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Abstract 

Researchers have proposed various theories to explain overbidding in rent-
seeking contents, including mistakes, systematic biases, the utility of winning, and 
relative payoff maximization. Through an eight-part experiment, we test and find 
significant support for the existing theories. Also, we discover some new 
explanations based on cognitive ability and impulsive behavior. Out of all 
explanations examined, we find that impulsivity is the most important factor 
explaining overbidding in contests. 
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1. Introduction 

Competition in its pure form is a contest between individuals for a reward which can be 

material, such as resources and goods, or non-material, such as prestige and fame. It occurs when 

individual interests are misaligned and when resources are limited. People compete on a daily 

basis by trying to secure better jobs, bargaining at the marketplace, or engaging in competitive 

sports. Although some competition can be beneficial, encouraging innovation (Schumpeter, 

1942; Terwiesch and Xu, 2008) and efficient allocation of resources (Smith, 1962; Fama, 1970; 

Arrow, 1974), overly competitive behavior can be destructive. 

One prominent example of overly competitive behavior leading to inefficient outcomes is 

rent-seeking contests (Krueger, 1974; Tullock, 1980). In such contests, firms or individuals 

engage in unproductive competition in order to increase one’s share of existing wealth without 

creating new wealth. For example, a firm may choose to spend money on lobbying for 

government to impose regulations on competitors in order to increase market share. Such 

competitive behavior is costly, but it creates no value. Theoretical models of rent-seeking predict 

substantial welfare losses resulting from inefficient competition (see the review by Konrad, 

2009). Empirical studies suggest that the actual costs of rent-seeking are very high (see the 

review by Del Rosal, 2011). To provide some examples, Krueger (1974) calculates that 7% of 

India’s 1964 and 15% of Turkey’s 1968 gross national product were wasted in rent-seeking 

activities. However, the exact amount of welfare losses is highly sensitive to the empirical 

strategy used to estimate such losses.1 Therefore, many researches conduct laboratory 

                                                 
1 Posner (1975) uses industry sales to estimate that the rent-seeking costs may range from 5% to 32% of all industry 
sales. Laband and Sophocleus (1992) use indirect measures of rent-seeking and find that the cost of rent-seeking in 
the US was about 23% of 1985 gross national product. Mauro (1995) uses corruption as a proxy for rent-seeking to 
show how it is detrimental to economic growth. 
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experiments (see the review by Dechenaux et al., 2015), which allow a more direct measure of 

rent-seeking.2 

Consider the following experiment. You are competing against an opponent in a lottery 

contest for a prize of $100. The probability of winning equals the ratio of your bid to the sum of 

your and the opponent’s bids, and all bids are forgone. While the intuitive choice may be to bid 

$50 (half of the prize), more deliberate consideration will show that any bid above $25 is strictly 

dominated, indicating that you should never bid more than $25.3 Despite such predictions the 

vast majority of participants in rent-seeking contest experiments routinely overbid by choosing 

strictly dominated strategies (Dechenaux et al., 2015), creating a puzzle for economists. In many 

studies, overbidding is so high that participants receive negative expected payoffs.4 Various 

theories have been proposed to explain this phenomenon, including mistakes, systematic biases, 

the utility of winning, and relative payoff maximization (see the reviews by Sheremeta, 2013, 

2015). However, some of these theories have not been tested, and no attempt has been made to 

examine the possible links between different explanations. 

The purpose of this paper is to simultaneously test different theories of overbidding and 

to provide a unified explanation for overbidding in rent-seeking contests. To accomplish this, we 

conduct an eight-part experiment. The key innovation of our paper is that we study 

simultaneously all major existing, as well as some new theories of overbidding in the same group 

of subjects. This has a number of advantages. First, we test different theories on the same dataset. 

                                                 
2 Experiments, of course, trade external validity for internal validity, thus raising questions about the generalizability 
but providing high accuracy in measuring specific outcomes (Cook et al., 1979). 
3 The working version of this paper has been presented at more than half a dozen universities. When asked the same 
question, a very common response from full time faculty was to bid $50. A bid equal to the half of the prize is an 
intuitive response often chosen by many subjects in lottery contest experiments (Chowdhury et al., 2014; Lacomba 
et al., 2014; Lim et al., 2014). We also find in our experiment that bidding half of the prize is one of the most 
commonly used strategies by participants. 
4 Here the welfare losses from rent seeking are born by the rent seekers themselves. However, in other cases of rent-
seeking, in particular, in the case of the imposition of regulations on competitors, the welfare losses are incurred 
both by customers and the competitor firms. 
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Second, we can examine the relationship between different factors contributing to the same 

overbidding phenomenon. Third, we are able to control for some factors while examining the 

relationship between others. Finally, we can estimate the relative importance of each explanatory 

factor, allowing us to evaluate which factors are most important in explaining overbidding. 

Our empirical findings can be summarized as follows. First, we find significant support 

for the existing theories of overbidding. For example, we show that participants who better 

understand the rules of the rent-seeking contest overbid less, suggesting that mistakes could be 

one of the reasons for overbidding. Related to mistakes, we find that behavior in contests is 

driven by systematic biases grounded in prospect theory. Also, we provide evidence that 

participants care not only about the prize, but also about winning itself, and such non-monetary 

utility of winning could partially explain overbidding. 

Second, besides the existing theories of overbidding, we discover some new explanations. 

For example, we show that participants who display competitive preferences (in a separate task) 

by choosing to sacrifice social welfare to have a higher payoff than others choose significantly 

higher bids than participants with prosocial preferences. This suggests that bidding is a 

competitive phenomenon. Also, we find that participants who have lower cognitive ability, 

measured through a cognitive test based on the Graduate Record Examination, make 

significantly higher bids. This suggests that overbidding in rent-seeking contests is driven in part 

by limited cognitive ability. 

Third, out of all explanations examined, we find that impulsivity, measured through a 

Cognitive Reflection Test, is the most important factor explaining overbidding in rent-seeking 

contests. Impulsivity is also correlated with competitive preferences and cognitive ability, as well 

as the utility of winning. However, when putting together in a joint multivariate analysis, only 
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impulsivity remains significant, suggesting that overbidding is primarily driven by impulsive 

behavior. 

We describe the theoretical model of rent-seeking in Section 2. The experimental design 

and procedures are described in Section 3. Our main results are presented in Section 4, along 

with sub-sections focusing on different parts of the data. We discuss implications of our results 

in Section 5. 

 

2. Theoretical Model 

Consider a simple rent-seeking contest of Tullock (1980) in which two individuals 

compete for a prize value of 𝑣. The probability that individual 𝑖 wins the prize depends on 

individual 𝑖’s bid 𝑏𝑖 relative to individual 𝑗’s bid 𝑏𝑗, and it is defined by a lottery contest success 

function: 𝑝𝑖(𝑏𝑖, 𝑏𝑗) = 𝑏𝑖/(𝑏𝑖 + 𝑏𝑗).        (1) 

If 𝑏𝑖 = 𝑏𝑗 = 0 then 𝑝𝑖(𝑏𝑖 , 𝑏𝑗) = 1/2. The expected payoff for individual 𝑖 is equal to the 

probability of winning the prize 𝑝𝑖(𝑏𝑖, 𝑏𝑗) times the prize value 𝑣 minus the cost of bid 𝑏𝑖, plus 

the probability of losing times the cost of bid: 𝜋𝑖(𝑏𝑖, 𝑏𝑗) = 𝑝𝑖(𝑏𝑖, 𝑏𝑗)(𝑣 − 𝑏𝑖) + (1 − 𝑝𝑖(𝑏𝑖, 𝑏𝑗))(−𝑏𝑖).    (2) 

Differentiating (2) with respect to 𝑏𝑖 gives the following best-response function for 

individual 𝑖 (similarly individual 𝑗): 𝑏𝑖(𝑏𝑗) = √𝑣𝑏𝑗 − 𝑏𝑗.         (3) 

By solving best-response functions 𝑏𝑖(𝑏𝑗) and 𝑏𝑗(𝑏𝑖) simultaneously, we receive 

equilibrium bids 𝑏𝑖∗ = 𝑏𝑗∗ = 𝑏∗ = 𝑣/4.         (4) 
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The symmetric pure-strategy Nash equilibrium (4) is unique and there are no asymmetric 

or mixed-strategy equilibria (Szidarovszky and Okuguchi, 1997). Moreover, bids higher than 𝑏∗ 

are strictly dominated and therefore should not be chosen by rational economic agents (note that 

the best-response function (3) reaches its maximum at 𝑣/4 given any positive bid 𝑏𝑗).  

Despite such stark predictions, the vast majority of participants in rent-seeking contest 

experiments overbid relative to the Nash equilibrium. Sheremeta (2013) examines a sample of 30 

contest experiments and finds that the median overbidding rate is 72%. The magnitude of 

overbidding is so high that many participants receive negative expected payoffs (Abbink et al., 

2010; Price and Sheremeta, 2011, 2015; Chowdhury et al., 2014; Lim et al., 2014; Mago et al., 

2016). To explain such behavior a number of theories have been proposed, including mistakes, 

systematic biases, the utility of winning, and relative payoff maximization. Although some of 

these theories found empirical support in the literature, their relative impact on individual 

behavior remains unknown. It is possible that some of the factors contributing to overbidding are 

correlated. For example, the utility of winning may be driven by relative payoff maximization, or 

systematic biases may be driven by mistakes. Moreover, it is an open question as to whether 

there is an underling theory which potentially could unify all of the existing explanations of 

overbidding. To answer these questions, we conduct a controlled laboratory experiment. 

 

3. Experimental Design and Procedures 

In order to test different theories of overbidding, we collected data on a number of 

different economic behaviors. The data came from a computerized experiment (Fischbacher, 

2007), conducted at the Economic Science Institute laboratory. A total of 184 undergraduate 

students participated in 11 experimental sessions. Each session lasting between 70 and 90 



 7 

minutes had between 16 and 24 participants. The currency used in the experiment was U.S. 

Dollars. Upon completion of the experiment, earnings from the experiment were added to a 

participation fee of $10. Participants received their payments in private and in cash, ranging from 

$7.50 to $33. 

