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ABSTRACT: Compressed sensing (CS) is a mathematical framework that reconstructs data from highly undersam-
pled measurements. To gain acceleration in acquisition time, CS has been applied to MRI and has been demonstrated 
on diverse MRI methods. This review discusses the important requirements to qualify MRI to become an optimal 
application of CS, namely, sparsity, pseudo-random undersampling, and nonlinear reconstruction. By utilizing con-
cepts of transform sparsity and compression, CS allows acquisition of only the important coefficients of the signal 
during the acquisition. A priori knowledge of MR images specifically related to transform sparsity is required for the 
application of CS. In this paper, Section I introduces the fundamentals of CS and the idea of CS as applied to MRI. 
The requirements for application of CS to MRI is discussed in Section II, while the various acquisition techniques, 
reconstruction techniques, the advantages of combining CS and parallel imaging, and sampling mask design problems 
are discussed in Section III. Numerous applications of CS in MRI due to its ability to improve imaging speed are re-
viewed in section IV. Clinical evaluations of some of the CS applications recently published are discussed in Section 
V. Section VI provides information on available open source software that could be used for CS implementations.

I.	 INTRODUCTION

Magnetic resonance imaging (MRI), as a biomedi-
cal imaging modality, provides images with excel-
lent soft tissue contrast. MRI has been extensively 
used to image detailed structure, function, and me-
tabolism of the organ of interest. The reduction of 
MRI acquisition time is an ongoing challenge to 
enable imaging of certain biological processes that 
demand high spatial and/or spectral resolutions. To 
achieve short acquisition times, techniques such 
as PI (Ref. 1) and other undersampling strategies 
such as keyhole imaging have been accomplished. 
These techniques are typically governed by the 
Nyquist sampling rate and hence cannot yield 
acceleration beyond the Nyquist limit due to the 
resulting aliasing artifacts and their ability to re-
solve them in cases of reduced signal-to-noise ratio 
(SNR). A mathematical framework called CS that 
has been proposed,2 provides for reconstruction of 
data from highly undersampled measurements.2,3 
CS has been applied to MRI to gain acceleration 
in acquisition time and it has been demonstrated 
on diverse MRI methods. Recently, it is also been 
used in clinical applications for pediatric imaging 
where reduction in acquisition time is critical for 

diagnosis.4 The following subsections discuss the 
fundamentals of CS.

A.	 Sparsity

A vector is said to be “sparse” if the majority of its 
coefficients are equal to zero and very few coeffi-
cients will contain all the information. If significant 
numbers of these coefficients are exactly zeroes, 
then the sparsity is said to be “strong.” Generally, 
there exists a transition band from the few high-
valued coefficients to the many zero-valued coeffi-
cients, which is called “weak sparsity.” From a sig-
nal processing standpoint, a sparse signal has most 
of its energy contained in a few measurements while 
the rest of the measurements are zero or negligible.

1.	  Transform Sparsity and Compression

Transform sparsity results in a vector, which be-
comes sparse on using a mathematical transform. 
For example, a voltage depicting a sinusoidal char-
acteristic of a particular frequency when recorded 
over time does not exhibit sparsity. However, on the 
use of Fourier transform, the transformed vector has 
all of its information in two peaks (ω ± ωo). Now, 
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the sine wave is said to be sparse in the Fourier do-
main. Most MR images are sparse in some trans-
form domain. For instance, angiography images are 
sparse in the identity and finite differences domains 
whereas cardiac cine images are sparse in the spatio-
temporal Fourier domain.

Sparsity can also be extended to compressibil-
ity, wherein the important coefficients that could 
be used for reconstruction of the original signal 
could be retained. Threshold is applied in the region 
where there is a sharp decrease in the amplitude of 
the coefficients when they are sorted in a descend-
ing fashion. This threshold decides the number of 
coefficients to be used to reconstruct. It indicates the 
cut-off for the important coefficients from the less 
important ones (analogous to the cut-off frequency 
for impulse response filters in signal processing). 
Generally, the wavelet transform is most ubiquitous-
ly used to compress the images. The reconstruction 
of the images is done from the sparse coefficients. 
If this reconstruction is exact, the image is said to 
be compressed with no losses, i.e., the difference 
between the original and reconstructed images from 
compressed data is zero. If this is not the case, the 
compression is said to be “lossy.” Lossy compres-
sion results in loss of some information that is typi-
cally not perceivable to the human eye. This infor-
mation corresponds to the coefficients closer to the 
zeroes and is not used for reconstruction. This is ap-
plicable to MR images as well. However, it should 
be noted that lossy compression in certain medical 
imaging applications involving detection problems 
might not be tolerable and have to be evaluated by 
radiologists.

2.	 CS: The Idea

The conventional method of image compression 
is performed after the acquisition of the entire im-
age, which typically involves wavelet transforming 
of the image. Compression is done to accomplish 
saving in data storage and to facilitate the transfer 
of such data. Hence, the compressed data consists 
of only the most important coefficients that enable 
near-perfect reconstruction of the original data.

The philosophy of CS is to acquire only the 
important coefficients of the signal during the 

acquisition by compression and by using the con-
cept of transform sparsity rather than compression 
postacquisition. The implementation of an ideal CS 
solution is given by the answer to a simple question: 
What is the minimum number of coefficients in a 
transform domain required to acquire data with ac-
ceptable SNR and high data fidelity to represent the 
object of interest?   

3.	 The L0, L1, and L2 Norms

The above question raised in Section I.A.2 can be 
mathematically cast as an optimization problem. 
The first half of the question would be to solve for 
the minimum number of coefficients in the trans-
form domain required to achieve exact reconstruc-
tion. The “norm” function in linear algebra can be 
used to evaluate this criterion. The Lp norm of a vec-
tor x of length n is expressed as follows:

	 	
(1)

In the case of p = 0, called the L0 norm, (1) sim-
plifies to the number of nonzero elements in the 
vector (n in the case of a vector consisting of ones), 
which is the required solution. The L0 norm is not 
convex in nature, and computationally intractable, 
which results in difficulty in its usage in optimization 
problems.5 However, L0-based CS reconstruction 
has been reported recently that utilizes nonconvex 
optimization schemes.6 Mathematically, solution to 
a convex problem or an approximately convex prob-
lem is more stable than a nonconvex optimization 
scheme due to reliability in convergence. Hence, the 
next integer (p = 1) norm L1 is generally used, which 
is a convex approximation for L0 norm and provides 
the absolute sum of the elements of the vector. It 
must be also noted that reconstructions using L1/2 
and other non-integer norms utilized in a noncon-
vex framework have also been explored.7 The L1 
norm penalizes the presence of a large number of 
components, which ensures sparsity of the solution 
vector. In other words, L1 norm prefers the pres-
ence of a few coefficients, which contain the total 
energy of the signal, while the rest of coefficients 
are predominantly zeros. The second part of the CS 
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problem is to ensure data fidelity. The L2 norm is an 
ideal choice for ensuring consistency since the norm 
penalizes small errors relatively lesser and large er-
rors more significantly due to the quadratic nature of 
the norm. Hence, the solution to the CS optimization 
consists of two terms: an L1 norm of the transform 
coefficients to ensure sparsity, and an L2 norm of the 
measured data and its iterative approximation to ac-
count for data consistency. This paper is organized 
as follows: Section II reviews the requirements for 
the application of CS to MRI; Section III discusses 
various CS techniques such as acquisition and re-
construction techniques such as k-t FOCUSS, k-t 
BLAST, Bayesian experimental design, k-t group 
sparse, modified CS (MCS), motioncompensated 
MCS (MC-MCS), and combination of CS and PI 
methods such as SparseSENSE, phase-constrained 
CS (PC-CS) reconstruction, L1-SPIRiT reconstruc-
tion techniques, and the mask design problems; 
Section IV explores various applications of CS, i.e., 
cardiac MR, dynamic contrast enhanced MRI (DCE-
MRI), angiography, functional MRI (fMRI), MR 
parameter mapping, diffusion-weighted imaging 
(DWI), arterial spin labeled (ASL), musculoskel-
etal system, and magnetic resonance spectroscopic 
imaging (MRSI); Section V discusses the clinical 
evaluation of some of the CS applications; and Sec-
tion VI provides a few resources for open source 
software that could be used for CS implementations.

