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Database-assisted Distributed Spectrum Sharing
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Abstract—According to FCC'’s ruling for white-space spectrum
access, white-space devices are required to query a datalea®
determine the spectrum availability. In this paper, we stud/ the
database-assisted distributed white-space access poi#R) net-
work design. We first model the cooperative and non-cooperate

channel selection problems among the APs as the system- ap Tier:

wide throughput optimization and non-cooperative AP chanrel
selection games, respectively, and design distributed AFhannel
selection algorithms that achieve system optimal point andNash
equilibrium, respectively. We then propose a state-basedagne
formulation for the distributed AP association problem of the
secondary users by taking the cost of mobility into accountWe
show that the state-based distributed AP association gameahk
the finite improvement property, and design a distributed AP
association algorithm that can converge to a state-based Nha
equilibrium. Numerical results show that the algorithm is robust
to the perturbation by secondary users’ dynamical leaving ad
entering the system.

Index Terms—Distributed spectrum sharing,
database, game theory, Nash equilibrium.

geo-location

|. INTRODUCTION

HE most recent FCC ruling requires that TV white:[
space devices must rely on a geo-location databasedgl
determine the spectrum availability [1]. In such a database

assisted architecture, the incumbents (primary licensétehs

of TV spectrum) provide the database with the up-to-d
information including TV tower transmission parameters a
TV receiver protection requirements. Based on this inferm
tion, the database will be able to tell a white-space devi

(secondary users (SUs) of TV spectrum) vacant TV chan
at a particular location, given the white-space deviceasgr
mission parameters such as the transmission power.

Although the database-assisted approach obviates the neg
of spectrum sensing, the task of developing a comprehqﬂét
sive and reliable database-assisted white-space netwsrk $
tem remains challenging [2]. Motivated by the successf%f

deployments of Wi-Fi over the unlicensed ISM bands,

this paper we consider an infrastructure-based whiteesp
network, where there are multiple secondary access poiB

(APs) operating on white spaces. Such an infrastruct

based architecture has been adopted in IEEE 802.22 stan
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Fig. 1. System architecture of AP-based white-space n&svor

[3] and Microsoft Redmond campus white-space networking
experiment [2]. More specifically, each AP first sends the
required information such as its location and the trandoriss
power to the database via wire-line connections. The datba
then feeds back the set of vacant TV channels at the location
of each AP. Afterwards, an AP chooses one feasible channel
0 serve the secondary users (i.e., unlicensed white-spere
ices) within its transmission range.
The key challenges for such an infrastructure-based white-
space network design are twofold (see Fig. 1 for an il-
stration). First, in the AP tier, each AP must choose a
roper vacant channel to operate in order to avoid severe
terference with other APs. Second, in the SU tier, when an
P is overloaded, a secondary user can improve its throughpu
moving to and associating with another AP with less
contending users. Each secondary user hence needs to decide
which AP to associate with.
this paper, for the AP tier, we first consider the scenario
all the APs are owned by one network operator and
nce the APs are cooperative. We formulate the cooperative
AP channel selection problem as the system-wide throughput
'Bptimization problem. We then consider the scenario that th
s are owned by different network operators and the interes
P APs is not aligned. We model the distributed channel
lection problem among the APs as a non-cooperative AP
#&nnel selection game. For the SU tier, we propose a state-
based game framework to model the distributed AP assoniatio
problem of the secondary users by taking the cost of mobility
into account. The main results and contributions of thisgpap
" are as follows:

o General formulation We formulate the cooperative and
non-cooperative channel selection problems among the
APs as system-wide throughput optimization and non-
cooperative AP channel selection game, respectively,
based on the physical interference model [4]. We then
propose a state-based game framework to formulate the

n
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distributed AP association problem of the secondary usehe coverage area) of AR can be computed according to the
and explicitly take the cost of mobility into account.  physical interference model [4] as
« Existence of equilibrium solution and finite improvement 0
. . ] Pn/d
property. For the cooperative AP channel selection prob- (7, (a) = Blog, | 1 + n —,
lem, the interest of APs is aligned and the system optimal We,, T Zie/\//{n}:ai:an p;/dj,
solution that maximizes system-wide throughput always (1)

exists. For ;he nﬁn-c_oqperanve A_PI channel Sglicn%heree is the path loss factord,, denotes the radius of
Qa;]“e' we s r(])W t "?:Fb't_ IS a pé)terr]wtmf game, and hengg, coverage area of AR, and d;, denotes the distance
it has a Nash equilibrium an ,t € Inite 'mprovemerﬁetween APi and the benchmark location at the boundary
property. For the state—pased distributed AP associatigp o coverage area of AR. Furthermorew” denotes the
game, we show ‘h"?“. I _also has a state-based Nat%bkground noise power including the interference from in-
equilibrium and the finite improvement property. cumbent users on the channgl andy". P/ d?
Distributed algorithms for achievi ilibriurfror th : 1N {n}iai—an |t o

« Distribute agorlhms (I)r a:: ieving eqbllj” AUROrtNe  Genotes the accumulated interference from other APs that
cooperat!ve AE c arlmelse .ect|0||1 prph emr,] We Proposefnose the same channgl. Note that we assume that all APs
cr?operanve gdan%e sehectlon agrc])nt m that maximizeg,\ v to maximize the worse-case throughputs by proper
the systlem—IW| € throughput. For the non-cooperative A(!%annel selections, which do not depend on the number of its
Zpanr;1e s€ lectul)n game,l we r[\Jrop(;se a Q.On'COOpe,\:a%%ociated users. However, the secondary users can iecreas

channel selection algorithm that achieves a Nagfe;r yata rates by moving to and associating with a less

equilibrium (.)f the game. Fgr the Sta;e,'b‘f’lbsedddiStribUt%%ngested AP (see Section IV for detailed discussions)e Not
A_P _assomaupn game, we design a distributed AP ass ", model also applies to the up-link case if the secgnda
ciation algorithm that converges to a state-based N

o , 0 Na§8ers within an AP transmit with roughly the same power
equilibrium. Numerical results show that the algorithm I8

. Tevel.
robust to the perturbation by secondary users’ dynamlcaY
leaving and entering the system.

