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Abstract—According to FCC’s ruling for white-space spectrum
access, white-space devices are required to query a database to
determine the spectrum availability. In this paper, we study the
database-assisted distributed white-space access point (AP) net-
work design. We first model the cooperative and non-cooperative
channel selection problems among the APs as the system-
wide throughput optimization and non-cooperative AP channel
selection games, respectively, and design distributed AP channel
selection algorithms that achieve system optimal point andNash
equilibrium, respectively. We then propose a state-based game
formulation for the distributed AP association problem of the
secondary users by taking the cost of mobility into account.We
show that the state-based distributed AP association game has
the finite improvement property, and design a distributed AP
association algorithm that can converge to a state-based Nash
equilibrium. Numerical results show that the algorithm is robust
to the perturbation by secondary users’ dynamical leaving and
entering the system.

Index Terms—Distributed spectrum sharing, geo-location
database, game theory, Nash equilibrium.

I. I NTRODUCTION

T HE most recent FCC ruling requires that TV white-
space devices must rely on a geo-location database to

determine the spectrum availability [1]. In such a database-
assisted architecture, the incumbents (primary licensed holders
of TV spectrum) provide the database with the up-to-date
information including TV tower transmission parameters and
TV receiver protection requirements. Based on this informa-
tion, the database will be able to tell a white-space device
(secondary users (SUs) of TV spectrum) vacant TV channels
at a particular location, given the white-space device’s trans-
mission parameters such as the transmission power.

Although the database-assisted approach obviates the need
of spectrum sensing, the task of developing a comprehen-
sive and reliable database-assisted white-space network sys-
tem remains challenging [2]. Motivated by the successful
deployments of Wi-Fi over the unlicensed ISM bands, in
this paper we consider an infrastructure-based white-space
network, where there are multiple secondary access points
(APs) operating on white spaces. Such an infrastructure-
based architecture has been adopted in IEEE 802.22 standard
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Fig. 1. System architecture of AP-based white-space networks.

[3] and Microsoft Redmond campus white-space networking
experiment [2]. More specifically, each AP first sends the
required information such as its location and the transmission
power to the database via wire-line connections. The database
then feeds back the set of vacant TV channels at the location
of each AP. Afterwards, an AP chooses one feasible channel
to serve the secondary users (i.e., unlicensed white-spaceuser
devices) within its transmission range.

The key challenges for such an infrastructure-based white-
space network design are twofold (see Fig. 1 for an il-
lustration). First, in the AP tier, each AP must choose a
proper vacant channel to operate in order to avoid severe
interference with other APs. Second, in the SU tier, when an
AP is overloaded, a secondary user can improve its throughput
by moving to and associating with another AP with less
contending users. Each secondary user hence needs to decide
which AP to associate with.

In this paper, for the AP tier, we first consider the scenario
that all the APs are owned by one network operator and
hence the APs are cooperative. We formulate the cooperative
AP channel selection problem as the system-wide throughput
optimization problem. We then consider the scenario that the
APs are owned by different network operators and the interest
of APs is not aligned. We model the distributed channel
selection problem among the APs as a non-cooperative AP
channel selection game. For the SU tier, we propose a state-
based game framework to model the distributed AP association
problem of the secondary users by taking the cost of mobility
into account. The main results and contributions of this paper
are as follows:

• General formulation: We formulate the cooperative and
non-cooperative channel selection problems among the
APs as system-wide throughput optimization and non-
cooperative AP channel selection game, respectively,
based on the physical interference model [4]. We then
propose a state-based game framework to formulate the
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distributed AP association problem of the secondary users
and explicitly take the cost of mobility into account.

• Existence of equilibrium solution and finite improvement
property: For the cooperative AP channel selection prob-
lem, the interest of APs is aligned and the system optimal
solution that maximizes system-wide throughput always
exists. For the non-cooperative AP channel selection
game, we show that it is a potential game, and hence
it has a Nash equilibrium and the finite improvement
property. For the state-based distributed AP association
game, we show that it also has a state-based Nash
equilibrium and the finite improvement property.

• Distributed algorithms for achieving equilibrium: For the
cooperative AP channel selection problem, we propose a
cooperative channel selection algorithm that maximizes
the system-wide throughput. For the non-cooperative AP
channel selection game, we propose a non-cooperative
AP channel selection algorithm that achieves a Nash
equilibrium of the game. For the state-based distributed
AP association game, we design a distributed AP asso-
ciation algorithm that converges to a state-based Nash
equilibrium. Numerical results show that the algorithm is
robust to the perturbation by secondary users’ dynamical
leaving and entering the system.

The rest of the paper is organized as follows. We introduce
the cooperative and non-cooperative AP channel selection
problems, and propose the cooperative and non-cooperative
AP channel selection algorithms in Sections II and III, re-
spectively. We present the distributed AP association game
and distributed AP association algorithm in Section IV. We il-
lustrate the performance of the proposed mechanisms through
numerical results in Section V, and finally introduce the re-
lated work and conclude in Sections VI and VII, respectively.
Due to the space limit, all the proofs of the results can be
found in [5].

II. COOPERATIVE AP CHANNEL SELECTION

A. System Model

We first introduce the system model for the cooperative
channel selection problem among the APs in the AP tier. Let
M = {1, 2, ...,M} denote the set of TV channels, andB
denote the bandwidth of each channel (e.g.,B = 6 MHz in
the United States andB = 8 MHz in the European Union).
We consider a setN = {1, 2, ..., N} of APs that operate on
the white spaces. Each APn ∈ N has a specified transmission
powerPn based on its coverage and primary user protection
requirements.