The experiment proceeded in eight parts, summarized in Table 1. Participants were told 

that there would be eight independent parts and that the new set of instructions (available in 

Appendix A) would be given to them at the beginning of each part. The experimenter read the 

instructions for each part aloud. In part 1, participants were given the instructions explaining the 

rules of a simple two-player lottery contest. Each participant was randomly and anonymously 

matched with another participant. Both matched participants could bid for a reward of $8 by 

choosing any number between $0 and $10 (including increments of $0.25). Instructions clearly 

stated that regardless of who receives the reward, both participants would have to pay their bids 

and that they could receive negative earnings that would be subtracted from their participation 

fee. After reading the instructions, but before making their decisions, participants completed an 

incentivized quiz on the computer to verify their understanding of the game. Participants had 5 

minutes to answer 5 quiz questions, and they received $0.50 for each correct answer. After 

answering all quiz questions, participants were asked to submit their bids. The computer chose 

the winner by implementing a simple lottery rule: the probability of receiving the reward was 

calculated as the number of dollars a participant bids divided by the total number of dollars both 

participants bid. However, the results of this part of the experiment were not presented until the 

very end of the experiment, after all parts of the experiment were completed. 
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In part 2, participants were asked to provide a guess about the bid of the other paired 

participant in part 1. Participants were not aware of part 2 until after they finished part 1.5 

Participants received an additional $2 if their guess was equal to the bid made by the other 

participant. The actual earnings for this part were determined at the end of the experiment. 

In part 3, each participant was randomly and anonymously matched with another 

participant. The rules for part 3 were exactly the same as the rules for part 1 with an exception 

that the winner of the contest received a prize of $0 (Sheremeta, 2010). Participants were told 

that they would be informed whether they won the contest or not and that all participants would 

have to pay their bids. This procedure was used to measure how important it is for participants to 

win when winning is costly and there is no monetary reward for winning the contest. The actual 

results for this part were determined at the end of the experiment. 

In part 4, similar to Charness and Rabin (2002), participants made 12 binary choices 

measuring social preferences. The choices involved additional income for themselves and 

another participant with whom they were randomly and anonymously paired. Each choice 

offered the option of $3 to both “self” and “other” or an unequal amount with total value 

between $3.50 and $8.50. One of the 12 choices was randomly selected to be paid out at the end 

of the experiment (and one of the paired participants was randomly selected as a decision maker, 

while the other was selected as a receiver). 

In part 5, participants made two decisions similar to those described by Ellsberg (1961). 

Participants were told that the computer would randomly draw a ball from a virtual bag 

containing 30 red balls and 60 other balls that are either blue or green. The first decision was 

between option A ($5 if a red ball is drawn) and option B ($5 if a blue ball is drawn). The second 

                                                 
5 We intentionally chose to elicit a belief about the bid of the other paired participant after eliciting the actual 
bidding strategy (but before revealing outcomes) in order to circumvent hedging issues that may arise when eliciting 
behavior and beliefs. It is documented, however, that hedging confounds are not problematic (Blanco et al., 2010). 



 9 

decision was between option A ($5 if a red or green ball is drawn) and option B ($5 if a blue or 

green ball is drawn). Participants also made two incentivized decisions similar to those described 

by Allais (1953). The decision was between option A (receiving $5 for sure) and option B (89% 

chance of receiving $5, 1% chance of receiving nothing, and 10% chance of receiving $25). The 

next decision was between option A (89% chance of receiving nothing, and 11% chance of 

receiving $5) and option B (90% chance of receiving nothing, and 10% chance of receiving $25). 

One of the 4 choices was randomly selected to be paid out at the end of the experiment. These 

tasks were used to elicit systematic violations of the expected utility theory, thus providing us 

with a measure of systematic biases that could be linked to overbidding. 

In part 6, following Shupp et al. (2013), we simultaneously elicited participants’ 

preferences toward risk and losses. In the first 15 decisions, participants were asked to choose 

between a risky option A ($0 or $5 with 50% chance each) and a safe option B (increasing 

monotonically from $0.50 to $4). In the next 15 decisions, participants chose between a risky 

option A (50% chance of receiving $5 or losing a certain amount between -$0.50 to -$7.50) and a 

safe option B of $0. One of the 30 choices was randomly selected to be paid out at the end of the 

experiment. As in previous parts, participants were not aware of this part until after they finished 

the preceding part. 

In part 7, participants completed a three-question Cognitive Reflection Test (CRT) 

measuring impulsivity of behavior (Frederick, 2005). The three questions involved making 

simple calculations and were designed to have an appealing but incorrect answer. For example, 

the first question was “A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. 

How much does the ball cost?” The appealing but incorrect answer is $0.10. The correct answer 



 10 

is $0.05. All three questions were incentivized, with participants receiving $0.50 per each correct 

answer. 

In part 8, participants completed a 10-minute cognitive test consisting of 7 multiple-

choice mathematical questions. The questions were drawn from a Graduate Record Examination 

(GRE) test preparation book (Seltzer, 2009). The test was used to elicit cognitive ability of 

participants. Participants received $0.50 per each correct answer. 

At the end of the experiment, participants filled out a demographic questionnaire. After 

computer displayed outcomes from all parts of the experiment and calculated individual 

earnings, participants received their payments in private and in cash. 

 

4. Results 

We begin with an overview of bidding behavior in our experiment. Then we discuss one 

by one how different theories and corresponding measures can explain the observed bidding 

behavior. Finally, we perform a joint analysis which allows us to examine the relative 

importance of each explanatory factor and provide a unified explanation for overbidding in rent-

seeking contests. 

 

4.1. Bidding Behavior in Contests 

Figure 1 displays the distribution of bids in our experiment. There are two noticeable 

deviations from the theoretical predictions. First, instead of a unique pure-strategy equilibrium of 

$2, bids are distributed between $0 and $10. Second, 79.3% of bids are higher than the 

equilibrium, indicating significant overbidding (Wilcoxon signed-rank test, p-value < 0.01). On 

average, participants bid $3.62, which is $1.62 higher than the equilibrium. As a result of 
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overbidding, participants earn only $0.38 on average, which is significantly less than the 

predicted $2 (Wilcoxon signed-rank test, p-value < 0.01). Although these findings are consistent 

with dozens of other experimental studies reviewed by Dechenaux et al. (2015), they create a 

puzzle for economists: Why do so many participants choose dominated strategies to the 

detriment of their own earnings? The first explanation that we consider is mistakes. 

 

4.2. Overbidding and Mistakes 

In Section 2 we discussed that there are no asymmetric or mixed-strategy equilibria in the 

two-player lotter contest, and the symmetric pure-strategy equilibrium is unique. Therefore, 

variation in bids and systematic overbidding by participants cannot be explained by other 

equilibria. 

Perhaps participants make mistakes when evaluating behavior of others.6 Given that the 

value of the prize is $8, according to the best-response function (3) any bid higher than $2 is 

strictly dominated. Therefore, if participants believe that others are not going to play the 

equilibrium, we should observe underbidding. However, this is clearly not what we find. Figure 

2 displays a scatterplot of individual bids versus beliefs about the other participant’s bid, as well 

as the best-response function. Note that instead of an inverse U-shaped best-response function, 

there is a positive and significant correlation between bids and beliefs (Spearman’s correlation 

coefficient is 0.33, p-value < 0.01). Given the stated beliefs, 90.8% of bids are greater than the 

                                                 
6 One way of modeling mistakes in contests is through a quantal response equilibrium suggested by McKelvey and 
Palfrey (1995). In such an equilibrium, an individual plays a mixed strategy in which the probability of playing a 
pure strategy is increasing in the expected payoff of that strategy, given that others are playing the equilibrium 
mixed strategy as well. The implications of the quantal response equilibrium to contests have been tested in the lab 
and found significant support in the data (Sheremeta, 2011; Chowdhury et al., 2014; Lim et al., 2014). 
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best response. This suggests that overbidding cannot be simply explained by incorrect beliefs 

about the behavior of others.7 

Another possibility is that participants simply do not understand the game in which they 

participate. Recall from Section 3 that after reading the instructions, but before making their 

decisions, participants completed an incentivized quiz to verify their understanding of the game. 

Participants answered five quiz questions testing their understanding of the rules of the game as 

well as the ability to calculate simple best responses (see Appendix A). We find that 89.9% of 

participants answered at least three questions correctly. Figure 3 displays the average bid and 

relative overbidding (i.e., the difference between the actual bid and the best-response calculated 

based on the stated belief about the other bid) by correct quiz answers. The average bid decreases 

as participants answer more quiz questions correctly (Spearman’s correlation coefficient is -0.21, 

p-value < 0.01).8 The same is true for the relative overbidding (Spearman’s correlation 

coefficient is -0.21, p-value < 0.01). Together, these findings suggest that participants who make 

more mistakes by answering fewer quiz questions are more likely to overbid in rent-seeking 

contests. 

 

4.3. Systematic Biases 

It is well documented in the behavioral economics literature that besides mistakes, people 

exhibit systematic biases (Camerer et al., 2011). According to the prospect theory of Kahneman 

and Tversky (1979), people have difficulties evaluating probabilities and they are loss averse, 

                                                 
7 One may argue that participants use the belief question to diversify their risk since both the payoff from belief 
elicitation and the payoff from the contest depend on the same action of the opponent. However, such hedging is 
uncommon (Blanco et al., 2010). Moreover, there are no beliefs that a participant could hold that would make 
overbidding optimal. 
8 We have also tried to look at the average bid separately by each quiz question and found that participants who 
answer a given quiz question correctly on average bid less. 



 13 

placing higher weight on losses than gains. Given that contests involve both probabilistic 

outcomes and potential gains and loss, such biases could potentially explain observed behavior in 

rent-seeking contests.9 

To examine how systematic biases impact behavior in contests, we asked participants to 

make two choices between option A and option B corresponding to the Ellsberg paradox 

(Ellsberg, 1961) and two choices corresponding to the Allais paradox (Allais, 1953), see Section 

3 for details. In both paradoxes, choosing AA or BB is consistent with the expected utility 

theory. However, laboratory experiments have shown that participants often violate the expected 

utility theory by commonly choosing AB when facing the Ellsberg paradox (Camerer and 

Weber, 1992; Binmore et al., 2012) or the Allais paradox (Kahneman and Tversky, 1979; 

Conlisk, 1989; Starmer and Sugden, 1991). Similarly, we find that 73.9% of participants facing 

the Ellsberg paradox and 9.8% of participants facing the Allais paradox violate the expected 

utility theory in our experiment by choosing AB.10 

Next, we examine whether participants who violate the expected utility theory behave 

differently in rent-seeking contests. Figure 4 shows the average bid by systematic bias. 

