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a b s t r a c t

Multi-frame image super-resolution (SR) aims to utilize information from a set of low-

resolution (LR) images to compose a high-resolution (HR) one. As it is desirable or

essential in many real applications, recent years have witnessed the growing interest in

the problem of multi-frame SR reconstruction. This set of algorithms commonly utilizes

a linear observation model to construct the relationship between the recorded LR

images to the unknown reconstructed HR image estimates. Recently, regularization-

based schemes have been demonstrated to be effective because SR reconstruction is

actually an ill-posed problem. Working within this promising framework, this paper

first proposes two new regularization items, termed as locally adaptive bilateral total

variation and consistency of gradients, to keep edges and flat regions, which are

implicitly described in LR images, sharp and smooth, respectively. Thereafter, the

combination of the proposed regularization items is superior to existing regularization

items because it considers both edges and flat regions while existing ones consider only

edges. Thorough experimental results show the effectiveness of the new algorithm for

SR reconstruction.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

In many military and civilian applications, high-
resolution (HR) images are desirable and always required.
HR means that the number of pixels within a given size of
image is large. Therefore, an HR image usually offers
important or even critical information for various prac-
tical applications. In recent decades, charge-coupled
device (CCD) and CMOS image sensors have been widely
used in imaging systems. Although these sensors work
well for many imaging-based applications, the current
resolution level in these sensors does not meet the
increasing demands in the near future. Therefore, it is
ll rights reserved.

29 88887711.
essential to find an effective way to expand the resolution
of low-resolution (LR) images.

A straightforward solution to increase the spatial
resolution of LR images is to reduce the pixel size by
sensor manufacturing techniques, i.e., to increase the
number of photo-detector for a given area of sensor chip.
As the pixel size decreases, however, the power of light
incident to each single photo-detector also decreases, and
thus the image quality is degraded severely by the
insufficient signal-to-noise ratio. Therefore, there exists a
limitation of the pixel size reduction below which the
suffering effect of shot noise could dominate. Unfortu-
nately, the current image sensor technology has almost
reached this limitation, i.e., it is impossible to obtain HR
image through reducing the size of pixel [1].

Another approach to improve the spatial resolution of
LR images is to increase the size of a sensor chip. This
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means more photo-detectors will be involved in an image-
capturing device. However, a larger size of sensor leads to
an increase in the capacitance on a chip, which in turn
leads to lower charge transfer rate and a longer period of
time to capture an image [1]. So this approach
is inefficient. In addition, large size of sensor chips is
inconvenient to many practical applications, e.g., satellite
imagery. Finally, this approach will also increase the cost
and it is not acceptable for cost-sensitive commercial
applications.

As a consequence, there is an urgent need for
developing post-acquisition signal processing techniques
to enhance the resolution. These techniques offer flex-
ibility as well as the cost benefit because there is no
additional hardware involved. However, an increased
computational cost may be the burden that a user has to
suffer. Such a resolution enhancement is called super-
resolution (SR) image reconstruction. SR reconstruction
restores an HR image by using several LR images or a
video sequence, while eliminating noises and blurs
introduced by optical devices and the limited size of
embedded sensor chips. It is an effective way to increase
the resolution of a sequence of degraded images and has
attracted extensive attention of researchers in signal
processing, computer vision, and machine learning. Also,
it has been widely applied to many applications, e.g.,
remote sensing, medical imaging, data mining, petroleum
exploration, military information gathering and high
definition television (HDTV).

Popular SR reconstruction algorithms can be roughly
divided into two categories: frequency domain algorithms
and spatial domain algorithms.

For frequency domain algorithms, Tsai and Huang [1]
proposed the first work for the SR reconstruction by
estimating the relative shifts between observations. Their
approach is based on the following three aspects: the
property of shifting of Fourier transform, the spectral
aliasing principle, and the limited bandwidth of the
original HR image. Based on this algorithm, a series of
improved SR reconstruction algorithms had been pro-
posed [2–4].