Each APn can acquire the information of the vacant chan-
nels at its location from the geo-location database. We denote
Mn ⊆ M as the set of feasible channels of APn, an ∈ Mn

as the channel chosen by APn1, and a = (a1, ..., aN ) as
the channel selection profile of all APs. Then the worse-case
down-link throughput (i.e., the throughput at the boundaryof

1Following the conventions in IEEE 802.22 standard [3] and Microsoft
Redmond campus white-space networking experiment [2], we consider the
case that each AP can select one channel to operate on. The case that each
AP can select multiple channels to operate on will be considered in a future
work.

the coverage area) of APn can be computed according to the
physical interference model [4] as

Un(a) = B log2

(

1 +
Pn/d

θ
n

ωn
an

+
∑

i∈N/{n}:ai=an
Pi/dθin

)

,

(1)

where θ is the path loss factor,dn denotes the radius of
the coverage area of APn, and din denotes the distance
between APi and the benchmark location at the boundary
of the coverage area of APn. Furthermore,ωn

an
denotes the

background noise power including the interference from in-
cumbent users on the channelan, and

∑

i∈N/{n}:ai=an
Pi/d

θ
in

denotes the accumulated interference from other APs that
choose the same channelan. Note that we assume that all APs
only try to maximize the worse-case throughputs by proper
channel selections, which do not depend on the number of its
associated users. However, the secondary users can increase
their data rates by moving to and associating with a less
congested AP (see Section IV for detailed discussions). Note
that our model also applies to the up-link case if the secondary
users within an AP transmit with roughly the same power
level.

B. Cooperative AP Channel Selection Algorithm

We first consider the case that all the APs try to maximize
the system-wide throughput cooperatively. Such a cooperation
is feasible when all the APs are owned by the same network
operator. For example, the APs that are deployed in a uni-
versity campus can coordinate to maximize the entire campus
network throughput. Formally, the APs need to collectively
determine the optimal channel selection profilea such that
the system-wide throughput is maximized, i.e.,

max
a∈Θ,ΠN

n=1
Mn

N
∑

n=1

Un(a). (2)

The problem (2) is a combinatorial optimization problem of
finding the optimal channel selection profile over the discrete
solution spaceΘ. In general, such a problem is very chal-
lenging to solve exactly especially when the size of network
is large (i.e., the solution spaceΘ is large).

We next propose a cooperative channel selection algorithm
that can approach the optimal system-wide throughput approx-
imatively. To proceed, we first write the problem (2) into the
following equivalent problem:

max
(qa:a∈Θ)

∑

a∈Θ

qa

N
∑

n=1

Un(a), (3)

whereqa is the probability that channel selection profilea is
adopted. Obviously, the optimal solution to problem (3) is to
choose the optimal channel selection profile with probability
one. It is known from [6] that problem (3) can be approximated
by the following convex optimization problem:

max
(qa:a∈Θ)

∑

a∈Θ

qa

N
∑

n=1

Un(a)−
1

γ

∑

a∈Θ

qa log qa, (4)

whereγ is the parameter that controls the approximation ratio.
We see that whenγ → ∞, the problem (4) becomes exactly
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Fig. 2. System state transition diagram of the cooperative AP channel
selection Markov chain by two APs. Figure on the left hand-side details the
vacant channels of two APs. For example, AP1 can choose channels1 and
2 to transmit. Figure on the right hand-side shows the transition diagram of
the Markov chain, and(a1, a2) denotes the system state witha1 and a2
being the channels chosen by APs1 and2, respectively. The direct transition
between two system states is feasible if they are connected by a link.

Algorithm 1 Cooperative AP Channel Selection Algorithm
1: initialization:
2: choosean initial channelan ∈ Mn randomly for each

AP n ∈ N .
3: acquire the information of initial channel selections,

transmission powers, and geo-locations from other APs
by each APn ∈ N .

4: end initialization

5: loop for each iteration:
6: Databaseselectsan AP randomly andinforms the

selected AP to update its channel selection.
7: for each APn ∈ N in paralleldo
8: if the update command is received from the

databasethen
9: calculate the system throughput
∑N

n=1 Un(an, a−n) for each feasible channel selection
an ∈ Mn.

10: selecta channelan ∈ Mn with a probability

of
exp(γ

∑N
n=1

Un(an,a−n))
∑

a
′
∈Mn

exp(γ
∑N

n=1
Un(a

′ ,a−n))
.

11: broadcastthe chosen channelan to other APs.
12: else selectthe original channel.
13: end if
14: end for
15: end loop

the same as problem (3). That is, whenγ → ∞, the optimal
point a∗ that maximizes the system throughput

∑N
n=1 Un(a)

will be selected with probability one. A nice property of such
an approximation in (4) is that we can obtain the close-form
solution, which enables the distributed algorithm design later.
More specifically, by the KKT condition [7], we can derive
the optimal solution to problem (4) as

q∗
a
=

exp
(

γ
∑N

n=1 Un(a)
)

∑

a
′∈Θ exp

(

γ
∑N

n=1 Un(a
′)
) . (5)

Similarly to the spatial adaptive play in [8] and Gibbs
sampling in [9], we then design a cooperative AP channel se-

lection algorithm by carefully coordinating APs’ asynchronous
channel selection updates to form a discrete-time Markov
chain (with the system state as the channel selection profile
a of all APs). As long as the Markov chain converges to the
stationary distribution as given in (5), we can approach the
optimal channel selection profile that maximizes the system-
wide throughput by setting a large enough parameterγ. The
details of the algorithm are given in Algorithm 1. Here APs’
asynchronous channel selection updates are scheduled by the
database. In each iteration, one AP will be randomly chosen to
update its channel selection. In this case, the direct transitions
between two system statesa and a

′

are feasible if these
two system states differ by one and only one AP channel
selection. As an example, the system state transition diagram
of the cooperative AP channel selection Markov chain by
two APs is shown in Fig. 2. We also denote the set of
system states that can be transited directly from the statea as
Λa , {a

′

∈ Θ : |{a∪a
′

}/{a∩a
′

}| = 2}, where| · | denotes
the size of a set.

Since each AP will be selected to update with a probability
of 1

N and the selected AP will randomly choose a channel

with a probability proportional toexp
(

γ
∑N

n=1 Un(a)
)

, then

if a
′

∈ Λa, the probability that the Markov chain transits from
statea to a

′

is given as

q
a,a′ =

1

N

exp
(

γ
∑N

n=1 Un(a
′

n, a−n)
)

∑

a′∈Mn
exp

(

γ
∑N

n=1 Un(a
′ , a−n)

) . (6)

Otherwise, we haveq
a,a′ = 0. We show in Theorem 1

that the cooperative AP channel selection Markov chain is
time reversible. Time reversibility means that when tracing
the Markov chain backwards, the stochastic behavior of the
reverse Markov chain remains the same. A nice property of a
time reversible Markov chain is that it always admits a unique
stationary distribution, which guarantees the convergence of
the cooperative AP channel selection algorithm.

Theorem 1. The cooperative AP channel selection algorithm
induces a time-reversible Markov chain with the unique sta-
tionary distribution as given in (5).