Participants who do not display any bias on average bid $3.52, which is similar to the bid of 

$3.60 by participants who display one bias (either Ellsberg or Allais), and similar to the bid of 

$3.98 by participants who display both biases. None of these pairwise comparisons are 

significant (Wilcoxon rank-sum test, all p-values > 0.61). Therefore, it appears that biases 

elicited through the Ellsberg and Allais paradoxes do not explain behavior in contests. 

                                                 
9 Studies show that when the contest success function is replaced by a share function, eliminating possible 
probability distortion and losses, behavior in contests is closer to the Nash equilibrium (e.g., Fallucchi et al., 2013; 
Shupp et al., 2013; Chowdhury et al., 2014). 
10 The relatively low violation rate in the Allais paradox is likely due to small payoffs and real monetary payments 
(Huck and Müller, 2012). 
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Perhaps the best documented bias suggested by the prospect theory is loss aversion 

(Kahneman, 2011). Given that contests involve potential gains and losses, loss aversion may be 

an important factor in explaining systematic deviations of individual behavior from the 

equilibrium (Eisenkopf and Teyssier, 2013; Shupp et al., 2013). To incorporate loss-aversion into 

a contest model assume that an individual places a weight 𝜆 > 1 on losses and a weight 1 on 

gains.11 Thus, the payoff function (2) for individual 𝑖 can be rewritten as: 𝜋𝑖(𝑏𝑖, 𝑏𝑗) = 𝑝𝑖(𝑏𝑖, 𝑏𝑗)(𝑣 − 𝑏𝑖) + (1 − 𝑝𝑖(𝑏𝑖, 𝑏𝑗))𝜆(−𝑏𝑖).    (5) 

Differentiating (5) and solving for the equilibrium gives the equilibrium bids: 𝑏𝑖𝜆 = 𝑏𝑗𝜆 = 𝑏𝜆 = 𝑣/(3 + 𝜆).        (6) 

This analysis shows that the equilibrium bid decreases in the loss-aversion parameter 𝜆. 

Similar calculations could be done to demonstrate that the equilibrium bid decreases in risk-

aversion (Hillman and Katz, 1984). To test these predictions, following Shupp et al. (2013), we 

simultaneously elicited participants’ preferences toward risk and losses using 30 binary lottery 

choices (see Section 3 and Appendix A for details). Each choice offered a risky lottery A or a 

safe option B. Choices were structured in such a way that participants would first choose option 

A and then switch to option B, with the switching pointing indicating the degree of aversion to 

risk and losses. Most participants had one switching point, and less than 3% made inconsistent 

choices. Based on our sample, we find that 67.4% of participants are risk-averse and 95.7% are 

loss-averse. Figure 5 shows a weak and insignificant correlation between bids and risk-aversion 

(Spearman’s correlation coefficient is -0.04, p-value = 0.59). On the other hand, there is a 

negative and significant correlation between bids and loss-aversion (Spearman’s correlation 

coefficient is -0.16, p-value = 0.02), indicating that participants who are more loss-averse on 

                                                 
11 An implicit assumption here is that both individuals have the same loss-aversion parameter 𝜆. The model could be 
easily extended to the case of different loss-aversion parameters. 
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average tend to make lower binds in the contest. It is important to emphasize, however, that even 

the most loss-averse participants on average bid more than $3 (see Figure 5), which is still 50% 

higher than the Nash equilibrium prediction. 

 

4.4. The Utility of Winning 

The standard economic assumption is that participants care only about the monetary prize 

associated with winning the contest. However, participants also may care about winning itself. 

Following Sheremeta (2010), we elicited a non-monetary utility of winning by asking 

participants to bid in a contest with a prize of $0.12 Participants were told that they would be 

informed whether they won the contest or not and that all participants would have to pay their 

bids. This procedure was used to measure how important it is for participants to “win” when 

winning is costly and there is no monetary reward for winning the contest. 

We find that 46.7% of participants make positive bids in the contest with a zero prize, 

indicating that participants derive a utility from winning apart from monetary incentives. 

Moreover, Figure 6 shows that there is a positive and significant correlation between bids for a 

prize of $0 and bids for a prize of $8 (Spearman’s correlation coefficient is 0.31, p-value < 0.01), 

suggesting that the utility of winning could be driving overbidding in contests.13 However, it is 

also possible that part of this correlation is due to the fact that participants who are confused 

when bidding for a prize of $0 are also confused when bidding for a prize of $8. Indeed, we find 

that the average bid for a prize of $0 decreases as participants answer more quiz questions about 

                                                 
12 Other ways of measuring the utility of winning include using questionnaires (Altmann et al., 2012; Kräkel and 
Nieken, 2015) or content analysis (Sheremeta and Zhang, 2010; Cason et al., 2012, 2016). 
13 Similar to the utility of winning, Delgado et al. (2008) suggest that another explanation for overbidding is a 
disutility of losing. They provide evidence for the disutility of losing in the context of a first-price auction. 
Currently, there is no study examining the disutility of losing as an explanation for overbidding in contests. What is 
even a more interesting question is how to distinguish the utility of winning from the disutility of losing. These 
questions are definitely worth pursuing for future research. 
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the contest game correctly (Spearman’s correlation coefficient is -0.16, p-value = 0.02). 

Although the fact that the correlation is weak suggests that bidding for zero is measuring not 

only confusion but also the utility of winning.14 

One could incorporate the utility of winning into the theoretical model presented in 

Section 2 by assuming that in addition to the prize value 𝑣, individuals also have an additive 

non-monetary utility of winning 𝑤. Therefore, the updated expected payoff of individual 𝑖 can be 

written as 𝜋𝑖𝑤(𝑏𝑖, 𝑏𝑗) = 𝑝𝑖(𝑏𝑖, 𝑏𝑗)(𝑣 + 𝑤 − 𝑏𝑖) + (1 − 𝑝𝑖(𝑏𝑖, 𝑏𝑗))(−𝑏𝑖).   (7) 

In such a case, the new equilibrium bids derived from (7) are: 𝑏𝑖𝑤 = 𝑏𝑗𝑤 = 𝑏𝑤 = (𝑣 + 𝑤)/4.       (8) 

Note that the equilibrium bid (8) increases in the non-monetary utility of winning 𝑤, and 

for any 𝑤 > 0, it is higher than the standard equilibrium bid (4). Therefore, since we find 

evidence that for 46.7% of participants 𝑤 > 0, the non-monetary utility of winning could 

partially explain overbidding by these participants. 

 

4.5. Relative Payoff Maximization 

Several studies suggested that overbidding may be driven by relative payoff 

maximization (Herrmann and Orzen, 2008; Fonseca, 2009; Eisenkopf and Teyssier, 2013; Mago 

et al., 2016). Many preference structures are consistent with relative payoff maximization. For 

example, it may be the case that individuals are spiteful (Hamilton, 1970), have social 

preferences (Fehr and Schmidt, 1999), or that they behave in a manner predicted by evolutionary 

                                                 
14 Indeed, when we estimate an OLS regression in which the dependent variable is a bid for a prize and the 
independent variables are a bid for zero and a number of correctly answered quiz questions, we find that both 
variables are significant in predicting bidding behavior. We perform a more general joint analysis of all explanatory 
factors in Section 4.7.  
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game theory (Leininger, 2003; Hehenkamp et al., 2004). Irrespective of its origin, one could 

model relative payoff maximization into a contest by assuming that the expected utility of 

individual 𝑖 depends on the difference between an individual payoff 𝜋𝑖(𝑏𝑖, 𝑏𝑗) and the weighted 

payoff of the opponent 𝑟𝜋𝑗(𝑏𝑖, 𝑏𝑗):15 𝑢𝑖(𝑏𝑖, 𝑏𝑗) = 𝜋𝑖(𝑏𝑖, 𝑏𝑗) − 𝑟𝜋𝑗(𝑏𝑖, 𝑏𝑗),       (9) 

where 𝑟 is a relative payoff parameter, with 𝑟 < 0 reflecting preferences of a prosocial individual 

seeking to increase the payoff of the opponent, and 𝑟 > 0 reflecting preferences of a competitive 

individual seeking to obtain a higher relative payoff than the opponent.  

Differentiating (9) with respect to 𝑏𝑖 (similarly 𝑏𝑗) and solving for the equilibrium gives 

the equilibrium bids: 𝑏𝑖𝑟 = 𝑏𝑗𝑟 = 𝑏𝑟 = (1 + 𝑟)𝑣/4.        (10) 

This analysis shows that competitive individuals (i.e., 𝑟 > 0) should bid more than 

prosocial individuals (i.e., 𝑟 < 0). To test this prediction, following Charness and Rabin (2002), 

we elicited social preferences using 12 binary choices as shown in Table 2. Each choice offered 

an option A of $3 to both self and other or an option B of unequal amount. We use these choices 

to distinguish participants who always maximize social welfare from those who are competitive. 

Note that choosing B over A in 1-6 implies that a participant is competitive, since such a 

participant chooses to sacrifice social welfare to have a higher payoff than the opponent. 

Interestingly, participants who choose B in 1-6, indicating competitive behavior, make 

significantly higher bids in the contest than participants who choose A (see columns five and six 

                                                 
15 The utility function (9) is most commonly used in evolutionary contest theory (Leininger, 2003; Hehenkamp et 
al., 2004). The idea is that the objective of a contestant is not necessarily to maximize the expected payoff, but to 
“survive” by outperforming the rival. 



 18 

in Table 2).16 Similarly, we find that participants who choose A in 7-12, indicating competitive 

behavior, make significantly higher bids in the contest than participants who chose B. 