II.	 REQUIREMENTS FOR APPLICATION OF 
CS TO MRI

The implementation of CS to MRI is relatively 
straightforward. Here, one has to have a prior 
knowledge of the type of MR images he/she is going 
to acquire so that certain unique properties of that 
particular class of images can be utilized optimally, 
which is not a challenge since this information is 
typically known. For instance, the person obtaining 
an MR angiography image will know that the im-
ages resulting from MR angiography (MRA) will 
also be sparse in its native representation. This prior 
knowledge provides an idea to the CS implementer 
about the utility of application of CS to that of MR 
method. As already mentioned, MRA is sparser in 
the finite difference domain or the total variation 

(TV) norm. There are three fundamental require-
ments for the application of CS to MRI, detailed 
below.

A.	 Transform Sparsity

The fundamentals of transform sparsity have been 
described in section I.A.1. It is one of the three most 
important requirements for the implementation of 
CS. However, choosing the right transform to ex-
ploit sparsity existing in a particular class of MR 
images is a challenging task and is a field of ongo-
ing research. Hence, to achieve the purpose, 2D or 
3D wavelets are generally used, since wavelets re-
sult in good compression of medical images. Also, 
it is required to find an optimal solution to explore 
the best transform sparsity for each particular case. 
Dynamic contrast enhancement MRI (DCE-MRI) is 
one of the examples wherein spatiotemporal correla-
tions can be exploited to increase transform sparsity 
along with the use of wavelets. Thus, the transform 
sparsity is one of the requirements that allow the CS 
implementer to evaluate the sparsity of the images 
and it also provides an insight into the number of 
samples he/she needs to acquire to achieve exact re-
construction, which is completely dependent on the 
number of sparse coefficients that are enough to re-
sult in an exact reconstruction (Fig. 1).

B.	 Pseudo-Random Undersampling

An MRI scanner collects the spatial frequency in-
formation, which is called k-space. To apply CS 
to MRI, the collected k-space has to be randomly 
undersampled so that aliasing artifacts are not pro-
duced due to the nonprime nature of the vector size 
(Theorem 1.1, in Ref. 2) as noticed in the case of 
sub-Nyquist sampling. A randomly undersampled 
k‑space, as shown in Fig. 2, results in artifacts that 
are incoherent with the image and can be denoised 
to obtain the original image. The samples required to 
be acquired are typically five to eight times the num-
ber of sparse coefficients of the data set.2 Hence, the 
sparser the transformed data, the fewer the samples 
required to reconstruct. Random undersampling of 
k-space has two specific practical limitations and/
or considerations. One of the limitations is that it is 
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difficult to achieve pure random k-space sampling 
since it requires rapid switching of gradients, which 
is impractical due to the resulting eddy currents and 
related artifacts.

The second consideration arises from the fact 
that most of the energy of the data acquired is located 
in the low-frequency components. Hence, a uniform 
weighting of the samples would result in reduced 
SNR. To overcome these limitations, variable density 
pseudo-random sampling schemes have been pro-
posed and successfully implemented.8 The variable 
density pseudorandom sampling mask consists of 

more samples in the center, with fewer samples in the 
edges. This prevents the loss of SNR but it requires 
optimal gradient design and new k‑space trajectories 
to sample the chosen points in k‑space. Another ap-
proach to retain the SNR is to start from conventional 
k‑space trajectories and then introduce incoherent 
sampling in the same framework by skipping phase 
encode values, as demonstrated in Ref. 8.

A major factor in the implementation of CS 
with regard to undersampling is the dimensionality 
of the data. MR images with higher dimensionality 
(3D or higher) provide better sparsity (similar to 

(a) (b) (c)
FIGURE 1. Transform sparsity: (a) a 2D MR image of the human brain; (b) representation of the object in  

2D Daubechies wavelet transform domain; (c) a magnified view of the wavelet coefficients shown in the red  
square in (b)

(a) (b) (c)
FIGURE 2. Random sampling: (a) k-space of the brain image shown in Fig. 1(a); (b) a sampling mask showing 

the sampling locations of the k-space as white pixels while the black pixels represent unsampled locations; (c) the 
resulting minimum energy reconstruction demonstrates the resulting incoherent artifacts
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image compression) and hence these images yield 
better CS performance, i.e., CS technology is bet-
ter suited to accelerate MR acquisitions of higher-
dimensional data. This is ideal since MR scans 
involving higher-dimensional data are the ones that 
are the most time consuming.

C.	 Nonlinear Reconstruction 

The constrained optimization problem put together 
in Sections II.A and II.B can be described by the fol-
lowing equation (reproduced from Ref. 3):

	 	 (2)

where m is the desired image, y is the measured 
k‑space data, Ψ is the sparsifying transform, and 
ε is the parameter for error tolerance. This equa-
tion can be recast as an unconstrained optimization 
problem using the Lagrange method as shown in 
Eq. (3). Here, λ is the regularization parameter that 
needs to be chosen to balance the data consistency 
and sparsity terms. Equation (3) can be solved using 
an iterative nonlinear reconstruction method (see 
Fig. 3). Along with various available methods such 
as subspace pursuit, steepest descent method, etc., 
the nonlinear conjugate gradient has been well stud-
ied and applied. 

Briefly, the nonlinear conjugate gradient (NCG) 
calculates the direction of the gradient, which is 
given by the differentiation of the above equation. 
At each step, the length of the step to be taken in 
the gradient direction is given by a line-search pa-
rameter. The stopping criteria for the iterations are 
twofold, as follows: 

1.	 The difference of values of the toler-
ance parameter between successive 
iterations is negligible

2.	 The value of the tolerance parameter 
is smaller than the chosen ε value 

The precise number of iterations is problem depen-
dent, but the limiting number of iterations for an 
NCG solution is defined. The reconstructed image 
m obtained at the end of this process is the desired 
solution to the following. 

	 	 (3)

III.	 COMPRESSED SENSING TECHNIQUES

A.	 Acquisition and Reconstruction

CS has made a significant impact in the field of MRI 
to minimize the image acquisition time in the last 
few years.3 CS in MRI uses the Fourier coefficients 
(k‑space samples) to make accurate reconstructions 

(a) (b) (c)
FIGURE 3. Nonlinear reconstruction: (a) k-space of the brain image shown in Fig. 1(a); (b) a variable density 

sampling mask showing the sampling locations of the k-space with 33% sampling; (c) the resulting image 
reconstructed iteratively using Eq. (3) implemented via NCG
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from a small subset of k‑space rather than an en-
tire k‑space data. Some MR images are sparse in the 
pixel representation and other images could have 
sparse representations in the wavelet transform do-
main. According to CS theory, images with a sparse 
representation can be recovered from randomly 
undersampled k‑space data. MR images need to be 
transformed to a sparse domain to enable CS recon-
struction. We will discuss different CS techniques in 
the following paragraphs.