For spatial domain algorithms, representative works
are given as follows. The non-uniform interpolation-based
approaches [5,6]: their common advantage is that their
computational cost is relatively low so they are ready for
real-time applications. However, degradation models are
not applicable in these approaches if the blur and the
noise characteristics are different for LR images. Projec-
tions on a convex set (POCS)-based methods [7,8]: their
common advantage is simplicity, i.e., the utilization of the
spatial domain observation model and inclusion of a priori
information. However, their disadvantages are non-un-
iqueness of solutions, slow convergence rate and heavy
computational load. Iterative back projection (IBP)-based
approaches [13]: they conduct SR reconstruction in a
straightforward way. However, they have no unique
solution due to the ill-posed nature of the inverse problem
and some parameters are difficult to choose. Additionally,
it is difficult to combine priori constraints with these
approaches. Bayesian Maximum A-posteriori (MAP) esti-
mation-based methods [12,20,21]: compared with IBP-
based methods, they explicitly use the priori information
in the form of a prior probability density on an HR image
and provide a rigorous theoretical framework. In [21], an
MAP-based joint formulation is proposed and it judi-
ciously combines motion estimation, segmentation, and
super resolution together. This formulation is used for a
complex super-resolution problem in which the scenes
contain multiple independently moving objects. Regular-
ization-based approaches [9–11], learning-based SR meth-
od [14,18] , space-time SR method [15] and color image SR
method [22,23] have been proposed. Spatial domain
approaches are better in adaptability and lead to better
SR reconstruction results than frequency domain ap-
proaches, and thus become popular in recent years.

Among all spatial domain approaches, what is worthy
of mentioning is the regularization-based methods, which
are effective to solve the multi-frame SR reconstruction
problem, the focus of this paper. Because SR reconstruc-
tion is an ill-posed problem, their common point is to
integrate a priori knowledge (represented by a regulariza-
tion item) into the process of SR reconstruction to obtain a
stable solution. Tikhonov regularization reconstruction
method [19] is one of the most representative regulariza-
tion-based algorithms for SR reconstruction. It introduces
smoothness constraints to suppress the noise in recon-
structed images, but it loses some details (e.g., edges) in
LR images. Another representative work is proposed by
Farsiu et al. [16], who introduced the bilateral total
variation (BTV) operator as a regularization term mea-
sured by L1 norm. This approach is more robust and can
preserve more details (e.g., edges) than Tikhonov regular-
ization method. However, this approach fails to consider
the partial smoothness of an image, i.e., it is not locally
adaptive, and thus it has limited adaptive capability in the
process of SR reconstruction and cannot balance the
suppression of noise against the preservation of image
details.

To reduce shortcomings of the aforementioned Tikho-
nov regularization method and Farsiu’s SR reconstruction
algorithm, in this paper, we propose a new SR reconstruc-
tion algorithm, which can, respectively, keep edges and
flat regions implicitly described in LR images sharp and
smooth in the restored HR image. In the proposed
approach, locally adaptive bilateral total variation (LABTV)
operator, which is measured by the fuzzy-entropy-based
neighborhood homogeneous measurement, is used as a
regularization item to constrain the smoothness of the
reconstructed images. At the same time, gradient error
term is introduced as gradient homogeneity constraint
term to further improve the reconstructed images. To
improve the robustness to estimation error of this
method, LABTV regularization term is measured with
adaptive Lp norm, while data error term and gradient error
term are measured with L1 norm.

The rest of the paper is organized as follows. Section 2
introduces the imaging degradation model. In Section 3,
we first describe the data error term in SR reconstruction,
then propose two new regularization items, i.e., LABTV
and consistency of the gradient (CG), and finally show
how to implement the proposed SR reconstruction
algorithm. Section 4 evaluates the new algorithm in
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comparison with representative SR reconstruction meth-
ods and Section 5 concludes.

2. Imaging degradation model

It is necessary to set up a suitable imaging model,
which can mimic the physical process of imaging
degradation, to implement the super-resolution recon-
struction. In the practical process of image sampling, there
exist some degrading factors, i.e., atmospheric turbulence,
object motion, optical blurring, sampling devices, and
sampling process. Considering these main factors, the
block diagram of the imaging degradation system is
shown in Fig. 1.

Since optical blurring from camera has greater effect
on images than atmospheric blurring in conventional
imaging system, only optical blurring is considered in this
paper. We apply the imaging degradation model devel-
oped by Farsiu et al. [16] to construct a connection
between high-resolution images and corresponding low-
resolution images.