Next, we create a measure of competitive social preferences as the number of choices in 

which a participant chooses to sacrifice social welfare to be ahead the other participant (i.e., 

choosing B over A in 1-6) or not to be behind the other participant (i.e., choosing A over B in 7-

12). Using this measure, we find that there is a positive and significant correlation between 

competitiveness and bidding (Spearman’s correlation coefficient is 0.19, p-value < 0.01). 

Similarly, we find a positive and significant correlation between competitiveness and relative 

overbidding (Spearman’s correlation coefficient is 0.17, p-value = 0.02). Together, these findings 

suggest that competitiveness may be driving overbidding in rent-seeking contests, and that 

overbidding is a competitive phenomenon. 

 

4.6. Impulsive Behavior and Cognitive Ability 

Dual-system theories of cognitive decision-making suggest that people make their 

decisions using “System 1” or “System 2”. Kahneman (2011) describes System 1 as impulsive 

and effortless, while System 2 as reflective and calculative (resembling a standard economic 

thinking). The predictions of the theoretical model described in Section 2 rest on the assumptions 

that individuals use System 2 when bidding in rent-seeking contests. However, as Kahneman 

points out, most choices are usually made by System 1. Therefore, we should not be surprised by 

systematic deviations of behavior from the theoretical predictions. 

There are several methods to test the implications of the dual-system theory by isolating 

impulsive and reflective cognitive processes. For the purpose of our study, we chose to assess 

participants’ impulsivity using a Cognitive Reflection Test (CRT), which measures the ability to 

                                                 
16 There are very few participants choosing B in choices 4-6, so the differences are not significant.  
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override impulsive responses and to engage in further reflection before making a decision 

(Frederick, 2005).17 Specifically, participants completed three math questions (see Section 3 and 

Appendix A for details). The simple math questions were easily solvable, yet had intuitively 

compelling incorrect answers. To reach the correct answer, the participant had to engage 

reflective System 2 in order to override the impulsive response of System 1.18 

We find that only 16.8% of participants were able to answer all three CRT questions 

correctly, while 33.1% answered all three questions incorrectly. The top histogram in Figure 7 

shows the average bid by CRT. It is apparent that the average bid decreases as participants 

answer more CRT questions correctly (Spearman’s correlation coefficient is -0.33, p-value < 

0.01). Moreover, participants who answer all three CRT questions correctly on average bid 

$2.56, which is relatively close to the equilibrium prediction of $2. On the other hand, 

participants who answer all three CRT questions incorrectly on average bid $4.38. Given the 

observed empirical distribution of bids in the rent-seeking contest, the expected payoff of the 

most reflective participants is $0.77, while the expected payoff of the most impulsive 

participants is only $0.07. Therefore, it appears that more reflective and less impulsive 

participants overbid less and earn higher expected payoffs in rent-seeking contests. 

One could argue that the CRT simply captures the cognitive ability of participants to 

solve math problems, and participants who have higher cognitive ability in general are better at 

                                                 
17 Using the CRT to study impulsive and reflective behavior is a trait-based approach which relies on the assumption 
that individuals with an impulsive cognitive style are more likely to make decisions guided by System 1, whereas 
reflective individuals are more likely to be driven by System 2 (Oechssler et al., 2009; Corgnet et al., 2015; 
Peysakhovich and Rand, 2016). Other methods used by behavioral researchers rely on the analysis of reaction time 
(e.g., Rubinstein, 2007, 2013; Piovesan and Wengström, 2009; Rand et al., 2012), and the use of experimental 
manipulations, such as cognitive load (e.g., Cornelissen et al., 2011; Benjamin et al., 2013; Duffy and Smith, 2014; 
Deck and Jahedi, 2015) or time pressure (e.g., Rand and Kraft-Todd, 2014; Rand et al., 2015). 
18 The responses to the CRT are indeed a good proxy for the individuals’ tendency to make impulsive versus 
reflective decisions. The CRT has been found to correlate with one’s ability to delay gratification (Frederick, 2005) 
and to predict one’s ability to refrain from using inaccurate heuristics in a variety of situations (Oechssler et al., 
2009, Toplak et al., 2011). 
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figuring out the equilibrium play in other games (Gill and Prowse, 2016). To test this hypothesis, 

we elicited a different measure of participants’ cognitive ability to solve math problems. 

Specifically, participants completed a 10-minute cognitive test consisting of 7 multiple-choice 

mathematical questions drawn from a GRE test preparation book (Seltzer, 2009). The bottom 

histogram in Figure 7 shows the average bid by GRE. Although there is a negative correlation 

between the average bid and the number of correct GRE answers, the trend is somewhat weaker 

and less significant (Spearman’s correlation coefficient is -0.14, p-value = 0.05). 

To summarize, both CRT and GRE predict bidding behavior in contests. Moreover, there 

is a positive and significant correlation between the number of correct CRT and GRE answers 

(Spearman’s correlation coefficient is 0.34, p-value < 0.01), which is not surprising since 

cognitive abilities are required to answer both tests. The fact that the correlation is moderate 

suggests that the CRT and the GRE are measuring somewhat different cognitive skills 

(Stanovich, 2009). While the GRE measures participants’ cognitive ability to solve math 

problems, the CRT measures the tendency to resist the impulsive behavior and reflect on the 

task. In order to examine whether cognitive ability or impulsivity is more important in explaining 

behavior in rent-seeking contests, we employ a multivariate analysis. 

 

4.7. Joint Analysis of Measured Behaviors 

Table 3 shows the correlation matrix of our measured behaviors, with colored cells 

indicating statistically significant correlations. Consistent with our previous observations, bid is 

significantly correlated with belief (belief about the other bid), quiz (number of correct quiz 

answers), loss-averse (number of options B), bid-zero (bid for a prize of $0), competitive 

(number of antisocial competitive choices), gre (number of correct GRE answers), and crt 



 21 

(number of correct CRT answers). However, it is clear from Table 3, that some of these variables 

are also correlated with each other. For example, loss-averse is correlated with bias (number of 

decisions violating the expected utility) and risk-averse (number of safe options B), which is 

expected since all three measures are designed to capture systematic biases. 

The variable that has the strongest correlation with other variables, besides bid, is crt. 

Previously we discussed that besides impulsivity, the CRT is measuring cognitive ability, and 

thus it is not surprising that crt is positively correlated with gre. For the same reason, it is not 

surprising that crt is positively correlated with quiz, since both tasks require cognitive ability. 

Surprisingly, however, crt is negatively and significantly correlated with competitive, suggesting 

that more impulsive participants (i.e., participants who score less on the CRT) are more 

competitive (i.e., participants who choose to sacrifice social welfare to be ahead or not to be 

behind of others).19 Given that crt is correlated with both competitive and bid, it is possible that 

the correlation between competitive and bid is mainly driven by crt. Of course, the reverse could 

be true as well. Therefore, we employ a multivariate analysis. 

Table 4 shows the estimation results of different OLS regressions in which the dependent 

variable is bid, and the independent variables are measured behaviors reported in Table 3. 

Specification (1) supports the findings from Section 4.2, by showing that bid is positively 

correlated with belief and negatively correlated with quiz. Specification (2) supports the findings 

from Section 4.3, by showing that out of different measures of systematic biases only loss-averse 

is significantly correlated with bid. Similarly, specifications (3) and (4) support the findings from 

Sections 4.4 and 4.5, by showing that bid is positively correlated with bid-zero and competitive. 

Recall from Section 4.6 that bid, gre, and crt are all correlated (this can also be seen in Table 3). 

                                                 
19 This result is also robust when we consider alternative definitions of competitiveness (see Table B1 and the 
corresponding discussion in Appendix B). 
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Specification (5), however, shows that when we include both gre and crt as explanatory 

variables, only crt is significant. Therefore, we conclude that it is mainly impulsivity, and not 

cognitive ability to do mathematical computations, that influences behavior in rent-seeking 

contests. 

To further explore the joint effect of all measured behaviors on bidding behavior we 

estimate specification (6), in which we include all of the explanatory variables. Interestingly, 

most of the variables, including quiz, loss-averse, bid-zero, and competitive, that previously were 

significant in specifications (1) through (4) become insignificant. The only variables that remain 

significant are belief and crt. To see which of these two variables captures most of the 

explanatory power from other variables, we re-estimate all specifications in Table 4 controlling 

separately for belief and crt. When we control for belief, as shown in Table 5, all of the results 

reported in specifications (2) through (5) in Table 4 are virtually unchanged. On the other hand, 

when we control for crt, as shown in Table 6, most of the explanatory variables, including quiz, 

loss-averse, bid-zero, and competitive, become insignificant. Therefore, it appears that crt 

captures most of the explanatory variance for bidding behavior in the rent-seeking contest. On 

average, one correctly answered CRT question reduces the bid by $0.43-$0.58, depending on the 

exact regression in Table 6. This translates into a gap of $1.29-$1.74 between the most impulsive 

participants (who answer zero CRT questions correctly) and the most reflective participants (who 

answer all three CRT questions correctly).20 

We have also checked the robustness of these results, by using overbidding (i.e., the 

difference between the actual bid and the best-response calculated based on the stated belief 

about the other bid), instead of bid, as a dependent variable. The results reported in Table B2 in 

Appendix B are very similar qualitatively to those reported in Table 4. Also, we used expected 

                                                 
20 Recall that the equilibrium bid is $2. 
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payoff (i.e., the average expected payoff calculated based on the individual bid and the empirical 

distribution of all other bids in our sample) as a dependent variable. Again, the results reported in 

Table B3 in Appendix B are very similar qualitatively. 

Combined, these estimation results tell a consistent story. Specifications (1) through (5) 

in Table 4 provide evidence that overbidding in contests is correlated with mistakes 

(specification 1), systematic biases (specification 2), the utility of winning (specification 3), 

relative payoff maximization (specification 4), and impulsive behavior (specification 5). 

However, when putting together in a joint multivariate analysis (specification 6), only 

impulsivity remains significant, suggesting that overbidding is primarily driven by impulsive 

behavior. Estimations reported in Table 6 further confirm that impulsivity is correlated with 

other explanatory factors and thus it is the main moderating factor which explains overbidding in 

rent-seeking contests. 

