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Abstract—We consider a decentralized hypothesis testing prob-
lem in which several peripheral energy harvesting sensors are
arranged in parallel. Each sensor makes a noisy observation of a
time varying phenomenon, and sends a message about the present
hypothesis towards a fusion center at each time instance t. The
fusion center, using the aggregate of the received messages during
the time instance t, makes a decision about the state of the present
hypothesis. We assume that each sensor is an energy harvesting
device and is capable of harvesting all the energy it needs
to communicate from its environment. Our contribution is to
formulate and analyze the decentralized detection problem when
the energy harvesting sensors are allowed to form a long term
energy usage policy. Our analysis is based on a queuing-theoretic
model for the battery. Then, by using numerical simulations, we
show how the resulting performance differs from the energy-
unconstrained case.

I. INTRODUCTION

Decentralized signal processing systems have received sig-

nificant interests during the past decades. Because of their use

in wireless sensor networks this interest has been renewed

during the past years, see [1], [2] and references therein. In

wireless sensor networks a large number of simple sensors

are used. Each sensor is equipped with a small battery with

limited lifetime, which in effect limits the lifetime of the sensor

network. When the battery of a sensor runs out it will usually

not be replaced and the sensor dies. The overall sensor network

dies if a sufficient number of sensors die. To increase the

lifetime of the battery-powered sensors, many solutions have

been proposed [3], e.g., reducing the number of transmission

bits or choosing the best modulation strategy. However, in all

of these methods the sensors eventually die. To overcome this

problem, an alternative is to use energy harvesting sensors

that acquire their energy needed from nature or man-made

sources [4], [5].

Energy harvesting technology in wireless sensor networks

promises a self-sustainable, maintenance free and perpetually

communicating system with a lifetime that is not limited by

the lifetime of individual sensors’ batteries [6]. While using

energy harvesting devices makes it possible to deploy wireless

sensor networks in hard-to-reach places, and provides poten-

tially perpetual operation, it poses new challenges relating to

the management of harvested energy because energy sources

are usually sporadic and limited. For example, the source of

energy might be such that energy can not be harvested all the

times while we may want to use the sensors continually.

In this paper we address the problem of decentralized

detection in a network of energy harvesting sensors arranged

in parallel. At each time instance t = 1, 2, . . . the sensors send

a message towards the fusion center (FC) about the perceived

state of a time dependent hypothesis Ht which is drawn from

a binary set H � {0, 1}. For tractability, we assume that

the noisy observations at the sensors are independent and

identically distributed (iid), conditioned on the true hypothesis

Ht. The sensors communicate with the FC through a parallel

network using energy asymmetric on-off keying (OOK) where

a positive message can be sent at the cost of one unit of

energy, and a negative message can be conveyed though a non-

transmission at no cost in energy. OOK has been previously

proven to be an energy efficient scheme in sensor networks

[7], [8]. The sensors are allowed to use a long term energy

conservation policy managed together with an internal battery.

The problem is structurally similar to the classical decen-

tralized binary hypothesis testing problem over parallel one bit

channels, and we consider the optimization of network per-

formance in terms of the Bhattacharyya distance [9] between

the two hypotheses at the input of the FC [10], [11]. Our

first contribution is to show how the Bhattacharyya distance

depends jointly on the sensor transmission rule and the battery

depletion probability. We then illustrate the usefulness of this

result by showing how to optimize the sensor transmission

rule under the assumption of an unlimited-capacity battery,

where we model the battery state using a birth-death pro-

cess and obtain the steady state depletion probability. We

then numerically compare the performance of a network of

energy harvesting sensors and the performance of a network

of optimally designed sensors for the unconstrained case,

where energy is always available at the sensors, in terms of

Bhattacharyya distance and error probability.

The outline of this paper is as follows: In Section II we

define the system model and formulate the problem. In Section

III we analyze the performance of an infinite capacity energy

harvesting sensor by modeling its battery as a birth-death

process. In Section IV we illustrate the benefits of the results

by numerical simulations, and in Section V we conclude the

paper.
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Fig. 1. Decentralized detection in energy harvesting parallel network.