1.	 k-t FOCUSS

k-t space FOCal underdetermined system solver (FO-
CUSS)9 starts by finding a low-resolution estimate of 
a sparse signal, and then this solution is pruned to a 
sparse signal representation. This technique uses the 
previous iteration solution to implement the pruning 
process by scaling the current solution. Once some 
entries of the previous solution become zero, then 
these entries will be fixed to zero values. This meth-
od obtains a sparser solution with more iterations. 
These entries corresponding to the zero values on the 
original spectral support converge to zero during this 
pruning process. Hence, one of the important require-
ments of FOCUSS is a reasonable lowresolution es-
timate that provides the necessary extra constraint to 
resolve the nonuniqueness of the problem.

2.	 k-t BLAST

The only prerequisites for k-t broad-use linear acqui-
sition speed-up technique (k-t BLAST) reconstruc-
tion are spatiotemporal correlations to be present 
in the data, and these correlations to be accurately 
captured by the training scan. The training scan is 
the low-resolution scan acquired at the full tem-
poral bandwidth, which is performed either before 
(for periodic motion) or interleaved with the actual 
data acquisition. Training data have been used to 
resolve aliasing from undersampling along the spa-
tial and temporal dimensions very efficiently. In this 
technique, the information about the object is actu-
ally measured rather than simply assumed, as in the 
view-sharing approach; this method can also be suc-
cessfully applied to dynamic MRI such as cardiac 
imaging or inflow imaging.10

In dynamic MRI, data sparsity was introduced by 
applying the Fourier transformation along the tem-
poral dimension assuming that only parts of the field 
of view (FOV) change at a high temporal rate while 
other parts change slowly or remain stationary.10 CS 
was achieved by randomly skipping phase-encoding 
lines in each dynamic frame. Cardiac cine data and 
Fourierencoded velocity data of the carotid artery 
were used to test the reconstruction performance.

The k-t BLAST results in inhomogeneous distribu-
tion of error with largest errors occurring at locations 
corresponding to dynamic object edges. In contrast, 
the error in CS is more homogeneously distributed and 
smaller for highly dynamic object features.

Spatiotemporal resolution is one of the quality-
measuring metrics in dynamic MRI such as cardiac 
cine imaging or functional MRI. It was very difficult 
to acquire a whole volume image within a single 
breath hold. Various techniques were developed us-
ing parallel coil and temporal filtering to overcome 
these issues. Simultaneous acquisition of spatial 
harmonics (SMASH), generalized autocalibrating 
partially parallel acquisitions (GRAPPA), partially 
parallel imaging with localized sensitivities (PILS), 
and sensitivity encoding (SENSE) belong to PI 
techniques and unaliasing by Fourier-encoding the 
overlaps using the temporal dimension (UNFOLD) 
to remove aliasing using temporal filtering. But still 
these techniques have low SNR, and aliasing arti-
facts at high reduction factor, these drawbacks are 
overcome by using the model-based methods such 
as k-t BLAST/SENSE and k-t FOCUSS.

3.	 k-t FOCUSS for Dynamic MRI

The k-t FOCUSS technique has also been applied 
to dynamic MRI, and it has been shown to perform 
better than the k-t BLAST with the following ad-
vantages:

1.	 k-t FOCUSS minimizes the L1 norm, 
which is optimal from the CS perspec-
tive, but k-t BLAST does not minimize 
the L1.

2.	 Image estimation depends on the pa-
rameter p and value of which is 1 in 
k-t BLAST but this restriction is re-
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laxed in k-t FOCUSS, and any value 
between 0 to1 can be used. p = 0.5 in 
k-t FOCUSS performs better in stabil-
ity and reconstruction quality than the 
p = 1 in k-t BLAST.

In this technique, temporal average contributions are 
first subtracted from k-t samples and which are con-
verted to the x-f domain using the Fourier transform. 
The weighting function calculated from the equation 
15 in Ref. 11 was used first time. A power factor be-
tween 0.5 < p < 1 has been used for the reconstruction. 
Solution for p = 1 was too sparse. p < 0.5 was not able 
to remove aliasing artifacts and choice of value p = 0.5 
seems optimal in many applications once the weight-
ing matrix is constructed. The k-t FOCUSS algorithm 
was used for high-resolution dynamic MRI because 
it showed that k-t FOCUSS was optimal from a CS 
perspective.12 A method was proposed based on the ex-
tension of k-t FOCUSS to a more general framework, 
in which the prediction provides initial encoding and 
residual encoding takes care of the remaining residual 
signals. This technique uses a motion estimation and 
compensation scheme for sparsifying the signals and 
also provides the best undersampling pattern for CS. 
The proposed method uses the idea from video com-
pression and the MPEG standard. 

Non-Cartesian k-space trajectories were used 
for the undersampling of k-space to accelerate ac-
quisition. Optimization of the k-space trajectory 
for sparse nonlinear reconstruction was one of the 
challenges in CS and the mask designing problem is 
discussed in further detail in Section III.C. This has 
resulted in the Bayesian approach for mask design.

4.	 Bayesian Experimental Design

The objective discussed in the previous section has 
led to the Bayesian experimental design. Bayes-
ian experimental design was used for optimization 
of k-space trajectories for CS.13 The technique was 
proposed for the reconstruction of sparse MRI sig-
nal using standard signal processing primitives for 
the efficient use of k-space trajectories, which was 
demonstrated for Cartesian and spiral but also ex-
tendable. Further, the mask design problems are dis-
cussed in Section III.C in detail.

Multiple acquisitions of the same region of in-
terest under several different contrast preparations 
are done in clinical imaging with structural MRI.14 
Reconstruction algorithm based on Bayesian CS to 
jointly reconstruct a set of images from undersampled 
k-space data with higher fidelity than when the images 
are reconstructed either individually or jointly. Image 
gradient coefficients are calculated for each image. 
All of the images from the same anatomical region, 
but with different contrast properties, contribute to 
the estimation of the hyperparameters, and variance 
of image gradients across contrasts for a single volu-
metric spatial position is single hyper-parameter. The 
k-space data belonging to each image are used inde-
pendently to infer the image gradients. Thus, com-
monality of image spatial structure across contrasts 
is exploited without the problematic assumption of 
correlation across contrasts. 

CS reconstruction for dynamic cardiac MRI 
has been improved by incorporating additional in-
formation on the support of the dynamic image in 
x-f space based on the theory of CS with partially 
known support by using technique k-t iterative sup-
port detection (k-t ISD).15 This technique uses an 
iterative procedure for alternating between image 
reconstruction and support detection in x-f space. 
Support information from the previous iteration was 
used to apply a truncated L1 minimization to obtain 
the reconstructed image in x-f space. The method 
alternates between CS reconstruction with partially 
known support (PKS) and adaptive learning of sup-
port knowledge used in the next iteration by thresh-
olding the reconstruction. 

Another CS technique proposed to accelerate 
the dynamic MRI, which makes use of the struc-
ture within the sparse representation of a signal by 
enforcing the support component in the form of 
groups, is called k-t group sparse.16 Support esti-
mation, group assignment, and signal recovery are 
the three key steps in this technique. In this work, a 
training scan was used to identify the support region 
in the x-f space. A threshold is set above the noise 
level in the x-f space and elements with intensities 
above the threshold constitute the support region, 
then support in x-f space is estimated from the previ-
ous step to assign elements in x-f space to distinct 
groups. Once the groups are assigned to all elements 
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in the x-f space, the signal recovery is done by the 
group sparse formulation. However, the use of this 
technique in dynamic MR applications has been lim-
ited in terms of the maximum achievable reduction 
factor. In general, noiselike artifacts and bad tem-
poral fidelity are visible in standard CS MRI recon-
structions when high reduction factors are used. To 
increase the maximum achievable reduction factor, 
additional or prior information can be incorporated 
in the CS reconstruction. This technique exploits the 
structure within the sparse representation of a signal 
by enforcing the support components to be in the 
form of groups. These groups act like a constraint in 
the reconstruction. Figure 4 depicts an illustration of 
the group assignment step of the proposed method 
(a: 8 × 8 sparse image, b: group assignment matrix 
showing the group number to which element/pixel 
at the respective location is assigned).