According to Theorem 1, we can approach the system
optimal point that maximizes the system-wide throughput by
setting γ → ∞ in the cooperative AP channel selection
algorithm. In practice we can only implement a finite value of
γ such thatexp(γ

∑N
n=1 Un(a)) does not exceed the range of

the largest predefined real number on a computer. Numerical
results show that when a large enoughγ is adopted, the
performance gap from the system optimum is very small.

We then analyze the computational complexity of the al-
gorithm. In each iteration, one AP will be chosen for the
channel selection update. Line9 involves the summation of the
throughputs ofN APs for Mn channels. Since|Mn| ≤ M ,
this step has the complexity ofO(NM). Line 10 involves
at most M summation and division operations and hence
has a complexity ofO(M). Line 11 has a complexity of
M(1). Suppose that it takesC iterations for the algorithm
to converge. Then total computational complexity of the
algorithm isO(CNM).
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III. N ON-COOPERATIVEAP CHANNEL SELECTION

We next consider the case that the APs are owned by
different network operators. Unlike the previous case where
the interest of the APs is aligned in the cooperative channel
selection, here each AP is generally selfish and only concerns
about its own throughput maximization. Formally, given other
APs’ channel selectionsa−n, the problem faced by an APn
is to choose a proper channel to maximize its own throughput,
i.e.,

max
an∈Mn

Un(an, a−n), ∀n ∈ N .

The non-cooperative nature of the channel selection problem
naturally leads to a formulation based on game theory, such
that each AP can self organize into a mutually acceptable
channel selection (Nash equilibrium) a

∗ = (a∗1, a
∗
2, ..., a

∗
N)

with
a∗n = arg max

an∈Mn

Un(an, a
∗
−n), ∀n ∈ N .

A. Non-cooperative AP Channel Selection Game

We now formulate the non-cooperative channel selection
problem as a strategic game
Γ = (N , {Mn}n∈N , {Un}n∈N ), whereN is the set of APs,
Mn is the set of strategies for APn, andUn is the payoff
function of AP n. We refer this as the non-cooperative AP
channel selection game in the sequel.

We can show that it is a potential game, which is defined
as

Definition 1 (Potential Game[10]). A game is called a
potential game if it admits a potential functionΦ(a) such
that for everyn ∈ N and a−n ∈

∏

i6=n Mi,

sgn
(

Φ(a
′

n, a−n)− Φ(an, a−n)
)

=sgn
(

Un(a
′

n, a−n)− Un(an, a−n)
)

,

wheresgn(·) is the sign function.

Definition 2 (Better Response Update[10]). The event where
a player n changes to an actiona

′

n from the actionan
is a better response update if and only ifUn(a

′

n, a−n) >
Un(an, a−n).

An appealing property of the potential game is that it admits
the finite improvement property, such that any asynchronous
better response update process (i.e., no more than one player
updates the strategy at any given time) must be finite and leads
to a Nash equilibrium [10].

To show that the non-cooperative AP channel selection
gameΓ is a potential game, we now consider a closely related
gameΓ̃ = (N , {Mn}n∈N , {Ũn}n∈N ), where the new payoff
functions are

Ũn(a) =
Pn/d

θ
n

ωn
an

+
∑

i∈N/{n}:ai=an
Pi/dθin

. (7)

Obviously, the utility functionUn(a) can be obtained from
the utility function Ũn(a) by the following monotone trans-
formation

Un(a) = B log2

(

1 + Ũn(a)
)

. (8)

Due to the property of monotone transformation, we have

Algorithm 2 Non-Cooperative AP Channel Selection Algo-
rithm

1: initialization:
2: set the initial channelan(0) = mn for each AP

n ∈ N , initial channel selection profile asa(0) =
(a1(0), ..., aN (0)), and the stage indext = 0.

3: end initialization

4: while a(t) is not a Nash equilibriumdo
5: for AP n = 1 to N do
6: choosethe channelan(t + 1) that maximizes its

own throughput according to (10).
7: end for
8: set channel selection profile asa(t + 1) = (a1(t +

1), ..., aN (t+ 1)) and the stage indext = t+ 1.
9: end while

Lemma 1. If the modified gamẽΓ is a potential game, then
the original non-cooperative AP channel selection gameΓ is
also a potential game with the same potential function.

This is due to the fact thatf(x) = B log2(1 + x) is a
monotonically strictly increasing function. For the modified
gameΓ̃, we show in Theorem 2 that it is a potential game
with the following potential function

Φ(a) = −
∑

i

∑

j 6=i

PiPj

dθij
I{ai=aj} − 2

N
∑

i=1

Piω
i
ai
, (9)

whereI{ai=aj} = 1 if ai = aj , andI{ai=aj} = 0 otherwise.

Theorem 2. The modified gamẽΓ is a potential game with
the potential functionΦ(a) as given in (9).

The proof is given in Appendix A. According to Lemma 1
and Theorem 2, we know that

Theorem 3. The non-cooperative AP channel selection game
Γ is a potential game, which has a Nash equilibrium and the
finite improvement property.

The result in Theorem 3 implies that any asynchronous
better response update is guaranteed to reach a Nash equi-
librium within a finite number of iterations. This motivates
the algorithm design in Section III-B. Interestingly, according
to the property of potential game, any channel selection profile
a that maximizes the potential functionΦ(a) is a Nash
equilibrium [10]. According to (9), the profilea∗ is also an
efficient system-wide solution, since maximizing the potential
functionΦ(a) is equivalent to minimizing the total weighted
interferences (with a weight ofPn) among all the APs.

B. Non-cooperative AP Channel Selection Algorithm

The purpose of designing this algorithm is to allow APs
to select their channels in a distributed manner to achieve a
mutually acceptable resource allocation, i.e., an Nash equi-
librium. The key idea is to let APs asynchronously improve
their channel selections according to the finite improvement
property.