B. Cooperative AP Channel Selection Algorithm

The rest of the paper is organized as follows. We introduceys first consider the case that all the APs try to maximize
the cooperative and non-cooperative AP channel selectigj, system-wide throughput cooperatively. Such a coojoerat
problems, and propose the cooperative and non'COOperaE’?easible when all the APs are owned by the same network
AP channel selection algorithms in Sections Il and lll, reéperator. For example, the APs that are deployed in a uni-
spectively. We present the distributed AP association gamgjr, campus can coordinate to maximize the entire campus
and distributed AP association algorithm in Section IV. We i\t vork throughput. Formally, the APs need to collectively

lustrate the performance of the proposed mechanisms througarmine the optimal channel selection profilesuch that
numerical results in Section V, and finally introduce the regy,, system-wide throughput is maximized, i.e

lated work and conclude in Sections VI and VII, respectively
Due to the space limit, all the proofs of the results can be ZN: U,(a)
nla).
M

. max
found in [5]. acO2nN

n=1Mn n—1

(2)

The problem (2) is a combinatorial optimization problem of
finding the optimal channel selection profile over the discre
A. System Model solution spaced. In general, such a problem is very chal-

We first introduce the system model for the cooperati@nNging to solve exactly especially when the size of network
channel selection problem among the APs in the AP tier. L6tlarge (i.e., the solution spa¢ is large).
M = {1,2,... M} denote the set of TV channels, atzi We next propose a cooperative channel selection algorithm
denote the bandwidth of each channel (e.= 6 MHz in that can approach the optimal system-wide throughput appro
the United States ané® = 8 MHz in the European Union). imatively. To proceed, we first write the problem (2) into the
We consider a se\ = {1,2,..., N} of APs that operate on following equivalent problem:
the white spaces. Each AP A has a specified transmission N
power P, based on its coverage and primary user protection max Ja Z U,(a), 3)
requirements.

Each APn can acquire the information of the vacant chanyhere, is the probability that channel selection profilds
nels at its location from the geo-location database. We ®engjopted. Obviously, the optimal solution to problem (3)ais t
M., © M as the set of feasible channels of APa, € M. choose the optimal channel selection profile with probapbili

as the channel ch_osen b}’ AP, anda = (a1,..,an) @S ogne. Itis known from [6] that problem (3) can be approximated
the channel selection profile of all APs. Then the WOrse-Cagg the following convex optimization problem:

down-link throughput (i.e., the throughput at the boundafry

II. COOPERATIVEAP CHANNEL SELECTION

N
1
LFollowing the conventions in IEEE 802.22 standard [3] anctrigloft ( H.laé(@) Z da Z Un(a) — - Z 4a 108 qa, 4)
Redmond campus white-space networking experiment [2], evesider the da ac® n=1 v aco

case that each AP can select one channel to operate on. Tééhedseach h is th h Is th . . .
AP can select multiple channels to operate on will be comsiién a future wherey Is the parameter that controls the approximation ratio.

work. We see that when — oo, the problem (4) becomes exactly
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Cooperative AP Channel Selection Markov Chai : , o ,
ooperative AT Fhannelselection MarkovEhaln lection algorithm by carefully coordinating APs’ asynchouis

channel selection updates to form a discrete-time Markov
chain (with the system state as the channel selection profile

(1.2) (13) a of all APs). As long as the Markov chain converges to the
{1,2} {2,3} stationary distribution as given in (5), we can approach the
A A ‘ optimal channel selection profile that maximizes the system
AP1 AP2 wide throughput by setting a large enough parameterhe

Fig.

details of the algorithm are given in Algorithm 1. Here APS’
(2.2) (23) asynchronous channel selection updates are scheduleaby th
database. In each iteration, one AP will be randomly chosen t
update its channel selection. In this,case, the directitrans
2. System state transition diagram of the cooperati® ohannel between two system states and a are feasible if these

selection Markov chain by two APs. Figure on the left hardbdiletails the two system states differ by one and 0n|y one AP channel
vacant channels of two APs. For example, ARan choose channelsand . . .
2 to transmit. Figure on the right hand-side shows the tramsitiagram of S€lection. As an example, the system state transition aiagr

the Markov chain, andai,a2) denotes the system state with and a2  Of the cooperative AP channel selection Markov chain by
being the channels chosen by APand 2, respectively. The direct transition two APs is shown in Fig 2. We also denote the set of

between two system states is feasible if they are connectealink.

system states that can be transited directly from the ata®

Algorithm 1 Cooperative AP Channel Selection Algorithm

Ao 2 {a €O :|{aUa’}/{ana’}| = 2}, where|-| denotes
the size of a set.

1:
2:

10:

11:
12:
13:
14:
15:

- end initialization

initialization: Since each AP will be selected to update with a probability
APchoo;_ean initial channet, & M., randomly for each L and the selected AP will randomly choose a channel
nen.

. . . N
acquire the information of initial channel selections Vith @ Probability proportional texp (7 2in=1 U”(a))' then

transmission powers, and geo-locations from other Affsa’ € A, the probability that the Markov chain transits from
by each APn € N. statea to a is given as

1 exp (7 25:1 Un(a;, a_n))

. o == . (6)
. loop for each iteration: laa" =N , ( N , )
Databaseselectsan AP randomly andnforms the 2 eat, P (7 2z Und@'s an)
selected AP to update its channel selection. Otherwise, we havey, ,» = 0. We show in Theorem 1
for each APn € N in paralleldo that the cooperative AP channel selection Markov chain is
if the update command is received from th&me reversible. Time reversibility means that when trgcin
databasehen the Markov chain backwards, the stochastic behavior of the
calculate the system throughput reverse Markov chain remains the same. A nice property of a
ij:l U,(an,a_y,) for each feasible channel selectiortime reversible Markov chain is that it always admits a ueriqu
an € M,,. stationary distribution, which guarantees the convergesic
selgvcta channekl,, € M,, with a probability the cooperative AP channel selection algorithm.
exp(v D= Un(an,a_n
of EQ,GM(chp@ 1;;5:1 Un(a/,)z,n))' Theorem 1. The cooperative AP channel selection algorithm
"broadcastthe chosen channe), to other APs. induces a time-reversible Markov chain with the unique sta-
else selecthe original channel. tionary distribution as given in (5).
endefr:)c: i A_ccordin_g to Theor_em 1, we can approach the system
end loop optimal point that maximizes the system-wide throughput by

settingy — oo in the cooperative AP channel selection
algorithm. In practice we can only implement a finite value of
~ such thaexp(y 22;1 U, (a)) does not exceed the range of

the same as problem (3). That is, when- oo, the optimal the largest predefined real number on a computer. Numerical
pointa* that maximizes the system through@lﬁ’zl Un(a) results show that when a large enoughis adopted, the
will be selected with probability one. A nice property of Buc performance gap from the system optimum is very small.