 

5. Discussions and Conclusion 

In this paper we have examined the predictive power of different theories to explain 

overbidding in rent-seeking contests. For this purpose, we conduct an eight-part experiment. Our 

results showed significant support for the existing theories of overbidding, such as mistakes, 

systematic biases, the utility of winning, and relative payoff maximization. Besides the existing 

theories of overbidding, we discovered some new explanations, such as cognitive ability and 

impulsive behavior. Out of all explanations examined, we found that impulsive behavior, 

measured through a Cognitive Reflection Test, is the most important factor explaining the 

overbidding phenomenon. 
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Our results not only provide an explanation for a long standing puzzle about overbidding 

in rent-seeking contests, but also explain why some studies find less overbidding than others. 

Fallucchi et al. (2013) and Chowdhury et al. (2014), for example, show that there is less 

overbidding when the rules of the contest are simplified and when participants receive more 

feedback. Similarly, Sheremeta and Zhang (2010) find that overbidding is reduced when, instead 

of individuals, groups of two participants make decisions in contests. These manipulations 

reduce cognitive load, allowing participants to make more deliberate and less impulsive choices. 

Given that impulsivity is the main factor driving overbidding in contests, it is not surprising that 

studies that reduce cognitive load of participants find less overbidding. 

Besides explaining previous experimental findings from the contest literature, our results 

have important implications for social science in general. Specifically, our findings indicate that 

participants with more competitive preferences (e.g., participants who choose to sacrifice social 

welfare to be ahead of others) are more impulsive. Furthermore, our findings also indicate that 

bidding behavior in rent-seeking contests is a competitive phenomenon which is driven by 

impulsive behavior. An important implication of this is that individuals who are better at 

controlling their impulsive behavior (i.e., using System 2 instead of System 1), should be less 

likely to engage in irrational competitions.21 This interpretation is also consistent with research 

examining evolution of prosocial behavior of children (Bloom, 2013; Fehr et al., 2008, 2013). 

The main conclusion from this literature is that children (who one could argue are mostly guided 

by System 1) display very competitive and spiteful behavior in their early years of life; however, 

                                                 
21 This result contrasts the “social heuristics hypothesis,” claiming that cooperative behavior is more intuitive (Rand 
et al., 2014). In fact, we find exactly the opposite: Individuals who are more impulsive (i.e., use intuitive System 1) 
are more competitive and bid more aggressively in contests than individuals who are more reflective (i.e., use 
System 2). Therefore, our results align with the literature suggesting that cooperative behavior is not impulsive 
(Piovesan and Wengström, 2009; Tinghog et al., 2013; Verkoeijen and Bouwmeester, 2014). 
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as they grow older (and thus become more capable of using System 2) they display more 

cooperative behavior. 

Our results also have implications for economic theory. The standard economic theory is 

based on the assumption that economic agents are perfectly rational and they do not make 

mistakes. However, as research suggests, this is not necessarily the case (Camerer, 2003).22 

Kahneman (2011) argues that one reason why individuals make “irrational” choices is that they 

often ignore the reflective System 2 (which is needed to make rational economic decisions) and 

instead use the impulsive System 1 (which is inclined to biases and errors).23 An important 

implication of this is that if one could get a good indication whether an individual is indeed using 

System 2 in economic decision-making, then one could reliably test the economic theory. We 

find that the CRT is such an indicator. In our experiment, the most impulsive participants who 

answer all three CRT questions incorrectly on average bid $4.38 (which is 119% higher than the 

theoretical prediction), while the most reflective participants who answer all three questions 

correctly bid $2.56 (which is only 28% away from the theoretical prediction). Thus, we can 

conclude that the behavior of participants who score higher on the CRT, indicating better use of 

System 2, is more in line with the economic theory; and researchers who want to test other 

theoretical models of rent-seeking should use this information to make their conclusions about 

the predictive power of the theory. 

There are, of course, a number of avenues for future research. First, one could use other 

methods to examine the implications of the dual-system theory for overbidding. For example, 

one could use the reaction time (e.g., Rubinstein, 2007, 2013) to examine the impact of 

                                                 
22 Cason and Plott (2014), for example, show that even in the simplest laboratory experiments individuals routinely 
make mistakes which cannot be explained neither by standard nor by nonstandard preference theories. 
23 Rubinstein (2016) suggest a new typology of players based on the classification of actions as either instinctive 
(impulsive) or contemplative (reflective). 
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impulsivity on behavior in rent-seeking contests. Unfortunately, due to the nature of our 

experiment, we could not use the reaction time as a measure of impulsivity. Reading the 

instructions in each experimental session took much time, giving participants plenty of 

opportunity to think over their decisions even before they could actually input their decision into 

the computer. One could also use experimental manipulations, such as cognitive load (e.g., 

Cornelissen et al., 2011; Benjamin et al., 2013; Duffy and Smith, 2014; Deck and Jahedi, 2015) 

or time pressure (e.g., Rand and Kraft-Todd, 2014; Rand et al., 2015), to directly examine how 

impulsivity drives overbidding in rent-seeking contests. 

Finally, we conjecture that our findings potentially could be applied to explain 

overbidding in winner-pay auctions. There is a long standing debate about what could explain 

overbidding in first-price and common value auctions. Some of the explanations are similar to 

the ones that have been proposed to explain overbidding in rent-seeking contests. For example, 

Cox et al. (1992) suggest that part of the overbidding in auctions is caused by the joy of winning. 

Goeree et al. (2002) and Crawford and Iriberri (2007) suggest that overbidding is due to 

mistakes. Risk aversion and systematic biases have also been cited as possible explanations for 

overbidding in winner-pay auctions (Cox et al., 1988; Goeree et al., 2002). However, even after 

heated discussions by Cox et al. (1992), Friedman (1992), Kagel and Roth (1992), and Merlo and 

Schotter (1992), which followed Harrison’s (1989) critique of Cox et al. (1982), the debate has 

not been resolved. We hypothesize that impulsivity, measured through a Cognitive Reflection 

Test, potentially could explain overbidding in winner-pay auctions. 
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Figure 1: Distribution of bids. 
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Figure 2: Bids, beliefs and best-responses. 
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Figure 3: Average bid and relative overbidding by correct quiz answers. 
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Figure 4: Average bid by systematic bias. 
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Figure 5: Average bid versus risk-aversion and loss-aversion. 
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Figure 6: Bid for a zero prize versus bid for a positive prize. 
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Figure 7: Average bid by CRT and GRE. 
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Table 1: Summary of the experimental design. 

 

Part Measure How measured 

1 Quiz 5 quiz questions about the contest, receiving $0.50 for each correct answer. 

 Bid Bid between $0 and $10 (including increments of $0.25) in a two-payer 
contest for a reward of $8. 

2 Belief Guess about the bid of the other participant, receiving $2.00 for a correct 
guess. 

3 Bid for zero Bid between $0 and $10 (including increments of $0.25) in a two-payer 
contest for a reward of $0. 

4 Social preferences 12 binary choices measuring social preferences, with each choice offering the 
option of $3 to both self and other or an unequal amount with total value 
between $3.50 and $8.50. 

5 Ellsberg Two decision, First, between option A ($5.00 if a red ball is drawn) and option 
B ($5.00 if a blue ball is drawn). Second, between option A ($5.00 if a red or 
green ball is drawn) and option B ($5.00 if a blue or green ball is drawn). 

 Allais Two decisions. First, between option A (receiving $5.00 for sure) and option 
B (89% chance of receiving $5.00, 1% chance of receiving nothing, and 10% 
chance of receiving $25.00). Second, between option A (89% chance of 
receiving nothing, and 11% chance of receiving $5.00) and option B (90% 
chance of receiving nothing, and 10% chance of receiving $25.00). 

6 Risk aversion 15 binary choices between a risky option A ($0 or $5 with 50% chance each) 
and a safe option B (increasing monotonically from $0.50 to $4) 

 Loss aversion 15 binary choices between a risky option A (50% chance of receiving $5 or 
losing a certain amount between -$0.50 to -$7.50) and a safe option B of $0. 

7 CRT 3 cognitive reflection questions, receiving $0.50 for each correct answer. 

8 GRE 7 multiple-choice GRE mathematical questions during 10 minutes, receiving 
$0.50 for each correct answer. 
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Table 2: Social preferences and bids. 

 

Decision 
number 

Option A 
(self, other) 

Option B 
(self, other) 

Percentage 
choosing A 

Average bid 
conditional on A 

Average bid 
conditional on B 

Wilcoxon 
rank-sum test 

1 $3.00, $3.00 $3.00, $2.50 87.0% 3.57 (0.14) 4.00 (0.30) p-value = 0.08 
2 $3.00, $3.00 $3.00, $2.00 83.2% 3.52 (0.15) 4.13 (0.25) p-value = 0.01 
3 $3.00, $3.00 $3.00, $1.50 83.2% 3.51 (0.15) 4.16 (0.24) p-value = 0.01 

4 $3.00, $3.00 $2.50, $2.00 95.7% 3.65 (0.14) 3.00 (0.46) p-value = 0.33 
5 $3.00, $3.00 $2.50, $1.50 96.2% 3.60 (0.14) 4.14 (0.59) p-value = 0.30 
6 $3.00, $3.00 $2.50, $1.00 94.6% 3.58 (0.14) 4.35 (0.56) p-value = 0.15 

7 $3.00, $3.00 $3.00, $3.50 45.7% 3.88 (0.21) 3.41 (0.16) p-value = 0.14 
8 $3.00, $3.00 $3.00, $4.00 46.7% 3.90 (0.20) 3.39 (0.17) p-value = 0.05 
9 $3.00, $3.00 $3.00, $4.50 46.7% 3.87 (0.20) 3.41 (0.17) p-value = 0.09 

10 $3.00, $3.00 $3.50, $4.00 17.9% 4.25 (0.40) 3.49 (0.13) p-value = 0.05 
11 $3.00, $3.00 $3.50, $4.50 21.7% 4.18 (0.35) 3.47 (0.14) p-value = 0.06 
12 $3.00, $3.00 $3.50, $5.00 22.3% 4.19 (0.34) 3.46 (0.14) p-value = 0.04 
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Table 3: Correlation matrix. 