We assume that when an AP queries the geo-location
database, the database will assign it with a unique ID indexed
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as 1, 2, 3, .... For initialization, we let each APn select the
channelmn that has the smallest channel ID index among its
feasible channelsMn, i.e., an(0) = mn. Then based on the
initialized channel selection profilea(0) = (a1(0), ..., aN (0)),
each APn in turn (according to the assigned IDs) carries out
the best response update, i.e., select a channelan(t+ 1) that
maximizes its own throughput as

an(t+ 1) = arg max
a∈Mn

Un(a, a1(t+ 1), ...,

an−1(t+ 1), an+1(t), ..., aN (t)), (10)

given the channel selections{a1(t+1), ..., an−1(t+1)} of the
updated APs, and the channel selections{an+1(t), ..., aN (t)}
of remaining APs that are not updated at the current stage
t. Such update procedure continues until a Nash equilibrium
is reached. Since the best response update is also a better
response update, according to the finite improvement property,
such asynchronous best response updates must achieve a Nash
equilibrium within finite number of iterations. We summarize
the non-cooperative AP channel selection algorithm in Al-
gorithm 2. We then consider the computational complexity
of the algorithm. Lines5 to 7 involves N maximization
operations and each maximization operation can be achieved
by sorting over at mostM values. This step typically has a
complexity of O(NM logM). Line 10 has the complexity
of O(1). Suppose that it takesC iterations for the algorithm
to converge. Then total computational complexity of the
algorithm isO(CNM logM).

The Algorithm 2 requires all APs to truthfully communicate
with each other about their channel selections. When such
a requirement is not feasible, each AP can independently
implement Algorithm 2 by acquiring the assigned IDs, avail-
able channels, and transmission powers of other APs from
the database. Note that such an off-line implementation is
incentive compatible, since given other APs adhere to the
algorithm and the update order is fixed, no AP has an
incentive to deviate unilaterally from the algorithm (due to
the deterministic Nash equilibrium output).

C. Price of Anarchy

We now study the efficiency of Nash equilibria of the
non-cooperative AP channel selection Game. Following the
definition of price of anarchy (PoA) in game theory [11],
we will quantify the efficiency ratio of the worst-case Nash
equilibrium over the optimal solution by the cooperative AP
channel selection. LetΞ be the set of Nash equilibria of the
game. Then the PoA is defined as

PoA=
mina∈Ξ

∑N
n=1 Un(a)

max
a∈

∏
N
n=1

Mn

∑N
n=1 Un(a)

,

which is always not greater than1. A larger PoA implies that
the set of Nash equilibrium is more efficient (in the worst-case
sense when comparing with the system optimal solution). Let
ωn = maxm∈Mn{ω

n
m} andωn = minm∈Mn{ω

n
m}. We can

first show that

Lemma 2. For the non-cooperative AP channel selection
game, the throughput of an APn ∈ N at a Nash equilibrium

is no less thanB log2

(

1 +
Pn/d

θ
n

ωn+(
∑

i∈N/{n} Pi/dθ
in)/|Mn|

)

,

where|Mn| is the number of vacant channels for APn.

Lemma 2 implies that at a Nash equilibrium each AP
will receive an interference level that is not greater than the
maximum possible interference level (i.e.,

∑

i∈N/{n} Pi/d
θ
in)

divided by the number of its available channels. That is, if
more channels are available then the performance of Nash
equilibria can be improved. According to Lemma 2, we know
that

Corollary 1. The PoA of the non-cooperative AP channel
selection game is lower bounded by

∑N
n=1 log2

(

1 +
Pn/d

θ
n

ωn+(
∑

i∈N/{n} Pi/dθ
in)/|Mn|

)

∑N
n=1 log2

(

1 +
Pn/dθ

n

ωn

) .

The PoA characterizes the worst-case performance of Nash
equilibria. Numerical results in Section VII demonstrate that
the convergent Nash equilibrium of the proposed algorithm
in Section III-B is often more efficient than what the PoA
indicates and the performance loss is less than8%, compared
with the optimal solution by the cooperative AP channel
selection.

IV. D ISTRIBUTED AP ASSOCIATION BY MOBILE

SECONDARY USERS

We now consider the distributed AP association problem
among a set of mobile secondary usersK = {1, 2, ...,K}
in the SU tier. Letxn be the number of users that associate
with AP n, which satisfies that

∑N
n=1 xn = K. We assume

that the APs’ cooperative/non-cooperative channel selections
in the AP tier and the users’ AP associations in the SU
tier are decoupled, i.e., APs only interested in guaranteeing
their throughputs by proper channel selections and users can
improve their data rates by proper AP associations. The load-
aware AP channel selection will be considered in a future
work.

A. Channel Contention within an AP

We first consider the channel contention when multiple
secondary users associate with the same AP. Here we adopt a
random backoff mechanism to resolve the channel contention.
More specifically, the time is slotted with a contention stage
being divided intoλmax mini-slots. Each secondary userk
executes the following two steps:

1) Count down according to a randomly and uniformly
chosen integral backoff time (number of mini-slots)λk

between1 andλmax.
2) Once the timer expires, monitor the channel and ex-

change RTS/CTS messages with the AP in order to grab
the channel if the channel is clear (i.e., no ongoing trans-
mission). Note that if multiple users choose the same
backoff mini-slot, a collision will occur with RTS/CTS
transmissions and no users can grab the channel. Once
the RTS/CTS message exchange goes through, then the
AP starts to transmit the data packets to the user.
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Since xn users contend for the channel in APn, the
probability that a userk (out of thesexn users) grabs the
channel successfully is

g(xn) = Pr{λk < min
i6=k

{λi}} =

λmax
∑

λ=1

Pr{λk = λ}

× Pr{λ < min
i6=k

{λi}|λk = λ} =

λmax
∑

λ=1

1

λmax

(

λmax − λ

λmax

)xn−1

,

(11)

which is a decreasing function of the total number of contend-
ing usersxn. Then the average data rate of a secondary user
k associating with APn is given as

rk = Hk
nUn(a

∗)g(xn), (12)

whereUn(a
∗) is the throughput at the boundary of the cover-

age area of APn at the equilibrium channel selectionsa∗ by
cooperative/non-cooperative AP channel selection algorithms,
and Hk

n ≥ 1 is the transmission gain of userk. Here the
transmission gain is used to model user specific throughputs
due to their heterogeneous channel conditions. For example,
a user enjoys a better channel condition than all other users
if it is the closest to the AP.

