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Abstract—An efficient continuous beam steering method, appli-
cable to differential microphones of any order, has been recently
developed. Given two identical reference beams, pointing in
two different directions, the method allows to derive a beam
of nearly constant shape continuously steerable between those
two directions. In this paper, the steering method is applied to
robust Differential Microphone Arrays (DMAs) characterized by
uniform circular array geometries. In particular, a generalized
filter performing the steering operation is defined. The definition
of such a filter enables the derivation of closed-form formulas for
computing the white noise gain and the directivity factor of the
designed steerable differential beamformers for any frequency of
interest. A study on the shape invariance of the steered beams is
conducted. Applications of the steering approach to first-, second-
and third-order robust circular DMAs are presented.

I. INTRODUCTION

The interest in Differential Microphone Arrays (DMAs) [1],
[2] is continuously increasing in the audio signal processing
community due to their promise to build nearly frequency-
invariant responses. DMA theory has been developed to design
directional beams starting from arrays of physical omnidirec-
tional microphones. DMAs with different array geometries,
e.g. Uniform Linear Arrays (ULAs) [2], [3], Non-Uniform
Linear Arrays [4] or Uniform Circular Arrays (UCAs) [5],
appeared in the literature. While in linear DMAs the endfire
direction is the preferred steering direction, circular DMAs are
characterized by the same behavior in all azimuthal directions
identified by a physical sensor [5]. Moreover, the theory
on Robust Circular DMAs (RCDMAs) formalized in [5] to
minimize the white noise amplification, decouples the number
of physical sensors from the order of the designed beams,
unlike what happens with traditional DMAs [2], [6], [7].
In the latest years, procedures to achieve continuous beam
steering using DMAs have been developed. One of these
is the method based on eigenbeams originally developed by
Elko in [8], that, employing square array geometries, allows
to design arbitrarily-shaped steerable first-order beams. A
second approach, proposed by Wu et al. in [9], allows to
derive steerable second-order beams. However, that approach
is constrained to an ad-hoc nonuniform 2D array geometry of
7 sensors. A novel class of beamformers, derived by Huang
et al. in [10] and called Frequency-Invariant Beampatterns
with Least-Squares Error (FIB-LSE), allows to build perfectly
steerable frequency-invariant beams of any order. However,
the design of the coefficients used in FIB-LSE requires the
evaluation of Bessel functions which can cause significant
degradation of the beamformer when their output approaches

zero [10]. Two solutions to this problem have been proposed
by Huang et al. [10]: one is based on 3D arrays and the other
on concentric circular arrays [11]. Both solutions still require
the evaluation of Bessel functions. This last task could result
in computationally heavy implementations for systems with
small processing capabilities, e.g., embedded systems.

An alternative efficient steering method applicable to dif-
ferential microphones with arbitrary beampatterns (BPs) has
been introduced in [12], [13]. The method is simple to
implement, since it is based on a weighted sum of identical
beams positioned in the same point of the 2D plane and
pointing towards two different directions. Assuming that the
angular displacement between the two mainlobe directions of
the two reference beams is sufficiently small, the steering
method allows to derive a beam of nearly constant shape
continuously steerable between those two directions. In [12]
the method was formalized for general DMAs, independently
from the actual geometry, assuming frequency-independent
beampatterns; only a brief example of application to ULAs
was presented.

In this paper, a frequency domain analysis of the steering
method presented in [12], applied to RCDMAs with UCA
geometry, is conducted. A new expression for the frequency
domain filter that performs the steering between two directions
identified by two adjacent sensors of the UCA is derived. The
definition of such a filter enables the derivation of closed-form
formulas for computing the White Noise Gain (WNG) and the
Directivity Factor (DF) of the designed steerable differential
beamformers for any frequency of interest. Section II provides
a background on RCDMAs. Section III resumes the continuous
beam steering method presented in [12]. Section IV introduces
steerable RCDMAs; a derivation of the frequency domain filter
for the steering operation is presented, along with a definition
of WNG and DF of steerable RCDMAs. It is shown that
the WNG and the DF of steerable RCDMAs are similar but
not identical to traditional RCDMAs. In particular, steered
RCDMAs exhibit slightly better WNG and slightly worse
DF. Moreover, an index for measuring the similarity between
steered beams and ideal ones is defined. Section V discusses
how the proposed method can be used in conjunction with the
method presented in [10] and concludes this paper.