Suppose that the expected high-resolution image
vector is X ¼ ½x1; x2; . . . ; xQ2 �

T and Q ¼ rM, where r is the
down-sampling scalar. The size of the kth observed image
Yk is M�M, wherein Yk ¼ ½y

k
1; y

k
2; . . . y

k
M2 �, k ¼ 1,2,y,N, and

N is the number of corresponding low-resolution images.
According to [16], by imposing the additive noises on, the
observation model Yk is given by

Yk ¼ DkHcam
k Fk XþVk; k ¼ 1;2; . . . ;N, (1)

where Fk is the motion matrix for modeling the motion
degradation process of the kth LR image, Hcam

k the blur
matrix for representing the point spread function (PSF) of
the camera sensor, Dk the down-sampling matrix, and Vk

the system additive noise.

3. Adaptive edge-preserving regularized SR

The observation model defined in Eq. (1) describes the
direct LR image acquisition process by an imaging
degradation system. Based on Eq. (1), we can estimate
the corresponding HR image from observed LR images,
and this process is terms as the super-resolution. How-
ever, the operators Hk, related to the point spread
functions, are derived from the discretization of compact
operator, so SR process is ill-posed. Thus, even small
changes in LR images can result in large perturbations in
Fig. 1. The block diagram o
the final solution and there exist an infinite number of
solutions when (1) is solved directly. To obtain a stable
solution, a specific regularization UðXÞ is always imposed
on the observation model. The regularization UðXÞ can
incorporate prior knowledge of the desirable HR solution,
e.g., degree of smoothness. So, additional constraints that
favor well-behaved solutions can be enforced by specific
regularization to remove artifacts from final result.
Accordingly, SR process can be converted to a generalized
minimization cost function [16] i.e.,

min JðXÞ; JðXÞ ¼
XN

k¼1

rðYk;DkHkFk XÞ þ lUðXÞ, (2)

where X is the unknown high-resolution image to be
estimated, Yk the kth observed LR image, l the Lagrangian
constant coefficient, and r the distance between the
observation and an estimation. Fk, Hcam

k , and Dk in (2) are
motion matrix, blur matrix, and down-sampling matrix,
respectively.

To better preserve edges in the estimated HR image, a
gradient-based constraint is introduced to Eq. (2),

JðXÞ ¼
XN

k¼1

rðYkDkHkFk XÞ þ l1UðXÞ

þ l2

XN

k¼1

r0ðrYk;DkFkr XÞ; (3)

where r0 measures the distance between the gradient of
LR images and the estimated HR image. The first item in
the right-hand side of Eq. (3), namely with the data error
term, measures the reconstruction error to ensure that
pixels in the reconstructed HR image are approaching to
real values. The second item in the right-hand side of
Eq. (3), namely with the regularization term, controls the
smoothness of the reconstructed HR image. The third item
in the right-hand side of Eq. (3), namely with the gradient
error term, guarantees the consistency between the
gradient of estimated HR image and that of original LR
images. Coefficients l1 and l2 balance mentioned terms.

3.1. Data error term

Usually, the data error term used in Eqs. (2) and (3) is
defined by the Lp(1rpr2) norm of the residual, i.e.,

XN

k¼1

rðYk;DkHkFk XÞ ¼
XN

k¼1

kDkHkFk X�Ykk
p
p. (4)
f an imaging system.
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According to [16], L1 norm leads to a more robust result
in error estimation than L2 norm, so we adopt this result
in this paper.
3.2. Locally adaptive bilateral total variation

The regularization term controls the perturbation of
the solution, solves the ill-posed problem for SR recon-
struction, and guarantees a stable HR estimation. Farsiu
et al. [16] proposed the bilateral total variation model for
regularization by combining the total variation and the
bilateral filter,

UBTV ðXÞ ¼
Xw

l¼�w

Xw

m¼0

a mj jþjljjX�Sl
xSm

y X j, (5)

where l+mZ0, Sl
x,and Sm

y are shift matrices to present l and
m pixels shift in horizontal and vertical directions,
respectively, and a (0oao1) is the weighting coefficient.