II. PRELIMINARIES

We consider a problem of decentralized hypothesis testing

in which several peripheral nodes are arranged in parallel

according to Fig. 1. During time interval t, accounting for

the time passed during [t, t + 1), sensor Sn, n = 1, . . . , N
makes an observation xn,t of the phenomenon Ht ∈ {0, 1}
and sends a message un,t towards the FC. Using the aggregate

received messages ut � (u1,t, . . . , uN,t) the FC makes a

decision Ĥt about the state of the present hypothesis at that

time interval. We assume that the present hypothesis Ht

changes over time, while it is fixed during each time interval.

There is therefore no value in the FC aggregating received

messages over time to make a more reliable decision. Sensor

Sn consumes wn,t = wn,t(ut) packets of energy to send the

message un,t towards the FC. After sending a message, it

harvests en,t packets of energy from its environment and saves

in its energy buffer (if possible).

We assume that en,t ∈ {0, 1}, and energy packets arrive

stochastically according to a stationary and ergodic process

during time interval t [4]. In other words, during a time

interval sensor Sn is capable of harvesting at most one packet

of energy. We further assume en,t is drawn from the set

{1, 0}, with probabilities pe, 1 − pe and independently for

each n and t. Concretely, sensor Sn harvests a packet of

energy with probability pe during time interval t and does

not with probability 1− pe. Let all the sensors have the same

energy buffer (battery) size bmax. For sensor Sn, the amount

of available energy in the battery at the transmission time t+1
can not exceed bmax and is equal to [3]

bn,t+1 = min
{
bn,t − wn,t + en,t, bmax

}
, (1)

where bn,t is the amount of energy available (battery charge)

at sensor Sn at transmission time t. While our initial results

regarding the Bhattacharyya distance hold for this general

battery model, we will in this paper assume the energy storage

buffer is infinite, i.e., the battery capacity is bmax = ∞, in

order to more easily illustrate the consequences of our results.

The infinite battery assumption is also a good approximation

in practice for commercially available batteries, see [3]. We

also assume that the FC is not aware of the battery charge of

the sensors.

As shown in Fig. 1, the sensors communicate with the

FC through one-way parallel access channels using energy

asymmetric on-off keying (OOK), where a positive message is

sent at the cost of one packet of energy and a negative message

is conveyed through a non-transmission at no energetic cost. It

was shown in [8] that under Rayleigh fading scenario OOK is

the most energy efficient modulation scheme, though here we

do not consider fading channels between the sensors and the

FC. In this paper, a positive message and a negative message

sent by sensor Sn at time t are labeled by un,t = 1 and

un,t = 0, respectively, with the corresponding energy costs

wn,t = wn,t(ut) =

{
1 un,t = 1 ,

0 un,t = 0 .

For this binary hypothesis testing problem, we assume that

at each time interval t the phenomenon Ht is modeled as

a random variable drawn from the set {0, 1} with a-priori

probabilities π0 and π1, respectively. We also assume that ob-

servations xn,t at the sensors are continuous and iid over time

and space, i.e., xn,t is viewed as an independent realization of

a common random variable X over some observation space

X with a conditional probability distribution fX|Ht
(xn,t|ht).

Sensor Sn is a decision maker which maps its observation

xn,t to the output message un,t. Ideally, when there is no

energy constraint, the sensor uses a (likelihood ratio) threshold

test and sends un,t = 1 when its observation xn,t is above

a threshold Θn, and un,t = 0 otherwise [12]. However,

in an energy harvesting sensor network the action of each

sensor is also limited by the battery charge bn,t at each

transmission time t. Concretely, we will assume that sensor

Sn at transmission time t sends a message un,t = 1 towards

the FC at the cost of one unit of energy if its observation xn,t

is above a threshold Θn and its battery is not empty, bn,t > 0,

i.e.,

un,t =

{
1 xn,t ≥ Θn , bn,t > 0 ,

0 Otherwise .
(2)

Our goal is to find optimum thresholds Θ1, . . . ,ΘN which

maximize the total Bhattacharyya distance at the input of the

FC at every time t. The total Bhattacharyya distance at the FC

at time t is given by

BTot,t � − log
∑

ut∈{0,1}N

√
PU |Ht

(ut|0)PU |Ht
(ut|1) (3)

where PU |Ht
(ut|ht) is the conditional PMF associated with

the aggregate message vector U � (U1, . . . , UN ) that models

the randomness of the message vector ut � (u1,t, . . . , uN,t),
and is because of the independence of observations given by