 

 
bid belief quiz Bias risk-averse loss-averse bid-zero competitive gre 

belief 0.31         
 (0.00)         
quiz -0.25 -0.16        
 (0.00) (0.02)        
bias 0.05 -0.00 -0.09       
 (0.45) (0.98) (0.20)       
risk-averse -0.03 0.09 0.08 0.03      
 (0.66) (0.20) (0.24) (0.60)      
loss-averse -0.13 -0.02 -0.02 0.14 0.19     
 (0.06) (0.72) (0.75) (0.05) (0.00)     
bid-zero 0.22 0.11 -0.22 -0.01 -0.13 -0.18    
 (0.00) (0.12) (0.00) (0.89) (0.06) (0.01)    
competitive 0.17 0.04 -0.06 0.00 -0.02 -0.17 0.02   
 (0.01) (0.56) (0.40) (0.93) (0.68) (0.01) (0.72)   
gre -0.14 -0.14 0.15 -0.07 -0.08 0.01 -0.04 -0.19  
 (0.04) (0.05) (0.03) (0.31) (0.24) (0.80) (0.55) (0.00)  
crt -0.35 -0.09 0.26 -0.06 0.05 0.05 -0.28 -0.31 0.35 
 (0.00) (0.20) (0.00) (0.40) (0.43) (0.42) (0.00) (0.00) (0.00) 

p-values are in parentheses. 
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Table 4: OLS regression of bid on measured behaviors. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent variable, bid       

belief 0.31**     0.28** 
  [belief about the other bid] (0.13)     (0.12) 
quiz -0.49***     -0.29* 
  [number of correct quiz answers] (0.19)     (0.18) 
bias  0.26    0.15 
  [violation of the expected utility]  (0.25)    (0.20) 
risk-averse  0.00    0.00 
  [number of safe options B]  (0.05)    (0.04) 
loss-averse  -0.12**    -0.08 
  [number of options B]  (0.06)    (0.05) 
bid-zero   0.21***   0.07 
  [bid for a prize of $0]   (0.07)   (0.08) 
competitive    0.10**  0.03 
  [number of antisocial choices]    (0.04)  (0.04) 
gre     -0.02 0.03 
  [number of correct GRE answers]     (0.09) (0.08) 
crt     -0.58*** -0.43*** 
  [number of correct CRT answers]     (0.13) (0.13) 
constant 4.29*** 4.56*** 3.43*** 3.35*** 4.41*** 4.61*** 
  [the constant term] (0.91) (0.50) (0.14) (0.16) (0.35) (1.10) 

 N 184 184 184 184 184 184 
 R-squared 0.14 0.02 0.05 0.03 0.13 0.25 
 R-squared adjusted 0.13 0.01 0.05 0.03 0.12 0.21 

* significant at 10%, ** significant at 5%, *** significant at 1%. Robust standard errors are in parenthesis. 
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Table 5: OLS regression of bid on measured behaviors, controlling for belief. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent variable, bid       

belief 0.31** 0.34*** 0.32** 0.34** 0.31** 0.28** 
  [belief about the other bid] (0.13) (0.13) (0.13) (0.13) (0.12) (0.12) 
quiz -0.49***     -0.29* 
  [number of correct quiz answers] (0.19)     (0.18) 
bias  0.26    0.15 
  [violation of the expected utility]  (0.21)    (0.20) 
risk-averse  -0.03    0.00 
  [number of safe options B]  (0.04)    (0.04) 
loss-averse  -0.11**    -0.08 
  [number of options B]  (0.05)    (0.05) 
bid-zero   0.18**   0.07 
  [bid for a prize of $0]   (0.08)   (0.08) 
competitive    0.10**  0.03 
  [number of antisocial choices]    (0.04)  (0.04) 
gre     0.02 0.03 
  [number of correct GRE answers]     (0.08) (0.08) 
crt     -0.56*** -0.43*** 
  [number of correct CRT answers]     (0.13) (0.13) 
constant 4.29*** 3.45*** 2.37*** 2.24*** 3.20*** 4.61*** 
  [the constant term] (0.91) (0.76) (0.43) (0.46) (0.44) (1.10) 

 N 184 184 184 184 184 184 
 R-squared 0.14 0.13 0.14 0.13 0.21 0.25 
 R-squared adjusted 0.13 0.11 0.13 0.12 0.2 0.21 

* significant at 10%, ** significant at 5%, *** significant at 1%. Robust standard errors are in parenthesis. 
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Table 6: OLS regression of bid on measured behaviors, controlling for CRT. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent variable, bid       

belief 0.29**     0.28** 
  [belief about the other bid] (0.12)     (0.12) 
quiz -0.31*     -0.29* 
  [number of correct quiz answers] (0.17)     (0.18) 
bias  0.18    0.15 
  [violation of the expected utility]  (0.24)    (0.20) 
risk-averse  0.01    0.00 
  [number of safe options B]  (0.04)    (0.04) 
loss-averse  -0.10*    -0.08 
  [number of options B]  (0.05)    (0.05) 
bid-zero   0.13*   0.07 
  [bid for a prize of $0]   (0.08)   (0.08) 
competitive    0.04  0.03 
  [number of antisocial choices]    (0.04)  (0.04) 
gre     -0.02 0.03 
  [number of correct GRE answers]     (0.09) (0.08) 
crt -0.50*** -0.58*** -0.53*** -0.56*** -0.58*** -0.43*** 
  [number of correct CRT answers] (0.10) (0.11) (0.12) (0.12) (0.13) (0.13) 
constant 4.33*** 5.09*** 4.15*** 4.20*** 4.41*** 4.61*** 
  [the constant term] (0.85) (0.50) (0.25) (0.27) (0.35) (1.10) 

 N 184 184 184 184 184 184 
 R-squared 0.23 0.15 0.15 0.13 0.13 0.25 
 R-squared adjusted 0.21 0.13 0.14 0.12 0.12 0.21 

* significant at 10%, ** significant at 5%, *** significant at 1%. Robust standard errors are in parenthesis. 
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Appendix A (For Online Publication) – Experimental Instructions 
 

GENERAL INSTRUCTIONS 

This is an experiment in the economics of decision-making. Various research agencies have provided funds 
for this research. The instructions are simple.  

The experiment will proceed in 8 parts. Each part contains decision problems that require you to make a 
series of choices that determine your total earnings. The currency used in all parts of the experiment is U.S. Dollars. 
You have already received a $10.00 participation fee. Your earnings from 8 parts of the experiment will be added to 
your participation fee. At the end of today’s experiment, you will be paid in private and in cash. 

It is very important that you remain silent and do not look at other people’s work. If you have any 
questions, or need assistance of any kind, please raise your hand and an experimenter will come to you. If you talk, 
laugh, exclaim out loud, etc., you will be asked to leave and you will not be paid. We expect and appreciate your 
cooperation.  

At this time we proceed to PART 1 of the experiment. 
 

PART 1 
In PART 1 of the experiment you will be randomly and anonymously matched with another participant. 

You and the other participant will choose how much to bid for a reward of $8. You may bid any integer number of 
dollars between $0 and $10 (including increments of $0.25). 
 After both participants have made their decisions, your earnings will be calculated. Regardless of who 
receives the reward, both participants will have to pay their bids. Thus, your earnings will be calculated as follows: 
 If you receive the reward:  Earnings = reward – your bid = $8 – your bid 
 If you do not receive the reward: Earnings = no reward – your bid = $0 – your bid 

Remember, you have received a $10 participation fee. In this part of the experiment, you may receive either 
positive or negative earnings. If the earnings are negative, we will subtract them from your participation fee. If the 
earnings are positive, we will add them to your participation fee. 

The more you bid, the more likely you are to receive the reward. The more the other participant bids, the 
less likely you are to receive the reward. Specifically, for each dollar you bid you will receive one lottery ticket. 
After both participants make their bids, the computer will draw randomly one ticket among the tickets purchased by 
you and the other participant. The owner of the drawn ticket will receive the reward of $8. Thus, your chance of 
receiving the reward is given by the number of dollars you bid divided by the total number of dollars you and the 
other participant bid. 

Your chance of 
receiving a reward 

= 
your bid 

your bid + the other participant’s bid 
If both participants bid zero, the reward is randomly assigned to one of the two participants. 
After both participants make their bids, the computer will make a random draw based on these bids and 

determine who receives the reward. Then the computer will calculate your earnings based on your bid and whether 
you received the reward or not. 

Example: Assume that you bid $1 and the other participant bids $3. Therefore, the computer assigns 1 
lottery ticket to you and 3 lottery tickets to the other participant. Then the computer randomly draws one lottery 
ticket out of 4 (1 + 3). Thus, your chance of receiving the reward is 0.25 = 1/4 and the other participant’s chance is 
0.75 = 3/4. Also, assume that the computer made a random draw and the other participant has received the reward. 
Therefore, your earnings = $0 – $1 = – $1, since you did not receive the reward and your bid was $1. The other 
participant’s earnings = $8 – $3 = $5, since the reward was $8 and the other participant’s bid was $3. 

Important notes: You will not be told which of the participants in this room are matched with you. You can 
never guarantee yourself the reward. However, by increasing your bid, you can increase your chance of receiving 
the reward. Regardless of who receives the reward, both participants will have to pay their bids. 

The actual earnings for this part of the experiment will be determined at the end of the experiment, and will 
be independent of other parts of the experiment. 

 
QUIZ 

Before you make your bid, you will be asked to answer 5 quiz questions during 5 minutes to check your 
understanding of the instructions. You will receive $0.50 for each correct answer. All 5 questions are given to you 
below. However, you have to enter your final answers into the computer before the 5 minutes end to be able to get 
your earnings. 
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Question 1: Assume that you bid $4 and the other participant bids $1. How many total lottery tickets will 
the computer use for drawing? ______ 

Question 2: Assume that you bid $4 and the other participant bids $1. What is your chance of receiving the 
reward? ______ 
 Question 3: Assume that you bid $4 and the other participant bids $1. Also, assume that the computer made 
a random draw and the other participant has received the reward. What are your earnings? ______ 

Question 4: If you knew that the other participant bid $0, which bid would bring you the highest earnings 
for sure: $0, $1, $2, $3, $4, $5, $6, $7, $8, $9 or $10? ______ 

Question 5: If you knew that the other participant bid $2, which bid would bring you the highest expected 
earnings: $0, $1, $2, $3, $4, $5, $6, $7, $8, $9 or $10? ______ 

 
PART 2 

In PART 2 of the experiment, you will be asked to provide a guess about what was the bid made by the 
other participant in PART 1. You will receive $2 if your guess is equal to the bid made by the other participant. 

