniques used so far for dungeon generation however suffer from
the lack of controllability as it is usually hard to specify design constraints or require-
ments and they mostly tend to produce neat structures [1].

One of the recent well-known commercial game that combines characteristics from
the dungeon and platform games is Spelunky. The game successfully employes PCG



techniques to generate variations of structures that are unique with every replay. Such
as most rough-like and dungeon generation methods, randomness forms the basis of
diversity and hand crafted templates are used to control the level structures.

In this paper we present a procedural approach that allows the generation of vari-
ant content for a Spelunky-like game while permitting control over important content
aspects. We analyse the game aspects and we employ the search-based approach of
PCG [2] to generate game content. More specifically, a Genetic Algorithm (GA) is used
to evolve game content where levels are represented using an indirect representation in
the form of graphs that specify the navigation order of the rooms and the connections
between them. A separated agent-based approach is then implemented to define the in-
ner structure of each room. Rooms are then filled with different items according to a
distribution scheme. We define a difficulty measure that scores levels according to their
final structure and the presence of certain items and their placement. We show that infi-
nite playable levels of varying difficulties can be generated and we present a thorough
analysis of the results obtained.

2 Spelunky

Spelunky is an action adventure indie game that combines the characteristics of two
genres: rogue-like and 2D platform games. The game was created by Derek Yu in 2008
as an open source game for PCs. An updated version of the game was released for Xbox
Live Arcade which attracted millions of players.

The main game mechanic in Spelunky, similar to platformers, is jumping to collect
items and to kill enemies. Much the same as in dungeon crawl games, the game is struc-
tured in rooms filled with collectable items and monsters. A common feature between
Spelunky and most rough-like games is the presence of randomness which is the key
element in generating the structure of the levels and placing enemies and decoration
items (more details about the method used can be found in [1, 11]).

The player controls Spelunker, the main character of the game. To win the game,
the player should possess good playing skills as well as being able to efficiently manage
different types of resources such as ropes, bumps and money.

Spelunky exhibits a number of properties that motivates exploration of the applica-
bility of PCG and AI methods. It is a 2D game that combines properties from platform
games in terms of gameplay with the graphical representation and layout of rogue-like
games. Automatic generation of content for such a game is therefore an interesting
problem as one should consider the characteristics of both genres. The game is also
receiving an increasing interest in research as a benchmark for computational and arti-
ficial intelligence algorithms was recently proposed around this game [11].

3 Modifications to The Original Game

We used the source code available for the first published version of the game as a base
for our implementation. We made several modifications to the original code to allow
complete automatic level generation with desired difficulty. Our modifications include
adding an extra goal to the game, namely, Spelunker should save the princess; this
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Fig. 1. (a) An example of an evolved graphical representation of a level and (c) the actual corre-
sponding level map. The key rooms are presented in blue in (b) and the path is presented as direct
links between the rooms. A gray room can contain anything. The different colours in the resultant
level stands for different types of items as presented in the legend.

requires finding and carrying her along while navigating safely to the exit. We also
chose to lock the princess in a closed room to make the game more interesting since
this necessitate searching for bombs to break the walls and enter the room. The bombs
are placed in hidden places in one of the 16 rooms of the level.

In short, we are using the same art assets used in the original game but the game-
play in our version, called InfiSpel, consists of starting the journey in the entrance room,
navigating through the level searching for the bomb, locating the princess and using the
bomb to enter her room, carrying the princess and heading to the exit while overcom-
ing challenges such as monsters and traps. These new requirements entailed heavily
modifying the original source code.

4 Evolving content in InfiSpel

In our level generation approach, a Genetic Algorithm (GA) method is employed to
evolve content. When using GA, there are two main factors that are essential to the
quality and performance: content representation and content quality.

4.1 Level Representation

The phenotype (level structure) is represented as an integer vector where each level
consists of 16 rooms organised in a 4 x 4 matrix (such as in the original game). This
representation is used to visualise the generated levels and to measure their quality.
Since we are interested in the placement of items and the presence of paths between
the rooms and from the entrance to the exit, the genotype is represented indirectly where
the complete level is represented as a graph in which each room is a node. The links
between nodes are translated into direct connections between rooms while a missing
link indicates a wall. This means that starting in the entrance room and following the
links should lead to the exit in a playable level. More specifically, the genotype is a
vector of codons carrying the following information: five integers identifying the start
room, the bomb room, the princess room, and the exit room, the length of the path from



the entrance to the exit (measured as the number of rooms passed). These are followed
by fields for storing the total number of monsters, the total number of collectable items
and a list of connections. The total number of connections between the rooms is 28
(notice that we don’t allow loops) and therefore the list of connections consists of 28
binary slots. Fig. 1 presents an example level with its graph representation.