The weighting coefficient a affects the estimated HR
image significantly. Small a sharpens edges while ampli-
fying noises in the estimated HR image, as shown in
Fig. 2b. Large a helps to suppress noise while smoothing
Fig. 2. The proposed LABTV for restoration in comparison with the original BTV

because it preserves edges and suppresses noises: (a) degraded image, (b) L1+B
the estimated HR image, i.e., edges in the estimated HR
image will be blurred, as shown in Fig. 2c.

Based on the above fact, it is desirable to impose small
a on edges and large a to smooth regions for the HR image
estimation, so that both the edge preservation and noise
suppression can be achieved simultaneously. To achieve
this objective, we propose a novel regularization item,
termed locally adaptive bilateral total variation.

3.2.1. Definition of LABTV

Suppose that the vector form of a Q�Q image
X ¼ [xi,j]Q�Q is given by X ¼ ½x1; x2; . . . ; xQ2 �

T and the
LABTV regularization is defined as

UABTV ðXÞ ¼
Xw

l¼�w

Xw

m¼�w

1

pXðm; lÞ
Fðm; lÞ mj jþ lj jkX�Sl

xSm
y X k

pX ðm;lÞ

pX ðm;lÞ
,

(6)

where

PXðm; lÞ ¼ ½pxk
ðm; lÞ�k¼1;...;Q2

¼ ½pi;jðm; lÞ�i¼1;2;...;Q
j¼1;2;...;Q

ðk ¼ ðj� 1Þ � Q þ iÞ, (7)

where the range of the kth entry of pXðm; lÞ is 1 �
pxk
ðm; lÞ � 2 and its value varies adaptively with pixels
with two different settings for SR reconstruction: LABTV outperforms BTV

TV (a ¼ 0.1), (c) L1+BTV (a ¼ 0.9), and (d) L1+LBTV.
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and their shifts and the diagonal Q2
�Q2 adaptive

weighting coefficient matrix F(m,l) contains adaptive
weighing coefficients.

3.2.2. Determination of F(m, l)

Diagonal entries of F(m, l) are obtained from image
local features, which responses to local smoothness. In
this paper, we apply the fuzzy entropy-based neighbor-
hood homogeneity Ri,j to measure the local smoothness
for the (2n+1)� (2n+1) patch centered at (i, j), i.e.,

Ri;j ¼
1

ð2nþ 1Þ2

Xn

k¼�n

Xn

l¼�n

Htðutðxiþk;jþlÞÞ; (8)

where Ht(ut) is the fuzzy entropy of ut and ut ¼ 1=ð1þ
jxi;j � tj=DÞ is the membership function of pixel xi,j. The
range of Ri,j is [0, 1]. The smaller the value of Ri,j is, the
smoother the patch centered at (i, j) will be. Moreover, Ri,j

is robust to noise (i.e., it is noise resisting) and sensitive to
weak edges. Therefore, Ri;j is a suitable choice to
determine F(m, l).

With Ri;j, we define the kth diagonal entry of F(m, l) as

fk;kðm; lÞ ¼
ai;j; ai;j � aiþm;jþl

aiþm;jþl; ai;j4aiþm;jþl
ðk ¼ ðj� 1Þ � Q þ iÞ;

(

(9)

where ai,j ¼ 1/(1+ZRi,j) and Z is a non-zero constant to
control the value and scope of ai,j. Based on the definition
of fk,k(m, l) in Eq. (9), we have the following observations:
(1) the range of fk,k(m, l) is 0;1ð Þ; (2) fk,k(m, l)-1 if the
pixel (i, j) and its neighbor (i+m, j+l) are in smooth regions
because both ai;j and aiþm;jþl are approaching to 1; and (3)
on the contrary to (2), fk,k(m, l)-0 if the pixel (i, j) and its
neighbor (i+m, j+l) are in non-smooth regions. In sum-
mary, fk,k(m, l) is adaptive to the smoothness of a patch
and achieves our objective for designing weighing
coefficient.