The iterative soft thresholding (IST) framework 
has been used for accelerated MRI using CS.17 This 
technique is data driven and no tuning of free pa-
rameters is required. A Nesterov-type optimal gradi-
ent scheme for iterative update along with standard 
wavelet-based adaptive denoising methods were 
combined, which results in a leaner implementa-
tion compared with the nonlinear conjugate gradi-
ent method. The technique was evaluated on T2 

weighted brain data, and vascular 3D phase contrast 
data show that the image quality of reconstructions 
is comparable with those from an empirically tuned 
nonlinear conjugate gradient (NLCG) approach.

5.	 Modified CS

In modified CS, it is assumed that the support (lo-
cation of nonzero coefficients) of the signal in the 
sparse domain is partially known and can be used 
in reconstructing the sparse coefficients with greater 
accuracy.18 Partial knowledge of the signal support 
can be found a priori in many signal processing ap-
plications. For example, it is common knowledge 
that the locations of the significant Fourier coeffi-
cients of the signal are present at the lower frequen-
cies. Such partial knowledge, when introduced into 
an L1 minimization objective, results in a sparser so-
lution that is better than conventional CS solutions 
at high acceleration factors. Thus, the modified CS 
problem introduces the partial support informa-
tion and aims to find the sparsest signal outside the 
known support while satisfying the data constraint. 

A time series extension of this framework is 
named dynamic modified CS, which assumes that 
support changes occur slowly in the time series. 
Thus, the known support for reconstructing the 
current frame is assumed to come from the support 
estimate of the previous frame. This knowledge is 
then used in a modified CS framework to find the 
signal that satisfies the data constraint and is spars-
est outside this known support. The dynamic modi-
fied CS algorithm is stated in Ref. 18. The dynamic 
modified CS works better than conventional CS at 
high acceleration factors. One such technique called 
motion-compensated modified CS combines motion 
estimation/compensation and modified CS to create 

FIGURE 4. Formation of groups using threshold values
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an algorithm that aims to improve the modified CS 
reconstruction.

6.	 Motion-Compensated Modified CS 
(MC-MCS)

The dynamic modified CS algorithm heavily re-
lies on the assumption that signal support changes 
slowly over time, i.e., dynamic MCS works well. 
This assumption is violated in image sequences as 
presence of motion causes significant changes in 
the support set of adjacent image frames. If these 
motion differences can be corrected, the modified 
CS framework can be exploited to provide more ac-
curate support information. In Ref. 19, motion esti-
mation and compensation methods frequently used 
in video processing were used to correct for motion 
and provide a better estimate of the support. 

For MC-MCS, two inputs are required, i.e., a 
noisy measurement and the desired number of mo-
tion compensation iterations. The reconstructed 
signal  is the output. The dynamic MCS is run to 
calculate estimates of the sparse representation  
for all t. Initially, the estimate of the image frame is 
calculated and corresponding vectors are computed. 
Then, the calculated values are updated. 

B.	 Combination of CS and PI

As already mentioned, CS can improve the spatial 
and/or temporal resolution of the acquired images 
by reducing the number of necessary samples for 
image reconstruction. Using CS, a sparse signal can 
be recovered from very few samples and thus re-
duces the scan time without the requirement of im-
proved gradient performance.20

Parallel MRI (pMRI) is a method that is used to 
reduce the acquisition time by using multichannel 
receiver arrays to acquire the MR signal simultane-
ously from several receiver coils, which provides 
a substantial increase in imaging speed.21 Data re-
ceived simultaneously by several receiver coils with 
distinct spatial sensitivities are used to reconstruct 
the values in the missing k-space lines. In pMRI, 
the number of samples is reduced using multiple 
channels for simultaneous data acquisition. The re-
duction in the number of samples is limited by the 

number of channels and SNR. The application of 
CS to PI has been investigated to achieve an even 
higher imaging speed. 

3D MRI is one of the important areas for inves-
tigation of anatomy, function, and pathophysiology. 
3D imaging provides the quantitative volumetric 
information of the region of interest when scanned. 
3D MRI scans can be accelerated by using time-
efficient sampling, undersampling of k-space, and 
advanced reconstruction methods that remove alias-
ing artifacts.22 PI can effectively remove aliasing 
artifacts by the use of appropriate receiver coil ar-
rays. By combining PI with CS, this purpose can be 
achieved. Here, a phase-constrained CS (PC-CS) re-
construction to imaging with multichannel receiver 
coil arrays (PI) was applied, which first estimates 
phase maps for each coil element, and then recon-
structs the final image iteratively. Multicoil PC-CS 
reconstruction was performed by knowing the es-
timates of the phase and magnitude coil sensitivity 
maps.

L1-SPIRiT reconstruction is one of the methods 
to reconstruct MR images using the CSPI frame-
work23 involving the combination of CS with PI. It 
is a compressive sensing extension to the SPIRiT 
(iterative self-consistent parallel imaging recon-
struction) PI reconstruction. SPIRiT is based on 
GRAPPA but takes slightly different approach com-
pared to GRAPPA. The approach splits the consis-
tency term into two: consistency with data acquisi-
tion and consistency with calibration.

1.	 L1 Regularization

Consider the optimization problem,

	 (4)

Function R(x) is a penalty function that gives prior 
knowledge. The above formula is very flexible be-
cause the penalty can be applied on the image as 
well as k-space data. Taking W as a data weighting 
function, {} as a finite-difference operator, and  
Ψ {} as a wavelet operator, here are some examples 
of potential penalties:

R(x) = ||x||2, Tikhonov regularization
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R(x) = ||Wx||2, weighted Tikhonov regularization

R(x) = ||  {IFFT(x)}||1, total variation (TV)

R(x) = || Ψ {IFFT(x)}||1, ℓ1 wavelet.

The last two are L1 penalties and are very much 
popular due to the theory of CS. The data were 
processed in the following way. Each data set was 
reconstructed several times using traditional GRAP-
PA, each time with a different kernel size (5 × 5, 
7 × 7, and 9 × 9).24 The GRAPPA kernels were cali-
brated for each unique local sampling pattern set. In 
addition, each data set was reconstructed using the 
k-space-based Cartesian SPIRiT with equality data 
consistency, again with 5 × 5, 7 × 7, and 9 × 9 kernel 
sizes. The SPIRiT reconstruction was implemented 
using the LSQR conjugate gradient algorithm. To 
show the dependency of the reconstruction on the 
number of iterations, the results at the sixth, eighth, 
tenth, twelfth, and fourteenth were saved.24 Finally, 
each data set was reconstructed with SPIRiT with 
L1-norm wavelet regularization. The wavelet regu-
larization parameter was empirically set to 0.015. 
For each of the above experiments, the resulting 
reconstructed coil images were combined with the 
square root of the sum of squares. Once the recon-
structions were completed, the mean difference er-
ror with the fully sampled data set was calculated. 
The standard deviation for each pixel across the 100 
scans was computed and normalized by the standard 
deviation of the pixels in the full set (taking into 
account the reduced scan time) to obtain empirical 
noise amplification (g-factor maps) estimates.