II. BACKGROUND ON ROBUST CIRCULAR DMAS

Let us consider the UCA geometry with radius r and M
omnidirectional microphones shown in Fig. 1. The UCA is
placed in an anechoic acoustic environment also containing an
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acoustic source in far-field. The acoustic signal from the source
sensed by the UCA is modeled as a plane wave propagating
at the speed of sound, i.e., c = 340 m/s. The reference point
of the array is the center of the UCA and it coincides with the
the origin of the Cartesian coordinate system. The time delay
between the mth microphone and the center of the array is
computed as

τm =
r

c
cos(θ − ψm), m = 1, . . . ,M (1)

where θ is the azimuth angle, measured anti-clockwise from
the axis containing the first microphone characterized by index
1, and ψm = 2π(m− 1)/M is the angular position of the
mth sensor. It follows that the steering vector of length M
characterizing the UCA is

d(ω, θ) =
[
eωτ1 · · · eωτM

]T
, (2)

where the superscript T denotes transposition, ω = 2πf is the
radian frequency and f > 0 is the temporal frequency.
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Fig. 1. Illustration of an UCA in the Cartesian coordinate system.

Arbitrary order RCDMAs have been theorized in [5] and
they are characterized by the UCA geometry in Fig. 1. N th
order RCDMAs can be designed with an arbitrary number of
microphones M , provided that the condition N ≤ bM/2c
is satisfied. It follows that first-, second- and third-order
RCDMAs can be designed disposing of at least M = 2,
M = 4 and M = 6 microphones, respectively. The frequency-
dependent beampattern of a RCDMA is given by

B (ω, θ) = hH(ω)d(ω, θ) , (3)

where the superscript H indicates the Hermitian operator and
the minimum-norm vector filter h(ω) = [H1 (ω) · · ·HM (ω)]T

is computed as

h(ω) = AH(ω, θ)[A(ω, θ)AH(ω, θ)]−1b , (4)

where the constraint matrix A(ω, θ) and the constraint vector
b are built as described by Benesty et al. in chapters 3
and 7 of [5]. An important property of RCDMAs is that
the frequency-dependent beampattern in eq. (3) is almost

frequency-invariant over large frequency ranges [5] and it is
very close to a reference N th order frequency-independent
beampattern, defined as

B (θ) = 1−
N∑
n=1

an +
N∑
n=1

ancosn(θ) , (5)

where a1, . . . , aN are real coefficients. Given the desired order
N , the number of sensors M and the beampattern coefficients
a1, . . . , aN , A(ω, θ) and b are uniquely determined [5].

The WNG Gwn [h(ω)] of a RCDMA is given by

Gwn [h(ω)] =
|hH(ω)d(ω, 0)|2

hH(ω)h(ω)
, (6)

while the DF Gdn [h(ω)] is given by

Gdn [h(ω)] =
|hH(ω)d(ω, 0)|2

hH(ω)Γdn(ω)h(ω)
, (7)

where the entry at row i and column j of matrix Γdn(ω)
is defined as [Γdn(ω)]ij = sinc (ωδij/c), being δij =
2r |sin [π (i− j) /M ]| the distance between sensors i and j.

III. CONTINUOUS BEAM STEERING METHOD

In this Section, the continuous beam steering method pre-
sented in [12], [13] is revised. Since DMAs are known to
be nearly frequency-invariant for large frequency ranges [2],
frequency-independent beampatterns are considered in this
Section; it follows that, as a first approximation, the formulas
are valid independently from the actual array geometry and the
used DMA design approach. In Section IV the method will
be specifically applied to RCDMAs and the more accurate
frequency-dependent beampattern model in eq. (3) will be
considered.