4.2 The Interior Design of Rooms

To construct the layout of each room, a digger algorithm is used and applied on each
room separately. This method has been previously used to construct maps for First-
Person Shooter games and showed fast performance and interesting results [12, 13].
The method is used in a similar way in this paper. Initially, each room is filled with
bricks (walls) with all cells having the value 1. The digger moves in the room switching
the value of some of the cells from 1 to O hence generating walkable areas.

To dig one room, the digger performs the following steps:

1. The digger agent is placed in the center of a room.

2. The agent randomly choses one of the following directions for his next move: right,
left, up and down. The agent moves in the direction chosen and change the value of
the destination cell from 1 to 0.

3. The above process is repeated until a maximum number of moves is reached (35
moves is used in our implementation).

4. Walls are then digged, if necessary, to ensure a path between the start and the end
rooms.

This method is repeated for each of the 16 rooms in each level resulting in rooms
with various structures. Corridors between rooms are added later in the process accord-
ing to the structure of the level evolved by GA.

4.3 Content Quality

Designing an interesting level that is fun to play is the ultimate goal when generat-
ing game content. Therefore, measuring the quality of the generated content is vitally
important. This task is not obvious given that there is no universal agreement of what
makes a good level or how to measure the ”goodness” of a piece of content. Several at-
tempts can be found in the literature on identifying the properties that should be present
in a level to make it fun [14-16]. Several researches have employed these theory to
generate content that is fun to play [5, 17]. In our system, we based our definition of an
interesting level design on two factors: the first contributes to a set of design require-
ments that we found to be important, while the second factor relates to the difficulty of
a level which affects the challenge presented to the player which proven to be an impor-
tant aspect for an optimal experience [16, 18]. Generated levels are scored according to
these two factors as follows:

fitness = 10% * Gscore + 90% * Dyeore



where Ggcore is @ measure of the quality of the level design while Dy, assigns a
fitness to the level according to its difficulty. The weights of these two factors are as-
signed experimentally after generating a number of levels, visualising them and tuning
the values.

The following paragraphs explain how the Gscore and Dgore Values are calculated.

Design Constraints, Gscore: A score value is assigned to each level according to
its final design. We identified a number of requirements, most of which contribute to
playability and/or aesthetics, that should be satisfied in a level. These are the followings:

Placement of the entrance room, Ps: in Spelunky, the entrance room should always
be one of the rooms in the first or second row.

Placement of the exit room, P,: the exit room should be one of the rooms in the last
two rows.

Connections between mandatory rooms, C": a player in our game should be able to
navigate to the exit going through the bomb room then the princess room. There-
fore, for a level to be playable, there should be a path connecting these rooms
directly or indirectly.

Uniqueness of mandatory rooms, U: there shouldn’t be more than one instance
of each of the four mandatory rooms in each level. These include the start, exit,
princess and bomb rooms. A level can not also contain any room that combines
two of these features, for example, the princess can’t be placed in the exit room.

The total design score of a level is calculated as follows:
Gscore =20%x Py +20% P, + 35« C + 25U

If a level passes a certain predefined threshold (Ggcore is higher than 90%), the
process continues to evaluating its difficulty. A high threshold is used since a level that
breaks any of the above conditions is very likely to be either unplayable or uninteresting.
The weights assigned to each of the above conditions are chosen experimentally.

Spicing up the Level: Enemies and Items Distribution: After generating the physical
structure of a level and before calculating its difficulty, several auxiliary items are added
to complete the level design. These include: enemies (including bats and snakes that
are placed randomly or around gaps), traps such as spikes, resources such as bombs and
ropes, ladders which are used to connect vertically adjacent rooms and coins and rubies.

In order to maintain a fair distribution of items over the whole map, the map is
divided into 2 X 2 areas each containing 2 x 2 rooms. The items of each type are dis-
tributed in all areas equally. This is guaranteed by generating a list of possible positions
in each region where an item of each type can be placed. An item is then placed at a
randomly chosen position from this list.

Level Difficulty: The final phase after generating the level and adding different items
is to assess its difficulty through evaluating the following conditions:
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Fig. 2. Three sample levels of increasing difficulty.

— Path length, P;: the longer the path Spelunker should navigate to successfully reach
the exit, the more difficult the level is since this requires facing more enemies and
overcoming more obstacles. The length of a path should be at least 4 rooms (navi-
gating only the four mandatory rooms).