an apprOXimation in (4) is that we can obtain the close-form We then ana|yze the Computationa| Comp|exity of the al-
SOlUtion, which enables the distributed algorithm des@ﬂrl gonthm In each iteration, one AP will be chosen for the
More specifically, by the KKT condition [7], we can derivechannel selection update. Lifénvolves the summation of the
the optimal solution to problem (4) as throughputs ofN' APs for M,, channels. SincéM,,| < M,

N this step has the complexity d®(NM). Line 10 involves

P (7 2=t U"(a)) (5) at most M summation and division operations and hence
Yo co €XP (7 SV Un(a')). has a complexity ofO(M). Line 11 has a complexity of
M(1). Suppose that it take€’ iterations for the algorithm

I =

Similarly to the spatial adaptive play in [8] and Gibbgo converge. Then total computational complexity of the

sampling in [9], we then design a cooperative AP channel sagorithm isO(CNM).
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111. NON-COOPERATIVEAP CHANNEL SELECTION Algorithm 2 Non-Cooperative AP Channel Selection AlgO-

We next consider the case that the APs are owned B&hm ialization:
different network operators. Unlike the previous case wher Initia |zat|0n._ .
the interest of the APs is aligned in the cooperative channél set thg |.n_|t|al channelan(o). — _for each AP
selection, here each AP is generally selfish and only coscern " EO N, |n|t|gl cha(rjmtﬁl sc:lechpnde;;(rgﬁ(l)e as(0) =
about its own throughput maximization. Formally, givenasth N é?\lof il’ifi'élr;];t(io)g’ and the stage index=U.
APs’ channel selections_,,, the problem faced by an AR '
is to choose a proper channel to maximize its own throughput,

i.e.,

4: while a(t) is not a Nash equilibriundo
5: for AP n=1to N do
6: choosethe channek,, (¢ + 1) that maximizes its

The non-cooperative nature of the channel selection proble ~OWn throughput according to (10).
naturally leads to a formulation based on game theory, suchi ~ €nd for _ _
that each AP can self organize into a mutually acceptabld  Setchannel selection profile as(t + 1) = (a1(t +

channel selectionNash equilibrium) a* = (a3, a3, ..., a%) 1),..;an(t+1)) and the stage index=? + 1.
with 9: end while

max Uy (an,a_y),Vn € N.
an €My,

a, = arg max Up(an,a*,),Vn € N.

an €M,
) . Lemma 1. If the modified gamé& is a potential game, then
A. Non-cooperative AP Channel Selection Game the original non-cooperative AP channel selection gdmis
We now formulate the non-cooperative channel selecti@itso a potential game with the same potential function.
problem as a strategic game

I'= (N, {Mp}nen, {Un}tnen), WwhereN is the set of APs,
M., is the set of strategies for AR, and U,, is the payoff
function of AP n. We refer this as the non-cooperative A
channel selection game in the sequel.

We can show that it is a potential game, which is defined P,P; N ‘
as d(a) = —sz—;l{ai:%} —2> Pwl, (9)
Definition 1 (Potential Game[10]). A game is called a ' .#l Y = .
potential game if it admits a potential functioh(a) such Wherels,—a,y = 11if a; = a;, andly,, .,y = 0 otherwise.

that for everyn € N anda_,, € [[;,,, M., Theorem 2. The modified gamé is a potential game with

/ the potential functionb(a) as given in (9).
sgn ((P(an, a—pn) — P(an, a_n))
The proof is given in Appendix A. According to Lemma 1

=sgn (Un(alnv a_n) = Un(an, afn)) ; and Theorem 2, we know that

This is due to the fact thaf(z) = Blogy(1 + z) is a
monotonically strictly increasing function. For the moeldfi
I:gamef, we show in Theorem 2 that it is a potential game
with the following potential function

wheresgn(-) is the sign function. Theorem 3. The non-cooperative AP channel selection game
I' is a potential game, which has a Nash equilibrium and the

Definition 2 (Better Response Updatd.0]). The event where finite improvement property

a player n changes to an actiom'n from the actiona, . o
is a better response update if and onlyf,(a,,,a_,) > The result in Theorem 3 implies that any asynchronous
Un(an,a—p). better response update is guaranteed to reach a Nash equi-

. i . . librium within a finite number of iterations. This motivates
An appealing property of the potential game is that it adm'{ﬁe algorithm design in Section 11I-B. Interestingly, aoting

the finite improvement property, S,UCh that any asynchrono%sthe property of potential game, any channel selectiofilpro
better response update process (i.e., no more than one pl

d h ) } be fini &l @Shat maximizes the potential functio(a) is a Nash
updates the strategy at any given time) must be finite an e%(ii,wilibrium [10]. According to (9), the profile* is also an

to a Nash equilibrium [10]. efficient system-wide solution, since maximizing the ptitdn

To show that the non-cooperative AP channel selectl(? nction ®(a) is equivalent to minimizing the total weighted
gamel is a potential game, we now consider a closely relat(? erferences (with a weight aP,) among all the APs.

gamel’ = (N, {M, }nenr, {Un}nenr), where the new payoff

functions are o B. Non-cooperative AP Channel Selection Algorithm
P,/d

ﬁn(a) = - (7 The purpose of designing this algorithm is to allow APs
Wy, T Ziej\//{n}:ai:an P /d;, to select their channels in a distributed manner to achieve a