The actual earnings for this part of the experiment will be determined at the end of the experiment, and will 
be independent of other parts of the experiment. 

Please enter your guess on your screen. 
 

PART 3 

In PART 3 of the experiment you will be randomly and anonymously matched with another participant. 
The rules for PART 3 are the same as the rules for PART 1. You and the other participant will choose how much to 
bid in order to be a winner. The only difference is that in PART 3 the winner does not receive the reward. Therefore, 
the reward is worth $0 to you and the other participant. After both participants have made their decisions, your 
earnings will be calculated as follows. 
 Earnings = $0 – your bid 

After both participants make their bids, the computer will make a random draw based on these bids and 
determine who the winner is. At the end of the experiment, the computer will display the results of this part of the 
experiment (that is, whether you won or not), and will calculate your earnings. 

Please make your decision on your screen. 
 

PART 4 

In PART 4 of the experiment, you will be asked to make a series of choices in decision problems. You will 
see a table with 12 lines. You will state whether you prefer Option A or Option B in each line. You should think of 
each line as a separate decision you need to make. However, only one line will be the ‘line that counts’ and will be 
paid out. In particular, at the end of the experiment, the computer will randomly draw an integer number between 1 
and 12. The number chosen indicates which line will be paid out. 

Your earnings for the selected line depend on which option you chose: if you chose A in that line, you will 
receive $3.00 and the other participant who will be matched with you will also receive $3.00. If you chose B in that 
line, you and the other participant will receive earnings as indicated in the table for that specific line. For example, if 
you chose B in line 2 and this line is selected for payment, you will receive $3.00 and the other participant will 
receive $2.00. Similarly, if you chose B in line 3 and this line is selected for payment, you will receive $3.00 and the 
other participant will receive $1.50. 

After you have completed all your choices the computer will randomly draw an integer numbered between 
1 and 12 to determine which line is going to be paid. Then the computer will randomly and anonymously match you 
with another participant in the experiment. While matching you with another participant, the computer will also 
randomly determine whose decision to implement. If the computer chooses your decision to implement, then the 
earnings to you and the other participant will be determined according to your choice of A or B. If the computer 
chooses the other participant decision to implement, then the earnings will determined according to the other 
participant choice of A or B. 

 
 
 
 
 
 
 



 47 

Decision 
Number 

Option A 
(you, the other participant) 

Option B 
(you, the other participant) 

Choose 
A or B 

1 $3.00 to you, $3.00 to other  $3.00 to you, $2.50 to other   

2 $3.00 to you, $3.00 to other  $3.00 to you, $2.00 to other   

3 $3.00 to you, $3.00 to other  $3.00 to you, $1.50 to other   

4 $3.00 to you, $3.00 to other  $2.50 to you, $2.00 to other   

5 $3.00 to you, $3.00 to other  $2.50 to you, $1.50 to other  

 6 $3.00 to you, $3.00 to other  $2.50 to you, $1.00 to other   

7 $3.00 to you, $3.00 to other  $3.00 to you, $3.50 to other   

8 $3.00 to you, $3.00 to other  $3.00 to you, $4.00 to other   

9 $3.00 to you, $3.00 to other  $3.00 to you, $4.50 to other   

10 $3.00 to you, $3.00 to other  $3.50 to you, $4.00 to other  

 11 $3.00 to you, $3.00 to other  $3.50 to you, $4.50 to other   

12 $3.00 to you, $3.00 to other  $3.50 to you, $5.00 to other   

 
The actual earnings for this part of the experiment will be determined at the end of the experiment, and will 

be independent of other parts of the experiment. 
Please make your decision on your screen. 
 

PART 5 

In PART 5 of the experiment, you will be asked to make a series of choices in decision problems. How 
much you receive will depend partly on chance and partly on the choices you make. 

You will see two tables with 2 lines each. You will state whether you prefer Option A or Option B in each 
line. You should think of each line as a separate decision you need to make. You will make 4 decisions in total. 
However, only one line will be the ‘line that counts’ and will be paid out. In particular, at the end of the experiment, 
the computer will randomly draw an integer number between 1 and 4. The number chosen indicates which line will 
be paid out. You will be paid according to the option you selected on that line. 

The decisions you make in the first table (lines 1-2) correspond to the following problem: There is bag 
containing 30 red balls and 60 other balls that are either blue or green. You don't know how many blue or green 
balls there are, but that the total number of blue balls plus the total number of green equals 60. The balls are well 
mixed so that each individual ball is as likely to be drawn as any other. In line 1, you are asked to choose between A 
or B. If you chose A in line 1, you will receive $5.00 if a red ball is drawn from the bag. If you chose B in line 1, 
you will receive $5.00 if a blue ball is drawn from the bag. In line 2, you are asked to choose between A or B. If you 
chose A in line 2, you will receive $5.00 if a red or green ball is drawn from the bag. If you chose B in line 2, you 
will receive $5.00 if a blue or green ball is drawn from the bag. 

 

Decision 
Number 

Option A Option B 
Choose 
A or B 

1 
$5.00 if a red ball  
is drawn from the bag 

$5.00 if a blue ball  
is drawn from the bag 

 

2 
$5.00 if a red or green ball  
is drawn from the bag 

$5.00 if a blue or green ball  
is drawn from the bag 

 

 
The decisions you make in the second table (lines 3-4) are following: In line 3, you are asked to choose 

between A or B. If you chose A in line 3, you will receive $5.00 for sure. If you chose B in line 3, there is an 89% 
chance that you will receive $5.00, a 1% chance that you will receive nothing, and a 10% chance that you will 
receive $25.00. In line 4, you are asked to choose between A or B. If you chose A in line 4, there is an 89% chance 
that you will receive nothing, an 11% chance that you will receive $5.00. If you chose B in line 4, there is a 90% 
chance that you will receive nothing, a 10% chance that you will receive $25.00. 
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Decision 
Number 

Option A Option B 
Choose 
A or B 

3 $5.00 for sure 
$5.00 with an 89% chance, 
nothing with a 1% chance, and 
$25.00 with a 10% chance 

 

4 
nothing with an 89% chance, and 
$5 with an 11% chance 

nothing with a 90% chance, and 
$25.00 with a 10% chance 

 

 
The actual earnings for this part of the experiment will be determined at the end of the experiment, and will 

be independent of other parts of the experiment. 
Please make your decisions on your screen. 
 

PART 6 

In PART 6 of the experiment, you will be asked to make a series of choices in decision problems. How 
much you receive will depend partly on chance and partly on the choices you make. 

You will see two tables with 15 lines each. You will state whether you prefer Option A or Option B in each 
line. You should think of each line as a separate decision you need to make. You will make 30 decisions in total. 
However, only one line will be the ‘line that counts’ and will be paid out. In particular, at the end of the experiment, 
the computer will randomly draw an integer number between 1 and 30. The number chosen indicates which line will 
be paid out. You will be paid according to the option you selected on that line.  

Your earnings for the selected line depend on which option you chose: In the first table (lines 1-15), option 
A always offers a 50% chance to receive $5.00 and a 50% chance to receive nothing, while option B offers a certain 
amount of money for sure (between $0.50 and $4.00, depending on the line). If you choose B, you will receive a 
certain amount of money for sure specified by that line. If you chose A in that line, you will receive either $5.00 or 
nothing. To determine your earnings in the case you chose A we will randomly draw a ball from a bag containing 
ten orange balls and ten white balls. That means that when we draw a ball, there is a 50% chance that it is white and 
a 50% chance that it is orange. If the drawn ball is white and you selected A in that line, you will receive $5.00, 
otherwise you will receive $0.00. 

 

Decision 
Number 

Option A Option B 
Choose 
A or B 

1 $5.00 with a 50% chance nothing with a 50% chance $0.50 for sure  

2 $5.00 with a 50% chance nothing with a 50% chance $0.75 for sure  

3 $5.00 with a 50% chance nothing with a 50% chance $1.00 for sure  

4 $5.00 with a 50% chance nothing with a 50% chance $1.25 for sure 

 5 $5.00 with a 50% chance nothing with a 50% chance $1.50 for sure  

6 $5.00 with a 50% chance nothing with a 50% chance $1.75 for sure  

7 $5.00 with a 50% chance nothing with a 50% chance $2.00 for sure  

8 $5.00 with a 50% chance nothing with a 50% chance $2.25 for sure  

9 $5.00 with a 50% chance nothing with a 50% chance $2.50 for sure 
 10 $5.00 with a 50% chance nothing with a 50% chance $2.75 for sure  

11 $5.00 with a 50% chance nothing with a 50% chance $3.00 for sure  

12 $5.00 with a 50% chance nothing with a 50% chance $3.25 for sure  

13 $5.00 with a 50% chance nothing with a 50% chance $3.50 for sure  

14 $5.00 with a 50% chance nothing with a 50% chance $3.75 for sure  

15 $5.00 with a 50% chance nothing with a 50% chance $4.00 for sure  

 
In the second table (lines 16-30), option A offers a 50% chance to receive $5.00 and a 50% chance to lose a 

certain amount of money (between -$0.50 and -$7.50, depending on the line), while option B offers $0.00 for sure. If 
you chose B, you will receive $0.00. If you chose option A in that line, you can receive either a loss between -$0.50 
and -$7.50, depending on the line, or a gain of $5.00. To determine your earnings in the case you chose option A we 
will randomly draw a ball from a bag containing ten orange and ten white balls. If the drawn ball is white and you 
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selected A in that line, you will receive $5.00, otherwise you will receive -$x (the exact amount depends on the line 
chosen). 