L1-SPIRiT provides accelerated sampling, re-
construction, and the incoherence required for CS, 
which is also compatible to PI. SENSECS and CS-
SENSE are the methods that perform the overall 
reconstruction in two cascading steps. SENSECS is 
an application of CS in parallel MRI. It exploits both 
the image sparsity and coil sensibility encoding25 
by exploiting the complementary characteristics of 
SENSE reconstruction and CS reconstruction. In 
SENSECS, SENSE is used to obtain an image esti-
mate and then the artifacts are removed by using the 
prior estimate. In CSSENSE, CS is first used to ob-
tain intermediate stage aliased images whose alias-

ing artifacts are removed by SENSE. SENSECS 
outperforms CSSENSE due to the fact that the final 
CS stage reconstruction in SENSECS is more error 
forgiving than the final stage SENSE reconstruction 
in CSSENSE. Also, SENSECS is more computa-
tionally efficient in terms of sampling pattern design 
and image reconstruction. 

C.	 Mask Design Problems

CS can reduce imaging time in many MRI applica-
tions significantly by lowering the number of sam-
ples taken for image reconstruction. Samples are se-
lected based on the sampling trajectories. The time 
course of filling up the lines in k-space is called the 
k-space trajectory. There are diverse types of sam-
pling trajectories such as Cartesian, radial, and spi-
ral trajectories, as shown in Fig. 5.

The most commonly used trajectory is the Car-
tesian grid since it is robust in data collection while 
also being very practical to implement and simple 
to reconstruct.8,26 However, there are certain medi-
cal imaging applications that require high spatial 
and/or temporal resolutions. Cartesian imaging does 
not provide the adequate solution to such necessi-
ties since it gathers the data with a uniform weight-
ing throughout the Cartesian grid. In application 
for CS, Cartesian trajectories show to be coherent, 
compared to random k-space sampling. The non-
Cartesian approaches (radial and spiral) can be used 
to gain higher SNR since the sampling of the center 
of k-space typically determines the SNR. The den-
sity of k-space is however nonuniform since most 
of the information is typically contained in the low-
frequency components that are in the center of the 
k-space rather than the high-frequency components 
that lie toward the edges of the grid. This has given 
rise to research on non-Cartesian trajectories. The 
radial acquisitions are less susceptible to motion ar-
tifacts than Cartesian trajectories and can be signifi-
cantly undersampled.8 In the case of spiral trajectory, 
gradient system hardware is efficiently used. This 
trajectory is used for real-time and rapid imaging 
applications. The approach of utilizing trajectories 
suited to the density of the k-space aids in quicker 
sampling of the more important data points and 
hence reduces acquisition time. The sampling mask 
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is created by a matrix of ones and zeroes. The mask 
will sample the k-space only where its value is  1. 
Consider the mask shown in Fig. 6. It is a random 
mask with pink dots representing ones and blue dots 
representing zeroes. The mask samples the k‑space 
only where its value is 1δ(u – uj, v – vj).

Figure 6 shows the original PSF and the corre-
sponding reconstructed PSFs obtained by applying 
a random mask, uniform mask, Poisson mask, and 
variable density mask, respectively. From Fig. 6, 
we can observe that as the randomness in the mask 
increases, the aliasing artifacts reduce.

IV.	 APPLICATIONS OF COMPRESSED SENS-
ING

A.	 Cardiac MR

Diseases of the heart including myocardial infarc-
tion (MI) and heart failure continue to be a leading 
cause of morbidity and mortality.27 Cardiac MRI 

(CMR) gives high resolution as well as high soft 
tissue contrast. CMR is used to image the heart in 
terms of LV structure and also to identify the extent 
of MI (Ref. 28) and to measure myocardial perfu-
sion. In myocardial perfusion imaging by magnetic 
resonance, MR contrast agent injected into the myo-
cardium is monitored over time and has become 
as an alternative to the traditional technique such 
as single-photon emission computed tomography 
(SPECT). The major constraints of cardiac perfu-
sion imaging are temporal and spatial resolution. 
These constraints on MR imaging speed may be re-
duced by use of the PI technique. Another approach 
for accelerated imaging is compressed imaging.29

The work reported in Ref. 29, i.e., fourfold ac-
celerated cardiac perfusion MRI, has been demon-
strated with the CS technique exploiting the sparsity 
of the dynamic image set in x-f space and applying 
k-t random undersampling. A joint reconstruction 
approach named k-t JOCS (joint CS) using Fourier 
transform in time and spatial total variation was pro-

FIGURE 5. k-space trajectories: (a) Cartesian; (b) radial; (c) spiral with increased sampling in the center
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posed30 to combine CS and PI for highly accelerated 
cardiac perfusion MRI.

Therefore, a regularization parameter can be 
chosen to minimize the RMSE of spatial signal in 
ROI. The overall image quality is reduced with larger 
noise level 0.000121. Thus, CS can be used in cardiac 
MR and also TV in CS provides better regularization 
when the overall image quality is concerned com-
pared to wavelet-based regularization. It must also be 
noted that always using the RMSE of overall signal is 
not the best method, since the reconstruction fidelity 
of ROI is required (see Table 1).

B.	 Dynamic Contrast Enhanced MRI

Dynamic contrast enhanced (DCE) magnetic reso-
nance imaging (MRI) is an effective noninvasive 

tumor diagnosis method. In this method, images are 
obtained before and after the contrast agent is inject-
ed, and the number of images is obtained typically 
at uniform time intervals. The quantitative analysis 
of this agent obtained from different images gives 
useful information about pharmacokinetics, which 
can be used to characterize tumors (malignant and 
benign).31

In order to obtain DCE-MRI images, high tem-
poral and spatial resolutions are required. Spatial 
resolution provides morphological information 
of tumors, and temporal resolution is required for 
kinetic analysis. A fast imaging technique is there-
fore required to acquire DCE-MRI images. CS has 
been effectively used for dynamic MRI.32 In this CS 
method, a reference image is required before the 
contrast agent is injected. The dynamic data frames 

FIGURE 6. (a) Random mask; (b) reconstructed PSF using (a); (c) uniform mask, (d) reconstructed PSF using (c); 
(e) Poisson mask; (f) reconstructed PSF using (e); (g) variable density mask; (h) reconstructed PSF using (g)
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are undersampled randomly and can be used to ac-
quire more images per unit time.32 The image can 
be reconstructed from the dynamic image using the 
following model:32

	 ε(Idiff) = ||FIdiff||2 + λL1|WIdiff|1 + λTV(Idiff)	 (5)

where F is the forward Fourier transform matrix, 
λL1 and λTV are two regularization parameters, and 
W is a sparsifying transform.

Three different keyhole methods based on the 
shape of the sampling mask were implemented in 
Ref. 33. The first method contains a sequence cen-
tered at the center of the k‑space, the second method 
contains the number of phase encode lines in the 
center of the k‑space (key lines), and the third mask 
is based on the locations above a specific threshold 

of the absolute value of the k‑space of the precon-
trast image (key thesis).

CS has also been performed on three different 
masks (see Fig. 7). The first mask was formed by 
the use of points in the k‑space with a high density 
weighting at the center of the k‑space based on a 
Gaussian probability distribution function (pdf). In 
the second method, the mask was obtained by the 
phase encode lines based on a Gaussian pdf, and the 
third mask is the same as key thresh (cs_gthresh). 
These masks were generated for acceleration factors 
of 2, 3, 4, and 5. The mean RMSE values follow the 
trend, key lines > key thresh > key hole > cs_gauss > 
cs_gthresh > cs_glines.33 Hence, in Ref. 33, clearly 
it has been shown that CS can be used as a fast im-
aging technique in DCE MRI to obtain increased 
spatial and temporal resolution.