Obviously, the utility function/,,(a) can be obtained from mutually acceptable resource allocation, i.e., an Nash-equ
the utility function U7, (a) by the following monotone trans- lbrium. The key idea is to let APs asynchronously improve
formation their channel selections according to the finite improvemen

Un(a) = Blog, (1+Un(a)). (8) Property. | |
We assume that when an AP queries the geo-location
Due to the property of monotone transformation, we have database, the database will assign it with a unique ID indlexe
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as1,2,3,.... For initialization, we let each AR select the is no less thanBlog, 1+ — P /dy, ) :

channelm,, that has the smallest channel ID index among its . Wit (Lien(ny Pi/dln ) /M|
feasible channels\,,, i.e., a,(0) = m,. Then based on the where|M,,| is the number of vacant channels for AP

initialized channel selection profile(0) = (a1 (0), ..., an(0)), Lemma 2 implies that at a Nash equilibrium each AP
each APn in turn (according to the assigned IDs) carries oujill receive an interference level that is not greater thiae t
the best response update, i.e., select a chani{eH- 1) that maximum possible interference level (i'EiGN/{n} Pi/dl)
maximizes its own throughput as divided by the number of its available channels. That is, if
more channels are available then the performance of Nash
equilibria can be improved. According to Lemma 2, we know

an_1(t+1),an41(t),...,an(t)), (10) that

given the channel selectiofa; (t+1), ...,a,_1(t+1)} of the Corollary 1. The PoA of the non-cooperative AP channel
updated APs, and the channel selectigas, ; (t),...,an(t)} Selection game is lower bounded by

of remaining APs that are not updated at the current stage N P, d?

t. Such update procedure continues until a Nash equilibrium ~ >_,—; logs (1 o, YT )/Mn)

is reached. Since the best response update is also a better < lem;";dg '
response update, according to the finite improvement ptpper > n—1108; (1 + L—n")
such asynchronous best response updates must achieve a N L
equilibrium within finite number of iterations. We summagiz

the non-cooperative AP channel selection algorithm in A.fﬁe convergent Nash equilibrium of the proposed algorithm

gorithm 2. We then consider the computational complemm Section llI-B is often more efficient than what the PoA

of the algorithm. Lines5 to 7 involves N maximization . )
operations and each maximization operation can be achie\I/r(]adlcmeS and_ the perfo_rmance loss is less ‘*_%“ compared
. : . with the optimal solution by the cooperative AP channel

by sorting over at mosii/ values. This step typically has a lection
complexity of O(NM log M). Line 10 has the complexity s€ '
of O(1). Suppose that it takeS' iterations for the algorithm
to converge. Then total computational complexity of the |V. DISTRIBUTED AP ASSOCIATION BY MOBILE
algorithm isO(C'N M log M). SECONDARY USERS

The Algorithm 2 requires all APs to truthfully communicate \We now consider the distributed AP association problem
with each other about their channel selections. When sughong a set of mobile secondary uséts= {1,2,...K}
a requirement is not feasible, each AP can independentlythe SU tier. Letz,, be the number of users that associate
implement Algorithm 2 by acquiring the assigned IDs, availyith AP n, which satisfies tha}_"_, =, = K. We assume
able channels, and transmission powers of other APs fraRat the APs’ cooperative/non-cooperative channel sefest
the database. Note that such an off-line implementationiis the AP tier and the users’ AP associations in the SU
incentive compatible, since given other APs adhere to ther are decoupled, i.e., APs only interested in guarantgei
algorithm and the update order is fixed, no AP has aReir throughputs by proper channel selections and users ca
incentive to deviate unilaterally from the algorithm (due timprove their data rates by proper AP associations. The-load
the deterministic Nash equilibrium output). aware AP channel selection will be considered in a future

work.

WE+1) = Un(a,ar(t+1),...,
an(t +1) =arg max Un(a,ar(t+ 1)

a'Fne PoA characterizes the worst-case performance of Nash
quilibria. Numerical results in Section VII demonstrateaitt

C. Price of Anarchy

. _ A. Channel Contention within an AP
We now study the efficiency of Nash equilibria of the on with

non-cooperative AP channel selection Game. Following theWe first consider the channel contention when multiple
definition of price of anarchy (PoA) in game theory [11]§econdary users associate with the same AP. Here we adopt a

we will quantify the efficiency ratio of the worst-case Naskandom backoff mechanism to resolve the channel contention

equilibrium over the optimal solution by the cooperative Apiore specifically, the time is slotted with a contention stag

channel selection. LeE be the set of Nash equilibria of theP€ing divided intoA,., mini-slots. Each secondary usér

game. Then the PoA is defined as executes the following two steps:
. N 1) Count down according to a randomly and uniformly
MiNacs ) p—y Un(a) : chosen integral backoff time (number of mini-slofs)

MaXge [N, 27]:[:1 Un(a) betweenl and A\ ax.

2) Once the timer expires, monitor the channel and ex-
change RTS/CTS messages with the AP in order to grab
the channel if the channel is clear (i.e., no ongoing trans-
mission). Note that if multiple users choose the same
backoff mini-slot, a collision will occur with RTS/CTS
transmissions and no users can grab the channel. Once

Lemma 2. For the non-cooperative AP channel selection the RTS/CTS message exchange goes through, then the

game, the throughput of an AR < N at a Nash equilibrium AP starts to transmit the data packets to the user.