PU |Ht
(ut|ht) =

N∏
n=1

PUn|Ht
(un,t|ht) .
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Due to the independence of the observations, the total Bhat-

tacharyya distance at the FC becomes

BTot,t =
N∑

n=1

Bn,t , (4)

where

Bn,t = − log
∑

un,t∈{0,1}

√
PUn|Ht

(un,t|0)PUn|Ht
(un,t|1) (5)

is the Bhattacharyya distance at the FC resulting from sensor

Sn. The motivation of using the Bhattacharyya distance as

performance metric is that using the probability of error at the

FC makes the design procedure intractable. Also when the FC

is a maximum a-posteriori (MAP) detector, it is possible to

upperbound the minimum probability of error at the FC using

the Bhattacharyya distance according to [10]

PE,t ≤ √
π0π1 e

−BTot,t .

According to (4) the total Bhattacharyya distance at the

FC is the summation of the delivered Bhattacharyya distances

from individual sensors. This greatly simplifies the problem

of jointly designing the sensor decisions to the problem of

designing a set of individual and identical sensor decision

rules (thresholds). Therefore, in what follows, we drop the

subscript n and focus on finding optimum threshold Θ� which

maximizes the Bhattacharyya distance of a single sensor S.

III. ANALYZING AN ENERGY HARVESTING SENSOR

In this section we will be considering the Bhattacharyya

distance of a single energy harvesting sensor. We will show

how this can be formulated in terms of its threshold Θ and

the depletion probability of its battery. Let Bt be a random

variable corresponding to the battery charge bt. By (2), the

conditional mass probabilities of the sensor decision are

PU |Ht
(ut = 1|ht) = Pr (X ≥ Θ ∩Bt > 0|Ht = ht) (6)

= Pr (X ≥ Θ|Ht = ht) Pr (Bt > 0)

= Pr (X ≥ Θ|Ht = ht) [1− Pr (Bt = 0)] ,

since the available energy Bt at transmission time t is inde-

pendent of the true hypothesis Ht and the observation X at

the same time.

Under the assumptions that the energy harvesting proba-

bility is uncorrelated in time and has a fixed probability pe,

and the observations at the sensor are iid in time, the battery

has a Markovian behavior in the sense that its state at the

transmission time t + 1 (i.e., Bt+1), conditioned on Et and

Wt, only depends on its state at transmission time t (i.e.,

Bt) and not the sequence of previous states, {Bt′}t−1
t′=0, where

Et and Wt are the random variables corresponding to et and

wt, respectively. This can also be seen from (1). Under the

Markovian assumption and the time invariant transmission

policy, the battery state will have a stationary distribution,

which allows us to consider the steady state performance of an

energy harvesting sensor. To this end, we drop the subscript

t from (6), and define pk for k = 0, 1, . . . as the steady state

0 1 2

λ0

μ1

λ1

μ2

λ2

μ3

. . .

Fig. 2. A birth-death process.

probability that the battery is in state k. In other words, pk
is the long-term fraction of time that the battery charge at

an arbitrary transmission time is k packets of energy, and

accordingly p0 = Pr (Bt = 0) is the steady-state depletion

probability of the battery. Then (6) reduces to

PU |H (u = 1|h) = qh (1− p0) , (7)

where qh � Pr (X ≥ Θ|Ht = h). Using (7), the Bhat-

tacharyya distance of a single energy harvesting sensor in

steady state can be expressed as

B = − log

[
(1− p0)

√
q0 q1 + (8)√[

1− q0 (1− p0)
][
1− q1 (1− p0)

]]
.

We observe from (8) that the Bhattacharyya distance of an

energy harvesting sensor not only depends on the choice of the

threshold Θ, but it also depends on the depletion probability

p0. The depletion probability of the battery is itself a function

of energy features, battery size, and the threshold Θ itself.