— Vertical corridors, V.: the presence of vertical corridors of a long length to connect
two or more rooms makes the level harder to navigate since this necessitates the
use of ropes or the existence of ladders. Otherwise, it is very likely that Speluker
will lose a life due to falling a large distance.

— Number of Spikes, N,,: spikes are special complication items that Spelunker can
walk safely through but falling on them leads to a lose of life. The more the spikes
the harder the level is.

— Number and type of enemies, E: as the the number of enemies increases, the level
becomes more difficult. Bats, IV}, are given the highest weight since they are the
most dangerous as they move around and follow Spelunker when he is in a close
distance. A lower weight is given to the placement of snakes around gaps, N,,. The
lowest weight is given to the presence of snakes, N;.

The difficulty score is measured as a weighted sum of the normalised values (using
min-max normalisation) of all of the above factors according to the equation:

Dscore:20*131+15*‘/;;4’15*Nsp+20*Nb+2O*ng+1O*NS

The weights are chosen experimentally according to how the elements affect the
difficulty of a level (the weight of the number of snake around gabs, N, for instance,
is higher than the weight assigned to the total number of snakes, Ny).

Three levels of increasing difficulty can be seen in Fig. 2. The figure clearly shows
that the increase in difficulty is associated with the presence of more enemies, more
vertical corridors, and paths of longer length.

S Implementation Setup

The GA experimental parameters used are the following: 100 runs of 200 generations
with a population size of 100 individuals. The mutation probability is 0.05, and we used



Table 1. The average time and the number of generations required to evolve levels of different
difficulties.

Difficulty ‘ ‘ Time(sec) #Generations

10% 16.3 £5.32 117.13 £46.37
50% 0.57£0.39 6.76 £4.49
90% |[18.45 +1.62 110.58 £+ 49.48

two-point crossover with probability equals to 1. Tournament selection is used to repro-
duction. The stopping condition is to reach a predefined fitness, otherwise evolution
continues for 200 generations.

6 Results and Evaluation

An experiment is conducted to evolve levels using the framework proposed. Evolution
is repeated for 100 runs starting from a random population each time. Different levels
of difficulty are specified and levels are evolved accordingly. This is done by scoring
the evolved levels according to the equation:

fitness = 10% * Gscore + 90% * (1 — Disgif fScore)

where Disg; rrscore 15 the difference between the difficulty of the evolved levels and a
target difficulty value.

The analysis showed that only 46% of the total individuals passed the threshold
specified on the design (having a G.ore higher than 90%). Those levels were further
evolved and evaluated for difficulty.

The amount of processing time and the number of generations required varies signif-
icantly when evolving levels of different predefined difficulty values. Table. 1 presents
the average time required and the total number of generation reached when evolving
levels that are 10%, 50% and 90% difficult. The results show that generating levels of
medium difficulty (dif f = 50%) is the easiest. On the other hand, levels that are easy
or hard (dif f = 10% or dif f = 90%) require a longer evolution process and therefore
significantly more time.

7 Expressivity Analysis

To evaluate our content generator and explore its capabilities, we run an expressivity
analysis that helps us better understand how our system works and elaborate on its
strengths and weakness. The expressive range of a generator is the space of all levels it
can generate [19]. It can be measured by generating a large number of representatives
of the generator’s output, defining expressive measures that capture the variations in
the outputs along different dimensions, scoring the content according to the defined
measures and visualising the results. In what follows, we describe several expressivity
measures that we defined to analyse our generator. Some of the measures are inspired
by previous work on expressivity analysis [19].
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Fig. 4. Colour maps for the distribution of snakes in 100 levels of increasing difficulties.

7.1 Frequency Analysis

The simplest and most compact method of showing the generator’s characteristics is
through calculating simple statistics about the components’ frequency. Fig. 3 presents
a comparison between the average and the standard deviation normalised values (using
min-max normalisation) of key items in 100 playable levels evolved for three difficulty
scales. As can be seen, as the levels become more difficult an increasing number of
enemies of different types with less ladders and coins are generated.

7.2 Color Map

To facilitate a more in-depth insight on the differences between the generated levels,
we converted them into colour maps and projected them on one image. The resultant
colour map is an image where the value of each pixel is the average colour value of all
pixels at the same position in the full set of levels generated.

Analysis of the colour map can be done more clearly if they are generated for each
item separately since this permits illustration of the distribution of the different items
independently. Fig. 4 presents three maps for the distribution of snakes in 100 levels
of different difficulties. The two main interesting observations are the increase in the
number of snakes as the difficulty increases and the fair distribution of snakes along all
rooms.