PoA =

which is always not greater thdn A larger PoA implies that
the set of Nash equilibrium is more efficient (in the worssea
sense when comparing with the system optimal solution). Let
Wn = MaXmem, {wy,} andw, = ming,ecam, {wy, }. We can
first show that
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Since z,, users contend for the channel in AR, the userk’'s decision, andi,, s, is the distance of moving to
probability that a usek (out of thesex, users) grabs the AP by, from AP s, (dp,s, = 0 if by = si). Note that

channel successfully is the distance measure here can represent more general

Amasx preference functions and can also be asymmetric. For
g(zn) = Pr{X, <min{A;}} = > Priv=2) example, we can define that,, > d, , if by is
izl . a popular shopping mall where uses like to stay. The
« Pri\ < min{A} e = A} = Z 1 ()\max - A) 7 physical meaning of (13) is to balance. the average data
ik £ Amax \ Amax rate that a user can obtain from moving to a new AP
(11) b, with the mobility cost by moving from its current

which is a decreasing function of the total number of contend ~ @ssociated ARy
ing usersz,,. Then the average data rate of a secondary useiSince the state-based game is a generalized game theoretic
k associating with AP is given as framework (by regarding the classical strategic game as a
X . state-based game with a constant state), we need an updated
e = HypUn(a®)g(zn), (12)  equilibrium concept. Here we follow the recent results ig][1

whereU,, (a*) is the throughput at the boundary of the cove@nd introduce the state-based Nash equilibrium. To proceed
age area of AR at the equilibrium channel selections by We first define the set of reachable stategh’, s°) starting
cooperative/non-cooperative AP channel selection alyms, from a strategy state paib’, s°) as

and H,’j z 1is .th.e transmission gain of uséf..Here the A®B°,s%) 2 {s: st = F(b°,s'71), V¢ > 1}. (14)
transmission gain is used to model user specific throughputs

due to their heterogeneous channel conditions. For examphée then extend the definition of Nash equilibrium to the state
a user enjoys a better channel condition than all other usbgsed game setting as follows.

ifitis the closest to the AP. Definition 3 (State-based Nash Equilibriun12]). A strategy
state pair(b*, s*) is a state-based Nash equilibrium if

B. Distributed AP Association Game 1) the states* is reachable fron{b*, s*), i.e.,s* € A(b", s*).

2) for every playerk € K and every states € A(b*, s*), we

Due to the channel contention within an AR the average ave

data rater; of a secondary uset decreases with the total
number of contending users,. To improve the data rate,

th.e secondary user can choose to move to another AP The physical meaning of the state-based Nash equilibrium
with less users. However, in practices people may not pre]‘grthat the states* is recurrent and the strategy profié is

long d|stf_;mc_e movem_ents (ust for_ the sal_<e of obtainingebet he best response no matter how the game state evolves after-
communication experiences), which motivates us to take

t of mobility int ¢ By defining th y > Wards. In principle, the state-based game is a special case
cOst 0T mobiity Into account. By defining the curren ocatl of the stochastic game, which is difficult to tackle. However
profile of all secondary users as a system state, we

; late the distributed AP it blem astai nt are able to solve the distributed AP association game by
borml(Jja € e12IS i fu I? ) association probiem e exploiting its inherent structure property. A key obseiaat
ased game[12] as follows: is that, similarly to the classical potential game, the estat

« Playerk: a secondary user from the s€t _ based distributed AP association game also admits a state-
« Strategyb,: choose an AR € NV to associate with. We pased potential function as

denote the strategy profile of all userste$ (b, ..., bx).

. States = (sy,...,5x): the current locations (i.e., the K N @n(b) K
associated APs) of all secondary users, wherdenote  Ww(b,s) => InlU,, (a”)+ > > Ing(i)+ > InHj . (16)
the location of usek. k=1 n=1 i=0 k=1

« State Transitions = F(b,s): in general the new state oy the state-based potential functidnib, s), we have
s is determined by the strategiés of all secondary

users and the original state where F(-) denotes the Lemma 3. For the state-based distributed AP association
state transition function. For our problem, we have th&@me, if a player: € K performs a better response updaie
F(b,s) = b, i.e., the new locations just depend onn a given states = (si, s—x) With V (bi, sk, s) > Vi(s, s),
secondary users' AP choices and independent of tWe then have tha¥ (by,s_x, s) > ¥(s,s).
original system state.

« PayoffV} (b, s): secondary usel’s utility obtained from
the strategy profileb in state s. To take the cost of

Vk(b*,s) = II})&X Vk(bk,b*,k,s). (15)
k

The proof is given in Appendix B. Similarly to the classical
potential game, we can also define the finite improvement
property for the state-based game. kkét= (s!, ...s%) be the

mobility into account, we define state of the game in theth update, and’ = (¢, ...b%; ) be the
Vi(b, 8) = 1 — Skdp, s, s:ratlte?y pr_(t)_ﬁle of a:: pl\‘;)ﬁrs ilt;t(r;tupg)at: A(t:ﬁorfdtirr:g t? ;[he
. state transition, we ha = , s"). A path of the state-
=Hj, Uy, (a")g(wy, (b)) = Sy, (13) b

based game is a sequenge= ((b°,s°), (b',s'),...) such
where z,, (b) is the number of contending users assdhat for everyt > 1 there exists a unique player, say player
ciated with APb; under strategy profilé, d, > 0 is ki, such thatb’ = (by,,s" ) for some strategyr, # s, .
the factor representing the weight of mobility cost im = ((b°,s%), (b',s'),...) is an improvement path if for all
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t > 1 we haveV, (b',s') > V4, (s', s'), wherek, is the Algorithm 3 Distributed AP Association Algorithm
unique deviator at the-th update. From the properties of the 1: initialization:

state-based potential functidn(b, s), we first show that every 2: setthe meany for strategy update countdown.
improvement path is finite. 3: end initialization

Theorem 4. For the state-based distributed AP association

. e 4: loop for each secondary usére K in parallel:
game, every improvement path is finite.

5: generate a timer value that follows the exponential

Proof: For any improvement path p distribution with the meanm).

(8%, 89, (b, s'),...), we have TV, (b° s%) > 6: count down until the timer expires.