3.2.3. The adaptive selection of Lp norm

In order to overcome shortcomings of L2 and L1 norms
while inheriting their advantages, L1 norm in Eq. (5) is
replaced by Lp (1opo2) norm over pixels, and p is
determined by the difference between a specific pixel and
its neighbors. To reduce noise for smooth regions, p should
be set with large values, i.e., p-2, while to preserve edges
for non-smooth regions, p should be set with small values,
i.e., p-1. Therefore, pi,j(m, l), the p norm for the pixel (i, j)
with its neighbors (m, l), is given by

pi;jðm; lÞ ¼ 1þ
1

1þ djxi;j � xiþm;jþlj
, (10)

where d is a positive constant. According to Eq. (10), we
know Pi,j(m, l)-1, i.e., pXðm; lÞ ! 1, in an edge area, so the
L1 norm is used to preserve edges. On the contrary, in a
smooth area, Pi,j(m, l)-2, i.e., pXðm; lÞ ! 2 in Eq. (6), so the
L2 norm is used to smooth the area. Therefore, Lp norm is
adaptively determined.

3.2.4. Analysis of the proposed adaptive regularization

In the proposed adaptive regularization, both the
weighting coefficient matrix F(m, l) and the norm
parameter pXðm; lÞ (i.e., pi;jðm; lÞ) can both be estimated
by the initially reconstructed HR image. And the adaptive
regularization term can be calculated from Eq. (6). This
regularization term has different effects on pixels with
different degrees of smoothness. Its smooth effect on a
non-border pixel xi,j in an image X can be presented by the
variation of the LABTV operator, i.e., @UABTV ðXÞ=@xi;j.

For simplicity, supposing w ¼ 1 in Eq. (6), let

jðxi;j � xiþm;jþlÞ ¼
1

pi;jðm; lÞ
ðxi;j � xiþm;jþlÞ

pi;jðm;lÞ, (11)

then we have

@UABTV ðXÞ

@xi;j
¼

@

@xi;j

X1

l¼�1

X1

m¼�1

f mj jþ lj j
k;k ðm; lÞjðxi;j � xiþl;jþmÞ

¼
X1

l¼�1

X1

m¼�1

f mj jþ lj j
k;k m; lð Þj0ðxi;j � xiþl;jþmÞ: (12)

When (xi,ja�xi+m,j+l)-0, we have Pi,j(m, l)-2, so

lim
ðxi;j�xiþm;jþlÞ!0

j0ðxi;j � xiþm;jþlÞ

ðxi;j � xiþm;jþlÞ
¼ 1.

Therefore, each item in Eq. (12) can be written as

f mj jþ lj j
k;k ðm; lÞ

j0ðxi;j � xiþm;jþlÞðxi;j � xiþm;jþlÞ

ðxi;j � xiþm;jþlÞ

and Eq. (12) can be rewritten as

@UABTV ðXÞ

@xi;j
¼ xSxi;j �

X1

l¼�1

X1

m¼�1

xm;lxiþm;jþl, (13)

where

xm;l ¼ f mj jþ lj j
k;k ðm; lÞ

j0ðxi;j � xiþm;jþlÞ

ðxi;j � xiþm;jþlÞ
,

xS ¼
X1

l¼�1

X1

m¼�1

xm;l,

and indices l and m cannot be zero at the same time. The
LABTV regularization term processes the pixel xi,j by
weighted summation of all its 8-neighbors according to
the following weighting matrix:

WABTV ¼ �

x�1;�1 x�1;0 x�1;1

x0;�1 �xS x0;1

x1;�1 x1;0 x1;1

2
64

3
75. (14)

For a smooth area in an image, pi,j(m,l)-2 in Eq. (10)
because f mj jþ lj j

k;k ðm; lÞ ! 1 in Eq. (9). Then we have,

xm;l ¼ lim
ðxi;j�xi�1;jþ1Þ!0

f mj jþ lj j
k;k ðm; lÞ

j0ðxi;j � xiþm;jþlÞ

ðxi;j � xiþm;jþlÞ
¼ 1

and

xS ¼
X1

l¼�1

X1

m¼�1

xm;l
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is around 8. Therefore, WABTV in Eq. (14) is reduced to a
smoothing filter.

For a non-smooth area in an image, we can assume
(xi,j�xi�1,j+1)-N (a large number), and then we have
pi,j(�1, 1)-1 and fk,k(�1, 1)-0. Therefore, x�1,1 ¼ 0, that
is pixel xi�1,j+1 almost contributes nothing to smooth
pixel xi,j.