(a) Difficult =10% (b) Difficult =50% (c) Difficult = 90%

Fig. 5. The colour maps for the generated paths for 100 levels of different difficulties. The en-
trance room is presented in green, the exit room in red and the black lines corresponds to the
connections between the rooms.

Fig. 6. The boxplot for generated path lengths for levels of increasing difficulty.

7.3 Visited Rooms and Generated Paths:

In order to plot the generate paths in a colour map, the entrance and exit rooms are given
district colours (green and red, respectively) and the connections between the rooms are
represented as solid lines.

The paths generated for multiple levels can be viewed in one image illustrating the
variations in the designs according to the difficulty. Fig. 5 presents the resultant path
maps of 100 levels for various difficulty configurations. The figure shows that as the
difficulty increases more rooms become part of the path as indicated by a higher fre-
quency (darker colour) of visited rooms and darker links between the rooms. For further
analysis, we calculated the average and standard deviation values of the lengths of the
paths generated for different difficulty setups and the results are presented in Fig. 6.
The figure clearly illustrates longer path lengths as the difficulty increases. Notice that
a path of length O means that only the minimum number of rooms (in this case 4) should
be traversed to reach the exit. Fig. 7 presents the histogram for the number of rooms in
the paths generated in 100 levels for three difficulty scale. The figure shows a clear bias
towards generating longer paths as the difficulty increases.

7.4 Shortest versus Winning Path Length

The shortest path is the number of rooms connecting the entrance to the exit (without
necessarily passing through the bomb and princess rooms). Notice that following this
path means reaching the end of the level but not winning the game. It is interesting to
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shortest paths in 100 evolved levels of different difficulties.

compare whether and by how much this path differs from the actual path the player
has to follow to win the game, which we call the winning path, since this gives an
indication of the efficiency of the evolution algorithm and its success in generating
levels that deviate from being obvious.

Fig. 8 presents the differences between the shortest and winning paths generated for
300 levels of increasing difficulty. The figure shows that for easy levels (10% difficult),
most of the generated winning paths are of the same length or slightly longer than the
shortest possible paths. The difference however becomes larger as the levels become
harder. The average observed differences between the shortest and the winning path
lengths are 0.5, 3.56 and 7.88 rooms for levels that are 10%, 50% and 90% difficult,
respectively.

8 Conclusions

The paper presents a methodology for procedurally generating complete playable lev-
els in games similar to Spelunky. A genetic algorithm is implemented to evolve game
content. Level maps are represented as graphs where the nodes, the connections and
the other design-specific properties are evolved. Rooms’ inner structure is constructed
by an agent-based approach and a distribution method is employed to place collectable



items and enemies. Content quality is measured through a fitness function that scores
levels according to how well they match predefined design and difficulty requirements.
Finally, the evaluation of the system consists of defining and running a number of ex-
pressivity measures on 100 levels evolved for different settings. The results show that
interesting playable content that satisfies our design requirements can be evolved and
that using the proposed approach, levels of desired difficulty can be efficiently gener-
ated.

The suggested approach can easily scale to other games from the rouge-like and
dungeon crawl genres that exhibit similar representation where levels are structured in
rooms filled with monsters and rewarding items and connected via corridors.

An issue that we did not investigate in this paper, and is important in game design, is
the amount of variations between the content evolved for the same setting. We focused
in our expressivity analysis on the differences between the levels evolved for various
experimental setups with minor analysis on the dissimilarity between the levels within
each category. An interesting future work will be defining new measures that capture
the diversity in the designs generated along more than one dimension to draw more
robust conclusions and to improve the generator.

One way of taking this work one step further and rewarding content diversity is
to explore the use of novelty search methods [20]. This approach has recently been
used with promising results in many domains including computer games [21,22]. An
enhancement of this approach was recently suggested through combining it with a two-
population feasible-infeasible [23]. The method can be employed in the framework
proposed where individuals that satisfy a set of requirements are placed in the feasi-
ble population while the infeasible population contains those that break some of the
constraints (in our case this might be invalidating the design constrains or being judge
as unplayable). Evolution can then be performed on the two populations towards gen-
erating novel, yet playable solutions.

Another interesting future direction is to incorporate the player in the evolution
process. In the current approach, players’ preferences, how they perceive the evolved
content and how the content affects their experience are not considered. Given that the
ultimate goal of game design is to please players, indicators about the “goodness” of
content to specific players are essential for generating high quality content. Therefore,
future directions will also investigate ways of including the player in the content gener-
ation loop so that, for example, the difficulty of the next generated level is set according
to its performance in a previous level or through an interactive approach where content
are presented to players and evolved based on their reported, or measured, preferences.
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