Vi (82,89), Vi, (b*,8Y) > V4, (8°,8Y), Vi, (b%,8%) > T if the timer expireshen

Vi, (b',82),..., where s' = F(b" s%) = b°, s2 = & acquire the information of channel throughput
F(b',s') = b', and so on. From Lemma 3, we know that {Ux.(a*)}, the geo-location of APs, and user distribution
W(s9,8%) < W(bY,s%), U(b°,s9) < Wb, s"), U’ s!) < {an b0

U(b',s'), U(b',s') < U(b, s?), U(b', s?) < U(b*, s?),.., 9 update the strategyb; according to the best re-

which is increasing along the improvement path. sponse in (17).
Since ¥(b,s) < oo, then the improvement path10:  end if
p=((b° %), (b, s'),...) must be finite. m 11 end loop
Similarly to the classical potential game, we further show
that any asynchronous better response update process also

leads to a state-based Nash equilibrium. exponential distribution with a mean equal 4o Since the

Theorem 5. For the state-based distributed AP associa€*Ponential distribution has support ov@r o) and its prob-

tion game, any asynchronous better response update proc@gg'ty density function is contmuous,_the probabilityattmore _
leads to a state-based Nash equilibritii’, s*) with s* — than one users generate the same timer value and update their

F(b*,s%) strategies simultaneously equals z&When a usek: activates

its strategy update at timg the user can computes its best
Proof: Suppose that an asynchronous better responggponse strategy as

update procesp = ((b°,s°), (b',s'),...) terminates at the

*k t t
point (b*, s*). In this case, we must hawé(b;,b*,,s*) > b = argn})%ka(bk,b_k,s )
maxp, (b, b ., s*), otherwise the improvement patidoes _ HE U (0 b)) — Sid 17
not terminate at poin{b*, s*). At point (b*, s*), we must AT o b (a7)9(25,, (57) = Ok, 7

also have thal(bj,b* ;, s*) = maxy, Vi(br,b™ ), s") and \which requires the information of user distribution
s* =b" = F(b", s*), otherwise the potential function can b&, (v"),..zx (b)) at time ¢, the throughput U, (a*),
improved and thus the improvement path does not termingiq geo-locations of all the APs. We then consider the
here. Thus, we have® € A(b",s*) and Vi(b;,,0%,,,8) >  computational complexity of the algorithm. For each itienat
maxy, Vi, (bn, 02, 8),¥s € A(b7,s%), which satisfies the of each user, Linest to 7 only involve random value
conditions in Definition 3. B generation and subduction operation for count-down, and
Sinces™ = b" = F(b",s"), Theorem 5 implies that the hence have a complexity @(1). Line 8 involves information
asynchronous better response update process leads tatéhe shquiry from NV APs and hence has a complexity O V).
based Nash equilibriumb{, b"), i.e., the equilibrium that all | jne 9 computes the best response strategy, which can be

users are satisfied with the current AP associatibhind achieved by sorting at mos¥ values and typically has a

have no incentive to move anymore. complexity of O(N log N). Suppose that it takes iterations
for the algorithm to converge. Then total computational
C. Distributed AP Association Algorithm complexity of K users isO(CK N log N). Similarly, we can

. o . i show that the space complexity (3( K N).
We next design a distributed AP association algorithm basedr ¢, dilitate the best response update, we propose to setup
on the finite improvement property shown in Theorem

. , , social database (accessible by all secondary users)eiwher
which allows secondary users to select their associated

ath AP reports its channel through a*) and geo-
in a distributed manner and achieve mutually acceptable A ation andp each secondary uszéreg Igdéc()sts) and s%ares
associations, i.e., a state-based Nash equilibrium. ’

improve their AP selections. Unlike the non-cooperative AEj.i-| database, a secondary usecan first figure out the
channel selection update with the fixed order enforced lBPéer distribution(1 (b'), ...z x (b)) as

the geo-location database, the distributed AP association

gorithm can not be deterministic. This is because that, as . K
secondary users dynamically enter and leave the network, a n(b7) = Z I{b;/:n}vvn eN, (18)
deterministic distributed AP association algorithm adaog k=1

to the fixed strategy update order is not robust. Hence w
dy up %The timer in practice is always finite, and the collision @bty is not

will deS|gn a randomlzeq algorlthm by Iettlng each Seco}nda{:xactly zero. However, as long as the collision probabibtyery small, the
user countdown according to a timer value that follows thellowing analysis is a very good approximation of the reali
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where I{bz/:n} = 1 if user k¥’ associates with AR, and
I{b;,:n} = 0 otherwise. Based on the user distribution, the
secondary usek can then compute the corresponding best, L A o2 (z;g.:\}u
response strategy according to (17). ap7 00mW APS
The success of social database requires that each user is
willing to share the information of its AP association. When
this is not feasible, each AR can estimate its associated 300mr itégwA S,:,’nw
user populatione,, locally. Let g(z,,) denote the probability APs Ave
that no user among,, associated with the same AP grabs
the channel in a time slot. This can be computed as 200m {1,2,4} {1,2,3}
g(zn) = 1 —z,9(x,), whereg(z,,) is given in (11). In a time 20mW- e 3 apg 200MW
slot7, AP n can observe the informatiafy- (1) € {1,0}, i.e.,
whether the channel; is used by any users or not. Then over 4| A o0 A s
a long period that consists df time slots, APn can observe AP 1 350mW AP 2 400mW

L
the outcome({/,- (7)}~_, and estimatgj(x,,) = %‘I"(ﬂ
by the sample-average. Sindg-(7) is independently and 10'0m ZO'Om 30.0m 40'0m
identically distributed according to the probabilig(z,,),
according to the law of large numbers, the estimation witig. 3. A square area of a length 660m with 8 scattered APs. Each
be aceurate when the abservation period lens arge 16 5. 52 1 e SR S RIS M e
enough. This is feasible in practices since user’'s mobili 6{2;374} and?f)so’mw, respectively. L
decision is often carried out at a large time scale (say every
few minutes), compared with the time scale of a time sl
(say 50 microseconds in the standard 802.11 system). The 150

AP n can obtain the number of its associated usersby 140

Lo T« . f
M) and report it in the 0 ﬁ AP 5/:P4
0
0 160 260 360 460

[N
w

solving thatz,, = g—! <

i
N

social database.

We summarize the distributed AP association algorithm i
Algorithm 3. According to Theorem 5, such asynchronou
best response update process must reach a state-based !
equilibrium. Numerical results show that the algorithm is
also robust to the dynamics of secondary users’ leaving ai
entering the system.

L
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V. SIMULATION RESULTS

In this part, we investigate the proposed AP channel selec-
tion and AP association algorlthms by simulations. Fig. 4. Dynamics of APs’ time average throughputs in cooperachannel
selection withy = 0.85.