B. Distributed AP Association Game

Due to the channel contention within an APn, the average
data raterk of a secondary userk decreases with the total
number of contending usersxn. To improve the data raterk,
the secondary userk can choose to move to another APn′

with less users. However, in practices people may not prefer
long distance movements (just for the sake of obtaining better
communication experiences), which motivates us to take the
cost of mobility into account. By defining the current location
profile of all secondary users as a system state, we next
formulate the distributed AP association problem as astate-
based game[12] as follows:

• Playerk: a secondary user from the setK.
• Strategybk: choose an APn ∈ N to associate with. We

denote the strategy profile of all users asb , (b1, ..., bK).
• State s , (s1, ..., sK): the current locations (i.e., the

associated APs) of all secondary users, wheresk denote
the location of userk.

• State Transitions
′

= F (b, s): in general the new state
s

′

is determined by the strategiesb of all secondary
users and the original states, whereF (·) denotes the
state transition function. For our problem, we have that
F (b, s) = b, i.e., the new locations just depend on
secondary users’ AP choices and independent of the
original system state.

• PayoffVk(b, s): secondary userk’s utility obtained from
the strategy profileb in state s. To take the cost of
mobility into account, we define

Vk(b, s) = rk − δkdbksk

=Hk
bkUbk(a

∗)g(xbk(b))− δkdbksk , (13)

wherexbk(b) is the number of contending users asso-
ciated with APbk under strategy profileb, δk > 0 is
the factor representing the weight of mobility cost in

userk’s decision, anddbksk is the distance of moving to
AP bk from AP sk (dbksk = 0 if bk = sk). Note that
the distance measure here can represent more general
preference functions and can also be asymmetric. For
example, we can define thatdb′kbk

> dbkb′k
if bk is

a popular shopping mall where uses like to stay. The
physical meaning of (13) is to balance the average data
rate that a user can obtain from moving to a new AP
bk with the mobility cost by moving from its current
associated APsk.

Since the state-based game is a generalized game theoretic
framework (by regarding the classical strategic game as a
state-based game with a constant state), we need an updated
equilibrium concept. Here we follow the recent results in [12]
and introduce the state-based Nash equilibrium. To proceed,
we first define the set of reachable states△(b0, s0) starting
from a strategy state pair(b0, s0) as

△(b0, s0) , {st : st = F (b0, st−1), ∀t ≥ 1}. (14)

We then extend the definition of Nash equilibrium to the state-
based game setting as follows.

Definition 3 (State-based Nash Equilibrium[12]). A strategy
state pair(b∗, s∗) is a state-based Nash equilibrium if
1) the states∗ is reachable from(b∗, s∗), i.e.,s∗ ∈ △(b∗, s∗).
2) for every playerk ∈ K and every states ∈ △(b∗, s∗), we
have

Vk(b
∗, s) = max

bk
Vk(bk, b

∗
−k, s). (15)

The physical meaning of the state-based Nash equilibrium
is that the states∗ is recurrent and the strategy profileb∗ is
the best response no matter how the game state evolves after-
wards. In principle, the state-based game is a special case
of the stochastic game, which is difficult to tackle. However,
we are able to solve the distributed AP association game by
exploiting its inherent structure property. A key observation
is that, similarly to the classical potential game, the state-
based distributed AP association game also admits a state-
based potential function as

Ψ(b, s) =

K
∑

k=1

lnUbk (a
∗) +

N
∑

n=1

xn(b)
∑

i=0

ln g(i) +

K
∑

k=1

lnHk
bk
. (16)

For the state-based potential functionΨ(b, s), we have

Lemma 3. For the state-based distributed AP association
game, if a playerk ∈ K performs a better response updatebk
in a given states = (sk, s−k) with Vk(bk, s−k, s) > Vk(s, s),
we then have thatΨ(bk, s−k, s) > Ψ(s, s).

The proof is given in Appendix B. Similarly to the classical
potential game, we can also define the finite improvement
property for the state-based game. Lets

t = (st1, ...s
t
K) be the

state of the game in thet-th update, andbt = (bt1, ...b
t
K) be the

strategy profile of all players int-th update. According to the
state transition, we havest+1 = F (bt, st). A path of the state-
based game is a sequenceρ = ((b0, s0), (b1, s1), ...) such
that for everyt ≥ 1 there exists a unique player, say player
kt, such thatbt = (bkt , s

t
−k) for some strategybkt 6= stkt

.
ρ = ((b0, s0), (b1, s1), ...) is an improvement path if for all
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t ≥ 1 we haveVkt(b
t, st) > Vkt(s

t, st), where kt is the
unique deviator at thet-th update. From the properties of the
state-based potential functionΨ(b, s), we first show that every
improvement path is finite.

Theorem 4. For the state-based distributed AP association
game, every improvement path is finite.

Proof: For any improvement path ρ =
((b0, s0), (b1, s1), ...), we have Vk0

(b0, s0) >
Vk0

(s0, s0), Vk1
(b1, s1) > Vk1

(b0, s1), Vk2
(b2, s2) >

Vk2
(b1, s2), ..., where s

1 = F (b0, s0) = b
0, s

2 =
F (b1, s1) = b

1, and so on. From Lemma 3, we know that
Ψ(s0, s0) < Ψ(b0, s0),Ψ(b0, s0) < Ψ(b0, s1),Ψ(b0, s1) <
Ψ(b1, s1),Ψ(b1, s1) < Ψ(b1, s2),Ψ(b1, s2) < Ψ(b2, s2), ...,
which is increasing along the improvement path.
Since Ψ(b, s) < ∞, then the improvement path
ρ = ((b0, s0), (b1, s1), ...) must be finite.

Similarly to the classical potential game, we further show
that any asynchronous better response update process also
leads to a state-based Nash equilibrium.

Theorem 5. For the state-based distributed AP associa-
tion game, any asynchronous better response update process
leads to a state-based Nash equilibrium(b∗, s∗) with s

∗ =
F (b∗, s∗).

Proof: Suppose that an asynchronous better response
update processρ = ((b0, s0), (b1, s1), ...) terminates at the
point (b∗, s∗). In this case, we must haveΨ(b∗k, b

∗
−k, s

∗) ≥
maxbk Ψ(bk, b

∗
−k, s

∗), otherwise the improvement pathρ does
not terminate at point(b∗, s∗). At point (b∗, s∗), we must
also have thatVk(b

∗
k, b

∗
−k, s

∗) ≥ maxbk Vk(bk, b
∗
−k, s

∗) and
s
∗ = b

∗ = F (b∗, s∗), otherwise the potential function can be
improved and thus the improvement path does not terminate
here. Thus, we haves∗ ∈ △(b∗, s∗) and Vk(b

∗
n, b

∗
−n, s) ≥

maxbn Vk(bn, b
∗
−n, s), ∀s ∈ △(b∗, s∗), which satisfies the

conditions in Definition 3.
Sinces

∗ = b
∗ = F (b∗, s∗), Theorem 5 implies that the

asynchronous better response update process leads to the state-
based Nash equilibrium (b∗, b∗), i.e., the equilibrium that all
users are satisfied with the current AP associationsb

∗ and
have no incentive to move anymore.