We will next model the battery state as a birth-death process

and find a closed-form expression for the depletion probability

of the battery. This gives us a tool for finding an optimum

threshold Θ� of an energy harvesting sensor. To this end, let

S be an energy harvesting sensor with an unlimited-capacity

battery. In this case there always exists space for harvested

energy. Let at transmission time t the battery be at state k,

k > 0. Then at transmission time t+ 1 its state will be either

k − 1, k, or k + 1. This is due to the fact that during each

time interval at most one packet of energy can be harvested

or be consumed. Note that if the battery at transmission time

t is at state zero, bt = 0, its state at time t+1 would be either

zero or one, since the battery charge can not be negative. The

transition probabilities in steady state can be written as

p0 = p0,0p0 + p1,0p1,

pk = pk−1,kpk−1 + pk,kpk + pk+1,kpk+1, k ≥ 1, (9)

where pi,j � Pr (Bt+1 = j|Bt = i) and where according to

the structure of the problem we find

p0,0 = 1− pe , p1,0 = q (1− pe) , p0,1 = pe ,

where q � π0q0 + π1q1, and for k ≥ 1

pk,k+1 = (1− q)pe ,

pk+1,k = q (1− pe) ,

pk,k = qpe + (1− q) (1− pe) .

The above steady state equations represent a birth-death pro-
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cess [13], as shown in Fig. 2, with parameters

λ0 = pe ,

λk = (1− q)pe , k ≥ 1,

μk = q(1− pe) k ≥ 1.

According to the flow balance [13], the rate of transitions

out of a given state k must be equal to the rate of transitions

into that state, or

λ0p0 = μ1p1

(λk + μk)pk = λk−1pk−1 + μk+1pk+1, k ≥ 1. (10)

In (10), the left hand side is the long term transitions out of

state k, and the right hand side is the long term transitions

into that state. Comparing (9) and (10), and with slight

mathematical manipulations, we can obtain desired values for

λ0, λ1, . . . and μ1, μ2, . . ..
Modeling the state of the unlimited-capacity battery as a

birth-death process, makes it possible to find a closed-form

expression for its depletion probability (and Bhattacharyya

distance). For a birth-death process, in equilibrium, the prob-

ability flows across each cut are balanced [13], and we have

λk pk = μk+1 pk+1 , k ≥ 0 .

This means that all the state probabilities pk can be expressed

in terms of that of the state zero, p0. By noting that the state

probabilities should sum to one, i.e.,

∞∑
k=1

pk = 1

the depletion probability in the steady state is obtained as p0 =
1

1+Λ , where [13]

Λ �
∞∑
k=1

λ0 . . . λk−1

μ1 . . . μk
=

λ0

μ1

∞∑
k=1

(
λ1

μ1

)k−1

.

The depletion probability is zero if λ1 ≥ μ1 (or Λ = ∞),

which is equivalent to pe ≥ q. Else if λ1 < μ1 (or Λ < ∞), the

summation above converges. The overall depletion probability

is

p0 =

{
0 pe ≥ q ,

1− pe

q Otherwise .
(11)

Note that the condition pe ≥ q, which results in zero

depletion probability, follows intuition in the sense that, when

the probability of energy arrival pe is more than the probability

of energy consumption (or the probability that the sensor

decides to send a message q), the battery will asymptotically

accumulate energy and will with probability one not be empty.

In this situation the distributed detection problem will be the

same as in the unconstrained setup.

The depletion probability in (11) can be used to find the

Bhattacharyya distance in (8). From (11) we observe that

the depletion probability, and consequently the Bhattacharyya

distance, depends only on the harvesting probability pe and the

unconstrained transmission probability q though the threshold

Θ. Though the energy harvesting probability is assumed fixed

and out of our control, we can maximize the Bhattacharyya

distance by choosing an optimal threshold Θ�.

In the next section, we will exemplify these results by

considering the optimal Bhattacharyya distance of a single

energy harvesting sensor and the error probability performance

of a network of such energy harvesting sensors.