A. Cooperative AP Channel Selection

We first implement the cooperative AP channel selectithannel selection algorithm is less thath, compared with
algorithm in .Sgction [I. We consider a white-space erele§ﬁe centralized optimal solution, i.epaxece Zﬁle Un(a).
system consisting of/ = 4 channels andv = 8 APs, which - voreover, the algorithm achieves more tha¥ performance

are scattered across a square area of a lengllddm (see  gain over the random channel selection scheme wherein the
Fig. 3). The bandwidth of each channelGisMHz, the noise Aps choose channels purely randomly.

power isw,’, = —100 dBm, and the path loss factér= 4.
Each APn operates with a specific transmission power . .
and has a different set of vacant channels by consulting tRe Non-cooperative AP Channel Selection
geo-location database (please refer to Fig. 3 for the dethil We then implement the non-cooperative channel selec-
these parameters). We set that the distahcbetween APn  tion algorithm in Section Ill. We show the dynamics of
and its associated boundary secondary usef im. the throughputs of all the APs in Fig. 6. We see that the
We implement the cooperative channel selection algorithahgorithm converges to an equilibrium* in less 20 iter-
with the parametery = 0.2, 0.5, and 0.85, respectively. We ations. To verify that the equilibrium is a Nash equilib-
show the dynamics of the time average throughputs of all thiem, we show the dynamics of the potential functidn
APs in Fig. 4 wheny = 0.85. It demonstrates the convergencén Fig. 7. We see that the algorithm can lead the poten-
of the cooperative channel selection algorithm. From Fig. al function to a maximum point, which is a Nash equi-
we see that the performance of the algorithm improves as thébrium according to the property of potential game. At
increases, and the convergence time also increases agglgrdi the equilibriuma*, 8 APs achieve the throughputs,(a*)
When v = 0.85, the performance loss of the cooperativef {101.4,100.1, 82.6,97.6,83.2,98.7,85.6,84.5} Mbps, re-
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Fig. 5. Dynamics of time average system throughput. ) ) ) )
Fig. 6. Dynamics of non-cooperative AP channel selection.

spectively, and no AP has the incentive to deviate its chann x10°°

selection unilaterally. Compared with cooperative AP char

nel selection algorithm, the performance loss of the nor

cooperative channel selection algorithm is less th#n Such

a performance loss is due to the selfishness of APs in tl

non-cooperative environment. However, the convergemee fi

of non-cooperative AP channel selection algorithm is muc

shorter. This is because that in order to achieve the syste

optimal solution, the cooperative algorithm needs morestim

to randomly explore the whole set of feasible channel sele:

tions. While the non-cooperative channel selection atgori

achieves the Nash equilibrium by focusing on the subset

channel selections satisfying the finite improvement prigpe
We then further implement simulations witlv = 0 5 10 15 20 2 3

10,20, ...,50 APs being randomly scattered over the squar lterations

area in Fig. 3, respectively. The number of TV channels

M = 50 and 25 channels out of thesg0 channels will be Sig. 7._ _quamics of potential function valué® corresponding to the

ynamics in Fig. 6.

randomly chosen as the set of vacant chanidls for each

AP n. We implement both non-cooperative and cooperative

A_P channel selection algorithms. The results are shown Jp equilibrium (b, ) in less 30 iterations. We also show

Fig. 10. We see that when the number of APs is small (€.¢he the dynamics of the state-based potential functioin

N < 20), the non-cooperative channel selection achieves tf—‘f‘g 9. We see that the equilibriuib*, b*) is a state-based

same performance as the cooperative case. This is due\i®n equilibrium, since the algorithm leads the statedbase
the abundance of the spectrum resources. We also Obs'?ﬂf“ential function to a maximum point.

that the pgrformance of t_he non—coopere_\tive channel setect To investigate the impact of the cost facthr, we assume
algo_nthm is less tha®% in all cases. This demo_nstrates th?hat all the users are initially associated with ARwith the
efficiency of the non-cooperative channel selection. same transmission gaing* = 1 and we implement the
distributed AP association algorithm with a mixture of two
C. Distributed AP Association types of secondary users: high and low mobility cost factors
We next implement the distributed AP association algorithite see from Fig. 11 that users of low mobility cost will
in Section IV. We conside = 20 mobile secondary usersspread out to achieve better data rates, while most users of
who can move around and try to find a proper AP to associdtggh mobility cost choose to stay in AP and suffer from
with. Within an APn, the worse-case throughplit,(a*) of severe congestion.
AP n is computed according to the Nash equilibriuth in We next investigate the robustness of the distributed AP
Section V-B. For the channel contention by multiple secopdaassociation algorithm. We consid&r = 30 mobile secondary
users, we set the number of backoff mini-slats., = 10. users with the cost factod, randomly generated from a
We first show in Fig. 8 the dynamics of the distributed ARniform distribution in (0,0.2). At iteration ¢ = 200 and
association algorithm with the random initial APs seleasio 400, we let10 users leave the system ahdl new users enter
users’ transmission gaing* being randomly selected fromthe system, respectively. The results in Figs. 12 and 13 show
the set{1.0,1.1,1.2,1.3,1.4, 1.5}, and the mobility cost factor that the algorithm can quickly converge to a state-basedh Nas
0r = 0.06 Mbps/m. We see that the algorithm converges tequilibrium after the perturbations occur. This verifieattthe

Potential Function @
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Fig. 8. Dynamics of distributed AP association.

Fig. 10. System throughput by cooperative and non-coadperaf channel
selection with the number of APY = 10, 20, ..., 50, respectively.