Let us consider a frequency-independent beampattern B (θ),
defined as in eq. (5). B (θ) is assumed to have a mainlobe
pointing at θ0 and a shape symmetric w.r.t. the mainlobe axis.
Let us then define B̄ (θ) = B (θ − ρ) as the rotated version of
B (θ) in the same point on the 2D plane and with the mainlobe
pointing in θ̄, where ρ = θ̄ − θ0 is the angular displacement
and 0 < ρ ≤ π/2. Without loss of generality, let us assume
that θ0 = 0 and θ̄ = ρ. Mathematically, we define a weighted
sum between B (θ) and B̄ (θ) as

Bws(θ) = αB (θ) + ᾱB̄ (θ) = ᾱ [βB (θ) + B (θ − ρ)] , (8)

where α > 0, ᾱ > 0 and β = α/ᾱ are real weights. In order
to steer the mainlobe of Bws(θ) in a desired direction θd, with
0 < θd < ρ, we impose the constraint

Dws(θd) =
∂Bws(θ)

∂θ

∣∣∣∣
θ=θd

= ᾱ[βDB(θd)+DB(θd−ρ)] = 0 ,

(9)
where

DB (θ) =
∂B(θ)

∂θ
= −

N∑
n=1

nan sin(θ) cosn−1(θ) . (10)
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From constraint (9), we deduce the following expression for
the parameter β

β =
DB(θd − ρ)

−DB(θd)
. (11)

In order to normalize the beampattern Bws(θ), we impose
the second constraint Bws(θd) = 1, such that we deduce the
following expression for the weight ᾱ

ᾱ =
1

βB(θd) + B(θd − ρ)
. (12)

The other weight α can be easily computed as α = βᾱ.
Assuming that ρ is sufficiently small and computing β and
ᾱ using (11) and (12), respectively, Bws (θ) is steered in θd
and it has a shape similar to B (θ), according to the definition
of similarity given in [12].

IV. STEERABLE ROBUST CIRCULAR DMAS

In this Section, firstly, the continuous beam steering method
revised in Section III is applied to non-ideal frequency-
dependent patterns. The reference beams are now designed
according to RCDMA theory and their pointing directions are
identified by pairs of adjacent microphones, i.e., θ0 = ψm
and θ̄ = ψm+1. The proposed approach allows to build a
beam of nearly constant shape steerable in the circular sector
ρ = ψm+1 − ψm. An expression for the filter describing
the steerable beamformer is derived. A comparison between
a beamformer based on frequency-dependent weights and
another based on frequency-independent weights is performed.
Finally, closed-form formulas for the WNG and DF are
provided.

A. Filter Derivation

The frequency-dependent beampattern of a RCDMA, de-
fined in eq. (3), can also be written as

B (ω, θ) =
M∑
m=1

H∗m (ω) e(ωr/c) cos(θ−ψm). (13)

It follows that

DB (ω, θ) =
∂B (ω, θ)

∂θ
=

= −ωr/c
M∑
m=1

sin (θ − ψm)H∗m (ω) e(ωr/c) cos(θ−ψm).

(14)
Employing an UCA composed of M sensors results in an
angular displacement ρ = 2π/M between two microphones.
The weighted sum between the two RCDMA beams B(ω, θ)
and B(ω, θ − ρ) is

Bws (ω, θ) = α∗ (ω)B (ω, θ) + ᾱ∗ (ω)B (ω, θ − ρ) (15)
= ᾱ∗ (ω) [β∗ (ω)B (ω, θ) + B (ω, θ − ρ)] , (16)

where
β∗ (ω) =

DB (ω, θd − ρ)

−DB (ω, θd)
(17)

and
ᾱ∗ (ω) =

1

β∗(ω)B (ω, θd) + B (ω, θd − ρ)
(18)

are the complex conjugates of the frequency-dependent
weights to be applied to the reference beams.