C. Distributed AP Association Algorithm

We next design a distributed AP association algorithm based
on the finite improvement property shown in Theorem 4,
which allows secondary users to select their associated APs
in a distributed manner and achieve mutually acceptable AP
associations, i.e., a state-based Nash equilibrium.

The key idea is to let secondary users asynchronously
improve their AP selections. Unlike the non-cooperative AP
channel selection update with the fixed order enforced by
the geo-location database, the distributed AP associational-
gorithm can not be deterministic. This is because that, as
secondary users dynamically enter and leave the network, a
deterministic distributed AP association algorithm according
to the fixed strategy update order is not robust. Hence we
will design a randomized algorithm by letting each secondary
user countdown according to a timer value that follows the

Algorithm 3 Distributed AP Association Algorithm
1: initialization:
2: set the meanη for strategy update countdown.
3: end initialization

4: loop for each secondary userk ∈ K in parallel:
5: generate a timer value that follows the exponential

distribution with the meanη.
6: count down until the timer expires.
7: if the timer expiresthen
8: acquire the information of channel throughput

{Un(a
∗)}, the geo-location of APs, and user distribution

{xn}Nn=1.
9: update the strategyb∗k according to the best re-

sponse in (17).
10: end if
11: end loop

exponential distribution with a mean equal toη. Since the
exponential distribution has support over(0,∞) and its prob-
ability density function is continuous, the probability that more
than one users generate the same timer value and update their
strategies simultaneously equals zero.2 When a userk activates
its strategy update at timet, the user can computes its best
response strategy as

b∗k = argmax
bk

Vk(bk, b
t
−k, s

t)

= argmax
bk

Hk
bk
Ubk(a

∗)g(xbk (b
t))− δkdbksk , (17)

which requires the information of user distribution
(x1(b

t), ...xN (bt)) at time t, the throughput Un(a
∗),

and geo-locations of all the APs. We then consider the
computational complexity of the algorithm. For each iteration
of each user, Lines4 to 7 only involve random value
generation and subduction operation for count-down, and
hence have a complexity ofO(1). Line 8 involves information
inquiry from N APs and hence has a complexity ofO(N).
Line 9 computes the best response strategy, which can be
achieved by sorting at mostN values and typically has a
complexity ofO(N logN). Suppose that it takesC iterations
for the algorithm to converge. Then total computational
complexity ofK users isO(CKN logN). Similarly, we can
show that the space complexity isO(KN).

To facilitate the best response update, we propose to setup
a social database (accessible by all secondary users), wherein
each AP reports its channel throughputUn(a

∗) and geo-
location, and each secondary userk

′

∈ K posts and shares
its AP associationb∗

k′ with other users in the manner like
Twitter once it updates. Based on the information from the
social database, a secondary userk can first figure out the
user distribution(x1(b

t), ...xN (bt)) as

xn(b
t) =

K
∑

k′=1

I{bt
k′=n}, ∀n ∈ N , (18)

2The timer in practice is always finite, and the collision probability is not
exactly zero. However, as long as the collision probabilityis very small, the
following analysis is a very good approximation of the reality.
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where I{bt
k′=n} = 1 if user k′ associates with APn, and

I{bt
k′=n} = 0 otherwise. Based on the user distribution, the

secondary userk can then compute the corresponding best
response strategy according to (17).

The success of social database requires that each user is
willing to share the information of its AP association. When
this is not feasible, each APn can estimate its associated
user populationxn locally. Let ḡ(xn) denote the probability
that no user amongxn associated with the same AP grabs
the channel in a time slotτ . This can be computed as
ḡ(xn) = 1−xng(xn), whereg(xn) is given in (11). In a time
slot τ , AP n can observe the informationIa∗

n
(τ) ∈ {1, 0}, i.e.,

whether the channela∗n is used by any users or not. Then over
a long period that consists ofL time slots, APn can observe

the outcome{Ia∗
n
(τ)}Lτ=1 and estimatēg(xn) =

∑L
τ=1

Ia∗
n
(τ)

L
by the sample-average. SinceIa∗

n
(τ) is independently and

identically distributed according to the probabilitȳg(xn),
according to the law of large numbers, the estimation will
be accurate when the observation period lengthL is large
enough. This is feasible in practices since user’s mobility
decision is often carried out at a large time scale (say every
few minutes), compared with the time scale of a time slot
(say 50 microseconds in the standard 802.11 system). Then
AP n can obtain the number of its associated usersxn by

solving thatxn = ḡ−1

(∑L
τ=1

Ia∗
n
(τ)

L

)

, and report it in the

social database.
We summarize the distributed AP association algorithm in

Algorithm 3. According to Theorem 5, such asynchronous
best response update process must reach a state-based Nash
equilibrium. Numerical results show that the algorithm is
also robust to the dynamics of secondary users’ leaving and
entering the system.

V. SIMULATION RESULTS

In this part, we investigate the proposed AP channel selec-
tion and AP association algorithms by simulations.

A. Cooperative AP Channel Selection

We first implement the cooperative AP channel selection
algorithm in Section II. We consider a white-space wireless
system consisting ofM = 4 channels andN = 8 APs, which
are scattered across a square area of a length of500 m (see
Fig. 3). The bandwidth of each channel is6 MHz, the noise
power isωn

m = −100 dBm, and the path loss factorθ = 4.
Each APn operates with a specific transmission powerPn

and has a different set of vacant channels by consulting the
geo-location database (please refer to Fig. 3 for the details of
these parameters). We set that the distancedn between APn
and its associated boundary secondary user is20 m.