TABLE 1. RMSE for the overall signal (RMSE-All) and for the averaged ROI signal (RMSE-ROI) when each 
method is optimized to minimize the overall RMSE and ROI RMSE (from Ref. 30) 

Method Optimized for overall
RMSE-All     RMSE-ROI

Optimized for ROI
RMSE-All     RMSE-ROI

TV 0.0228        0.000121 0.0284        0.000109
DWT 0.0408        0.000150 0.0665        0.000055
DFT 0.0289        0.000133 0.0348        0.000121

FIGURE 7. (1) Panel showing the different masks used in the study at 4x; ( 2) (a): A a post-contrast image of 
a representative data set of the original and for the 6 six masks at 4 four given acceleration factors, ; (b) Ktrans  
Maps of the post contrast image for the original and the various masks at the given acceleration factors. ; (c) 

corresponding ve maps
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C.	 Angiography

Angiography or arteriography is a medical imaging 
technique used to visualize the inside, or lumen, or 
blood vessels and organs of the body, with particular 
interest in the arteries, veins, and the heart cham-
bers. This is typically performed by injecting a con-
trast agent into the blood vessels and following the 
presence of contrast. Another MRA method is the 
time of flight [(TOF] ) angiography, which depends 
on the rate of signal based on the flow-related en-
hancement of spins. These spins give more signal 
than that of stationary spins.  

In angiography, important information is pres-
ent in the dynamics of the contrast agent. Captur-
ing the dynamics requires high spatial and temporal 
resolution. A CS-based MR angiography scan can 
be used to improve spatial resolution and temporal 
resolution by undersampling at the expense of un-
dersampling artifacts. Angiography data is sparse in 
the identity transforms domain, and angiograms are 
sparsified very well by both wavelet transform and 
by finite differences.3 

In Ref. 34, 10 reconstructions with 10 different 
computed undersampling masks were generated. 
All the masks originate from same pdf and were de-
signed to generate a sampling pattern covering 25% 
of the k‑space. NMSE was found to be 0.3 ± 0.07 
for CS reconstruction and 1.37 ± 0.08 for zero filling 
(ZF) reconstruction. Thus, CS performs better than 
ZF reconstruction for low sampling rate. The quality 
of reconstruction was evaluated by means of NMSE 
for different TV weights between 0 and 10 and a 
sampling percentage of 25%. The value 0 gives an 
NMSE of 1.232, thus showing the importance of 
term limiting total variation. Integers ranging from 
1 to 10 with increment of 1 yield an average NMSE 
of 0.3 ± 0.03.The NMSE decreases as sampling rate 
increases for both CS and ZF reconstruction. But er-
ror with CS reconstruction is much lower than the 
error with ZF reconstruction. Also, NMSE for im-
age data reconstructed with CS is much lower than 
NMSE for MIP data reconstructed with ZF. Under-
sampling is required for high temporal and spatial 
resolution; therefore, CS reduces the artifacts due 
to undersampling. CS reconstruction was found to 
be stable with regard to the sampling pattern and 

reconstruction constraints, and the accuracy of CS 
reconstruction in angiographic data was better than 
the ZF reconstruction.

D.	 Functional MRI

Functional MRI (fMRI) is a technique to detect the 
activated area in the brain with respect to a given 
task by measuring the change of blood oxygen level 
dependent (BOLD) contrast. The change of BOLD 
signal is very small compared to the MR signal and 
therefore fast scans are required to prevent a noisy 
signal due to subject motion.35

fMRI has been positioned as a standard tool for 
the functional study of brain. fMRI using echo pla-
nar imaging (EPI) has a spatial resolution of 3 × 3 × 
4 mm and temporal resolution of 1–3 s. This demand 
of high temporal and spatial resolution requires fast 
acquisition time. However, typically a PI technique 
such as SENSE is used for accelerated fMRI. The 
reconstructed image using SENSE from accelerated 
measurements when compared with fully sampled 
images using conventional method gives significant 
difference. Therefore, a CS-based algorithm called 
k-t FOCUSS is applied to fMRI, and then the re-
ceiver operating characteristics (ROCs) of fMRI of 
the k-t FOCUSS and those of fully sampled results36 

can be compared.
As an example of fMRI, a right finger tapping 

experiment was performed in Ref. 36, in order to 
evaluate the performance of k-t FOCUSS in fMRI. 
In this method, echo planar imaging (EPI) was used 
with TR/TE = 3000/35 ms and flip angle = 80 deg. 
The k‑space data are acquired on a 64 × 64 matrix 
size and 35 slices with 4 mm slice thickness. The 
number of phase encoding was reduced by two- 
and fourfold for each time frame while keeping the 
number of blocks with 10, in order to implement a 
high temporal resolution fMRI. A random sampling 
pattern was employed, the low-frequency region 
was fully sampled, and data were used to obtain a 
Karhunen-Loeve transform (KLT).

E.	 MR Parameter Mapping

Different tissues in the body can be distinguished 
in MRI by their intrinsic MR parameters such as 
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proton density, longitudinal relaxation time (T1), 
and transversal relaxation time (T2). The values of 
these parameters give more accurate diagnostic in-
formation.

But MR parameter mapping requires a long 
scan time due to which T1 and T2 are estimated only 
at two or three data points, thus reducing the accu-
racy. A higher number of measurements is required 
to measure the data accurately; therefore CS can be 
used for reducing the scan time37 in multipoint MR 
parameter mapping.

In Ref. 37, T1 and T2 data in the brain were 
acquired in healthy volunteers, and measurements 
were performed on 1.5 T. Data sets were unders-
ampled retrospectively with reduction factors of 2, 
4, 6, and 8 for T1 and 2, 3, 4, and 5 for the T2 data set. 
The undersampled data were reconstructed using 
three different models (Nyquist sampling, conven-
tional CS, and dictionary model37). The dictionary 
consisting of 100 atoms was trained for each model. 
The reconstructed images and resulting maps were 
compared with full sampling.

Another MR method exploiting diffusion in-
formation is diffusion weighted imaging (DWI). A 
specific application for DWI is neoadjuvant che-
motherapy (NAC) that is administered to patients 
with locally advanced breast cancer to treat at an 
early stage. Also, NAC is offered to the patients 
with early stage tumors to increase the possibili-
ties for breast-conserving surgery. During the NAC 
treatment, response may be monitored in vivo38 to 
obtain individualized treatment, i.e., by modifying 
ineffective treatment. The early treatment response 
can be assessed by the use of MRI examinations. 
Diffusion weighted MRI (DWMRI) can be investi-
gated as a possible predictive marker for treatment 
response. In DWMRI, signal attenuation depends on 
diffusion of water molecules in tissues. The apparent 
diffusion coefficients (ADCs) are calculated from 
two or more images with different degrees of diffu-
sion weighting. The CS challenges for this method 
follow that of DTI in calculation of the parametric 
ADC maps.

Thus, a learned overcomplete dictionary was 
applied to sparsify the data, and also applied to MR 
relaxation parameter mapping. Hence CS reduces 
the acquisition time so that data can be measured 

in multiple points. The sparsity required for CS is 
obtained using a learned overcomplete dictionary.

F.	 Arterial Spin Labeled MRI

Dynamic MRI provides a set of morphological im-
ages and requires high special and temporal reso-
lution. But because of the long acquisition time 
of MRI, either of the two has to be compromised. 
Therefore, many techniques have been developed to 
accelerate MRI; CS is found to be the best to accel-
erate the acquisition speed through undersampling 
data in the k-t space. 

CS requires the data to be sparse in one or the 
other domain. There are diverse transform domains 
in which images appear to be sparse. All the trans-
forms that exist are linear, but much sparser images 
can be obtained using nonlinear transforms leading 
to complicated reconstruction. The kernel-based 
method allows a nonlinear algorithm to be imple-
mented in a linear algorithm.39 This kernel-based 
method can be applied to dynamic reconstruction.