In summary, the proposed LABTV regularization term
is adaptive to different types of areas, i.e., LABTV can
preserve edges for non-smooth areas and reduce noises
for smooth areas. To further justify the effectiveness of
LABTV at empirical level, we conduct a simple experiment
as shown in Fig. 2, which visually evaluates the restora-
tions in comparison with BTV [16] with different settings.

Fig. 2a is the blurred and Gaussian noised image.
Fig. 2b and c are restorations by using the robust SR
method (L1+BTV) in [16] with weight a being 0.1 and 0.9,
respectively. Fig. 3d shows the restoration by replacing
BTV with the proposed LABTV in the place of that in the
robust SR method [16] (L1+LABTV), while the iterative step
is kept and other parameters in the method are the same
as those in obtaining (b) and (c). The peak signal-to-noise
ratio (PSNR) in (b)–(d) are 23.40, 24.23 and 26.39,
respectively. In Fig. 2b, edges are well preserved while
noises are amplified because a is small. In Fig. 2c, noises
are suppressed while edges are smoothed because a is
large. From Fig. 2d, we can find edges are well preserved
and noises are suppressed because LABTV is an adaptive
regularization term.

3.3. The consistency of gradients

To further preserve the edge information, we can
consider the consistency of the gradient between the
reconstructed HR image and the observed LR image. The
CG is defined as

r0ðrYk;DkFkr XÞ ¼
XN

k¼1

X4

i¼1

jDkFkðri XÞ � riYkj; (15)

where the gradient is calculated in four direction without
considering the blurring effect, the L1 norm is used to
measure the difference between the gradient maps, Fk is
the motion matrix, Dk is the down-sampling matrix, and
r1 X; r2 X; r3 X; and r4 X, are gradient vectors in hor-
izontal, vertical, and two diagonal directions, respectively.
Fig. 3. CG is helpful to further enhance edges in the reconstructed H
In this paper, r1 X; r2 X; r3 X; and r4 X are calcu-
lated according to

r1 X ¼ S1
x XþS�1

x X�2 X ;

r2 X ¼ S1
y XþS�1

y X�2 X ;

r3 X ¼ 1
2ðS
�1
x S1

y XÞ þ 1
2ðS

1
x S�1

y XÞ � X ;

r4 X ¼ 1
2ðS

1
x S1

y XÞ þ 1
2ðS
�1
x S�1

y XÞ � X , (16)

where S�1
x and S�1

y are shift matrices andriYk the gradient
of the observed LR image. The calculation of riYk is the
same as that of ri X.

In Fig. 3, we show the effectiveness of CG for edge
preservation in SR reconstruction. Fig. 3a is an observed
LR image, Fig. 3b is the reconstructed HR image by using
the robust SR method in [16], and Fig. 3c is the
reconstructed HR image by using the combination of
Eq. (16) and BTV in [16]. As shown in Fig. 3, the proposed
CG can further enhance the PSNR from 20.866 to
21.203.

3.4. Implementation

Based on the proposed LABTV regularization term in
Eq. (6) and CG defined in Eq. (15), the Lagrangian objective
function for HR image reconstruction is defined as

X̂ ¼ Arg Min
X

XN

k¼1

kDkHkFk X�Ykk1 þ l1

Xw

l¼�w

Xw

m¼�w

1

pXðm; lÞ

"

�Fðm; lÞ mj jþ lj jkX�Sl
xSm

y X k
pX ðm;lÞ

pX ðm;lÞ

þl2

XN

k¼1

X4

i¼1

kDkFkðri XÞ � riYkk1

#
. (17)

There is no closed form solution for Eq. (17) and the
steepest descent is adopted in this paper to find a solution
of (18). The calculation iteration is given by

X̂nþ1 ¼ X̂n � b
XN

k¼1

FT
k HT

k DT
k signðDkHkFkX̂n � YkÞ

(

þ l1

Xw

l¼�w

Xw

m¼�w

Fðm; lÞ mj jþ lj j½I � S�l
x S�m

y �

� signðX̂n � Sl
xSm

y X̂nÞjX̂n � Sl
xSm

y X̂nj
pX ðm;lÞ�1

þl2

XN

k¼1

X4

i¼1

FT
k DT

k signðDkFkðriX̂nÞ � riYkÞ
@riX̂n

@X̂n

)
, (18)
R image: (a) degraded image, (b) L1+BTV, and (c) L1+BTV+CG.
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where b is the learning rate; S�l
x and S�m