We implement the cooperative channel selection algorithm
with the parameterγ = 0.2, 0.5, and 0.85, respectively. We
show the dynamics of the time average throughputs of all the
APs in Fig. 4 whenγ = 0.85. It demonstrates the convergence
of the cooperative channel selection algorithm. From Fig. 5,
we see that the performance of the algorithm improves as theγ
increases, and the convergence time also increases accordingly.
When γ = 0.85, the performance loss of the cooperative
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Fig. 3. A square area of a length of500m with 8 scattered APs. Each
AP has a set of vacant channels, and operates with a specific transmission
power. For example, the available channels and transmission power of AP1
are{2, 3, 4} and350 mW, respectively.
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Fig. 4. Dynamics of APs’ time average throughputs in cooperative channel
selection withγ = 0.85.

channel selection algorithm is less than1%, compared with
the centralized optimal solution, i.e.,maxa∈Θ

∑N
n=1 Un(a).

Moreover, the algorithm achieves more than18% performance
gain over the random channel selection scheme wherein the
APs choose channels purely randomly.

B. Non-cooperative AP Channel Selection

We then implement the non-cooperative channel selec-
tion algorithm in Section III. We show the dynamics of
the throughputs of all the APs in Fig. 6. We see that the
algorithm converges to an equilibriuma∗ in less 20 iter-
ations. To verify that the equilibrium is a Nash equilib-
rium, we show the dynamics of the potential functionΦ
in Fig. 7. We see that the algorithm can lead the poten-
tial function to a maximum point, which is a Nash equi-
librium according to the property of potential game. At
the equilibriuma

∗, 8 APs achieve the throughputsUn(a
∗)

of {101.4, 100.1, 82.6, 97.6, 83.2, 98.7, 85.6, 84.5} Mbps, re-
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spectively, and no AP has the incentive to deviate its channel
selection unilaterally. Compared with cooperative AP chan-
nel selection algorithm, the performance loss of the non-
cooperative channel selection algorithm is less than7%. Such
a performance loss is due to the selfishness of APs in the
non-cooperative environment. However, the convergence time
of non-cooperative AP channel selection algorithm is much
shorter. This is because that in order to achieve the system
optimal solution, the cooperative algorithm needs more time
to randomly explore the whole set of feasible channel selec-
tions. While the non-cooperative channel selection algorithm
achieves the Nash equilibrium by focusing on the subset of
channel selections satisfying the finite improvement property.

We then further implement simulations withN =
10, 20, ..., 50 APs being randomly scattered over the square
area in Fig. 3, respectively. The number of TV channels
M = 50 and 25 channels out of these50 channels will be
randomly chosen as the set of vacant channelsMn for each
AP n. We implement both non-cooperative and cooperative
AP channel selection algorithms. The results are shown in
Fig. 10. We see that when the number of APs is small (e.g.,
N ≤ 20), the non-cooperative channel selection achieves the
same performance as the cooperative case. This is due to
the abundance of the spectrum resources. We also observe
that the performance of the non-cooperative channel selection
algorithm is less than8% in all cases. This demonstrates the
efficiency of the non-cooperative channel selection.

C. Distributed AP Association

We next implement the distributed AP association algorithm
in Section IV. We considerK = 20 mobile secondary users
who can move around and try to find a proper AP to associate
with. Within an APn, the worse-case throughputUn(a

∗) of
AP n is computed according to the Nash equilibriuma∗ in
Section V-B. For the channel contention by multiple secondary
users, we set the number of backoff mini-slotsλmax = 10.

We first show in Fig. 8 the dynamics of the distributed AP
association algorithm with the random initial APs selections,
users’ transmission gainsHk

n being randomly selected from
the set{1.0, 1.1, 1.2, 1.3, 1.4, 1.5}, and the mobility cost factor
δk = 0.06 Mbps/m. We see that the algorithm converges to
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an equilibrium(b∗, b∗) in less 30 iterations. We also show
the the dynamics of the state-based potential functionΨ in
Fig. 9. We see that the equilibrium(b∗, b∗) is a state-based
Nash equilibrium, since the algorithm leads the state-based
potential function to a maximum point.

To investigate the impact of the cost factorδk, we assume
that all the users are initially associated with AP1 with the
same transmission gainsHk

n = 1 and we implement the
distributed AP association algorithm with a mixture of two
types of secondary users: high and low mobility cost factors.
We see from Fig. 11 that users of low mobility cost will
spread out to achieve better data rates, while most users of
high mobility cost choose to stay in AP1 and suffer from
severe congestion.

We next investigate the robustness of the distributed AP
association algorithm. We considerK = 30 mobile secondary
users with the cost factorδk randomly generated from a
uniform distribution in (0, 0.2). At iteration t = 200 and
400, we let10 users leave the system and15 new users enter
the system, respectively. The results in Figs. 12 and 13 show
that the algorithm can quickly converge to a state-based Nash
equilibrium after the perturbations occur. This verifies that the
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distributed AP association algorithm is robust to the dynamics
of secondary users’ leaving and entering the system.

VI. RELATED WORK

Most research efforts in database-assisted white-space sys-
tems are devoted to the design of geo-location service. Gurney
et al. in [13] calculated the spectrum availability based on
the transmission power of the white-space devices. Karimi in
[14] presented a method to derive location-specific maximum
permitted emission levels for white space devices. Murtyet al.
in [2] proposed a framework to determine the vacant spectrum
by using propagation model and terrain data. Nekovee in [15]
studied the white-space availability and frequency composition
in UK. Luo et al. in [16] proposed a database-based spectrum
reservation mechanism for the white-space access.

For the white-space networking system design, many exist-
ing works focus on the experimental testbed implementation.
Bahl et al. in [17] designed a single white-space AP system.
Murty et al. in [2] addressed the client bootstrapping and mo-
bility handling issues in white-space AP networks. Fenget al.
in [18] considered the OFDM-based AP white-space network
system design. Debet al. in [19] presented a centralized white-
space spectrum allocation algorithm. In this paper, we propose
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Fig. 10. System throughput by cooperative and non-cooperative AP channel
selection with the number of APsN = 10, 20, ...,50, respectively.
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Fig. 11. The equilibrium secondary user distribution with amixture of two
types of secondary users. The black dots represent the secondary users with
a high cost factor, and the black stars represent the secondary users with a
low cost factor.

a theoretic framework based on game theory for distributed
resource allocation in white-space AP networks.