The performance of the kernel-based method 
on arterial spin labeled (ASL) perfusion data on calf 
muscles and myocardium in Ref. 39 was evaluated. 
In this method, entire k-space data is required and 
then it is randomly undersampled retrospectively. 
A net reduction factor of R = 2 was used for calf 
muscle data and 2.5 for myocardial data. Since the 
ASL-based perfusion images have abrupt variation 
time, it is difficult to maintain such variation in CS 
reconstruction. The kernel-based method as well as 
a conventional CS was used to reconstruct the image 
sequence.

G.	 Musculoskeletal system

A musculoskeletal system (also known as locomotor 
system) is an organ system that gives animals (and 
humans) the ability to move using the muscular and 
skeletal systems. The musculoskeletal system pro-
vides firm support, stability, and movement of the 
body. This system describes how bones are con-
nected to other bones and muscle fibers via connec-
tive tissue such as tendons and ligaments. The bones 
provide the stability to a body. Muscles keep bones 
in place and also play a role in movement of the 
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bones. A long acquisition time is required to acquire 
muscle images in MR imaging techniques. Hence, 
CS is used to reduce the acquisition time.

Concurrent dephasing and excitation (CODE) 
is a 3D highly asymmetric radial echo MR imaging 
technique that allows for fast, short, T2-sensitive 
MR imaging with reduced motion artifacts and re-
duced signal dynamic range.39 CS can be used to 
accelerate CODE acquisitions of the human knee. 
The CODE MRI data is sparse in the total variation 
transform domain and the artifacts may be incoher-
ent in that domain. It is important to use a 3D total 
variation (TV) transform to exploit the sparsity in 
all three dimensions and therefore it is used in the 
reconstruction. The following equation can be used 
to estimate the image:

argminm ||Fum – y||22 + λTV TV3D(m)                  (6)	

where m is the MRI volume, y is the measured data, 
Fu is the undersampled Fourier operator, and λTV is 
the regularization parameter.			 

In Ref. 40, the CS CODE MRI was performed 
through the reconstruction on five human knee MRI 
data. All the data was acquired on a Siemens 3.0T 
Magnetom Trio. For the in vivo data, the TR was 
3.4 ms and nominal flip angle of 5, number of pro-
jections was 128,000 (100,000 in one case), and the 
FOV was chosen to cover the knee, and acquired 
using a transceiver knee coil. Four data sets had ma-
trix sizes of 256 × 256 × 256, while one of them had 
dimensions of 379 × 379 × 379. For CS reconstruc-
tion, the acquired data was undersampled through 
retaining projections randomly and the k-space was 
gridded and Fourier transformed with density com-
pensation (zfwdc) and normalized. This was used as 
the initial estimate of the volume that was iteratively 
reconstructed using a custom implementation of a 
nonlinear conjugate gradient algorithm to solve (6) 
using a value of 0.005 for λTV. This value was fixed 
for all reconstructions of the knee data sets. This was 
done to ensure consistency in comparative analyses. 
The rms error (RMSE) weighted by the number of 
voxels in each data set was used to measure the er-
ror, for each acceleration factor of pooled in vivo 
data. The CS reconstruction was performed for ac-
celeration factors of 2, 3, 4, and 5x. For solving (6), 

a total of 16 iterations were used. All implementa-
tions were done using Matlab, (Mathworks, Inc., 
Natick, Massachusetts).

The CS CODE MRI results for a human knee are 
shown in Fig. 8. The effect of iterative reconstruc-
tion for the CS CODE data is shown in the image. 
The original reconstruction (1x) using the full k-space 
data can be seen at the top of Fig. 8. The zfwdc images 
for acceleration factors of 2, 3, 4, and 5 are shown in 
the first column of images, while the second column 
shows the corresponding CS reconstructions. It can 
be clearly seen that the zfwdc images (a) contain inco-
herent noise removed by the reconstruction resulting 
in (b). The effect of CS reconstruction can be shown 
by the line intensity profile from the images shown 
by red line on the image and the same is shown in 
the adjacent graph. The magnified images of the cen-
tral slice in the sagittal plane as shown in Fig. 8(c) 
to evaluate reconstruction of fine structures important 
in musculoskeletal studies. The RMSE values for the 
accelerations chosen for reconstruction and is <0.02 
for 5x as well, as shown in Fig. 9. Thus, the appli-
cation of CS to accelerate CODE MRI of the knee 
can be shown on five in vivo data sets with fivefold 
acceleration and reduction in noise while maintain-
ing low reconstruction error as shown by computed 
RMSE values. 

H.	 MRSI

Malignant prostrate and brain tumor are character-
ized by increased levels of choline. Brain tumors also 
lead to decreased levels of N-acetylaspartate (NAA) 
and creatine, which means the choline-to-NAA index 
can be used as a cancer biomarker. Also a biomarker 
for prostrate cancer is the ratio of sum of choline and 
creatine to citrate. The metabolic abnormality and 
the changes in the region originally outside the mor-
phology lesion can be observed by using multivoxel 
MR spectroscopy. But a longer acquisition time is the 
major disadvantage of multivoxel MR spectroscopy. 
Hence, compressive sensing can be used in MR spec-
troscopy to reduce the acquisition time.  

In Ref. 41, CS reconstruction was applied to 
1H MRSI for in vitro phantom, in vivo brain with 
normal (N = 6), cancer (N = 3), and prostate cancer 
(N = 2) data sets for acceleration factors of 2, 3, 4, 5, 
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FIGURE 8. Line intensity profile of a symmetrical feature in an axial slice shown in the top panel: (a) the zfwdc 
images for the accelerations shown; (b) the corresponding reconstructions and the plot of line intensities adjacent 

to the images; (c) a magnified view of the original and reconstructed images of the center slice in the sagittal 
plane40

and 10. The error of reconstruction is quantified by 
the RMSE metric. 

To evaluate the efficiency of the reconstruction, 
importance was given to the minimal postprocessing 
of the original data and reconstructed data. Follow-
ing are the processing steps that were applied to the 
MRSI data: (a) apodization, (b) baseline correction, 
(c) removal of water peak, (d) zero-order phase cor-
rection, and (e) generation of metabolite maps.

Figure 10(a) shows the full k-space reconstruction 
of a prostate cancer MRSI data set. From Fig 10(b), 
it can be seen that reconstructed spectrum from the 
MRSI data set are comparable to the original data at 
5x. The similarity between the reconstructed and the 
metabolite maps for the choline and citrate for both 
acceleration factors is shown in Fig. 10(c). Also, it 
can be seen that the reconstruction spectrum displays 
less noise compared to the original spectrum. This is 

because of the denoising ability of the wavelets and 
because of the smoothing effect of the TV in the re-
construction. Figure 11 gives the comparison of the 
reconstruction for different MRSI data. Clearly, it can 
be seen that RMSE values are <0.03 at 5x. The 10x 
case gives the limit of the implemented CS recon-
struction technique. Thus, CS is successfully applied 
to different types of MRSI data and the quality of re-
construction is quantified by reconstruction error and 
metabolite maps that show the high fidelity compared 
to the original data. Therefore, these results41 indicate 
that compress sensing can be used in MRSI to reduce 
acquisition time by 80%.