IV. NUMERICAL RESULTS

For the purpose of the numerical illustrations, we consider

the case where each real valued observation xn,t is either

from a Rayleigh distribution with scale parameter σ0 or a

Rician distribution with scale parameter σ1 and non-centrality

parameter s. We assume σ0 = σ1 = 1, and the conditional

distributions at the sensor are therefore as

fX|Ht
(x|0) = xe−

x2

2

fX|Ht
(x|1) = xe−

x2+s2

2 I0(xs) ,
(12)

where I0(z) is the modified Bessel function of the first kind

with order zero. This observation model corresponds to an

energy harvesting sensor applied to detect the presence of a

known signal in Gaussian noise by received power, a relevant

case for low complexity sensors in a wireless sensor networks.

For energy unconstrained sensors, the optimal threshold is

Θ�
u = argmax

Θ

{
− log

[√
q0 q1 +

√
(1− q0)(1− q1)

]}
.

We use this threshold as a benchmark and compare the Bhat-

tacharyya performance of a single energy harvesting sensor

applying Θ�
u and a sensor that uses the energy optimal thresh-

old Θ� which maximizes (8). Fig. 3 illustrates this comparison

for different pairs of (π1, pe). To find an optimal threshold we

sweep the threshold Θ and find a threshold which maximizes

the Bhattacharyya distance for both the constrained and the

unconstrained cases. We observe, as expected, from Fig. 3

that the resulting Bhattacharyya distance using the energy

optimal threshold Θ� outperforms that of using unconstrained

threshold Θ�
u.

We further compare the performance of a network of N = 4
energy harvesting sensors arranged as in Fig. 1, and with

the observation model given by (12). By maximizing the

Bhattacharyya distance of single sensors (as in (8)) we find the

optimal threshold for each sensor and then compare the error

probability performance of the network with the case where

the sensors use threshold Θ�
u. We assume that the FC using

the MAP rule makes the final decision about the state of the

true hypothesis at each time t. The error probability at time t
at the FC is found using

PE,t = 1−
∑
ut

max
h=0,1

{
πhPU |Ht

(ut|h)
}
.

This can be computed numerically, without the need for

Monte-Carlo simulations, see [11]. Fig. 4 shows the error

probability performance of a network of unlimited-capacity

battery sensors for different sets of (π1, pe1). The results

parallel those obtained for the Bhattacharyya distance, and
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Fig. 3. Evolution of Bhattacharyya distance of an unlimited-capacity battery
energy harvesting sensor while using unconstrained Θ�

u and adapted Θ�

thresholds and for different (π1, pe).

show that the energy optimal threshold Θ� results in better

error probability performance.

From the numerical results, we observe that Bhattacharyya

distance (error probability), as the noncentrality parameter

grows, for some cases grows (decreases) unboundedly and for

some cases converges to an asymptote. This can be understood

as follows: As the noncentrality parameter s goes to infinity,

the sensor will detect the signal without error wherever Ht = 1
for any reasonable choice of threshold Θ, and π1 becomes

the ideal energy consumption rate. When π1 increases it is

more probable that Ht = 1 and consequently the sensor S
will consume more energy to notify the FC of the presence

of the signal. When pe < π1, the sensor will ultimately

be limited by battery depletion events. When pe ≥ π1, the

sensor shows the same behavior as an unconstrained sensor,

i.e., its Bhattacharyya distance grows unboundedly as the

noncentrality parameter increases. The conditions under which

the Bhattacharyya distance (error probability), as the noncen-

trality parameter (or SNR in general) increases (decreases)

unboundedly will be studied extensively in [14], where also

the asymptotes are found under a range of different battery

capacities.

V. CONCLUSIONS

In this paper we considered the performance a network of

unlimited-capacity battery energy harvesting sensors. Using

the Bhattacharyya distance, we formulated the problem of

designing energy harvesting sensors in wireless sensor net-

works. We analyzed the performance of the sensors using

a queuing-theoretic model for each sensor battery. In this

paper the depletion probability and the Bhattacharyya distance

performance of an unlimited-capacity battery sensor were

obtained. An extended analysis can be completed by consid-

ering the performance of an arbitrary capacity battery energy

harvesting sensor. Furthermore, in this paper we assumed that
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Fig. 4. Error probability performance of a network of N = 4 unlimited-
capacity battery energy harvesting sensors while using unconstrained Θ�

u and
adapted Θ� thresholds and for different (π1, pe).

the energy drawing process is iid in both time and space,

and an extension of our work can include the analysis by

considering correlations in energy drawing process.
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