y are transposes of
matrices Sl

x and Sm
y to represent opposite shifting direc-

tions of Sl
x and Sm

y , respectively; and @ri X =@X is the
partial derivative of gradients in one of the four directions
with respect to X. The multiplication between matrices F,
H, D, S with their transposes and the image vector can be
implemented by shift, shift-back, convolution, down-
sampling and up-sampling operations on the image
directly to speed up the SR reconstruction process and
to save both the time and space costs for computation
[16,17].
Table 1
Comparison of PSNR from SR reconstruction methods.

Image Figure ID Bi-cubic L1+BTV L1+LABTV L1+LABTV+CG

Eia 4 17.5218 20.8661 21.6246 21.953
Boat 5 20.4988 28.1957 32.1679 32.3295

6 23.2732 28.9194 32.1229 32.328
Shopping 7 20.9798 29.0454 32.2163 32.3349
4. Experimental results and analysis

In order to show the SR reconstruction improvement
achievable with the new algorithm based on the proposed
LABTV and gradient consistency, three typical 256-gray-
level HR images, i.e., Eia, Boat and Shopping, in image
processing were selected for performance evaluation. To
validate the effectiveness and robustness of the proposed
algorithm (denoted as ‘‘L1+LABTV+CG’’) for SR reconstruc-
tion, it was evaluated subjectively and objectively in
comparison with bi-cubic interpolation (denoted as ‘‘bi-
cubic’’) and the robust SR method [16] (denoted as
‘‘L1+BTV’’). We also test the effectiveness of the proposed
LABTV and denote it as ‘‘L1+LABTV’’.

In the following experiments, HR images were de-
graded by using Eq. (1) and several LR images were
obtained. The parameter selection criterion in each
experiment for each algorithm was to choose parameters
to produce visually most appealing results. For fair
evaluation, we applied each algorithm for SR reconstruc-
tion several times based on different parameters and the
Fig. 4. Comparison of reconstruction results of image Eia: (a) original im

(f) L1+ABTV+CG.
best result of each time was chosen as the output of the
algorithm for this experiment.

Fig. 4 evaluates the SR reconstructions based on the
proposed algorithm in comparison with various existing
algorithms. Fig. 4a shows the original HR image Eia with
size of 360�360. The HR image was degraded with 16
predefined shift vectors and blurred by a Gaussian low-
pass filter with size of 4� 4 and standard deviation of 1.
These 16 degraded images were then down-sampled
horizontally and vertically with factor of 4 and Gaussian
noise was further introduced on these LR images. Fig. 4b
shows one representative LR example. Fig. 4c shows the
SR reconstruction obtained by using the bi-cubic inter-
polation. Fig. 4d shows the result obtained by using the
robust SR method [16]. Fig. 4e shows the effectiveness of
the ABVT and Fig. 4f shows the SR reconstruction of the
proposed ‘‘L1+LABTV+CG’’. The PSNRs of different ap-
proaches are given in Table 1.

Fig. 4 shows that bi-cubic interpolation method per-
forms worst because it conducts SR reconstruction based
on a single LR image. In comparison with the SR
reconstruction result obtained by L1+BTV [16], the result
shown in Fig. 4e obtained by the proposed L1+LABTV looks
better because LABTV has better capability to restore
age, (b) degraded image, (c) bi-cubic, (d) L1+BTV, (e) L1+ABTV, and
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image details, to preserve edges, to reduce noises in
smooth areas, and to increase the brightness of the whole
image. The result shown in Fig. 4f obtained by the
proposed L1+LABTV+CG is better than Fig. 4e because
the CG constraint is helpful to preserve more edge
information than the algorithm without this constraint.

Experiments 2 and 3 were designed to evaluate the
robustness of the proposed algorithm. In experiment 2, we
evaluate SR reconstruction results obtained by different
algorithms by using an incorrect noise model. In experi-
ment 3, we evaluate SR reconstruction results obtained by
different algorithms by using an incorrect motion estima-
tion model. Both experiments were conducted on Boat

with size of 360�360 and 9 LR images were obtained in
the same way as used in the experiment 1, i.e., down-
sampling factor was 3, the size of the blurring operator
was 5�5, and the standard deviation in the Gaussian low-
pass filter was 1. The PSNRs of different approaches are
given in Table 1.