The game theory has been used to study wireless resource
allocation problems in non-white-space infrastructure-based
networks. Songet al. in [20] modeled the distributed channel
allocation in mesh networks as a non-cooperative game, where
each cell tries to minimize the interference received from
other cells. Southwellet al. in [21] modeled the distributed
channel selection problem with switching cost as a network
congestion game. Chen and Huang in [22] proposed a spatial
spectrum access game framework for distributed spectrum
sharing with spatial reuse. Wanget al. in [23] proposed an
auction approach for incentive-compatible spectrum resource
allocation. Most previous works studied the competitive chan-
nel selection based on the protocol interference model where
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two users can interfere with each other if they are linked by
an interference edge on the interference graph. In this paper,
we explore the competitive channel selections based on the
physical interference model, which is not well studied in the
literature. The most relevant work is [9], where Kauffmannet
al. considered to minimize the total interferences received by
all the APs by designating each AP a specific utility function
to be optimized locally. In our paper, we consider the case
that each AP is fully rational and tries to maximize its own
throughput.

For the AP association problem, Gajić et al. in [24] and
Duan et. al in [25] studied the pricing mechanisms to achieve
efficient wireless service provider association solutions. Be-
jerano et al. in [26] address the load imbalance problem
through the association control. Honget al. in [27] inves-
tigated distributed AP association game with power control,
by assuming that the chosen channels among APs are non-
overlapping. These previous results focus on the case that
users are stationary, and can associate with any AP. When
users are mobile, Mittalet al. in [28] studied the distributed
access point selection game by assuming that users are ho-

mogeneous with the same cost of mobility. Here we propose
a state-based game framework to formulate the more general
case that users have heterogeneous cost of mobility.

VII. C ONCLUSION

In this paper, we consider the database-assisted white-
space AP network design. We address the cooperative and
non-cooperative channel selection problems among the APs
and the distributed AP association problem of the secondary
users. We propose the cooperative and non-cooperative AP
channel selection algorithms and a distributed AP association
algorithm, all of which that converge to the corresponding
equilibrium globally. Numerical results show that the proposed
algorithms are efficient, and are also robust to the perturba-
tion by secondary users’ dynamical leaving and entering the
system.

For the future work, we are going to generalize the results
to the mixture case that consists of both cooperative and non-
cooperative APs. Multiple APs that belong to one network
operator are cooperative with each other, but they may not
cooperate with other APs that belong to a different network
operator. It will be interesting to study the existence of Nash
equilibrium and design distributed algorithms to achieve the
equilibrium.

Although the distributed AP association algorithm can
achieve the state-based Nash equilibrium wherein all users
are satisfied given their mobility cost factors, the loads among
different APs can be quite imbalanced when the mobility cost
is high as demonstrated in the numerical results. Thus, how to
design an incentive compatible mechanism such as pricing to
achieve load balance among the APs with mobile secondary
users will be very interesting and challenging.

APPENDIX

A. Proof of Theorem 2

Suppose that an APk changes its channelak to a
′

k such
that the strategy profile changes froma to a

′

. We have that

Φ(a
′

)− Φ(a) = −
∑

j 6=k

PkPj

dθkj
I
{a

′
k
=aj}

+
∑

j 6=k

PkPj

dθkj
I{ak=aj}

−
∑

i6=k

PiPk

dθik
I
{ai=a

′
k
}
+

∑

i6=k

PiPk

dθik
I{ai=ak} − 2Pkω

k

a
′
k
+ 2Pkω

k
ak
.

Sincedij = dji, we thus have that

Φ(a
′

)−Φ(a) = −2
∑

i6=k

PiPk

dθik
I
{ai=a

′
k
}
+ 2

∑

i6=k

PiPk

dθik
I{ai=ak}

− 2Pkω
k

a
′
k
+ 2Pkω

k
ak

= −2Pk







∑

i6=k:I
{ai=a

′
k
}

Pi

dθik
+ ω

k,a
′
k







+ 2Pk





∑

i6=k:I{ai=ak}

Pi

dθik
+ ωk,ak





=2dθk







∑

i6=k:I
{ai=a

′
k
}

Pi

dθik
+ ω

k,a
′
k











∑

i6=k:I{ai=ak}

Pi

dθik
+ ωk,ak
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×







Pk/d
θ
k

∑

i6=k:I
{ai=a

′
k
}

Pi

dθ
ik

+ ωk

a
′
k

−
Pk/d

θ
k

∑

i6=k:I{ai=ak}

Pi

dθ
ik

+ ωk
ak







=2dθk







∑

i6=k:I
{ai=a

′
k
}

Pi

dθik
+ ωk

a
′
k











∑

i6=k:I{ai=ak}

Pi

dθik
+ ωk

ak





×
(

Ũk(a
′

k, a−k)− Ũk(ak, a−k)
)

,

which completes the proof.

B. Proof of Lemma 3

First of all, the conditionVk(bk, s−k, s) > Vk(s, s) implies
that

Hk
bkUbk(a

∗)g(xbk(bk, s−k))− δkdbksk

>Hk
skUsk(a

∗)g(xsk(sk, s−k))− δkdsksk .

Sincedbksk > dsksk = 0, we then have

Hk
bk
Ubk(a

∗)g(xbk(bk, s−k)) > Hk
sk
Usk(a

∗)g(xsk(sk, s−k)).
(19)

Second, sincexbk(bk, s−k) = xbk(sk, s−k) + 1 and
xsk(sk, s−k) = xsk(bk, s−k) + 1, we have

that

Ψ(bk, s−k, s)−Ψ(sk, s−k, s) = lnUbk (a
∗)− lnUsk (a

∗)

+

xbk
(bk,s−k)
∑

i=0

ln g(i)−

xbk
(sk,s−k)
∑

i=0

ln g(i)

+

xsk
(bk,s−k)
∑

i=0

ln g(i)−

xsk
(sk,s−k)
∑

i=0

ln g(i) + lnHk
bk

− lnHk
sk

= lnUbk (a
∗)− lnUsk (a

∗) + ln g(xbk(bk, s−k))

− ln g(xsk(sk, s−k)) + lnHk
bk

− lnHk
sk

= ln
(

Hk
bk
Ubk (a

∗)g(xbk(bk, s−k))
)

− ln
(

Hk
sk
Usk (a

∗)g(xsk(sk, s−k))
)

. (20)

From (19) and (20), we must have thatΨ(bk, s−k, s) >
Ψ(sk, s−k, s).
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