Defined I as the M × M identity matrix, we can write
I = [i1 · · · iM ], where im, with 1 ≤ m ≤ M , is a column
vector of all zeros except for a 1 as mth element. Let us now
define a permutation matrix P such that P = [i2 i3 · · · iM i1],
we can build B (ω, θd − ρ) as

B (ω, θd − ρ) = hH(ω)PTd(ω, θ). (19)

Substituting (19) in (15) we obtain a generalized formula for
the steerable RCDMA beam
Bws(ω, θ) = α∗(ω)hH(ω)d(ω, θ) + ᾱ∗(ω)hH(ω)PTd(ω, θ)

= hHws(ω, θ)d(ω, θ) ,
(20)

where
hws(ω, θ) = [α(ω)I + ᾱ(ω)P] h(ω) (21)

or, equivalently,

hws(ω, θ) = ᾱ(ω) [β(ω)I + P] h(ω) (22)

is the vector filter of the steerable beamformer.
A slightly less accurate, though more efficient, imple-

mentation of the vector filter employs frequency-independent
weights. The expression of the vector filter becomes

ĥws(ω, θ) = ᾱ [βI + P] h(ω). (23)

where α, ᾱ and β are the frequency-independent weights
defined in Section III. It is worth noticing that the implemen-
tation of (23) requires the calculation of two scalar weights
applied to all the frequency bins; therefore, once h(ω) is
computed, continuous steering can be performed extremely
efficiently.

B. White Noise Gain and Directivity Factor Definition
Disposing of a definition of the filter, i.e. eq. (21), closed-

form formulas for the WNG and the DF of the proposed steer-
able beamformer are easily derived. The WNG Gwn [hws(ω)]
of a steerable RCDMA is given by

Gwn [hws(ω)] =
|hHws(ω)d(ω, θd)|2

hHws(ω)hws(ω)
, (24)

while the DF Gdn [hws(ω)] is given by

Gdn [hws(ω)] =
|hHws(ω)d(ω, θd)|2

hHws(ω)Γdn(ω)hws(ω)
. (25)

In Fig. 2, we show the WNG of hypercardioids of the first-,
second- and third-order. From these plots, it is clear that, fixed
ρ and a1, . . . , aN , the WNG of a steered RCDMA is better
than the WNG of a traditional RCDMA. In particular, we see
that the highest WNG is achieved at θd = ρ/2. It is also clear
that the WNG improves significantly with third-order beams,
while, in the first- and second-order case the WNG of the
steered RCDMA is very close to the WNG of the standard
RCDMA. In Fig. 3, we show the DF of hypercardioids of
the first-, second- and third-order. It is clear that the steered
RCDMA, fixed ρ and a1, . . . , aN , has worse DF w.r.t. the
standard RCDMA. It is also noticeable that, for higher orders
beams, the DF of the steered RCDMA worsen.
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Fig. 2. WNG of first-order (left), second-order (center) and third-order (right) hypercardioids. Conditions of simulation: M = 8, r = 1 cm, θd = ρ/2 and
f = 1 kHz.
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Fig. 3. DF of first-order (left), second-order (center) and third-order (right) hypercardioids. Conditions of simulation: M = 8, r = 1 cm, θd = ρ/2 and
f = 1 kHz.

C. Measuring Steered Beam Shape Invariance

As already mentioned in [12], Bws(θ) is generally similar
to the reference directivity pattern B(θ − θd), but not exactly
identical. This is also true for the steered RCDMA pattern
Bws(ω, θ). To compute a degree of similarity between the two
patterns, the percentage similarity error JE is defined in [12].
This measure is based on the shape error

E (ω, θ) = Bws (ω, θ)− B (θ − θd) . (26)

The percentage similarity error JE , relative to the ideal
frequency-independent beam B(θ − θd), is here redefined as

JE (ω) = 100×
∫ 2π

0
|E (ω, θ)|2 dθ∫ 2π

0
|B (θ − θd)|2 dθ

. (27)