Fig. 5b shows that one of 9 LR images noised by the
salt-and-pepper noise in experiment 2. For SR reconstruc-
tion, the Gaussian white noise with zero mean was used as
the noise model. The SR reconstruction result obtained by
L1+BTV method [16] is shown in Fig. 5d. Fig. 5e and f
illustrate the SR reconstruction results obtained by using
the proposed L1+LABTV and L1+LABTV+CG.

In the experiment 3, 2 out of 9 generated images were
selected arbitrarily. One was processed by an affine transfor-
mation, and the other was magnified and clipped, as shown
in Fig. 6a and b, respectively. For all SR reconstruction
algorithms, we assumed there was only shift between LR
images. The original image used in this experiment was the
Fig. 5. Comparison of reconstruction results of image Boat, when noise mode

(d) L1+BTV, (e) L1+ABTV, and (f) L1+ABTV+CG.
same as that in the experiment 2, as shown in Fig. 5a. Fig. 6e
is the result obtained by using L1+BTV [16]. Results obtained
by using the proposed L1+LABTV and L1+LABTV+CG are
shown in Fig. 6e and Fig. 6f. The PSNRs of different
approaches are given in Table 1.

By comparing Fig. 5e and 6e and f with Fig. 5d and 6d,
we find the reconstruction results obtained by using the
proposed L1+LABTV and L1+LABTV+CG are still better than
those obtained by using L1+BTV [16]. In addition,
L1+LABTV+CG performs better than L1+LABTV because
CG can further enhance the reconstructed edges.
Therefore, the combination of the proposed constraints
LABTV and CG is much more robust than BTV when
incorrect motion and noise models are chosen for
reconstruction, i.e., LABVT+CG smoothes image
background while preserving sharp edges, e.g., like letters,
scratches and poles on the boat hull.

Experiment 4 was conducted to examine the effective-
ness of the proposed constraints when the number of LR
image frames was insufficient for SR reconstruction [16].
The PSNRs of different approaches are given in Table 1. The
testing image was Shopping with size 300�300. Nine LR
images were generated in the same way as that used in
experiment 1 while the down-sampling factor in this
experiment was 4 and Gaussian low-pass filter was with
size 3�3 standard deviation 1.2. Experimental results in
Fig. 7e and f show the proposed L1+LABTV and
L1+LABTV+CG balance well between noise suppression
and detail preservation even under the circumstance of
insufficient information, e.g., noise was reduced and
letters were kept sharply on the box surface. Therefore,
the proposed algorithms have good visual effects.
l is used wrongly: (a) original image, (b) degraded image, (c) bi-cubic,
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Fig. 6. Comparison of reconstruction results of image Boat, when motion model is used wrongly: (a) LR image after affine transformation, (b) LR image

after magnification and clip, (c) bi-cubic, (d) L1+BTV, (e) L1+ABTV, and (f) L1+ABTV+CG.

Fig. 7. Comparison of reconstruction results of image Shopping, when pixels are insufficient: (a) original image, (b) LR image, (c) bi-cubic, (d) L1+BTV,

(e) L1+ABTV, and (f) L1+ABTV+CG.
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5. Conclusion

In this paper, a new multi-frame SR reconstruction
algorithm is proposed based on image local character-
istics, which can balance noise suppression against detail
preservation and improve adaptively in the SR reconstruc-
tion process. In this approach, locally adaptive bilateral
total variation model is used as a regularization item and
measured with adaptive Lp norm. Also, L1 norm is used to
measure data error term and newly introduced gradient
error term which is used as gradient consistent constraint.
Experimental results show that the proposed method
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leads to better results with noise suppression and detail
preservation. Moreover, they are robust to fluctuations in
reconstruction results due to misuse of some models.

The proposed methods can be further extended to
improve the performance of multi-frame SR reconstruc-
tion methods. For example, the number of iterative steps
can be reduced by adjusting step size adaptively according
to the number of iterative steps. Estimation of blurring
operator can be introduced into the reconstruction
process for HR image estimation. And LR images can be
weighted according to their differences in SR reconstruc-
tion process.
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