V.	 CLINICAL EVALUATION OF CS APPLICA-
TIONS

Clinical evaluation of L1 SPIR-iT (Ref. 4) was 
done on patients referred for routine contrast agent 
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FIGURE 9. Voxel-weighted RMSE values for the reconstructions of the five knee data sets over acceleration factors 
of 2, 3, 4, and 5x as compared to 1x

FIGURE 10. (a) Plot of the spectra of a representative prostate cancer MRSI at 1x (full k-space reconstruction); 
(b) an acceleration factor of 5 as compared to the original MRSI data (1x). Prostate cancer (shown in the red voxel) 

is characterized by increased choline (Cho) and reduced citrate (Cit) levels when compared to the metabolite 
profile of a normal prostate tissue (shown in green). (c) shows the Cho and Cit metabolite maps for the prostate 

cancer data at acceleration factors 1 and 5. The yellow boxes on the metabolite maps represent the location of the 
prostrate cancer.41

enhanced cardiovascular MR imaging, contrast-
enhanced abdominal MR imaging, MR cholangio-
pancreatography, and knee MR imaging. Single 3D 
spoiled gradient-recalled acquisition in the steady 
state with Poisson disk sampling was obtained, 

with outer acceleration the degree at which under-
sampling is done outside of the central calibration 
region of the k-space. Gadolinium-based contrast 
agent was injected to acquire cardiovascular and 
abdominal acquisition. Highest acceleration was 
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used to find size of the voxel, and knee examina-
tions were performed without gadolinium-based 
contrast agent, and acceleration was used to de-
crease image time. 

Two sets of images were reconstructed using 
standard PI and autocalibrating reconstruction for 
Cartesian sampling.4 The 7 × 7 × 5 kernel was used 
for the above-mentioned and L1 SPIR-iT method, 
with L1 penalty parameter = 0.015. PI alone was 
generated on the imager and then transferred to the 
picture archiving and communication system, where 
as L1 SPIR-iT was reconstructed in software pro-
gramming language (Matlab; The Mathworks Inc, 
Massachusetts) and then transferred to the picture 
archiver. Two board-certified radiologists qualified 
in pediatric radiology (five and 20 years of clinical 
experience and MR imaging, respectively) viewed 
the two image series for each of 34 examinations in 
34 patients (19 male and 15 female patients; mean 
age, 8.1 years; range, 0–17 years). The image qual-
ity of each image series was evaluated and rated by 
radiologist using a preference examination scale. 
Statistical analysis for the reconstructed image was 
done by using an exact Bowker test of symmetry. 
Statistical analyses were performed with statistical 
software on different method and different types..

Thirty-four examinations were done,4 includ-
ing L1 chest MR angiographic, two abdominal MR 
angiographics, one extremity MR angiographic, one 
extremity MR venographic, six abdominal, five MR 
cholangiopancreatographic, and eight knee cartilage 
examinations on female patients (age range of 2–17 

years) and male patients (age range 0–17 years). CS 
results were rated good and consistent in most of the 
examinations than in the autocalibrating reconstruc-
tion. A total of 325 structures were evaluated and ap-
proximately one-half of all structures were believed 
to have visual improvement and also not degraded 
by noise. Small structures, such as peripheral pul-
monary arteries, and also soft tissue contrast was 
preserved in CS. A combination of CS and PI results 
in better reconstruction for all types of MR imaging 
including contrast-enhanced MRI using gadolinium 
as contrast agent, even in children, without sup-
pressing the anatomic detail. 

Low-power adiabatic pulses and a fast spiral 
acquisition technique were used to improve the MR 
spectroscopic imaging with more accurate localiza-
tion and faster imaging.42 The proposed technique 
was clinically evaluated on phantoms, five healthy 
volunteers, and five patients having glioblastoma 
using a 32-channel head coil on 3T MRI scanner. 
Localized adiabatic spin echo refocusing (LASER) 
by using adiabatic gradient-offset independent adia-
baticity wideband uniform rate and smooth trunca-
tion (GOIA-W) was used for excitation with pulses 
with 3.5 ms duration, 20 kHz bandwidth, 0.81 kHz 
amplitude, and 45 ms echo time. After LASER 
excitation, conventional phase encoding (PE) was 
performed. Spectra acquired at similar spatial and 
temporal resolution using spiral encoding were 
compared with PE. Clinical evaluation proved that 
the spectroscopic images acquired at low spatial 
resolution was achieved four times faster, and at 

FIGURE 11. Graph of RMSE values for the different MRSI data used in the study as a function of acceleration 
factors of 2, 3, 4, 5, and 10
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higher spatial resolution, images were acquired two 
times faster using spiral protocol than the elliptical 
PE protocol. A SNR of 5 was obtained for the spiral 
protocol, which was adequate for distinguishing me-
tabolites from noise.

CS and PI were combined by merging the k-t 
SPARSE technique with SENSE reconstruction 
to accelerate perfusion imaging.43 Distributed CS 
theory framework has been proposed to understand 
the combination of k-t SPARSE with SENSE. The 
proposed framework identifies PI as a distributed 
multisensor implementation of CS, which estimate 
the feasible acceleration for the combined approach. 
First-pass cardiac perfusion MRI was performed on 
both male and female healthy volunteers (two males; 
ages 32 and 23) and one patient (male, age 38), with 
contrast agent. The proposed work demonstrates 
that eightfold acceleration can be achieved with 
whole heart coverage with high spatial and temporal 
resolution using standard coil array. The proposed 
method was highly insensitive to respiratory mo-
tion artifacts at eightfold acceleration compared to 
GRAPPA at twofold acceleration.

VI.	 OPEN SOURCE SOFTWARE FOR COM-
PRESSED SENSING

Open source tools for CS are typically built on Mat-
lab. There are various tools such as Sparco,44 Spgl,45 
Nesta,46 and SMALLbox,47 to name a few. Because 
sparsity is the major requirement of CS, a tool is 
required for testing the algorithms for sparse recon-
struction, and Sparco can be used for this purpose. 

Sparco is a framework for testing and bench-
marking algorithms for sparse reconstruction. It 
includes a large collection of sparse reconstruction 
problems drawn from the imaging, CS, and geo-
physics literature. Sparco is also a framework for 
implementing new test problems and can be used 
as a tool for reproducible research. Sparco is imple-
mented entirely in Matlab, and is released as open 
source software under the GNU public license.44

For the nonlinear reconstruction of images 
in CS, L1 and L2 problems must be solved. SPGL 
solves the basic pursuit problem required for non-
linear reconstruction in compress sensing and hence 
can be used as a tool for reconstruction. SPGL relies 

only on matrix-vector operations and accepts both 
explicit matrices and functions that evaluate these 
products. SPGL is suitable for problems that are in 
the complex domain. It can also be used to solve 
group sparsity problems.45 

NESTA is a fast and robust first-order method 
that solves basis-pursuit problems and a large num-
ber of extensions (including TV denoising). The 
algorithm uses two ideas. The first idea is an accel-
erated convergence scheme for first-order methods, 
giving the optimal convergence rate for this class of 
problems. The second idea is a smoothing technique 
that replaces the nonsmooth L1 norm with a smooth 
version. The algorithm basically solves the basis 
pursuit denoising problem.46

SMALLbox, a framework for sparse representa-
tion and dictionary learning. As an open source Mat-
lab toolbox, SMALLbox can be seen as a tool for 
reproducible research in the sparse representations 
research community.47

VII.	DISCUSSION

The successful application of CS to diverse meth-
ods of MRI as illustrated in this review reveals the 
significance of the technology. The increase in in-
formation content, specifically in terms of spatio-
temporal resolutions and/or reduction in acquisition 
time, has had a significant impact in furthering MRI 
protocols in general and higher-dimensional MRI 
in particular. The applications of CS described in 
this review give an indication of the requirement by 
experts from different groups and the utility of this 
technique to solve varied challenges that MRI can 
address. However, evaluation of CS applications has 
to be furthered by clinical evaluations in cases of 
patient populations. The transition of CS as a tech-
nology to a tool in the clinic has also been pursued 
as has been pointed out in the section on clinical 
evaluation of CS in the case of pediatric population. 
Increased demonstration of the utility of CS in the 
clinic similar to the work described in the clinical 
evaluation section will aid rapid transition of CS as 
a clinically acceptable and understood standard to 
optimize MRI protocols. This will also provide con-
fidence to radiologists about the tool and a platform 
to explore new avenues for accelerating MRI.
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