In Fig. 4 we show how the JE varies w.r.t. the steering
angle θd, 0 ≤ θd ≤ ρ; first-, second- and third-order steered
cardioids, designed both with filter hws(ω, θ) and with filter
ĥws(ω, θ), are considered. From the plots it is clear that, when
filter hws(ω, θ) is used, the largest JE always corresponds to
θd = ρ/2; while, the JE profile changes when filter ĥws(ω, θ)
is employed. We also deduce that using ĥws(ω, θ) is always
worse in terms of JE than using hws(ω, θ), except for the
case θd = ρ/2 in which the two approaches lead to the same
percentage similarity error. In Fig. 4 ω = 2πf with f = 1
kHz. However, similar considerations hold when ω is changed.
Fig. 5 shows how the JE improves when the number of sensors
M is increased.
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Fig. 4. Percentage similarity error JE of first-, second- and third-order steered
cardioids, designed with filter hws(ω, θ) (continuous line and order N ) and
filter ĥws(ω, θ) (dashed line and order Ni), as a function of the steering
direction θd, 0 ≤ θd ≤ ρ. Conditions of simulation: M = 7, r = 1 cm and
f = 1 kHz.
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Fig. 5. JE of first-, second- and third-order steered cardioids as a function
of M . Conditions of simulations: ρ = 2π/M , θd = ρ/2, r = 1 cm and
f = 1 kHz.
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In Fig. 6 we show some comparisons between steered
beams of frequency-dependent RCDMA and ideal frequency-
independent steered patterns, when θd = ρ/2. From these
plots, it is evident that the weighted sum approach performs
better, in terms of beam shape conservation, when pattern of
lower orders are designed.

Fig. 6. Directivity patterns of steered RCDMAs with θd = ρ/2: (upper-
left) hypercardioid, N = 1, M = 7, (upper-right) cardioid, N = 2, M = 9,
(bottom-left) supercardioid, N = 2, M = 9 and (bottom-right) hypercardioid,
N = 3, M = 10. Conditions of simulation: r = 1 cm and f = 1 kHz.

V. DISCUSSION AND CONCLUSION

As the proposed steering method is very efficient, in the
following, we will discuss how and when it can be used as
an alternative to, or in conjunction with, the state-of-the-art
steering method proposed in [10].

A. Discussion on FIB-LSE and steerable RCDMA

The FIB-LSE approach [10] allows to perform continu-
ous beam steering preserving the shape of the beampattern.
However, the filter design procedure of the FIB-LSE method
requires the evaluation of Bessel functions of the first kind,
which can cause significant degradation of the beamformer
when their output approaches zero. Moreover, the evaluation of
Bessel functions could be computationally heavy for systems
with small processing capabilities, and, eventually, it would
require tabulation methods.

For these reasons, the steering method proposed in this
paper, though less accurate, could be used as an alternative
to, or even in conjunction with, the method in [10] in order
to reduce the computational cost. In fact, since the proposed
steering approach works independently from the method used
to construct the pair of reference beams, it would be also
possible to derive the reference beams using the FIB-LSE

methodology. This would allow to deal with angular dis-
placements ρ that are different from 2π/M . For instance,
such an approach could be useful in scenarios in which the
Direction of Arrival (DOA) of the acoustic source needs
to be estimated, performing searching procedures based on
continuous steering in a angular sector and on maximization
of the energy of the beamformer output. Since the design of
the coefficients of FIB-LSE depends on the steering direction,
performing continuous steering, during the DOA estimation
procedure, could be computationally costly. Therefore, the
efficient steering method based on a weighted sum could be
used during the DOA estimation procedure and, once a DOA
is estimated, the FIB-LSE approach could be finally employed.

B. Conclusion

In this paper, we showed how the continuous beam steering
approach introduced in [12] can be applied to RCDMAs.
We defined a filter performing steering of RCDMAs, and we
derived closed-form formulas to compute the WNG and the DF
at each frequency of interest. The presented steerable RCDMA
approach, although being less accurate w.r.t. the FIB-LSE
method, could be used, eventually in conjunction with FIB-
LSE, for designing steerable beamformers, which are more
flexible in terms of computational cost.
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