1200
1150
A7 _ AP8 =
5 1100F 7’ \ 4 * \
5 L * o )
5 100l
I-%1050 \\-’/ \s—,
'glOOO* ,’—.\ /’—-\
g \ \
C ogol i APs5 | OA 1 AP6 I*A 1
\ /
>*
S - 4 S - 4
900
- = -~
’ \ ’ \
805 s 10 15 20 2 30 B AP3 ’\ .A /‘ ’\ *A* ,‘ AP 4
Iterations
7N -
Fig. 9. Dynamics of potential function valu& corresponding to the ‘e® O\ TN oR2
dynamics in Fig. 8. B ’\. ." APl {*A* 1
N [ N \ /
—~— 4 SN -
distributed AP association algorithm is robust to the dyitam . . 1 1
of secondary users’ leaving and entering the system. ® CostFactor 5,202 X Cost Factor § =005
V1. RELATED WORK Fig. 11. The equilibrium secondary user distribution witmiture of two

. . . types of secondary users. The black dots represent the dsgounsers with
Most research efforts in database-assisted white-sp@ee $Yhigh cost factor, and the black stars represent the segondars with a

tems are devoted to the design of geo-location service. &yurriow cost factor.

et al. in [13] calculated the spectrum availability based on

the transmission power of the white-space devices. Kammi i

[14] presented a method to derive location-specific maximugntheoretic framework based on game theory for distributed

permitted emission levels for white space devices. Mattgl. resource allocation in white-space AP networks.

in [2] proposed a framework to determine the vacant spectrumThe game theory has been used to study wireless resource

by using propagation model and terrain data. Nekovee in [1&lJocation problems in non-white-space infrastructuasdal

studied the white-space availability and frequency cortipms networks. Songet al. in [20] modeled the distributed channel

in UK. Luo et al.in [16] proposed a database-based spectruaiocation in mesh networks as a non-cooperative game,evher

reservation mechanism for the white-space access. each cell tries to minimize the interference received from
For the white-space networking system design, many existher cells. Southwelét al. in [21] modeled the distributed

ing works focus on the experimental testbed implementatiachannel selection problem with switching cost as a network

Bahl et al. in [17] designed a single white-space AP systencongestion game. Chen and Huang in [22] proposed a spatial

Murty et al.in [2] addressed the client bootstrapping and mapectrum access game framework for distributed spectrum

bility handling issues in white-space AP networks. Fehgl. sharing with spatial reuse. Wargg al. in [23] proposed an

in [18] considered the OFDM-based AP white-space netwosgkiction approach for incentive-compatible spectrum resou

system design. Deét al.in [19] presented a centralized white-allocation. Most previous works studied the competitivarch

space spectrum allocation algorithm. In this paper, we @sep nel selection based on the protocol interference model evher
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mogeneous with the same cost of mobility. Here we propose
a state-based game framework to formulate the more general
case that users have heterogeneous cost of mobility.

VII. CONCLUSION

In this paper, we consider the database-assisted white-
space AP network design. We address the cooperative and
non-cooperative channel selection problems among the APs
and the distributed AP association problem of the secondary
users. We propose the cooperative and non-cooperative AP
channel selection algorithms and a distributed AP assoniat
algorithm, all of which that converge to the corresponding
equilibrium globally. Numerical results show that the poepd
algorithms are efficient, and are also robust to the perturba
tion by secondary users’ dynamical leaving and entering the
system.

For the future work, we are going to generalize the results
to the mixture case that consists of both cooperative and non
cooperative APs. Multiple APs that belong to one network
operator are cooperative with each other, but they may not
cooperate with other APs that belong to a different network
operator. It will be interesting to study the existence otha
equilibrium and design distributed algorithms to achiele t
equilibrium.

Although the distributed AP association algorithm can
achieve the state-based Nash equilibrium wherein all users
are satisfied given their mobility cost factors, the load®am
different APs can be quite imbalanced when the mobility cost
is high as demonstrated in the numerical results. Thus, bow t
design an incentive compatible mechanism such as pricing to
achieve load balance among the APs with mobile secondary
users will be very interesting and challenging.

APPENDIX
A. Proof of Theorem 2

Suppose that an AR changes its channel, to a;c such

two users can interfere with each other if they are linked tmat the strategy profile changes framto a’. We have that

an interference edge on the interference graph. In thisrpape
we explore the competitive channel selections based on the | P.P; P.P;
physical interference model, which is not well studied ie th®(a ) — ®(a) = - 0 Syt > = Nay=ay)

, . -~
literature. The most relevant work is [9], where Kauffmagtn ik K ik K
al. considered to minimize the total interferences received by BB , +§ :@[ .y — 2P + 2Pk
. . . . . 49 Hai=ay} a0 {a;=ay} ay, ay
all the APs by designating each AP a specific utility function izx “ik itk ik

to be optimized locally. In our paper, we consider the Ca%ced. — d.. we thus have that
that each AP is fully rational and tries to maximize its own v

throughput. ®(a) —d(a) =2 PZ#‘“I 2> P#ﬁl{a:ak}
For the AP association problem, Gajet al. in [24] and iz ik ta=e.t an Gk

Duan et. al in [25] studied the pricing mechanisms to achieve

gfficient wirelgss service provider assogiation solutioBe- — 2P, 4 2Pk = 2P, Z % o,

jerano et al. in [26] address the load imbalance problem e itk T ,da Tk

through the association control. Horag al. in [27] inves- Leize,

tigated distributed AP association game with power control P;

by assuming that the chosen channels among APs are nont 2% ( Z do, +w‘“’“k>

overlapping. These previous results focus on the case that Pl aizar)

users are stationary, and can associate with any AP. When . P, P,

users are mobile, Mittagt al. in [28] studied the distributed =2dx Z 77 T Y% Z g0 T Whak

access point selection game by assuming that users are ho- \"#*/, —./} i i#hil a0y
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Ubk( )9 (@, (bry $—k)) — Ok, [17] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. \Wel§Vhite
>H Usk( ) (%k (Sk, s k)) _ 5kd5k5k- space networking with WI-FI like connectivity,” ifProc. ACM SIG-

Sincedy, s, > ds, s, = 0, we then have

(18]

COMM, 2009, pp. 27-38.

X. Feng, J. Zhang, and Q. Zhang, “Database-assistedi-aphetwork
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ery,” in Proc. IEEE Symp. New Frontiers Dynamic Spectrum Access
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MOBICOM, 2009, pp. 1~12.

[20] Y. Song, C. Zhang, and Y. Fang, “Joint channel and poulecationin
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o * * Areas Commun.ol. 26, no. 7, pp. 1149-1159, 2008.
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k k
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_ _ * [24] V. Gajic, J. Huangy, and B. Rimoldi, “Competition of wless providers
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[25] L. Duan, J. Huang, and B. Shou, “Competition with dynarspectrum
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Netw. (DySpan)2010.
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From (19) and (20), we must have thét(by,s_r,s) >
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