 

Decision 
Number 

Option A Option B 
Choose 
A or B 

16 $5.00 with a 50% chance -$0.50 with a 50% chance $0.00 for sure  

17 $5.00 with a 50% chance -$1.00 with a 50% chance $0.00 for sure  

18 $5.00 with a 50% chance -$1.50 with a 50% chance $0.00 for sure  

19 $5.00 with a 50% chance -$2.00 with a 50% chance $0.00 for sure  

20 $5.00 with a 50% chance -$2.50 with a 50% chance $0.00 for sure 

 21 $5.00 with a 50% chance -$3.00 with a 50% chance $0.00 for sure  

22 $5.00 with a 50% chance -$3.50 with a 50% chance $0.00 for sure  

23 $5.00 with a 50% chance -$4.00 with a 50% chance $0.00 for sure  

24 $5.00 with a 50% chance -$4.50 with a 50% chance $0.00 for sure  

25 $5.00 with a 50% chance -$5.00 with a 50% chance $0.00 for sure 

 26 $5.00 with a 50% chance -$5.50 with a 50% chance $0.00 for sure  

27 $5.00 with a 50% chance -$6.00 with a 50% chance $0.00 for sure  

28 $5.00 with a 50% chance -$6.50 with a 50% chance $0.00 for sure  

29 $5.00 with a 50% chance -$7.00 with a 50% chance $0.00 for sure  

30 $5.00 with a 50% chance -$7.50 with a 50% chance $0.00 for sure  

 
The actual earnings for this part of the experiment will be determined at the end of the experiment, and will 

be independent of other parts of the experiment. 
Please make your decisions on your screen. 
 

PART 7 

In PART 7 of the experiment, you will be asked to answer 3 questions. You will receive $0.50 per each 
correct answer, and there is no penalty for incorrect answers. 

Question 1: A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the 
ball cost? _____ cents 

Question 2: It takes 5 machines 5 minutes to make 5 widgets. How long does it take 100 machines to make 
100 widgets? _____ minutes 

Question 3: In a lake, there is a patch of lily pads. Every day, the patch doubles in size. It takes 48 days for 
the patch to cover the entire lake. How long does it take for the patch to cover half of the lake? _____ days 

 
PART 8 

In PART 8 of the experiment, you will take a 10-minute cognitive test containing 7 questions. You may use 
the margins of this booklet to work out your answer if needed. You may ONLY use pencil and paper provided. No 
other aids are permitted. 

You will receive $0.50 per each correct answer, and there is no penalty for incorrect answers. 
 
All 7 questions are given to you in paper sheets. However, you have to enter your final answers into the 

computer before the 10 minutes end to be able to get your earnings. 
 
Question 1: If the average (arithmetic mean) of 12 numbers is 25 and the average (arithmetic mean) of 11 

of the numbers is 20 then what is the remaining number? 
1. 5 
2. 55 
3. 60 
4. 70 
5. 80 
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Question 2: If 𝑏𝑐 ≠ 0, and 3𝑏 +  2𝑐 =  18, then which of the following is NOT a possible value of 𝑐 ? 

1. 5 35 

2. 6 

3. 8 25 

4. 9 
5. 12 

 
Question 3: If 𝑥 is a positive integer greater than one, which of the following has the greatest value? 

1. 
1𝑥 

2. 
1𝑥+1 

3. 
𝑥𝑥+1 

4. 
𝑥( 1𝑥+1) 

5. 
𝑥( 𝑥𝑥+1) 

 
Question 4: A hat contains 18 raffle tickets, numbered 1 through 18. If two raffle tickets are chosen at 

random from the hat, what is the probability that both tickets are even numbers? 

1. 
29 

2. 
417 

3. 
14 

4. 
12 

5. 
3334 

 

Question 5: What is the value of
3(34) − (32)3 ? 

1. -1.75 
2. -0.75 
3. 1 
4. 2 
5. 3.5 

 
Question 6: A number divisible by a positive even prime number must be 

1. prime 
2. odd 
3. even 
4. the square of a prime 
5. the square an odd number 

 
Question 7: Which of the following inequalities is true? 

1. 
111 < 0.08 < 19 

2. 
110 < 0.11 < 18 

3. 
17 < 0.17 < 16 

4. 
15 < 0.26 < 14 

5. 
13 < 0.30 < 12 
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Appendix B (For Online Publication) – Additional Analysis 

Table B1 shows the 12 choices which we used to elicited social preferences and the 

corresponding CRT measures conditional on choosing A or B. Examining choices 1-6, we see 

that participants who choose option B, indicating competitive behavior (i.e., choosing to sacrifice 

social welfare to have a higher payoff than the opponent), are more impulsive (i.e., they score 

less on the CRT). Similarly, participants who choose A in 7-12, again indicating more 

competitive preferences, are more impulsive. 

Table B1: Social preferences and CRT. 

 

Decision 
Number 

Option A 
(self, other) 

Option B 
(self, other) 

Percentage 
choosing A 

CRT 
conditional on A 

CRT 
conditional on B 

Wilcoxon 
rank-sum test 

1 $3.00, $3.00 $3.00, $2.50 87.0% 1.25 (0.08) 0.95 (0.22) p-value = 0.17 
2 $3.00, $3.00 $3.00, $2.00 83.2% 1.28 (0.08) 0.87 (0.18) p-value = 0.04 
3 $3.00, $3.00 $3.00, $1.50 83.2% 1.29 (0.08) 0.83 (0.19) p-value = 0.02 

4 $3.00, $3.00 $2.50, $2.00 95.7% 1.23 (0.08) 0.75 (0.25) p-value = 0.25 
5 $3.00, $3.00 $2.50, $1.50 96.2% 1.24 (0.08) 0.42 (0.20) p-value = 0.05 
6 $3.00, $3.00 $2.50, $1.00 94.6% 1.27 (0.08) 0.30 (0.15) p-value < 0.01 

7 $3.00, $3.00 $3.00, $3.50 45.7% 0.85 (0.10) 1.52 (0.11) p-value < 0.01 
8 $3.00, $3.00 $3.00, $4.00 46.7% 0.86 (0.10) 1.53 (0.11) p-value < 0.01 
9 $3.00, $3.00 $3.00, $4.50 46.7% 0.86 (0.10) 1.53 (0.11) p-value < 0.01 

10 $3.00, $3.00 $3.50, $4.00 17.9% 0.66 (0.14) 1.33 (0.08) p-value < 0.01 
11 $3.00, $3.00 $3.50, $4.50 21.7% 0.72 (0.14) 1.35 (0.09) p-value < 0.01 
12 $3.00, $3.00 $3.50, $5.00 22.3% 0.75 (0.14) 1.34 (0.09) p-value < 0.01 
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Table B2 shows the estimation results of different OLS regressions in which the 

dependent variable is overbidding (i.e., the difference between the actual bid and the best-

response calculated based on the stated belief about the other bid), and the independent variables 

are measured behaviors reported in Table 3. The estimation results are very similar qualitatively 

to those reported in Table 4. 

Table B2: OLS regression of overbidding on measured behaviors. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent variable, overbidding       

Quiz -0.65***     -0.42* 
  [number of correct quiz answers] (0.23)     (0.22) 
Bias  0.24    0.10 
  [violation of the expected utility]  (0.31)    (0.27) 
risk-averse  -0.01    0.02 
  [number of safe options B]  (0.05)    (0.05) 
loss-averse  -0.11*    -0.08 
  [number of options B]  (0.06)    (0.06) 
bid-zero   0.22***   0.10 
  [bid for a prize of $0]   (0.07)   (0.08) 
Competitive    0.10**  0.03 
  [number of antisocial choices]    (0.05)  (0.05) 
Gre     -0.06 -0.04 
  [number of correct GRE answers]     (0.10) (0.10) 
Crt     -0.58*** -0.42*** 
  [number of correct CRT answers]     (0.13) (0.14) 
Constant 4.26*** 2.91*** 1.78*** 1.73*** 2.90*** 4.54*** 
  [the constant term] (0.85) (0.54) (0.15) (0.18) (0.40) (1.06) 

 N 184 184 184 184 184 184 
 R-squared 0.06 0.02 0.05 0.02 0.11 0.17 
 R-squared adjusted 0.06 0 0.04 0.02 0.11 0.13 

* significant at 10%, ** significant at 5%, *** significant at 1%.  
Robust standard errors are in parenthesis. 
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Table B3 shows the estimation results of different OLS regressions in which the 

dependent variable is expected payoff (i.e., the average expected payoff calculated based on the 

individual bid and the empirical distribution of all other bids in our sample), and the independent 

variables are measured behaviors reported in Table 3. The estimation results are very similar 

qualitatively to those reported in Table 4. 

Table B3: OLS regression of expected payoff on measured behaviors. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent variable, expected payoff       

Belief -0.16**     -0.15** 
  [belief about the other bid] (0.06)     (0.06) 
Quiz 0.26**     0.17* 
  [number of correct quiz answers] (0.10)     (0.10) 
bias  -0.20    -0.15 
  [violation of the expected utility]  (0.15)    (0.11) 
risk-averse  0.00    -0.01 
  [number of safe options B]  (0.03)    (0.02) 
loss-averse  0.05*    0.04 
  [number of options B]  (0.03)    (0.02) 
bid-zero   -0.10**   -0.03 
  [bid for a prize of $0]   (0.04)   (0.05) 
competitive    -0.04**  -0.01 
  [number of antisocial choices]    (0.02)  (0.02) 
gre     0.03 0.00 
  [number of correct GRE answers]     (0.05) (0.04) 
crt     0.24*** 0.16** 
  [number of correct CRT answers]     (0.06) (0.07) 
constant -0.20 -0.15 0.24*** 0.27*** -0.25 -0.27 
  [the constant term] (0.46) (0.26) (0.07) (0.08) (0.21) (0.55) 

 N 184 184 184 184 184 184 
 R-squared 0.15 0.02 0.04 0.02 0.09 0.21 
 R-squared adjusted 0.14 0.01 0.03 0.02 0.08 0.17 

* significant at 10%, ** significant at 5%, *** significant at 1%.  
Robust standard errors are in parenthesis. 

 

 


